
FLARe: a Fault-tolerant Lightweight Adaptive Real-time Middleware for
Distributed Real-time and Embedded Systems

Jaiganesh Balasubramanian†, Chenyang Lu‡, Aniruddha Gokhale†,
Christopher Gill‡, and Douglas C. Schmidt†

†Department of Electrical Engineering and Computer Science, Vanderbilt University, USA
‡Department of Computer Science and Engineering, Washington University in St. Louis, USA

Abstract

A key challenge for middleware that supports both real-
time and fault-tolerance properties is to maintain both sys-
tem availability and timeliness, even in the presence of pro-
cessor and/or process failures and fluctuations in system
load. This paper presents FLARe, a new fault-tolerant,
lightweight, adaptive, real-time middleware. FLARe pro-
vides a novel fail-over strategy that is (1)load-aware,
i.e., selects fail-over targets based on current CPU utiliza-
tions to prevent post recovery overload and maintain real-
time performance, (2)proactive, i.e., provides clients with
failover targets before a failure occurs to enable faster, lo-
calized, and predictable failure recovery; and (3)adaptive,
i.e., dynamically adjusts the failover targets in response to
failures and load fluctuations. Empirical results on a Linux
cluster demonstrate that FLARe’s adaptive approach out-
performs static fail-over approaches by adapting efficiently
and effectively to failures and load changes.

1 Introduction

Emerging trends and challenges.Many distributed real-
time and embedded (DRE) systems, such as command/-
control and industrial process automation systems, consist
of soft real-time applications that must maintain desired
performance even when hardware and software failures oc-
cur. For example, the target tracking subsystem [3] of an
avionics mission computer should continue to process ex-
ternal sensor readings and provide timely responses even if
processors or processes fail.

ACTIVE andPASSIVEreplication are two approaches for
building fault-tolerant distributed systems [9, 12, 8, 22]. In
ACTIVE replication, client requests are multicast and exe-
cuted at all replicas to maintain strong consistency and pro-
vide fast failure recovery.ACTIVE replication, however, can
incur excessive overhead for DRE systems composed of (1)
stateless applications that do not require strong state consis-
tency across multiple replicas and (2) soft real-time appli-
cations that can tolerate occasional deadline misses.

For such DRE systems,PASSIVE replication may be
preferred, where only one replica—called the primary—
handles all client requests, and backup replicas receive state
updates (in the case of stateful applications) from the pri-

mary. If the primary fails, a failover occurs and one of the
backups becomes the new primary. Prior work has focused
on providing fault-tolerance for real-time applications using
PASSIVE replication schemes. For example, MEAD [12]
can determine the possibility of a primary failure and re-
duce fault recovery times proactively by redirecting clients
to non-faulty replicas prior to the failure. ARMADA [1]
uses a real-time primary-backup replication scheme [22] to
provide fault-tolerance capabilities and improve response
times for real-time applications that can tolerate minor state
inconsistencies between the primary and the replicas.

Despite promising prior work on passive replication for
DRE systems, the following challenges remain open:
• Where to failover when a failure is detected. Prior
work [11, 17] on failover target selection algorithms has
focused on where to redirect clients after the failure of a
primary replica, but because it does not consider the effect
of processor load on response times it cannot ensure real-
time performance for clients.
• How to proactively update the clients with the failover
target decisions. Prior work [2, 5] on fault-tolerant mid-
dleware has relied on portable interceptors [21] and redirec-
tion agents to redirect clients to alternate servers following
a primary failure. Thesereactiveapproaches add signifi-
cant and variable fail-over latency, and instead the clients
should failover to an appropriate target within a short and
predictably bounded interval.
• How to manage overloads after a failover. Prior
work [14, 1] has focused on managing overloads that may
result from reconfigurations and failover. Whereas these ap-
proaches focus on degrading application quality of service
to handle overloads, when possible the middleware should
handle overloads adaptively and transparently, and avoid
degrading quality of service unnecessarily.

In summary, the effective use ofPASSIVE replication in
DRE systems requires (1) timely failover to an appropri-
ate failover target and (2) ensuring that system utilization at
all the processors remain below its schedulable utilization
bound after failover, so that all real-time applications meet
their deadlines [10]. To usePASSIVEreplication for applica-
tions in DRE systems, therefore, middleware is needed that
can provide adaptive (1) fault-tolerance by dynamically de-
ciding and updating clients on appropriate failover targets

to ensure predictable and timely failure recovery, and (2)
resource management by preventing a class of overloads to
ensure real-time performance after a failure recovery.
Solution approach→Resource-aware adaptive fault tol-
erance. To address unresolved challenges with prior work,
we developedFault-tolerantLightweight Adaptive Real-
time (FLARe), which is middleware for DRE systems that
provides timely failover and real-time performance after
processor failures via the following techniques:
• Adaptive, load-aware server failover, where up-to-date
utilization estimates are used to choose failover targets that
maintain timely response to client’s requests and avoid sys-
tem overload after a failover.
• Proactive, timely client redirection, where client-side
middleware is updated proactively with suitable failover tar-
gets so it can make local request redirection decisions for
clients when a server fails.
• Lightweight middleware architecturebased on intercep-
tors [21] that provide client-side enhancements, such as
proactive redirection for fault tolerance, that extend themid-
dleware transparently to applications.
• Lightweight overload managementthat performs client-
redirection using a load redistribution algorithm that han-
dles a class of after-recovery overloads in the case of multi-
ple (possibly simultaneous) failures.

This paper describes the design of FLARe and eval-
uates it empirically on the ISISlab testbed (www.dre.
vanderbilt.edu/ISISlab) consisting of 14 nodes run-
ning Fedora Core 4 Linux in the real-time scheduling
class. Our results demonstrate the effectiveness of FLARe’s
proactive and load-aware failover strategy to minimize
client response times and to re-balance system resource uti-
lization after processor failures.

