
Distributed Continuous Quality Assurance
Leveraging User Resources to Improve Software Quality

Around-the-World, Around-the-Clock

Atif M. Memon, Adam Porter, Cemal
Yilmaz, and Adithya Nagarajan

Computer Science Department
University of Maryland, College Park

� atif,aporter,cyilmaz,sadithya � @cs.umd.edu

Douglas C. Schmidt and Bala Natarajan
Electrical Engineering

& Computer Science Department
Vanderbilt University

� schmidt, bala � @dre.vanderbilt.edu

Abstract
Quality assurance (QA) tasks, such as testing, profiling, and perfor-
mance evaluation, have historically been done in-house on developer-
generated workloads and regression suites. Since this approach is
inadequate for many systems, tools and processes are being de-
veloped to improve software quality by increasing user participa-
tion in the QA process. A limitation of these approaches is that
they focus on isolated mechanisms, but not on the coordination and
control policies and tools needed to make the global QA process
efficient, effective, and scalable. To address these issues, we have
initiated the Skoll project, which is developing and validating novel
software QA processes and tools that leverage the extensive com-
puting resources of worldwide user communities in a distributed,
continuous manner to significantly and rapidly improve software
quality.

This paper provides three contributions to the study of distributed
continuous QA. First, it illustrates the structure and functionality of
a generic around-the-world, around-the-clock QA process and de-
scribes several sophisticated tools that support this process. Sec-
ond, it describes several scenarios implemented using these tools
and process. Finally, it presents the results of a feasibility study ap-
plying these scenarios on two widely-used, large-scale open-source
middleware toolkits.

The results of this study indicate that the Skoll process and its
toolsuite can effectively manage and control distributed, continu-
ous QA processes. In a matter of hours and days we identified
problems that had taken the ACE and TAO developers substantially
longer to find and several of which had previously not been found.
Moreover, automatic analysis of QA task results often provided de-
velopers information that quickly led them to the root cause of the
problems.

1. INTRODUCTION
Emerging trends and challenges. Software testing and profiling
plays a key role in software quality assurance (QA). These tasks
have often been performed in-house by developers, on developer
platforms, using developer-generated input workloads. One bene-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

fit of in-house QA is that programs can be analyzed at a fine level
of detail since QA teams have extensive knowledge of, and un-
restricted access to, the software. The shortcomings of in-house
QA efforts, however, are well-known and severe, including (1) in-
creased QA cost and schedule and (2) misleading results when the
test-cases and input workload differs from actual test-cases and
workloads or when the developer systems and execution environ-
ments differ from fielded systems.

In-house QA processes are particularly ineffective for performance-
intensive software, such as that found in (1) high-performance com-
puting systems (e.g., those that support scientific visualization, dis-
tributed database servers, and financial transaction processing), (2)
distributed real-time and embedded systems that monitor and con-
trol real-world artifacts (e.g., avionics mission- and flight-control
software, supervisory control and data acquisition (SCADA) sys-
tems, and automotive braking systems), and (3) the operating sys-
tems, middleware, and language processing tools that support high-
performance computing systems and distributed real-time and em-
bedded systems. Software for these types of performance-intensive
systems is increasingly subject to the following trends:

� Demand for user-specific customization. Since performance-
intensive software pushes the limits of technology, it must
be optimized for particular run-time contexts and application
requirements. General-purpose, one-size-fits-all software so-
lutions often have unacceptable performance.� Severe cost and time-to-market pressures. Global compe-
tition and market deregulation are shrinking budgets for the
development and QA of software in-house, particularly the
operating system and middleware infrastructure. Moreover,
performance-intensive users are often unable or less will-
ing to pay for specialized proprietary infrastructure software.
The net effect is that fewer resources are available to devote
to infrastructure software development and QA activities.� Distributed and evolution-oriented development processes.
Today’s global IT economy and n-tier architectures often in-
volve developers distributed across geographical locations,
time zones, and even business organizations. The goal of
distributed development is to reduce cycle time by having
developers work simultaneously, with minimal direct inter-
developer coordination. Such development processes can
increase churn rates in the software base, which in turn in-
creases the need to detect, diagnose, and fix faulty changes
quickly. The same situation occurs in evolution-oriented pro-
cesses, where many small increments are routinely added to
the base system.

As these trends accelerate, they present many challenges to de-

velopers of performance-intensive systems. A particularly vex-
ing trend is the explosion of the software configuration space. To
support customizations demanded by users, performance-intensive
software must run on many hardware and OS platforms and typi-
cally have many options to configure the system at compile- and/or
run-time. For example, performance-intensive middleware, such as
web servers (e.g., Apache), object request brokers (e.g., TAO), and
databases (e.g., Oracle) have dozen or hundreds of options. While
this flexibility promotes customization, it creates many potential
system configurations, each of which may need extensive QA to
validate.

When increasing configuration space is coupled with shrinking
software development resources, it becomes infeasible to handle all
QA in-house. For instance, developers may not have access to all
the hardware, OS, and compiler platforms on which their software
will run. Due to time-to-market driven environments, therefore,
developers must often release their software in configurations that
have not been subjected to extensive QA. Moreover, the combina-
tion of an enormous configuration space and severe development
constraints mean that developers must make design and optimiza-
tion decisions without precise knowledge of their consequences in
fielded systems.
Solution approach: distributed continuous QA. The trends and
associated challenges discussed above have yielded an environment
in which the software systems tested and profiled by in-house de-
velopers and QA teams often differ substantially from the systems
run by users. To address these challenges, we have begun a long-
term, multi-site collaborative research project called Skoll.1 This
paper describes

� Skoll’s distributed continuous QA process that leverages the
extensive computing resources of worldwide user commu-
nities in order to improve software qualities and provide to
greater insight into the behavior and performance of fielded
systems.� Skoll’s tools and services, including its model-driven intelli-
gent steering agent that controls and automates the QA pro-
cess across large configuration spaces on a wide range of
platforms.� The results of a feasibility study that empirically evaluates
Skoll’s process and tools on two large, widely used open-
source middleware toolkits, ACE [18, 19] and TAO [20].

Paper organization. The remainder of this paper is organized as
follows: Section 2 examines related work and compares it with the
approaches used in Skoll; Section 3 summarizes the structure and
functionality of Skoll, focusing on its novel capabilities for control-
ling the distributed QA process; Section 4 outlines the key charac-
teristics of the ACE and TAO middleware; Section 5 describes the
feasibility study we conducted on ACE and TAO to evaluate Skoll
empirically; and Section 6 presents concluding remarks and future
work.

