FLARe: a Fault-tolerant Lightweight Adaptive Real-time Middleware for
Distributed Real-time and Embedded Systems

Jaiganesh Balasubramaniahenyang L&, Aniruddha Gokhalg
Christopher Gilf, and Douglas C. Schmitit
TDepartment of Electrical Engineering and Computer ScigWaaderbilt University, USA
*Department of Computer Science and Engineering, Washirlgtiversity in St. Louis, USA

Abstract mary. If the primary fails, a failover occurs and one of the
backups becomes the new primary. Prior work has focused
A key challenge for middleware that supports both real- on providing fault-tolerance for real-time applicatiorsng
time and fault-tolerance properties is to maintain both-sys PASSIVE replication schemes. For example, MEAD [12]
tem availability and timeliness, even in the presence of pro can determine the possibility of a primary failure and re-
cessor and/or process failures and fluctuations in systemduce fault recovery times proactively by redirecting ctien
load. This paper presents FLARe, a new fault-tolerant, to non-faulty replicas prior to the failure. ARMADA [1]
lightweight, adaptive, real-time middleware. FLARe pro- uses a real-time primary-backup replication scheme [22] to
vides a novel fail-over strategy that is (1dad-aware provide fault-tolerance capabilities and improve resgons
i.e., selects fail-over targets based on current CPU utiliza- times for real-time applications that can tolerate minatest
tions to prevent post recovery overload and maintain real- inconsistencies between the primary and the replicas.
time performance, (2proactive i.e., provides clients with Despite promising prior work on passive replication for
failover targets before a failure occurs to enable faster, | DRE systems, the following challenges remain open:
calized, and predictable failure recovery; and @japtive e Where to failover when a failure is detected Prior
i.e, dynamically adjusts the failover targets in response to work [11, 17] on failover target selection algorithms has
failures and load fluctuations. Empirical results on a Linux focused on where to redirect clients after the failure of a
cluster demonstrate that FLARe’s adaptive approach out- primary replica, but because it does not consider the effect
performs static fail-over approaches by adapting effidient of processor load on response times it cannot ensure real-
and effectively to failures and load changes. time performance for clients.
e How to proactively update the clients with the failover
target decisions Prior work [2, 5] on fault-tolerant mid-
Emerging trends and challenges.Many distributed real- dleware has relied on portable interceptors [21] and redire
time and embedded (DRE) systems, such as command/tion agents to redirect clients to alternate servers falhow
control and industrial process automation systems, cbnsisa primary failure. Theseeactiveapproaches add signifi-
of soft real-time applications that must maintain desired cant and variable fail-over latency, and instead the dient
performance even when hardware and software failures oc-should failover to an appropriate target within a short and
cur. For example, the target tracking subsystem [3] of an predictably bounded interval.
avionics mission computer should continue to process ex-e How to manage overloads after a failover Prior
ternal sensor readings and provide timely responses even ifvork [14, 1] has focused on managing overloads that may
processors or processes fail. result from reconfigurations and failover. Whereas these ap
ACTIVE andpPassivEreplication are two approaches for proaches focus on degrading application quality of service
building fault-tolerant distributed systems [9, 12, 8, 212 to handle overloads, when possible the middleware should
ACTIVE replication, client requests are multicast and exe- handle overloads adaptively and transparently, and avoid
cuted at all replicas to maintain strong consistency and pro degrading quality of service unnecessarily.
vide fast failure recovenacTIVE replication, however, can In summary, the effective use eAssIVE replication in
incur excessive overhead for DRE systems composed of (1)DRE systems requires (1) timely failover to an appropri-
stateless applications that do not require strong stateigon ate failover target and (2) ensuring that system utilizatio
tency across multiple replicas and (2) soft real-time appli all the processors remain below its schedulable utilizatio
cations that can tolerate occasional deadline misses. bound after failover, so that all real-time applicationsate
For such DRE systemsASSIVE replication may be theirdeadlines[10]. To useassivereplication for applica-
preferred, where only one replica—called the primary— tions in DRE systems, therefore, middleware is needed that
handles all client requests, and backup replicas receate st can provide adaptive (1) fault-tolerance by dynamically de
updates (in the case of stateful applications) from the pri- ciding and updating clients on appropriate failover tasget

1 Introduction

to ensure predictable and timely failure recovery, and (2) Real-time CORBA service objects using the TAO [16] Ob-
resource management by preventing a class of overloads tgect Request Broker (ORB). The services on each node are

ensure real-time performance after a failure recovery. scheduled using Rate Monotonic Scheduling [10] (FLARe’s
Solution approach— Resource-aware adaptive fault tol- architecture can also support other middleware, such as Dis
erance To address unresolved challenges with prior work, tributed Real-time Java, and other scheduling policiesh su
we developedFault-tolerantLightweight Adaptive Real- as Maximum Urgency First (MUF) [18]). A processor hosts

time (FLARe), which is middleware for DRE systems that multiple processes and each process hosts multiple objects
provides timely failover and real-time performance after or services.