2 System and Fault Model

FLARe supports DRE systems, where clients periodi-
cally invoke real-time services provided by servers through
remote operation requests. The current implementation of
FLARe assumes the services are stateless. Many real-time
services (e.g., sensor data acquisition and processing) are
inherently data-driven;i.e., their execution is driven by the
current sensor readings and hence are stateless in nature.

For example, in the target tracking system of a shipboard
computing application, the coordinate calculator that cal-
culates real-world coordinates of surveillance images can
be designed to process each image independently, to avoid
needing to maintain state between its separate invocations.
Such systems need to provide real-time performance to
clients, however, even in the presence of failures and load
fluctuations. The goal of FLARe is thus to manage soft real-
time performance of such systems.

The clients and servers (e.g., the image forwarding base
station and coordinate calculator services) are implemented

Real-time CORBA service objects using the TAO [16] Ob-
ject Request Broker (ORB). The services on each node are
scheduled using Rate Monotonic Scheduling [10] (FLARe’s
architecture can also support other middleware, such as Dis-
tributed Real-time Java, and other scheduling policies, such
as Maximum Urgency First (MUF) [18]). A processor hosts
multiple processes and each process hosts multiple objects
or services.

The processors and the processes hosted by the proces-
sors are assumed to befail-stop [15], where (1) each pro-
cessor or a process halts in response to a failure rather than
produce erroneous results and (2) a processor’s or process’s
halted state can be detected by a failure detector. These
types of faults may occur due to aging or acute damage.
Considering unpredictable behavior of processes or proces-
sors is beyond the scope of this paper.

We assume that networks provide bounded communi-
cation latencies and do not fail. This assumption is rea-
sonable for many DRE systems, such as avionics mission
computing and shipboard computing environments, where
nodes are connected by highly redundant high-speed net-
works. Relaxing this assumption through integration of our
middleware with network level fault tolerance techniques is
another area of future work. The services (e.g., the coor-
dinate calculator service) are replicated using thePASSIVE

replication scheme and deployed across multiple nodes dis-
tributed across a local area network (LAN). Each node can
host multipleprimaryservices or multiplebackupservices;
theprimaryservices are accessed by several clients.

3 Design of FLARe
This section describes the design of the FLARe mid-

dleware. Our research objective is to mask failures from
client applications, provide fast failure recovery, and main-
tain desired real-time performance after recovery. FLARe
achieves transparent and fast failover through an adaptive
redirection agent that intercepts a client-side failure excep-
tion and redirects the client to an appropriate failover target,
which was determined before the failure occurred based on
measured CPU utilization. FLARe maintains desired real-
time performance by enforcing theschedulable utilization
boundof the processors when selecting the failover target.1

3.1 Overview of FLARe Architecture

The key components of FLARe are shown in Figure 1
and described below in the context of the resource-aware
fault-tolerance challenges they address.
Middleware replication manager. FLARe’s middleware

1According to well-established real-time scheduling theories, all peri-
odic services executing on a processor will meet their deadlines if their
total CPU utilization remain below the schedulable utilization bound for
the real-time scheduling policy. For example, the schedulable utilization
bound of the well known Rate Monotonic scheduling policy isn(21/n

−1),
where n is the number of periodic services on the processor [10].

2

Figure 1: FLARe Middleware Architecture

replication manager provides interfaces for registering and
managing information about the server objects and their
backup replicas. For each server object, FLARe’s mid-
dleware replication manager keeps track of the processors
hosting replicas, and collects information about their CPU
utilization and failures. The middleware replication man-
ager determines a list of failover targets ordered by the pre-
dicted CPU utilization of the processors if a failover occurs
(the processor with the lowest predicted CPU utilization is
the first in the list). As the system operating conditions
(e.g., processor loads) change, the middleware replication
manager also may update the failover targets. The middle-
ware replication manager sends the updated list of failover
targets to the redirection agents through remote operation
requests whenever the list is changed. Section 3.2 describes
our adaptive failover target selection algorithm in detail.
Client request interceptor. Client request intercep-
tors [21] transparently modify the behavior of the CORBA
object method calls invoked by an application. A client-
sideCOMM_FAILURE exception is raised after a connection
timeout because of a server failure. The client request inter-
ceptor then modifies the exception handling behavior that is
triggered: instead of propagating that exception to the client
application, the client request interceptor transparently redi-
rects the client invocation to an appropriate failover target
object provided by the redirection agent. Section 3.3 de-
scribes how FLARe’s client request interceptor works with
the middleware replication manager to redirect clients to ap-
propriate failover targets.
Redirection agent. Client request interceptors are not
themselves CORBA objects, and thus cannot be invoked
through remote interfaces. To allow FLARe’s middleware
replication manager to send the list of failover targets to the
client request interceptor, a redirection agent runs in a sep-
arate thread as a separate CORBA object within the client
process, and the middleware replication manager updates
the redirection agent with the current list of failover tar-

gets. Upon catching an exception, the client request inter-
ceptor contacts the redirection agent to obtain the failover
object address, and redirects the client to that server object.
Section 3.3 describes how clients are proactively updated
as needed with new list of failover target decisions so that
failovers can be timely, and predictable.
Resource monitor. FLARe runs a resource monitor on
each processor to track its CPU utilization and the live-
ness of processes hosted by the processor. FLARe’s repli-
cation manager makes failover target selection and load re-
distribution decisions based on the updated CPU utilization
and liveness information provided by the resource monitors.
Sections 3.4 and 3.5 describe how FLARe manages system
overloads with only small client perturbance and maintains
desired real-time performance after recovery.