2. RELATED WORK
QA tasks have traditionally been performed in-house. For the

reasons described in Section 1, however, in-house QA is increas-
ingly being augmented with in-the-field techniques [13, 8, 15, 10].
Examples range from manual and reactive techniques (such as dis-
tributing software with prepackaged installation tests and encour-
aging end-users to report errors when they run into problems) to

1Skoll is a Scandinavian myth that explains the sunrise and sunset
cycles around the world.

automated and proactive techniques (such as online crash report-
ing and auto-build scoreboard systems used in many open-source
projects). This section describes existing processes and tools that
support in-the-field QA and contrasts them with the distributed con-
tinuous QA approach used in Skoll.

Online crash reporting systems, such as the Netscape Quality
Feedback Agent [5] and Microsoft XP Error Reporting [4], are
small pieces of code embedded in software to gather data about
what is happening in the software whenever it crashes. These agents
simplify user participation in QA improvement by automating prob-
lem reporting. Auto-build scoreboards (e.g., http://tao.doc.
wustl.edu/scoreboard/) are distributed testing tools that
allow software to be built/tested at multiple internal/external sites
on various platforms (e.g., hardware, operating systems, and com-
pilers). Build and/or test results are gathered via common Internet
protocols, web tools, and scoreboards are produced by summariz-
ing the results as well as providing links to detailed information.

Various types of distributed testing mechanisms have been used
in open-source software projects, such as GNU GCC [3], CPAN [2],
Mozilla [7], VTK (The Visualization Toolkit) [6], and ACE+TAO [21].
These projects distribute test suites that end-users can run on their
platform to gain confidence in their installation. Users can return
the test results to the developers. Mailing lists are commonly used
to improve the coordination between the developers and users who
are willing to be testers.

Mozilla and ACE+TAO provide auto-build scoreboard systems
that show the results of build results on various platforms, illustrat-
ing which platforms have built successfully and which fail to build
and why. Bugs are reported via the Bugzilla [1] issue tracking sys-
tem, which provides inter-bug dependency recording, advanced re-
porting capabilities, extensive configurability, and integration with
automated software configuration management systems, such as
CVS [22].

VTK uses an auto-build scoreboard system called Dart [6] to
reduce the burden on the end-users. Dart supports build/test se-
quences that start whenever something changes in the repository.
Users install a Dart client on their platform and use this client to
automatically check out software from a remote repository, build
it, execute the tests, and submit the results to the Dart server.

Although the existing distributed QA efforts and tools help to
improve the quality and performance of software, they have signif-
icant limitations. For example, since users decide (often by default)
what features they will test, some configurations are tested multiple
times, whereas others are never tested at all. Moreover, these ap-
proaches do not automatically adapt to or learn from the test results
obtained by other users. The result is an opaque, inefficient, and ad
hoc QA process.

To address these shortcomings, the Skoll project is developing
and empirically evaluating a process, methods, and tools for around-
the-world, around-the-clock QA that (1) works with highly config-
urable software systems, (2) uses intelligent steering mechanisms
to efficiently leverage end-users resources in a QA process that
adapts based on the analysis of previous results received from other
sites, and (3) minimizes user effort through the judicious use of au-
tomated tools. We discuss these capabilities in the next section.

3. THE STRUCTURE AND FUNCTIONAL-
ITY OF SKOLL

As outlined in Section 1, the Skoll project is a long-term, multi-
site collaborative research effort that is developing processes, meth-
ods, and tools to enable:

� Substantial amounts of QA to be performed at fielded

sites using fielded resources, i.e., rather than performing
QA tasks solely in-house, Skoll pushes many of them to user
sites. This approach provides developers and testers more
effective access to user computing resources and provides
visibility into the actual usage patterns and environment in
which the fielded systems run.� Iterative improvement of the quality of performance-intensive
software. Skoll provides a control layer over the distributed
QA process using models of the configuration space, the re-
sults of previous QA tasks, and navigation strategies that
combine the two. This control layer determines which QA
task to run next and on which part of the configuration space
to run it. As the process executes, problems may be uncov-
ered (and fixed) in the software, the models, and the naviga-
tion strategy.� Reduced human effort via judicious application of au-
tomation. Skoll also uses the models developed in the pre-
vious step to help automate the role of human release man-
agers, who monitor the stability of software repositories man-
ually to ensure problems are fixed rapidly. In addition, Skoll
uses automated web tools to minimize user effort and re-
source commitments, as well as ensure the security of user
computing sites.

The approach we are taking to achieve these goals is based on a
distributed continuous QA process, in which software quality and
performance is iteratively and opportunistically improved around-
the-clock in multiple geographically distributed locations. The Skoll
project envisions distributed continuous QA via a geographically
decentralized computing pool made up of thousands of machines
provided by users, developers, and companies around the world.

The resources in the Skoll computing pool are scheduled and
coordinated carefully via data-driven feedback. This adaptation is
based on analysis of QA results from earlier testing tasks carried
out in other locations, i.e., Skoll follows the sun around the world
and adapts its QA process continuously. The remainder of this sec-
tion describes the components, tools, and key interactions in the
Skoll architecture.

3.1 The Skoll Client/Server Architecture
To perform the distributed continuous QA process, Skoll uses a

client/server architecture. Figure 1 illustrates the roles and com-
ponents in this architecture, focusing primarily on the Skoll server
and its interactions with various types of users. Figure 2 then shows
the components in Skoll clients.

Figure 1: Components in Skoll Client/Server Architecture

User clients register with the Skoll server registration manager

Figure 2: Skoll Client Architecture

via a web-based registration form. Users characterize their client
platforms (e.g., the operating system, compiler, and hardware plat-
form) from lists provided by the registration form. This information
is stored in a database on the server and used by the Skoll intelli-
gent steering agent (ISA). As described further in Section 3.2, the
ISA automatically selects and then generates valid job configura-
tions, which consists of the code artifacts, configuration parame-
ters, build instructions, and QA tasks (e.g., regression/performance
tests) associated with a software project. A job configuration also
contains registration-specific information tailored for a particular
client platform, along with the locations of the CVS server where
the code artifacts actually reside.

After a registration form has been submitted and stored by the
Skoll server, the server registration manager returns a unique ID
and configuration template to the Skoll client. The template can
be modified by end users who wish to restrict or specify what job
configurations they will accept from the Skoll server. The Skoll
client’s architecture is shown in Figure 2. The Skoll client period-
ically requests job configurations from the server via HTTP POST
requests. The server responds with a job configuration that has
been customized by the server’s intelligent steering agent in accor-
dance with (1) the characteristics of the client platform, and (2) its
knowledge of the valid configurations space and the results of pre-
vious QA tasks. The server maintains this information using the
techniques described in Section 3.2.

The CVS client component is responsible for downloading soft-
ware from the CVS repository. The information required to per-
form this task, such as the version and module name (CVS termi-
nology) of the software, are sent in the job configuration. The client
configuration manager component prepares the software by creat-
ing and/or customizing the appropriate header files. The instruc-
tions from the server provide mapping information between each
parameter and the header file in which the parameter must be de-
fined. The client build manager component builds the software by
using the compiler specified at the registration time. The client test
suite manager component is responsible for locating and executing
the tests in the test suite.