processor failures via the following techniques: The processors and the processes hosted by the proces-
e Adaptive, load-aware server failovewhere up-to-date sors are assumed to lil-stop [15], where (1) each pro-
utilization estimates are used to choose failover tardets t cessor or a process halts in response to a failure rather than
maintain timely response to client’s requests and avoid sys produce erroneous results and (2) a processor’s or pracess’
tem overload after a failover. halted state can be detected by a failure detector. These
e Proactive, timely client redirectignwhere client-side types of faults may occur due to aging or acute damage.
middleware is updated proactively with suitable failovmrt ~ Considering unpredictable behavior of processes or proces
gets so it can make local request redirection decisions forsors is beyond the scope of this paper.

clients when a server fails. We assume that networks provide bounded communi-
e Lightweight middleware architectuieased on intercep- cation latencies and do not fail. This assumption is rea-
tors [21] that provide client-side enhancements, such assonable for many DRE systems, such as avionics mission
proactive redirection for fault tolerance, that extendrtid- computing and shipboard computing environments, where
dleware transparently to applications. nodes are connected by highly redundant high-speed net-
e Lightweight overload managemethiat performs client- works. Relaxing this assumption through integration of our
redirection using a load redistribution algorithm that han middleware with network level fault tolerance technigques i
dles a class of after-recovery overloads in the case of multi another area of future work. The servicesg the coor-

ple (possibly simultaneous) failures. dinate calculator service) are replicated usingrhssIVE
This paper describes the design of FLARe and eval- replication scheme and deployed across multiple nodes dis-
uates it empirically on the ISISlab testbedw{. dre. tributed across a local area network (LAN). Each node can

vander bi I t. edu/ | SI Sl ab) consisting of 14 nodes run- host multipleprimary services or multiplédackupservices;
ning Fedora Core 4 Linux in the real-time scheduling theprimary services are accessed by several clients.
class. Our results demonstrate the effectiveness of FLARe’ .

. : .~ 3 Design of FLARe
proactive and load-aware failover strategy to minimize
client response times and to re-balance system resource uti This section describes the design of the FLARe mid-

lization after processor failures. dleware. Our research objective is to mask failures from
client applications, provide fast failure recovery, andmaa
2 System and Fault Model tain desired real-time performance after recovery. FLARe

FLARe supports DRE systems, where clients periodi- achieves transparent and fast failover through an adaptive

cally invoke real-time services provided by servers thioug "edirection agent that intercepts a client-side failureepx
remote operation requests. The current implementation oftion and redirects the client to an appropriate failovegéar

FLARe assumes the services are stateless. Many real-timdvhich was determined before the failure occurred based on
services €.g, sensor data acquisition and processing) are measured CPU utilization. FLARe maintains desired real-

inherently data-driverie., their execution is driven by the ~{ime performance by enforcing treehedulable utilization
current sensor readings and hence are stateless in nature. Poundof the processors when selecting the failover tafget.

For example, in the target tracking system of a shipboard3.1 Overview of FLARe Architecture
computing application, the coordinate (_:alculatpr that cal The key components of FLARe are shown in Figure 1
culates real-world coordinates of surveillance images can . .

. . . .and described below in the context of the resource-aware
be designed to process each image independently, to avou?1

i T i X i ault-tolerance challenges they address.
needing to maintain state between its separate invocations, . I o
: ; Middleware replication manager. FLARe’s middleware
Such systems need to provide real-time performance to

clients, however, even in the presence of failures and load taccording to well-established real-time scheduling tiesrall peri-

fluctuations. The goal of FLARe is thus to manage soft real- odic services executing on a processor will meet their deesllif their
time performance of such systems. total CPU utilization remain below the schedulable uttiiza bound for
. . . the real-time scheduling policy. For example, the schddlelatilization

The clients and servere.@, the Image forwardmg base bound of the well known Rate Monotonic scheduling policyozl/" -1,

station and coordinate calculator services) are impleatent where n is the number of periodic services on the proces€dr [1

Host 1
i Client Request l/'@@ gets. Upon catching an exception, the client request inter-
@ ntereepter N @ ceptor contacts the redirection agent to obtain the failove
e, I AN «<«» object address, and redirects the client to that servectbje
i B Section 3.3 describes how clients are proactively updated
W Neoy test2 as needed with new list of failover target decisions so that
- Redioction Sae *@ failovers can bg timely, and predictable. _
Process e o Resource monitor FLARe runs a resource monitor on
each processor to track its CPU utilization and the live-
Fallgver Target Host 3 Host Utilization ness of processes hosted by the processor. FLARe’s repli-
el N—— Updat:;ve @ e cation manager makes failover target selection and load re-
oo Livelness Communication | | G distribution decisions based on the updated CPU utilinatio

i Middoare .@ and liveness information provided by the resource monitors
@ Primary Server @ M‘;nager i .