3.2 Failover Target Selection

As described in Section 3.1, FLARe’s middleware repli-
cation manager collects updates from the resource moni-
tors about the CPU utilizations and liveness of processors.
We now describe how using these measurements, FLARe’s
middleware replication manager selects per-object failover
targets using adaptive failover target selection Algorithm 1.
The algorithm takes the list of processors, the set of objects

Algorithm 1 Rank Per-object Failover Targets
1: oi : number of objects in processori
2: Rj : list of processors hosting objectj ’s replicas
3: cui : current utilization of processori
4: eui : expected utilization of processori after failovers
5: l j : CPU utilization of object j
6: for every processori do
7: eui = cui

8: for every objectj in oi do
9: sort Rj in increasing order of expected CPU uti-

lization
10: eui += l j , where processori is the head of the

sorted listRj

11: end for
12: end for

and the current CPU utilization in each of those processors
as input, and determines a ranked list of failover targets for
each of those objects. The algorithm recognizes that mul-
tiple and simultaneous failures of the same type of service
(e.g., failure ofprimaryandbackupreplicas of the same ser-
vice) needs to be handled, and hence determines an ordered
list as opposed to a single failover target.

Since the middleware replication manager manages in-
formation about the objects and their replica hosts, intu-
itively one can order the potential failover targets of an ob-
ject in the increasing order of the current CPU utilization of
their host processors. However, the algorithm also recog-
nizes that in the event of a processor failure, invocations on
all the objects hosted on the processor will need to failover

3

to other hosts and multiple objects could have failover tar-
gets hosted in the same host.

To avoid overloading a processor with multiple failovers,
the algorithm spreads the failover targets of objects located
on the same processor onto multiple hosts. The middle-
ware replication manager also sorts the failover targets of
an object based on theexpected CPU utilizationinstead of
the current CPU utilization of their host processors. The
expected CPU utilizationaccounts for the potential load in-
crease due to failover decisions of other objects in the same
processor (lines 9 and 10 of Algorithm 1).

3.3 Client Redirection

FLARe provides fast failover with predictable latencies
by proactively sending updated failover targets from the
middleware replication manager to aclient-side redirector
that handles failures transparently to the client objects.The
client-side redirector comprises aclient request intercep-
tor for each client object and aredirection agentin each
client process. Whenever the updated list of failover targets
changes FLARe’s replication managerproactivelysends the
list the redirection agent. In FLARe, the client request in-
terceptor transparently handles CORBACOMM_FAILURE

exceptions that are raised in response to server or service
failures.2

After catching a failure exception, rather than propagat-
ing that exception to the client application, the client re-
quest interceptor contacts the redirection agent to obtainthe
failover object address, and redirects the client to that server
object. In the case of simultaneous failures of theprimaryas
well asbackupreplicas of the same service, the references
held by the redirection agent could be stale. However, since
the redirection agent maintains alist of failover targets, the
client will be redirected to a server object in a timely fashion
unless all the replicas of a service failed.

3.4 Resource Monitoring

FLARe runs aresource monitoron each processor to
track the CPU utilization and liveness of the processes
hosted by the processor. On Linux platforms, the resource
monitor uses the/proc/stat file to estimate the CPU uti-
lization in each sampling period. The/proc/stat file
records the number of “jiffies” (a default duration of 10ms
in Linux) when the CPU is in user, nice, system and idle
modes. At the end of each sampling period, the resource
monitor reads the counters and estimates the CPU utiliza-
tion as the fraction of time when the CPU is not idle.

To detect the failure of a process quickly, each applica-
tion process on a processor opens up a passive POSIX local

2CORBA relies on the underlying network transport protocol’s (e.g.,
TCP) connection timeout mechanisms to detect server failures. Since TAO
supports client-server communications using many different protocols, our
failure detection mechanism can be significantly improved with protocols
like SCTP [19].

socket (also known as a UNIX domain socket), and registers
the port number with the resource monitor. The resource
monitor connects to and performs a blocking read on the
socket. If an application process crashes, the socket and the
opened port will be invalidated. The resource monitor then
receives an invalid read error on the socket, which indicates
the failure of the process.

The resource monitor periodically updates FLARe’s
middleware replication manager with the processor utiliza-
tion information. To improve the FLARe middleware’s re-
sponsiveness to sudden workload changes and failures, the
resource monitor also generates event-driven updates to the
middleware replication manager, when utilization levels in-
crease beyond a certain threshold or when a process fails.
This design allows the middleware replication manager to
recompute the failover information for the affected server
objects, in response to dynamic changes in system work-
load and failures. FLARe’s middleware replication man-
ager also proactively notifies the redirection agents of any
such changes so client requests will be redirected to appro-
priate failover objects in an adaptive manner.

3.5 Overload Management

Section 3.2 described a failover target selection algo-
rithm that determines appropriate failover targets for server
objects. While the failover target selection algorithm de-
scribed in Section 3.2 helps avoid CPU overload by se-
lecting the host with the lowest CPU utilization, failover
may still cause the failover target processor to exceed its
schedulable utilization bound. FLARe’s middleware repli-
cation manager employs an algorithm to manage the over-
load caused by failover. Prior work [7] on overload man-
agement has considered moving objects to any of the less
loaded processors. Consequently, clients are redirected to
the object’s new location and helps reduce CPU utiliza-
tion in overloaded processors. This approach, however, in-
creases overload management latency as an object’s replica
might not be operating in some of the chosen processors
and may require bootstrapping. The goal of our overload
management algorithm is to manage overloads in a more
efficient manner.

We solve this problem by deactivatingprimary objects
on an overloaded processor and activating theirbackup
replicas on a lightly loaded processor. Clients of thepri-
mary replicas are automatically redirected to the chosen
backupreplicas. We refer to this load redistribution mech-
anismlightweight migration, as we migrateload of as op-
posed toobjects. Hence our approach is much more effi-
cient than physically moving the object itself to a lightly
loaded processor.