For each job configuration, the Skoll client records all of its ac-
tivities into a log file accessible from the Skoll server. Each log file
consists of multiple sections, where each section corresponds to an
operation performed by the client, such as CVS check out, build,
and execute QA tasks. As the builds and tests complete, the client
log files are sent to the Skoll server, which uses the server QA pro-
cess results acquisition manager shown in Figure 1 to parse the log
files and store them into a database.

Since the Skoll architecture is designed to support a user commu-
nity with heterogeneous software infrastructures, developers must
be able to examine the results without concern for platform compat-
ibility and local software installation. We therefore employ web-
based scoreboards that use XML to display the build and test re-
sults for job configurations. The server scoreboard manager pro-
vides a web-based scoreboard retrieval form to developers through

which they can browse a scoreboard for a particular job config-
uration. This component is responsible for retrieving the score-
board data and creating the scoreboard GUI. Results are presented
in a way that is easy to use, readily deployed, and helpful to wide
range of developers with varying needs. For example, Figure 5 il-
lustrates how Skoll uses a multi-dimensional, hierarchical data vi-
sualizer called Treemaps http://www.cs.umd.edu/hcil/
treemap to display which configurations are passing or failing
their build and test phases.

3.2 The Intelligent Steering Agent
Portions of the Skoll architecture described above are similar to

those used by other distributed QA systems described in Section 2.
A distinguishing feature of Skoll, however, is its use of an intelli-
gent steering agent (ISA) to control the process. The ISA controls
the process by deciding which configurations, in which order, to
give to each incoming Skoll client request.

As QA tasks are carried out, their results are returned to the Skoll
server and made available to the ISA. The ISA can therefore learn
from past results, using that knowledge when generating new con-
figurations. To accomplish this, the ISA performs automated con-
straint solving, scheduling, and learning. Consequently, we chose
to implement the ISA using AI planning technology [23, 24]. Such
technology has been used successfully in other QA efforts [11].
The configuration model The most basic element of ISA approach
is a formal model of the system’s configuration space. Each soft-
ware system controlled by Skoll has a set of configurable options,
each with a small, discrete number of settings. Each option value
must be set before the system executes. Creating a job configura-
tion, therefore, involves mapping each option to one of its allowable
settings. This mapping is called the configuration and we represent
it as a set

���������	�
���
,
����
��	��
��

, ����� , ������������� � , where each
���

is
a variable representing an option in the configuration and

� �
is its

value, drawn from a set of constants associated with
���

.
Since the configuration options may take many values, the con-

figuration space can be quite large. Not all possible configurations
are valid, however. We define which configurations are valid by im-
posing inter-option constraints on values of options. We represent
the constraints using rules of the form (� ��� ���) to mean that “if
predicate � � evaluates to �
���� , then predicate � � must evaluate
to �
���� ” as well. A predicate �"! can be of the form #"$, $�%�& ,$(' & , or simply

��� � ��� � �
, where $, & are predicates,

� �
is a option

and
�)�

is its value.
Planning internals. Given Skoll’s formal configuration model, we
can cast the configuration generation problem as a planning prob-
lem. Given an initial state, a goal state, a set of operators, and a set
of objects, the ISA planner returns a set of actions (or commands)
with ordering constraints to achieve the goal. In Skoll, the initial
state is the default job configuration of the software. The goal state
is a description of the desired configuration, partly specified by the
end user. The operators encode all the constraints, including knowl-
edge of past test executions. The resulting plan is the configuration
(i.e., the mapping of options to their settings).

We use the standard Planning Domain Definition Language2 (PDDL)
to represent planning operators. Operators are specified in terms
of parameterized preconditions and effects on variables, allowing
intuitive expression of constraints. The ISA uses an efficient plan
generator called the Interference Progression Planner (IPP) [9]. IPP
uses extremely fast planning algorithms by converting the represen-
tation of a planning problem into a propositional encoding. Plans
are then found by means of a search through a leveled graph, where

2Entire documentation available at //www.cs.yale.edu/
pub/mcdermott/software/pddl.tar.gz

even levels (* �	+,� ����� �.-) represent all the (grounded) propositions
that might be true at stage

-
of the plan, and odd levels (/ �	01� ���2� -43/) represent actions that might be performed at time

-53 / . The
planners in the IPP family have shown increases in planning speeds
of several orders of magnitude on a wide range of problems com-
pared to earlier planning systems that rely on the full propositional
representation and a graph search requiring unification of unbound
variables.

We modified the Skoll planner so that, it can iteratively gener-
ate all acceptable plans, unlike typical planning systems that usu-
ally generate a single plan for a given set of constraints. Since
the ISA generates multiple plans, we also added “navigation strate-
gies,” which are algorithms that allow us to schedule or prioritze
among a set of multiple acceptable plans. This capability is useful
in Skoll to cover a set of configurations, yet only proceed one step
at a time in response to Skoll client requests. These algorithms also
allow Skoll to add new information derived from previous QA task
results to the planning process.
Planner output. The Skoll client requests a job configuration from
a Skoll server. The Skoll server then queries its databases and (if
provided by the user) a configuration template to determine which
configuration option settings are fixed for that user and which must
be set by the ISA. This information is packaged as a planning goal
and sent to the ISA to be solved. Using this goal, the ISA planner
generates a plan that is processed by the Skoll server, which ulti-
mately returns all instructions necessary for running the QA task
on the user’s platform. These instructions are called the job config-
uration.

3.3 Skoll in Action

Figure 3: Process View

At a high level, the Skoll process is carried out as shown in Fig-
ure 3 and described below:

1. Developers create the configuration model and navigation
strategies. The ISA configuration model editor then automat-
ically translates the model into planning operators and stores

Figure 4: ACE+TAO infrastructure

them in an ISA database. Developers also create the client
kit.

2. A user submits a request to download the software via the
registration process described earlier. The user then receives
the Skoll client software and a configuration template. If
users wish to temporarily change configuration settings or
constrain specific options they do so by modifying the con-
figuration template.

3. The Skoll client periodically requests a job configuration from
a Skoll server.

4. In response to a client request, the Skoll server queries its
databases and the user-provided configuration template to
determine which configuration option settings are fixed for
that user and which must be set by the ISA. It then pack-
ages this information as a planning goal and queries the ISA.
The ISA generates a plan and returns it to the Skoll server.
Finally, the Skoll server creates the job configuration and re-
turns it to the Skoll client.

5. The Skoll client invokes the job configuration and returns the
results to the Skoll server.

6. The Skoll server examines these results and updates the ISA
operators to reflect them.

7. Periodically and when prompted by developers the Skoll server
prepares a virtual scoreboard, which depicts all known test
failures and their details. It also performs statistical analysis
of the failing options and prepares visualizations that help de-
velopers quickly identify large subspaces in which tests have
failed.