Sections 3.4 and 3.5 describe how FLARe manages system
((S1") Replica Server @ Resource overloads with only small client perturbance and maintains

Figure 1: FLARe Middleware Architecture desired real-time performance after recovery.

3.2 Failover Target Selection

replication manager provides interfaces for registering a As described in Section 3.1, FLARe’s middleware repli-
managing information about the server objects and their cation manager collects updates from the resource moni-
backup replicas. For each server object, FLARe’s mid- tors about the CPU utilizations and liveness of processors.
dleware replication manager keeps track of the processorsye now describe how using these measurements, FLARe’s
hosting replicas, and collects information about their CPU middleware replication manager selects per-object faitov
utilization and failures. The middleware replication man- targets using adaptive failover target selection Algarith.
ager determines a list of failover targets ordered by the pre The algorithm takes the list of processors, the set of object
dicted CPU utilization of the processors if a failover occur
(the processor with the lowest predicted CPU utilization is
the first in the list). As the system operating conditions
(e.g., processor loads) change, the middleware replitatio
manager also may update the failover targets. The middle-
ware replication manager sends the updated list of failover
targets to the redirection agents through remote operation
requests whenever the list is changed. Section 3.2 describe
our adaptive failover target selection algorithm in detalil
Client request interceptor. Client request intercep-
tors [21] transparently modify the behavior of the CORBA

Algorithm 1 Rank Per-object Failover Targets

1: oI number of objects in processior

. R; : list of processors hosting objefs replicas
3: cu : current utilization of processar
4: ey : expected utilization of processbafter failovers
5: Ij : CPU utilization of object
6: for every processardo
7
8
9

ey =cy
for every objectj in o; do
sortR; in increasing order of expected CPU uti-

object method calls invoked by an application. A client- I|zat|o_n .
. o - ey +=|j, where processor is the head of the
sideCcOMM_FAILURE exception is raised after a connection .
. . : . sorted listR;
timeout because of a server failure. The client request-inte
. 11: end for
ceptor then modifies the exception handling behavior that is 12 end for

triggered: instead of propagating that exception to trentli
application, the client request interceptor transpayeeti- and the current CPU utilization in each of those processors
rects the client invocation to an appropriate failover érg as input, and determines a ranked list of failover targets fo
object provided by the redirection agent. Section 3.3 de- each of those objects. The algorithm recognizes that mul-
scribes how FLARe’s client request interceptor works with tiple and simultaneous failures of the same type of service
the middleware replication manager to redirect clientgto a (e.g, failure ofprimaryandbackupreplicas of the same ser-
propriate failover targets. vice) needs to be handled, and hence determines an ordered
Redirection agent Client request interceptors are not list as opposed to a single failover target.

themselves CORBA objects, and thus cannot be invoked Since the middleware replication manager manages in-
through remote interfaces. To allow FLARe’s middleware formation about the objects and their replica hosts, intu-
replication manager to send the list of failover targetd# t itively one can order the potential failover targets of an ob
client request interceptor, a redirection agent runs inpa se ject in the increasing order of the current CPU utilizatidn o
arate thread as a separate CORBA object within the clienttheir host processors. However, the algorithm also recog-
process, and the middleware replication manager updatesizes that in the event of a processor failure, invocatians o
the redirection agent with the current list of failover tar- all the objects hosted on the processor will need to failover