FLARe determines theprimary objects that need to be
migrated and their target hosts using the overload manage-
ment algorithm. Given an overloaded processor,i.e., whose

4

CPU utilization exceeds its schedulable utilization bound,
the algorithm considers theprimary objects on the proces-
sor in the decreasing order of CPU utilization, and attempts
to migrate the load generated by those objects to the least-
loaded processor hosting theirbackupreplicas. The algo-
rithm continues to attempt migrations until (1) the over-
loaded processor is no longer overloaded (the algorithm
solves the overload) or (2) all theprimary objects in the
overloaded processor have been considered for migration.

Similar to the failover target selection algorithm,
FLARe’s overload management algorithm also uses theex-
pected CPU utilizationto spread the load of multiple ob-
jects on an overloaded processor to different hosts. The ex-
pected CPU utilization accounts for the load change due to
the migration decisions on other objects on the same pro-
cessor. After the new reconfigurations are identified, redi-
rection agents are updated to redirect existing clients from
the currentprimary service to the newly activatedprimary
service at the start of the next remote invocation. Clients,
and thereby their loads, are thus redirected to new targets
with minimal disturbance.

3.6 Implementation of FLARe

FLARe has been implemented on the TAO Real-time
CORBA middleware [16]. It is implemented in 3400 lines
of C++ source code (excluding the code in TAO). The cur-
rent implementation of FLARe is based on Linux 2.6. It
can easily be ported to other platforms due to the portabil-
ity of TAO and the underlying ACE library [16]. FLARe
uses semi-active replication [13] to provide fault-tolerance
capabilities to its middleware replication manager as well
as to the per-processor resource monitor. Since FLARe’s
middleware replication manager and its replicas are located
on a set of dedicated processors they will not experience
overloads after failures. FLARe is available in open-source
format fromwww.dre.vanderbilt.edu.

4 Empirical Evaluation

This section evaluates FLARe’s ability to handle various
common fault and overload scenarios that can arise during
DRE system operation.

4.1 Experiment Configurations

The experiments were conducted at ISISlab (www.dre.
vanderbilt.edu/ISISlab) on a testbed of 14 blades.
Each blade has two 2.8 GHz CPUs, 1GB memory, a 40 GB
disk, and runs the Fedora Core 4 Linux distribution. Our
experiments used one CPU per blade and the blades were
connected via a CISCO 3750G switch over a 1 Gbps LAN.

As shown in Figure 2, 12 blades at ISISlab ran Real-time
CORBA client/server applications developed using FLARe.
FLARe’s middleware replication manager and its backup
replicas ran in the other two blades.

Figure 2: Experiment Setup

The clients in these experiments used threads running in
the Linux real-time scheduling class to invoke operations
on server objects at periodic intervals. For the experiments
conducted for this paper, client applications invoked opera-
tions on server objects using one of the following rates: 10
HZ, 5 HZ, 2 HZ, or 1 HZ. As shown in Figure 2, four clients
(CL-1, CL-2, CL-3, andCL-4) invoke operations on four
different types of server objects (A-1, B-1, C-1, andD-1).
To evaluate FLARe in the presence of resource contention
created by external disturbances, such as dynamic task ar-
rivals, we introduced dynamic requests using two additional
clients,CL-5, andCL-6, to invoke operations on two server
objects,DY-1 andDY-2, respectively.

The server objects also have backups deployed on other
processors. For example,A-2, andA-3 are replicas of the
server objectA-1 deployed on processorsALPHA andLAM -
BADA , respectively. Since the clients invoke operations at
four different rates, the higher each server object’s invoca-
tion rate, the higher the priority at which it was run, per
RMS.

We compared FLARe’s proactive load-aware client
failover strategy (Section 3) with the following two client
failover strategies:

• Staticclient failover strategy, where the client is ini-
tialized with astatic list of IORs, which are not up-
dated based on the replicas’ readiness or effectiveness
to handle client invocations after a failover.

• Reactive load-awareclient failover strategy, where the
client-side middleware invokes a remote operation on
the middleware replication managerafter each failure
to obtain the suitable failover target address. The repli-
cation manager uses the replica selection algorithm de-
scribed in Section 3. The reactive load-aware strategy
is thus anon-demandalternative to FLARe’sproactive
target update feature, which we evaluate for purposes
of comparison.

As is described in Section 3, the strategy adopted by FLARe
is both proactiveand load-aware, where the middleware
replication manager proactively pushes failover target up-
dates to clients.

5

4.2 Load-aware Failover Decisions

Rationale. When process or processor failures occur in
a system, FLARe fails over the clients’ server object refer-
ences to backup replicas hosted in other available processes
and/or processors. This experiment evaluates how end-to-
end response times and processor utilizations are affected
due to failover decisions made by the different failover
strategies.

Methodology. The reactive load-aware failover strategy
is similar to our proactive load-aware failover strategy, ex-
cept that in the case of the reactive load-aware strategy there
is an additional delay for a remote call to the middleware
replication manager to locate the failover server object’sad-
dress. The failover object that is chosen is the same as the
one chosen by FLARe since the supplier of that informa-
tion (the middleware replication manager) is the same in
both the strategies. This experiment therefore compares the
proactive load-aware strategy and the static strategy to eval-
uate the effects of load-awareness.

Client Server Invocation Server Object
Object Object Rate (Hz) Utilization

CL-1 A-1 10 40%
CL-2 B-1 5 30%
CL-3 C-1 2 20%
CL-4 D-1 1 10%
CL-5 DY-1 5 50%
CL-6 DY-2 10 50%

Table 1: Experiment setup

Experiment setup.As shown in Figure 2, in this exper-
iment four different clients,CL-1, CL-2, CL-3, andCL-4,
invoke operations on server objects with configurations de-
scribed in Table 1. This table also describes the configura-
tions for the dynamic clientsCL-5 andCL-6. The exper-
iment ran for 300 seconds, and as described above all the
clients made their respective invocations on different server
objects unless a failure happened to cause clients to con-
tinue their invocations on common backup server objects.