4. ACE+TAO OVERVIEW
We are performing our initial studies on the ACE and TAO (ACE+TAO)

open-source Project. ACE+TAO are large, widely-deployed open-
source3 middleware software toolkits that can be reused and ex-
tended to simplify the development of performance-intensive dis-
tributed software applications. ACE [16] is an object-oriented frame-
work that implements core concurrency and distribution patterns
for networked application software. The ACE ORB (TAO) is an
implementation of the CORBA standard [12] that is constructed
using the patterns [17] and framework components provided by
the ACE toolkit. The components, layers, and relationships be-
tween the components/layers in ACE+TAO are shown in the Fig-
ure 4. ACE and TAO are ideal study candidates for the Skoll project

3The ACE+TAO source can be downloaded at deuce.doc.
wustl.edu/Download.html.

Table 1: Evolution of ACE and TAO source base
Software Toolkit Source Files Source Lines of Code
ACE 1,860 393,000
TAO 2,744 695,000
Total 4,604 1,088,000

because they share the following key characteristics common to
performance-intensive infrastructure software.
Large and mature source code base. The ACE+TAO source base
has evolved over the past decade and now contains over one million
source lines of C++ middleware systems source code, examples,
and regression tests split into over 4,500 files as follows.
Heterogeneous platform support. ACE+TAO runs on dozens of
OS and compiler platforms. These platforms change over time,
e.g., to support new features in the C++ standard, different versions
of POSIX/UNIX, as well as different versions of non-UNIX OS
platforms, including all variants of Microsoft Win32 and many real-
time and embedded operating systems.
Highly configurable. ACE+TAO has a large number of interde-
pendent options supporting a wide variety of program families [14]
and standards. Common examples of different options include multi-
threaded vs. single-threaded configurations, debugging vs. release
versions, inlined vs. non-inlined optimized versions, and complete
ACE vs. ACE subsets. Examples of different program families
and standards include the baseline CORBA 3.0 specification, Min-
imum CORBA, Real-time CORBA, CORBA Messaging, and many
different variations of CORBA services.
Distributed development. ACE+TAO are maintained and enhanced
by a core yet geographically distributed team of � 140 developers.
Many of these core developers have worked on ACE+TAO for over
five years. There is also a continual influx of new developers into
the core.
Comprehensive source code control and bug tracking. The ACE
and TAO source code resides in a CVS repository, which provides
revision control and change tracking. The CVS repository is hosted
at the Center for Distributed Object Computing (DOC) at WUSTL
and is mirrored at the UCI and VU DOC Labs, as well as sev-
eral other sites in Europe. Software defects are tracked using the
Bugzilla bug tracking system (BTS) (deuce.doc.wustl.edu/
bugzilla), which is a Web-based tool that helps ACE+TAO de-
velopers resolve problem reports and other issues in a timely and
robust manner. For any particular release of ACE+TAO, Bugzilla
indicates which bugs have been found and the time and effort re-
quired to detect and resolve them.
Large and active user community. Over the past decade ACE+TAO
have been used by more than 20,000 application developers, who
work for thousands of companies in dozens of countries around the
world. Since ACE and TAO are open-source systems, changes are
often made and submitted by users in the periphery who are not
part of the core development team.
Continuous evolution. ACE+TAO have a dynamically changing
and growing code base that has averages over 400+ CVS repository
commits per week. Although the interfaces of the core ACE+TAO
libraries are relatively stable, their implementations are enhanced
continually to improve correctness, user convenience, portability,
safety, and another desired aspects.
Frequent beta releases and occasional “stable” releases. Beta
releases contain bug fixes and new features that are lightly tested
on the platforms the core ACE+TAO team use for their daily devel-
opment work. The usual interval between beta releases is relatively
frequent, e.g., around every two to three weeks. In contrast, the

so-called “stable” versions of ACE+TAO are released much less
frequently, e.g., once a year. The stable releases must be tested ex-
tensively on all the OS and compiler platforms to which ACE+TAO
have been ported.
Dependence of regression testing. The ACE and TAO software
distributions contain both functional and performance tests. Many
of the functional tests are used during regression testing. This re-
gression test suite includes over 80 ACE tests and 240 TAO tests.
Currently, the ACE+TAO developers run the regression tests con-
tinuously on 100+ workstations and servers at a dozen sites around
the world (see tao.doc.wustl.edu/scoreboard for a list
of sites). The interval between build/test runs ranges from 3 hours
on quad-CPU Linux machines to 12-18 hours on less powerful ma-
chines.

It is important to recognize that the core ACE+TAO develop-
ers cannot test all possible platform and OS combinations because
there simply are not enough people, OS/compiler, platforms, CPU
cycles, or disk space to run the hundreds of ACE+TAO regression
tests in a timely manner. Moreover, ACE+TAO are designed for
ease of subsetting and several hundred orthogonal features/options
can be enabled/disabled for application-specific use-cases. Thus,
there are a combinatorial number of possible configurations that
could be tested at any given point, which is far beyond the resources
of the core ACE+TAO open-source development team to handle in
isolation.

5. FEASIBILITY STUDY
The goals of the Skoll project described in Section 1 are am-

bitious. To achieve these goals, we are conducting a multi-step
feasibility study based on the ACE+TAO open-source middleware
toolkits described in Section 4. The initial steps of the study were
conducted in a controlled setting, i.e., using 10+ workstations and
servers distributed throughout computer science labs at the Univer-
sity of Maryland (UMD). Our conjecture is that a Skoll-supported
process will be superior to ACE+TAO’s ad hoc QA processes out-
lined in Section 4 since it will (1) automatically manage and coor-
dinate the QA process, (2) detect problems more quickly on the av-
erage, and (3) automatically characterize test results, giving devel-
opers more information as to potential causes of a given problem.
This section describes a multi-phase feasibility study that imple-
mented, executed, and analysed these study questions using three
QA task scenarios applied to specific version of ACE+TAO.

5.1 ACE+TAO QA Process Scenarios
As discussed in Section 3, Skoll is designed to support a wide va-

riety of QA tasks. Our initial study, however, focused on several ba-
sic scenarios, all involving software testing. The goal of these sce-
narios was to test ACE+TAO for different purposes across its nu-
merous configurations. In addition, we wanted to give ACE+TAO
developers useful feedback, specifically about the parts of the con-
figuration space over which test cases failed. This information was
provided in the form of concise descriptions of the subspace in
which the failures occurred.

To carry out a QA process, the Skoll server must be able to tell
Skoll clients what QA task to run and what configuration to run it
on. For this study we executed three QA scenarios: (1) checking for
clean compilation, (2) regression testing with default runtime op-
tions, and (3) regression testing with configurable runtime options.
To perform these scenarios, we implemented the following compo-
nents and integrated them into the Skoll architecture described in
Section 3.1:

� We wrote textual representations of the configuration model.

The Skoll server’s configuration model editor automatically
translated these into the ISA’s planning language. We also
hand-coded navigation strategies into the ISA for each test-
ing scenario.� We developed client kits, which are portable Perl scripts to
be run by the Skoll client. These scripts make HTTP calls
on a Skoll server to (1) request new QA job configurations,
(2) receive, parse, and execute the QA jobs, and (3) make
the results available to the server. QA jobs are transmitted
in XML format and contain a test suite, the configuration
option setting determined by the server, CVS instructions to
download the source code, makefiles to build the software,
and instructions for executing the test suite.� We implemented the Skoll server as a servlet running in the
Tomcat application server.� We developed web forms to let users register and character-
ize their default testing platforms using HTTP calls.� To manage user registration data and testing results, we de-
veloped schemas for a MySQL database.� We developed scripts that created test scoreboards from the
test results databases. The scoreboard shows all known test
failures and their details. These scripts also prepared this
data for Treemap visualization.

To use the Skoll process we defined several configuration mod-
els. The specific of these models are described in greater detail in
Section 5.5.4. We also defined two general navigation strategies
used by the ISA: random walk and nearest neighbor search. In
the random walk strategy, the next configuration to investigate is
chosen randomly without replacement i.e., after a configuration is
tested it is removed from further consideration. The basic goal of
random walk is to ensure coverage of the valid configurations. If
we need to investigate individual configurations several times, then
random selection with replacement may be more desirable.

The nearest neighbor search starts by using the random walk
strategy. When a QA task fails, however, it switches to a strategy
designed to identify quickly whether similar configurations pass
or fail. This information is used to characterize those configura-
tion options whose values may influence whether or not the failure
manifests itself. For example, suppose that a test on a configuration
with three binary options fails in configurations * � * � * . If we then
test / � * � * and find that it does not fail, we assume that option 1’s
being 0 influences the failure’s manifestation. Of course, if the un-
derlying failure has nothing to do with the options, this assumption
will prove false.

The nearest neighbor search strategy continues as follows: when
configuration � fails we mark it as failed and record its failure infor-
mation (e.g., the first error message). We then schedule for testing
all configurations that differ from � in the value of exactly one op-
tion, i.e., test � ’s neighbors. Now continue the process recursively
on all scheduled tests. If at any time there are no more scheduled
tests, return to the random walk strategy on the remaining, untested
configurations.

As the QA process runs, it generates one characterization for
each observed failure. We conjecture that these characterizations
will tend to overlap when configuration options are actually influ-
encing failures, but be disjoint otherwise. We also conjecture that
having these characterization will improve the developers’ ability
to assess and identify failure causes.

5.2 Operational Model and Test Execution En-
vironment

Our feasibility study used TAO v1.2.3 with ACE v5.2.3 as the
subject software. We used this version since it was considered to

be highly stable by the ACE+TAO developers and a susbstantial
amount of information on previously-discovered bugs is recorded
in the ACE+TAO bug tracking system. We downloaded Skoll clients
and one Skoll server across 10+ workstations distributed through-
out computer science labs at UMD. All Skoll clients ran Linux
2.4.9-3 and used gcc 2.96 as their compiler. We chose a single OS
and compiler to simplify our initial study and analyses. Note, how-
ever, that the current Skoll implementation handles OS and compil-
ers as just another set of configurable options, whose values can be
used to select the machine-specific build instructions that are sent
to Skoll clients.

As we identified problems with the ACE+TAO middleware dur-
ing the study, we timestamped them and recorded pertinent infor-
mation. This data allowed us to qualitatively compare Skoll’s per-
formance to that of ACE+TAO’s ad hoc process. As discussed in
Section 4, ACE+TAO’s use of Bugzilla and CVS provide a wealth
of historical data against which to compare the process performance
improvements provided by Skoll.

5.3 Study 1: Compiling Different Features
into ACE+TAO:

As with many other performance-intensive software toolkits, ACE+TAO
allow a wide range of features that can be chosen during the initial
compilation. Hence the QA task for our first study was to deter-
mine whether each of � 80,000 possible ACE+TAO feature combi-
nations that can be picked during compilation can be built without
errors. This activity is important for systems like ACE+TAO that
are distributed in source code form since the code base should ei-
ther build fine or fail gracefully for any feature combination. Unex-
pected build failures can frustrate users. It is also important since
building the million+ lines of ACE+TAO code takes time, e.g., we
averaged roughly 4 hours per complete build on a 933 MHz Pen-
tium III with 400 Mbytes of RAM.

5.3.1 Configuration model
The feature configuration model for ACE+TAO has not been ex-

tensively documented. We therefore built our initial model bottom-
up. First, we analyzed the ACE+TAO source and interviewed sev-
eral senior ACE+TAO developers. From this we settled on a subset
of 17 binary-valued compile-time options that control various fea-
tures in ACE+TAO, including support for (1) asynchronous mes-
saging, (2) software interceptors, and (3) user-specified messag-
ing policies. These options are used to include/exclude specific
CORBA features at build-time, e.g., embedded applications typ-
ically disable many features like messaging policies to minimize
memory footprint.

We also identified 35 inter-option constraints. One example con-
straint is ($ ����� / �������
	 ��� � & $ � *). This constraint
is needed because the asynchronous method invocation (AMI) fea-
ture is not supported by the minimal CORBA implementation. In
total, this option space and constraint set yields over 82,000 valid
configurations.

We began Study 1 using the nearest neighbor navigation strat-
egy described in Section 5.2. After testing � 500 configurations,
we realized that every one failed to compile. ACE+TAO develop-
ers determined that the problem was caused by 7 options designed
to provide fine-grained control over CORBA messaging policies.
Somewhere in the development process, CORBA messaging code
was modified and moved to another library and developers (and
users) failed to establish whether these options still worked.

Based on feedback from the Skoll project, ACE+TAO devel-
opers chose to fix the CORBA messaging problems by making
these policies available at link-time, rather than during compila-

tion. We therefore refined our configuration model by removing
the 7 options and their corresponding constraints. Since these op-
tions appeared in many constraints—and because the remaining
constraints are tightly coupled (e.g., $ � / ��� & � / and& � / ��� � � / , etc.)—removing them simplified the con-
figuration model considerably. As a result, the configuration model
contained 10 options and 7 constraints, yielding only 89 valid con-
figurations, which was much more manageable than 82,000!

5.3.2 Study Execution
We then continued the study using the new model and by switch-

ing to the random walk navigation strategy (nearest neighbor search-
ing was not necessary since we could easily build all legal config-
urations). Of the 89 valid configurations only 29 compiled without
errors. For the 60 configurations that did not build, we applied the
nearest neighbor search strategy on the error reports to automati-
cally characterize build failures by the configurations in which they
failed.