Failure scenario. To evaluate the performance of the
different failover strategies, we emulated a failure 150 sec-
onds after the experiment started. We used a simple fault
injection mechanism, where when clientsCL-1 or CL-2
make invocations on server objectsA-1 or B-1 respectively,
the server object calls theexit (1) command, crashing the
process hosting server objectsA-1 and B-1 on processor
TANGO. The clients receiveCOMM_FAILURE exceptions,
and then make continued invocations on replicas chosen by
the failover strategy.
Failover strategy configurations.The static failover strat-
egy makes failover decisions at deployment time, as fol-
lows: if A-1 fails, contactA-3 followed byA-2; and ifB-1
fails, contactB-3 followed byB-2. With FLARe’s proactive

load-aware failover strategy, those failover decisions are up-
dated dynamically when/if failures occur, as processor uti-
lization levels and sets of live processes change.
Metrics. We measured the per-invocation roundtrip re-
sponse time a client experienced both in the presence and
absence of failures. We also measured the following fault-
recovery metrics: (1)FAULT_DETECTION_DELAY is the
time taken for the client to receive aCOMM_FAILURE

exception after the server object failure, and (2)
FAILOVER_DELAY is the time taken for the client to find the
next replica address to contact after theCOMM_FAILURE

exception is received in the case of a failure. We also mea-
sured processor utilizations throughout the experiment.
Analysis of results. Figure 3a shows the end-to-end re-
sponse times perceived by clientsCL-1 and CL-2 when
they are configured to use the static strategy. At 150
seconds, whenA-1 andB-1 fail, CL-1 and CL-2 receive
a COMM_FAILURE exception and make a failover to the
statically-chosen failover targetsA-3 andB-3 respectively.
As shown in Figure 3a, at 150 seconds, the end-to-end re-
sponse time perceived byCL-1 increases by 10.2 millisec-
onds, which is the combinedFAULT_DETECTION_DELAY

andFAILOVER_DELAY .
After failing over to targetB-3, the end-to-end response

time perceived byCL-2 increases by∼40% and the proces-
sor utilization atCHARLIE increases from 50% to 80% be-
causeB-3 shares the processor resources ofCHARLIE with
DY-2, which is accessed byCL-6. As described in Table 1,
CL-6 has a higher invocation rate thanCL-2, so their re-
spective servers (DY-2 andB-3) operate at different prior-
ities (DY-2 has a higher priority). SinceCL-2 is the lower
priority client, and the processor utilization is high after the
failover, its end-to-end response times increases.

On the other hand, after the failoverCL-1 invokes remote
operations onA-3, which is hosted along withDY-1 atLAM -
BADA . As shown in Figure 3c, the utilization ofLAMBADA

grew from 50% to 90%. This utilization increase affects
CL-5, which accessesDY-1. This is becauseCL-1 accesses
A-3 at higher priority because of its higher invocation rate.
Consequently, the end-to-end response times perceived by
CL-5 increases as shown in Figure 3a.

In summary, because of load-agnostic failovers : (1) fail-
ing over clients can affect the performance of the proces-
sor’s previously-active clients (e.g., the case ofCL-1 affect-
ing CL-5), and (2) already active clients in the processor can
affect the failing over clients (e.g., the case ofCL-6 affect-
ing CL-2).

We repeated the same experiment with FLARe’s proac-
tive load-aware failover strategy. Figure 3b shows the end-
to-end response times perceived by clientsCL-1, CL-2, CL-
5, andCL-6 and figure 3d shows the utilizations of all their
server’s respective processors. After system bootstrapping,
the middleware replication manager monitors the CPU uti-

6

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 50 100 150 200 250 300

R
es

po
ns

e
tim

e
(m

ic
ro

se
co

nd
s)

Time (sec)

Client Response Times Before/After Failure

Client CL-1
Client CL-2
Client CL-3
Client CL-4
Client CL-5
Client CL-6

(a) End-to-end response times with static strategy

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 50 100 150 200 250 300

R
es

po
ns

e
tim

e
(m

ic
ro

se
co

nd
s)

Time (sec)

Client Response Times Before/After Failure

Client CL-1
Client CL-2
Client CL-3
Client CL-4
Client CL-5
Client CL-6

(b) End-to-end response times with proactive load-aware strategy

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
P

U
 U

til
iz

at
io

n
(p

er
ce

nt
ag

e)

Time (sec)

CPU Utilization at Replica Hosts

ALPHA
LAMBADA

BETA
CHARLIE

TANGO

(c) Utilization with static strategy

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
P

U
 U

til
iz

at
io

n
(p

er
ce

nt
ag

e)

Time (sec)

CPU Utilization at Replica Hosts

ALPHA
LAMBADA

BETA
CHARLIE

TANGO

(d) Utilization with proactive load-aware strategy

Figure 3: End-to-end response times and utilizations with different failover strategies

lizations at the hosts of thebackupreplicas of servicesA-1
andB-1, which are accessed by clientsCL-1 andCL-2.

At 0 seconds,CL-3 and CL-4 make invocations on
serversC-1 andD-1 respectively. As described in Table 1,
the utilizations at their respective processorsALPHA and
BETA increase by 20% and 10% respectively. At 50 sec-
onds, the utilizations ofLAMBADA andCHARLIE increases
by 50% because of the activation of the serversDY-1 and
DY-2, respectively. Since the utilizations of these proces-
sors are higher than the utilizations ofALPHA andBETA, the
middleware replication manager chooses the failover targets
for A-1 andB-1 asA-2 (hosted onALPHA) andB-2 (hosted
on BETA), respectively.