5.3.3 Results and Observations
In addition to identifying failures in many configurations, in sev-

eral cases the nearest neighbor characterizations4 provided insight
into the causes of failures. For example, the ACE+TAO build failed
at line 630 in userorbconf.h (32 configurations) whenever $ �����/ and

��� ��&($ ��
���� * . After investigating this, ACE+TAO
developers determined that $ ����� / ��� ��� � & $ ��
����/ was a missing constraint. Therefore, we refined the model by
adding this constraint.

The ACE+TAO build also failed line 38 in Asynch_Reply_
Dispatcher.h (8 configurations) whenever

� $���� & $ ��� �* and � � ��� �� � / . ACE+TAO developers told us that such
configurations should be legal. This was therefore a previously
undiscovered bug. Until the bug could be fixed, we temporarily
added a new constraint � � ���� �� � / ��� � $�����& $ ��� � / .

Likewise, the ACE+TAO build failed at line 137 in RT_ORBInitializer.
cpp (20 configurations) whenever

��� � &($ ��
���� * . ACE+TAO
developers determined that the problem was due to a #include
statement, missing because it was conditionally included (via a
#define block) only when

��� � & $ ��
���� / .
5.3.4 Lessons Learned

We learned several specific things from this study. First, we iden-
tified obtrusive, erroneous and missing model constraints. In some
cases the proper fix was to refine the model. In others, ACE+TAO
developers chose to change their software. We quickly identified
coding errors that prevented the software from compiling in certain
configurations. Errors that could be fixed easily were corrected be-
fore proceeding to the next study. To work around more complex
errors, we added temporary constraints to our configuration model.

We also learned that as fixes to these problems are proposed, we
can easily test them by spawning a new Skoll process that uses the
failing configurations as new constraints, thereby forcing the ISA
to retest them with the updated software. Finally, we learned that
because of the automatic characterization of the nearest neighbor
strategy, several of these errors were easier to find than might oth-
erwise have been the case.

5.4 Study 2: Regression Testing with Default
Runtime Options

The QA task for the second study was to determine whether each
configuration would run the ACE+TAO regression tests without er-
4Note: when one option’s value constrains another, we omit the
constrained value from our description.

ror with the system’s default runtime options. This activity is im-
portant for systems like ACE+TAO since the regression tests are
packaged with the system and run when users install the system.
To perform this task, users compile ACE+TAO, compile the tests,
and execute the tests. For us, this process would have taken around
8 hours: about 4 hours to compile ACE+TAO, about 3.5 hours to
compile all tests, and 30 minutes to execute them. We did not need
to compile ACE+TAO for this study since we had saved the binaries
from Study 1.

5.4.1 Configuration model
In this study we used 96 ACE+TAO regression tests. Since many

of these tests are intended to run only in certain situations, we ex-
tended the existing configuration space (which contains compile-
time options) and also created new test-specific options. To the
compile-time options we added options that capture low-level sys-
tem information, such as whether the system is compiled with static
or dynamic libraries, whether multithreading support is enabled or
disabled, etc.

The new test-specific options contain one option per test. These
options indicate whether that test is runnable in the configuration
represented by the compile time options. For convenience, we
named these options �����

� � � � . We also defined constraints over
these options. For example, some tests should run only on con-
figurations that implement the Minimum Corba specification. So
for all such tests, � � , we added a constraint �����

� � � � / ������
	 ��� � & $ � * . These constraints prevented us from run-
ning tests that are bound to fail, thereby wasting resources and mak-
ing problem localization hard. By default, we assume that all test
are runnable unless constrained to be otherwise.

5.4.2 Study Execution
After making these changes, the compile-time option space had

14 options and 12 constraints and there were 96 test-specific op-
tions with an additional 120 constraints. We then modified the navi-
gation strategies such that navigation is done over the compile-time
constraints only, while still computing values for the test-specific
options.

As with Study 1, we used the random walk navigation strategy to
explore the configuration space. Here we only tested the 29 config-
urations that built in Section 5.3. In practice, we might have fixed
some or all of the failing builds before continuing. To better under-
stand the test failures we used the nearest neighbor search strategy
on the error reports to automatically characterize failures by the
configurations in which they failed.

5.4.3 Results and Observations
In this section we detail some of the results and lessons learned

from this study. Overall, we compiled 2,077 individual tests. Of
these 98 ended in a compilation failure, leaving 1,979 tests to run.
Of these 152 failed, while 1,827 passed. This process took � 52
hours of computer time.

In several cases tests failed for the same reasons over the same
configurations. For example, test compilation failed at line 596
of ami_testC.h for 7 tests, each in the same 14 configurations
when (

��� ��&($ ��
���� / and � � ��� �� � * and
� $�����&($ ��� �*). ACE+TAO developers determined that this was a previously

undiscovered bug. It turned out that certain files within TAO re-
sponsible for implementing CORBA Messaging assumed that at
least one of the � � ���� �� or

� $�����&($ ��� options would al-
ways be set to 1, which is an unwarranted assumption. ACE+TAO
developers also noticed that the failure manifested itself when AMI
was set to 1 or 0. This is actually a second problem because these

tests should not have been runnable when $ ��� � * . Conse-
quently, there was a missing testing constraint, which we then in-
cluded in the test constraint set.

Test RTCORBA/Client_Protocol/run_test.pl failed
25 out of 29 times. In this case, since the test failed in nearly all
configurations we paid particular attention, not only to the charac-
terization of failing configurations, but also to that of the passing
configurations. We did not find any clear patterns in the passing
configurations, however. This led us to believe that the problem
was not related to configuration, but rather a more pervasive prob-
lem (either a bug in the test itself or configuration-wide software
problem). In fact, ACE+TAO developers had seen this problem be-
fore and confirmed that it was due to a race their shared memory
Internet object protocol (SHMIOP) implementation.

Another test, Persistent_IOR/run_test.pl, failed in ex-
actly 1 configuration. This problem had not been previously seen
by the ACE+TAO developers and, actually, even we had a hard
time recreating it. In any event, we saw this as a success in that our
automated approach identified the failure.

The test MT_Timeout/run_test.pl failed in 14 configura-
tions with an error message indicating that the response time of cer-
tain requests exceeded allowable limits. Unlike in previous cases
where the nearest neighbor strategy effectively returned one broad
characterization covering many failing configurations, this time it
returned many descriptions each of which covered few failing con-
figurations. In other words, the failing configurations had nothing
obvious in common with each other. This suggested to us that the
error report might be covering multiple underlying failures, that the
failure(s) manifests themselves intermittently, or that some other
factor, not related to configuration options, is causing the problem.
ACE+TAO developers informed us that they have seen this particu-
lar problem intermittently, and they believe it is related to inconsis-
tent timer behavior on certain OS/hardware platform combinations.