At 150 seconds,A-1 and B-1 fail. As shown in Fig-
ure 3b, the end-to-end response times perceived by clients
CL-1 andCL-2 increases by 10.2 milliseconds at 150 sec-
onds because of theFAILOVER_DELAY . The end-to-end
response time perceived byCL-2 decreases by about 40%
after the failover toB-2 on hostBETA, which also hostsD-
1 at a lower priority thanB-2. The sharp decrease in the
end-to-end response time perceived byCL-2 is caused by
the low processor utilization ofBETA, which does not in-
crease by more than 40% throughout the experiment. More-
over, B-2 serves requests at the highest priority onBETA.
Using the proactive load-aware strategy, the end-to-end re-

sponse times perceived byCL-2 after the failover are 3 times
less than those perceived byCL-2 using the static strategy.
This result demonstrates the significant positive impact of
proactive load-aware failover on the real-time performance
of DRE systems.

Moreover, the end-to-end response times perceived by
CL-5 andCL-6 did not change after the failover of clients
CL-1 and CL-2. The behavior is unchanged because the
replica selection algorithm did not chooseLAMBADA and
CHARLIE as the failover target processors, onceDY-1 and
DY-2 were activated in those processors. This result demon-
strates that FLARe proactively updates failover targets
when system workload changes dynamically.

Figure 3d shows the utilizations of processorsALPHA

and BETA where the failover targets were hosted. After
failover the utilizations of these processors are similar to the
utilizations of processorsLAMBADA andCHARLIE, which
host the other replicas of the failed objectsA-1 andB-1.
This result contrasts the processor utilizations with the static
strategy shown in Figure 3c, where the utilizations of the
processors hosting the failover targets are 4 times and 8
times higher than the utilizations of the processors hosting
the other replicas ofA-1 andB-1.

By keeping the utilizations balanced, FLARe’s proactive
load-aware strategy not only provides timely responses to

7

the failing over clients, but also did not affect the already-
active servers (which is significantly better performance
than the static strategy). For example, as shown in Fig-
ure 3b, the end-to-end response times ofCL-3 and CL-4
increases by only 35% and 50% after the failover ofCL-1
andCL-2. This result is much better when compared to the
90% increase in end-to-end response times forCL-5 in the
static strategy.

4.3 Overload Management

We now evaluate how FLARe manages a class of over-
loads where multipleprimaryreplica failures cause an over-
load. In this experiment as shown in the Figure 4, four
different clients,CL-1, CL-2, CL-3, andCL-4, invoke op-
erations on server objects with configurations described in
Table 2. The experiment ran for 300 seconds and similar
to the experiment described in Section 4.2, at 150 seconds
A-1 andB-1 fail on processorsTANGO andALPHA respec-
tively. With our proactive load-aware failover strategy, the
failover decisions are made at runtime; ifA-1 fails, contact
A-2 followed by A-3 (C-1 is collocated withA-3 andA-
2 is deployed in an idle processor;A-2 is the least-loaded
failover target). Similarly, ifB-1 fails, contactB-2, and then
followed byB-3.

Client Server Rate (Hz) CPU Util. %

CL-1 A-1 10 40%
CL-2 B-1 5 50%
CL-3 C-1 2 20%
CL-4 D-1 1 10%

Table 2: Overload Experiment Setup

Figure 4: Overload Experiment Setup

Analysis of results.Figure 5a shows the end-to-end re-
sponse times perceived by clientsCL-1 andCL-2 before and
after theprimary replica failure. When FLARe’s failover
target selection algorithm makes failover target decisions
for the primary replica B-1, it does not consider thatB-1
could fail simultaneously with theprimary replicaA-1. In
this experiment, since theprimary replicasA-1 andB-1 fail
together at 150 seconds, both clients failover to the same

processor. As shown in Figure 5a, at 150 seconds, the end-
to-end response times of clientCL-2 increases by∼40%
due to the overloads caused by the simultaneous failure of
theprimary replicaA-1. The end-to-end response times of
client CL-1 is not affected, however, since it still invokes
remote operations on the higher priority server (A-2) after
the failover to processorSHIVA.

The increase in loads in the processorSHIVA (see Fig-
ure 5b) is immediately reported via event-driven updates
to the middleware replication manager. The middleware
replication manager invoked the overload management al-
gorithm, which immediately detected that the load gener-
ated by the replicaB-2 can be redistributed to the replica
B-3 in the processorCHARLIE. The redirection agents were
informed of the decision to redirect clients to the replicaB-
3 within 500 milliseconds. The next time, when the client
CL-2 invoked a remote operation, the redirection agent au-
tomatically redirected the clients to the replicaB-3, and the
end-to-end response times of the client decreased around
153 seconds (within 3 seconds after the overload) as shown
in Figure 5a. Thus FLARe can handle overloads in a faster
manner and also manage the utilization levels of all the pro-
cessors as shown in Figure 5b to maintain soft real-time per-
formance for clients.

4.4 Proactive Failover Decisions

When compared with the proactive load-aware and static
failover strategies, the reactive load-aware strategy incurs
more time to failover to the next server object. This increase
stems from the remote invocation of FLARe’s middleware
replication manager after receiving theCOMM_FAILURE

exception from a server object failure. To evaluate the delay
empirically, we ran an experiment with clientCL-1 invoking
operations on server objectA-1. No other processes operate
in the processor hostingA-1, so that the response time will
equal the execution time of the server.

We ran the experiment for 10,000 iterations. A fault is
injected to kill the server while executing the 5001st request.
The clients then failover to backup server objectsA-2 and
A-3, which execute the remaining 5,000 requests (including
the one experiencing the failure).

Figure 6a shows the different response times perceived
by client C-1 in the presence of server object failures. The
failover delays for the static and proactive load-aware strate-
gies are similar because both strategies know the failover
decisiona priori and just use the next available address.
In the reactive load-aware strategy, however, the decision
is not knowna priori, so FLARe’s middleware replication
manager is contacted to get the next address to try. This re-
mote invocation increases the response time of the failover
request further. When combined with the results shown in
Section 4.2, the results in Figure 6a clearly show that the
proactive load-aware strategy is better than either the reac-

8

(a) End-to-end response times under overloads (b) CPU utilizations under overloads

Figure 5: FLARe’s overload management performance

Proactive Loadaware
Static
Reactive Loadaware

 30

 35

 40

 45

 50

 55

 60

 65

 70

AfterFailoverBefore

R
es

po
ns

e
tim

e
(m

ili
se

co
nd

s)

(a) Failover delay

Without FLARe
With FLARe

 0

 5

 10

 15

 20

 25

 30

 35

 40

ServerClient

C
od

e
si

ze
 (

M
b)

(b) Code size overhead

Without interceptors
With interceptors

 39.2
 39.21
 39.22
 39.23
 39.24
 39.25
 39.26
 39.27
 39.28
 39.29
 39.3

Client

R
es

po
ns

e
tim

e
(m

ili
se

co
nd

s)

(c) Runtime overhead

Figure 6: Failover delay and overhead measurements

tive load-aware or static failover strategy, and thus is more
suitable for use in DRE systems.

4.5 Overhead Measurements

FLARe provides fault tolerance capabilities to DRE sys-
tems using a lightweight middleware architecture, as de-
scribed in Section 3. A DRE system spends the bulk of
the time performing its application logic, and comparatively
less time detecting and recovering from failures. It is there-
fore worthwhile to determine what time/space overhead is
added by the FLARe middleware to the normal functioning
of applications in DRE systems.

Memory footprint and run-time invocation overhead
are important time/space metrics for DRE systems since
they affect the ability of applications to run in resource-
constrained environments. The following capabilities of
FLARe affect the memory footprint and runtime perfor-
mance of applications in DRE systems: forwarding agents
are added to handle proactive updates from the middleware
replication manager; client request interceptors are added to
catchCOMM_FAILURE exceptions and transparently redi-
rect requests to suitable failover targets; and resource mon-
itors are added to track host utilizations and the liveness of
processes.

Measuring FLARe’s memory footprint overhead. To
evaluate the effect of FLARe on the memory footprint of a
DRE system, we designed a baseline single-threaded server
and client application process using TAO’s RT-CORBA im-

plementation. The server process activates a single object,
and the client process invokes an operation on that object.
We measured the memory footprint in one of the blades and
then compared the baseline version to a version linked with
the FLARe middleware.

Figure 6b shows the memory footprint of the client and
server applications with and without FLARe. The figure
shows that in the chosen platform, FLARe increases the
memory footprint of the client and the server application
by 10.2 MB, which stems largely from the memory foot-
print added by the threads that run the forwarding agents
and resource monitors.

On the Linux platform we used for our experiments, the
default minimum stack size of a thread is 10,240 Kbytes,
which is governed by the constantPTHREAD_STACK_MIN .
Every new thread created by an application will thus incur a
corresponding increase in its memory footprint. The default
value of the stacksize is clearly excessive for the forwarding
agent’s functionality. For applications with more stringent
footprint requirements, it may require recompiling the OS
kernel with a much smaller value of the default thread stack
size. This result indicates that the footprint overhead is due
primarily to the thread stack size, rather than FLARe’s in-
frastructure elements, such as the forwarding agent and re-
source monitor.

Measuring FLARe’s runtime overhead during fault-free
conditions. FLARe uses a client request interceptor to
catchCOMM_FAILURE exceptions and transparently redi-

9

rect clients to suitable failover targets. CORBA interceptors
check every invocation made by the client, when a request
is sent to a server, as well as when the reply/exception is
received from the server. To evaluate the runtime overhead
of these per-request interceptions, we ran a simple experi-
ment with clientCL-1 making invocations on server object
A-1 with and without client request interceptors. No other
processes operated in the processor hostingA-1, so that the
response time was equal to the execution time of the server.

We ran this experiment for 50,000 iterations, and mea-
sured the average end-to-end response time perceived by
CL-1. Figure 6c shows that the average end-to-end response
time perceived byCL-1 increased by only 8 microseconds
when using the client request interceptor. This result shows
that the interceptor adds negligible overhead to the normal
operations of a real-time application. Moreover, it provides
capabilities to add client redirection transparentlywithout
modifying TAO’s RT-CORBA implementation.

5. Related Work

Our work on FLARe can be compared with related work
along two dimensions:
1. Scheduling algorithms. Fundamental ideas and chal-
lenges in combining real-time and fault tolerance are de-
scribed in [20], where imprecise computations are used to
provide degraded QoS to applications operating in the pres-
ence of failures. [4] proposes adaptive fault tolerance
mechanisms to choose a suitable redundancy strategy for
dynamically arriving aperiodic tasks based on system re-
source availability. [6] proposes a fixed priority preemptive
scheduling scheme to preallocate time intervals to both the
primary and backup replicas of a task, and adaptively exe-
cutes either the primary or a backup depending on failures
and available time. FLARe differs from these approaches in
providing fault tolerance capabilities to soft real-time appli-
cations. Rather than ensuring hard deadlines are met in the
presence of failures, FLARe focuses on minimizing the im-
pact of failure recovery on client response times and system
resource utilization, and also provides timely client failover
to appropriate failover targets.
2. Real-time fault-tolerant systems. Delta-4/XPA [13]
provided real-time fault-tolerant solutions to distributed
systems by using the semi-active replication model.
MEAD [12] and its proactive recovery strategy for dis-
tributed CORBA applications can minimize the recovery
time for DRE systems. The Time-triggered Message-
triggered Objects (TMO) project [8] considers replica-
tion schemes such as the primary-shadow TMO replica-
tion (PSTR) scheme, for which recovery time bounds can
be quantitatively established, and real-time fault tolerance
guarantees can be provided to applications. FLARe builds
upon and extends this prior work by focusing on maintain-
ing soft real-time performance after failure recovery.