5.4.4 Lessons Learned
We learned several things during Study 2. We were able to ex-

tend and refine the configuration model to allow new process func-
tionality. These changes were easily handled by the ISA planner.
We again were able to carry out a sophisticated QA process across
networked user sites on a continuous basis. In this case, we exhaus-
tively explored the configuration space in a few days and quickly
flagged numerous real problems with ACE+TAO. Some of these
problems had not been found with ACE+TAO’s ad hoc QA pro-
cesses.

We also learned several things about problem characterization.
In particular, it may be possible (at least heuristically) to iden-
tify situations in which problems are likely or unlikely to be re-
lated to configuration options. That is, we may be able to deter-
mine when the characterization has a strong signal (problem likely
configuration-related) or has a weak signal (probably not likely
configuration-related).

A final lesson learned is that the current Skoll process cannot
identify intermittent failures that are related to configuration op-
tions. This limitation is partly because Skoll is running each test
only once. To identify these failures, Skoll will need to run indi-
vidual tests multiple times, not just once. Otherwise, Skoll can-
not distinguish intermittent configuration-related failures from in-
termittent failures not related to configuration options.

5.5 Study 3: Regression Testing with Config-
urable Runtime Options

The QA task for the third study was to determine whether each
configuration would run the ACE+TAO regression tests without er-

Name Possible Settings
ORBCollocation global, per-orb, NO
ORBConnectionPurgingStrategy lru, lfu, fifo, null
ORBFlushingStrategy leader follower, reactive,

blocking
ORBConcurrency reactive,

thread-per-connection
ORBClientConnectionHandler MT, ST, RW
ORBConnectStrategy Blocked, Reactive, LF

Table 2: Six ACE+TAO Runtime Options and Their Settings.

ror over all settings of the system’s runtime options. This activity
is important for building confidence in the system’s correctness. To
perform this task, users compile ACE+TAO, compile the tests, set
the appropriate runtime options, and execute the tests. For us, each
task would have taken about 8 hours. For this study, however, we
did not need to compile ACE+TAO or the tests since we had saved
the binaries from our previous two studies.

5.5.1 Configuration Model
To examine ACE+TAO’s behavior under differing runtime con-

ditions, we modified the configuration to reflect the runtime config-
uration options. We decided to examine a subset of 6 such options.
These options set upto 648 different values of CORBA runtime
policies, such as how to flush cached connections and what concur-
rency strategies the ORB should support, as shown in Table 5.5.1.
Since all of these runtime options are intended to be independent
we did not need to add any new constraints.

We also discussed adding test constraints for tests that are not in-
tended to run with certain option settings. We learned from the de-
velopers that such constraints probably exist, but that no one knew
them all, knew them for sure, or had documented them. We there-
fore expected that initially many tests would fail, for reasons other
than software faults.

After making these changes, the compile-time option space had
14 options and 12 constraints, there were 96 test-specific options
with an additional 120 constraints, and there were 6 runtime options
with no new constraints. We also modified the navigation strategies
so that navigation is done over both the compile-time and the run-
time constraints.

5.5.2 Study Execution
After the various steps outlined above, 18,792 valid configura-

tions remained. At roughly 30 minutes per test suite, the entire
process involved around 9,400 hours of computer time. Given the
large number of configurations, we used the nearest neighbor nav-
igation strategy from the outset, i.e., in this study we used it to
(1) select the configuration to be tested next and (1) automatically
characterize failures by the configurations in which they failed.

Since the study has generated gigabytes of data, we only ana-
lyzed portions of it. As a result, we know that a number of tests
have failed. ACE+TAO developers have traced several of these fail-
ures to previously identified bugs.

5.5.3 Results and Observations
In this section we detail some of the results and observations

from this study. One interesting observation we made is that several
tests failed in this study even though they had not failed in Study
2 (when running tests with default runtime options). Some even
failed on every single configuration, despite not failing previously.
In the latter case, the problems were typically caused by bugs in
option setting and processing code, where as in the former case,

the problems were often in feature-specific code. This finding was
quite interesting to ACE+TAO developers because they rely heavily
on testing by users at installation time, not just to verify proper
installation, but to provide feedback on system correctness. It may
also help explain why we did not observe many faults in Study 2.

Another group of tests had particularly interesting failure pat-
terns. Three of these tests failed between 2,500 and 4,400 times. In
each case the nearest neighbor characterizations singled out ORBCollocation
= NO as only influential option. In fact, it turned out that this set-
ting was in effect 3,475 of 3,490 times when Test Big_Twoways/
run_test.pl failed, 4,391 of 4,412 times when Param_Test/
run_test.pl failed, and 2,488 of 2,489 times when MT_BiDir/
run_test.pl failed.

TAO’s ORBCollocation option controls the conditions un-
der which the ORB should treat objects as being co-located. The
NO setting indicates that objects should never be treated as being
collocated. When objects are not collocated they call each other’s
methods by sending messages across the network. When they are
collocated, they can communicate directly, saving networking over-
head.

The fact that these tests worked when objects communicated di-
rectly, but failed when they talked over the network clearly sug-
gested a problem related to some aspect of message passing, e.g.,
data marshaling, transmission, data unmarshaling, etc. In tracking
down the underlying fault, ACE+TAO developers used this infor-
mation to minimize the number of issues they had to consider. They
discovered that the source of the problem was, in fact, a bug in their
routines for marshaling/unmarshaling object references.

5.5.4 Lessons Learned
We learned several things as a result of conducting Study 3. First,

we confirmed that our general approach could scale well to larger
configuration spaces. We also reconfirmed one of key conjectures:
that data from the distributed QA process can be analyzed to pro-
vide useful information to developers. At the same time, it is clear
that we need better ways to summarize and visualize the testing
data.

We also saw how the Skoll process gives better coverage of the
configuration space than does that used by ACE+TAO (and, by in-
ference, many other projects). We also note that our current imple-
mentation of the nearest neighbor navigation strategy continues to
explore configurations until it finds no more failing configurations.
In situations where a large subspace is failing, it might be useful
at some point to make a statistical inference about the dimensions
of the subspace and to stop the search. Of course, the inference
could be incorrect, but time might be saved and used to explore
other untested configurations.

Finally, we saw that in the time it took to compile the system we
could run an entire test suite under several different configurations.
This suggests an interesting future work item - adding cost metrics
to the ISA’s planning operators.

6. CONCLUDING REMARKS AND FUTURE
WORK

This paper presents an overview of the Skoll project, which is
designed to help resolve limitations with existing in-house and in-
the-field QA processes. The primary focus of Skoll is “around-the-
world, around-the-clock QA.” Skoll is based on feedback-driven
processes that leverage the extensive computing resources of world-
wide user communities to significantly and rapidly improve soft-
ware quality by intelligently steering the application of QA tasks in
distributed and continuous manner.