6 Concluding Remarks
The FLARe middleware described in this paper provides

both timeliness and availability to distributed real-timeand
embedded (DRE) systems. FLARe focuses on passive repli-
cation to meet the needs of resource-constrained environ-
ments. FLARe overcomes limitations of passive replication
for DRE systems by providing a load-aware, proactive and
adaptive solution for clients (predictable and fast failover)
and servers (overload management). Lessons learned in de-
veloping FLARe include:

• Common CORBA features, such as portable inter-
ceptors, and POSIX features, such as local sockets, can
be leveraged to provide fault tolerance capabilities to soft
real-time systems without modifying the implementation of
standard-compliant Real-time CORBA ORBs.

• Our experimental results demonstrate the effectiveness
and efficiency of FLARe’s replica selection and overload
management algorithms in the context of multiple different
kinds of failure and overload scenarios. The configurabil-
ity and flexibility offered by FLARe can be used to tune
parameters, such as the replica selection and overload man-
agement intervals, and to trade off some extra overhead for
even faster reaction.

In its current design, FLARe does not support alterna-
tive consistency models for stateful fault tolerance and does
not handle network failures, which will be the focus of our
future work..

References
[1] T. F. Abdelzaher, S. Dawson, W. chang Feng, F. Jahanian,

S. Johnson, A. Mehra, T. Mitton, A. Shaikh, K. G. Shin,
Z. Wang, H. Zou, M. Bjorkland, and P. Marron. ARMADA
middleware and communication services.Real-Time Sys-
tems, 16(2-3):127–153, 1999.

[2] T. Bennani, L. Blain, L. Courtes, J.-C. Fabre, M.-O. Killijian,
E. Marsden, and F. Taiani. Implementing Simple Replication
Protocols using CORBA Portable Interceptors and Java Seri-
alization. InDSN’ 04, pages 549–554, Florence, Italy, 2004.

[3] D. Corman. WSOA-Weapon Systems Open Architecture
Demonstration-Using Emerging Open System Architecture
Standards to Enable Innovative Techniques for Time Critical
Target (TCT) Prosecution. InDASC’2001, Oct. 2001.

[4] O. Gonzalez, H. Shrikumar, J. A. Stankovic, and K. Ramam-
ritham. Adaptive fault tolerance and graceful degradationun-
der dynamic hard real-time scheduling. InRTSS ’97, page 79,
San Francisco, CA, USA, 1997.

[5] E. Hadad.Architectures for Fault-Tolerant Middleware Ser-
vices. PhD thesis, Technion - Israel Institute of Technology,
2006.

[6] C.-C. Han, K. G. Shin, and J. Wu. A fault-tolerant scheduling
algorithm for real-time periodic tasks with possible software
faults. IEEE Trans. on Comp., 52(3):362–372, 2003.

[7] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser. Dy-
namic migration algorithms for distributed object systems. In
ICDCS ’01, page 119, Phoenix, AZ, USA, 2001.

[8] K. H. K. Kim and C. Subbaraman. The pstr/sns scheme for
real-time fault tolerance via active object replication and net-

10

work surveillance. IEEE Trans. on Know. and Data Engg.,
12(2), 2000.

[9] S. Krishnamurthy, W. Sanders, and M. Cukier. A Dynamic
Replica Selection Algorithm for Tolerating Timing Faults.
DSN’ 01, pages 107–116, 2001.

[10] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior. InRTSS’ 89, pages 166–171, 1989.

[11] A. P. A. V. Moorsel. The ’qos query service’ for improved
quality-of-service decision making in corba. InSRDS ’99,
page 274, Lausanne, Switzerland, 1999.

[12] S. Pertet and P. Narasimhan. Proactive recovery in dis-
tributed corba applications. InDSN ’04, page 357, Florence,
Italy, 2004.

[13] D. Powell. Distributed fault tolerance: Lessons from delta-4.
IEEE Micro, 14(1):36–47, 1994.

[14] P. Ramanathan. Overload management in real-time control
applications using m,k(m,k)-firm guarantee. IEEE Trans.
Parallel Distrib. Syst., 10(6):549–559, 1999.

[15] R. D. Schlichting and F. B. Schneider. Fail-stop processors:
an approach to designing fault-tolerant computing systems.
ACM Trans. Comput. Syst., 1(3):222–238, 1983.

[16] D. C. Schmidt, B. Natarajan, A. Gokhale, N. Wang, and
C. Gill. TAO: A Pattern-Oriented Object Request Broker for
Distributed Real-time and Embedded Systems.IEEE Dis-
tributed Systems Online, 3(2), Feb. 2002.

[17] J. Schonwalder, S. Garg, Y. Huang, A. van Moorsel, and
S. Yajnik. A Management Interface for Distributed Fault Tol-
erant CORBA Services. InIEEE International Workshop on
System Management, pages 98–107, Newport, RI, Apr. 1998.

[18] D. B. Stewart and P. K. Khosla. Real-time Schedul-
ing of Sensor-Based Control Systems. In W. Halang and
K. Ramamritham, editors,Real-time Programming. Perga-
mon Press, Tarrytown, NY, 1992.

[19] R. Stewart and Q. Xie.Stream Control Transmission Pro-
tocol (SCTP) A Reference Guide. Addison-Wesley, Boston,
2001.

[20] F. Wang, K. Ramamritham, and J. A. Stankovic. Determin-
ing redundancy levels for fault tolerant real-time systems.
IEEE Transactions on Computers, 44(2):292–301, 1995.

[21] N. Wang, D. C. Schmidt, O. Othman, and K. Parameswaran.
Evaluating Meta-Programming Mechanisms for ORB Mid-
dleware. IEEE Communication Magazine, special issue on
Evolving Communications Software: Techniques and Tech-
nologies, 39(10):102–113, Oct. 2001.

[22] H. Zou and F. Jahanian. A real-time primary-backup replica-
tion service.Parallel and Distributed Systems, IEEE Trans-
actions on, 10(6):533–548, 1999.

11