To demonstrate the benefits of Skoll, this paper evaluated its im-
pact via experiments on ACE [18, 19] and TAO [20]. ACE+TAO
are production quality performance-intensive middleware consist-
ing of well over one million lines of C++ code and regression tests
contained in � 4,500 files. Hundreds of developed around the world
have worked on ACE+TAO for more than a decade, providing us
with an ideal test-bed for our distributed continuous QA tools and
processes.

The results presented in Section 5 provided valuable insight into
the benefits and limitations of the current Skoll processes. Skoll can
iteratively model complex configuration spaces and use this infor-
mation to perform complex testing processes. As a result of those
processes, we identified a number of test failures corresponding to
real bugs, some of which had not been found. We also observed that
developers benefitted greatly from our automatic problem charac-
terization when localizing the root causes of certain test failures.
These results enabled the core ACE+TAO developers to improve
their code base. For example, managing CORBA messaging poli-
cies was improved considerably and a number of subtle coding er-
rors were also identified and fixed.

Our future work is focusing on refining our hypotheses, study
designs, analysis methods, and tools – repeating and enhancing ex-
periments as necessary. In particular, we will run experiments that
demonstrate empirically how Skoll can reduce the time needed to
find/fix bugs in the ACE+TAO code base. As we gain more ex-
perience, we will extend the Skoll tools and extend the studies to
larger-scale experiments. For example, we are currently replicat-
ing our feasibility study using the dozen test sites and hundreds of
machines provided by the core ACE+TAO developers in two con-
tintents (see tao.doc.wustl.edu/scoreboard). We ulti-
mately plan to involve a broad segment of the ACE+TAO open-
source user community in over fifty countries worldwide to estab-
lish a large-scale distributed continuous QA test-bed.

The sophisticated QA process provided by Skoll has motivated
the ACE+TAO developers to undertake several bold new initiatives.
For example, they are starting to refactor ACE to shrink its mem-
ory footprint and enhance its run-time performance. To faciliate
this effort, we are working closely with the ACE+TAO develop-
ers to generalize Skoll’s processes to cover a broader range of QA
activities, including various performance measures. In particular,
Skoll will be used to measure the footprint and performance at ev-
ery check-in across different configurations while simultaneously
ensuring correctness via automated and intelligent regression test-
ing. We conjecture that the timely feedback provided by Skoll will
significantly enhance the quality and productivity of this effort.

As we continue to automate key steps in the Skoll process, we
are enhancing the design of the Intelligent Steering Agent (ISA)
described in Section 3.2 as follows: (1) we are enriching the ISA’s
planner to include a cost model for each QA task so that it can make
sophisticated decisions, e.g., if the ISA knows that user X has al-
ready compiled the system (and compilation is expensive) it may let
the user test several different run-time configurations, rather than
those that require recompilation,” (2) we are integrating the ISA
planner with system input models to enable test case generation,
(3) we are linking the ISA with an issue tracking database, such as
Bugzilla, so that when problems are resolved the ISA will be noti-
fied, automatically remove the temporary constraints, and generate
new job configurations that evaluate whether the problems are actu-
ally resolved, (4) we are continuing to investigate ways to visualize
our highly multivariate QA data, and (5) we are investigated how
and when to allow end users to submit their own tests for inclusion
in Skoll-controlled test suites.

7. REFERENCES
[1] Bugzilla: Bug tracking system. http://www.bugzilla.org.
[2] Comprehensive perl archive network (cpan).

http://www.cpan.org.
[3] Gnu gcc. http://gcc.gnu.org.
[4] Microsoft xp error reporting.

http://support.microsoft.com/?kbid=310414.
[5] Netscape quality feedback system. http://www.netscape.com.
[6] public.kitware.com. http://public.kitware.com.
[7] Tinderbox. http://www.mozzila.org.
[8] J. Bowring, A. Orso, and M. J. Harrold. Monitoring deployed

software using software tomography. In Proceedings of the
2002 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages 2–9.
ACM Press, 2002.

[9] J. Koehler, B. Nebel, J. Hoffman, and Y. Dimopoulos.
Extending planning graphs to an ADL subset. Lecture Notes
in Computer Science, 1348:273, 1997.

[10] B. Liblit, A. Aiken, and A. X. Zheng. Distributed program
sampling. In Proceedings of PLDI’03, San Diego, California,
June 2003.

[11] A. M. Memon, M. E. Pollack, and M. L. Soffa. Hierarchical
gui test case generation using automated planning. IEEE
Transactions on Software Engineering, 27(2):144–155,
February 2001.

[12] Object Management Group. The Common Object Request
Broker: Architecture and Specification, 3.0 edition, June
2002.

[13] A. Orso, D. Liang, M. J. Harrold, and R. Lipton. Gamma
system: continuous evolution of software after deployment.
In Proceedings of the international symposium on Software
testing and analysis, pages 65–69. ACM Press, 2002.

[14] D. Parnas. Designing software for ease of extension and
contraction. IEEE Transactions on Software Engineering,
March 1979.

[15] C. Pavlopoulou and M. Young. Residual test coverage
monitoring. In Proceedings of the 21st international
conference on Software engineering, pages 277–284. IEEE
Computer Society Press, 1999.

[16] D. Schmidt and S. Huston. C++ Network Programming:
Resolving Complexity with ACE and Patterns.
Addison-Wesley, 2001.

[17] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects. Wiley and Sons, 2000.

[18] D. C. Schmidt and S. D. Huston. C++ Network
Programming, Volume 1: Mastering Complexity with ACE
and Patterns. Addison-Wesley, Boston, 2002.

[19] D. C. Schmidt and S. D. Huston. C++ Network
Programming, Volume 2: Systematic Reuse with ACE and
Frameworks. Addison-Wesley, Reading, Massachusetts,
2002.

[20] D. C. Schmidt, D. L. Levine, and S. Mungee. The Design
and Performance of Real-Time Object Request Brokers.
Computer Communications, 21(4):294–324, Apr. 1998.

[21] D. C. Schmidt and A. Porter. Leveraging Open-Source
Communities to Improve the Quality and Performance of
Open-Source Software. In First Workshop on Open-Source
Software Engineering,

+ 0����
International Conference on

Software Engineering, May 2001.
[22] SourceGear Corporation. CVS.

Figure 5: Treemaps Visualization: failing/passing configurations organized by failure characterization. Failing configurations are
shown here with lighter color.

www.sourcegear.com/CVS, 1999.
[23] D. S. Weld. An introduction to least commitment planning.

AI Magazine, 15(4):27–61, 1994.
[24] D. S. Weld. Recent advances in ai planning. AI Magazine,

20(1):55–64, 1999.