to other hosts and multiple objects could have failover tar- socket (also known as a UNIX domain socket), and registers
gets hosted in the same host. the port number with the resource monitor. The resource
To avoid overloading a processor with multiple failovers, monitor connects to and performs a blocking read on the
the algorithm spreads the failover targets of objects ktat socket. If an application process crashes, the socket &d th
on the same processor onto multiple hosts. The middle-opened port will be invalidated. The resource monitor then
ware replication manager also sorts the failover targets of receives an invalid read error on the socket, which indgate
an object based on thexpected CPU utilizatiomstead of the failure of the process.
the current CPU utilization of their host processors. The The resource monitor periodically updates FLARe’s
expected CPU utilizatioaccounts for the potential load in- middleware replication manager with the processor utiliza
crease due to failover decisions of other objects in the sametion information. To improve the FLARe middleware’s re-
processor (lines 9 and 10 of Algorithm 1). sponsiveness to sudden workload changes and failures, the
33 Client Redirection resource monitqr al_so generates event-dr_iyen_updateetq th
middleware replication manager, when utilization levels i
FLARe provides fast failover with predictable latencies crease beyond a certain threshold or when a process fails.
by proactively sending updated failover targets from the Thjs design allows the middleware replication manager to
middleware replication manager tocent-side redirector recompute the failover information for the affected server
that handles failures transparently to the client objethe objects, in response to dynamic changes in system work-
client-side redirector comprises dient request intercep- |oad and failures. FLARe’s middleware replication man-
tor for each client object and eedirection agentn each ager also proactively notifies the redirection agents of any
client process. Whenever the updated list of failover terge g ch changes so client requests will be redirected to appro-

changes FLARe's replication manageoactivelysends the priate failover objects in an adaptive manner.
list the redirection agent. In FLARe, the client request in-

terceptor transparently handles CORB®MM_FAILURE 3.5 Overload Management
fe;;:uerztsl(z)ns that are raised in response to server or service Section 3.2 described a failover target selection algo-

rithm that determines appropriate failover targets fowser
objects. While the failover target selection algorithm de-
scribed in Section 3.2 helps avoid CPU overload by se-
lecting the host with the lowest CPU utilization, failover
may still cause the failover target processor to exceed its
schedulable utilization bound. FLARe’s middleware repli-
cation manager employs an algorithm to manage the over-
load caused by failover. Prior work [7] on overload man-
agement has considered moving objects to any of the less
loaded processors. Consequently, clients are redireoted t
the object’s new location and helps reduce CPU utiliza-
3.4 Resource Monitoring tion in overloaded processors. This approach, however, in-
creases overload management latency as an object’s replica
might not be operating in some of the chosen processors
and may require bootstrapping. The goal of our overload
management algorithm is to manage overloads in a more

After catching a failure exception, rather than propagat-
ing that exception to the client application, the client re-
guest interceptor contacts the redirection agent to oli&in
failover object address, and redirects the client to thatese
object. In the case of simultaneous failures offihienary as
well asbackupreplicas of the same service, the references
held by the redirection agent could be stale. However, since
the redirection agent maintaindist of failover targets, the
client will be redirected to a server object in a timely fashi
unless all the replicas of a service failed.

FLARe runs aresource monitoron each processor to
track the CPU utilization and liveness of the processes
hosted by the processor. On Linux platforms, the resource
monitor uses théproc/ st at file to estimate the CPU uti-

lization in each sampling period. Theproc/stat file efficient manne_r. . .
records the number of “jiffies” (a default duration of 10ms Ve solve this problem by deactivatimgimary objects

in Linux) when the CPU is in user, nice, system and idle N @n overloaded processor and activating tfiickup
modes. At the end of each sampling period, the resourcerePlicas on a lightly loaded processor. Clients of e

monitor reads the counters and estimates the CPU utiliza-Mary replicas are automatically redirected to the chosen
tion as the fraction of time when the CPU is not idle. backupreplicas. We refer to this load redistribution mech-

To detect the failure of a process quickly, each applica- @nismlightweight migration as we migratdoad of as op-

tion process on a processor opens up a passive POSIX locdP0Sed toobjects Hence our approach is much more effi-
cient than physically moving the object itself to a lightly

2CORBA relies on the underlying network transport protosdg.g, loaded processor.
TCP) connection timeout mechanisms to detect server &slusince TAO FLARe determines therimary objects that need to be
supports client-server communications using many diffepeotocols, our . . .
failure detection mechanism can be significantly improvéith wrotocols migrated and their target hosts using the overload manage-

like SCTP [19]. ment algorithm. Given an overloaded processer, whose

CPU utilization exceeds its schedulable utilization bqund
the algorithm considers tharimary objects on the proces-
sor in the decreasing order of CPU utilization, and attempts
to migrate the load generated by those objects to the least-
loaded processor hosting thdiackupreplicas. The algo-
rithm continues to attempt migrations until (1) the over-
loaded processor is no longer overloaded (the algorithm
solves the overload) or (2) all therimary objects in the
overloaded processor have been considered for migration.
Similar to the failover target selection algorithm,
FLARe’s overload management algorithm also usesthe
pected CPU utilizatiorto spread the load of multiple ob-
jects on an overloaded processor to different hosts. The ex-
pected CPU utilization accounts for the load change due to

SIRION

ANGO

GAMMA

i

ALPHA

-

i |

BETA

Y

M@LAMBADA

as o

@ CHARLIE

PANTERA

=

%

PRINCE

(m—

EQUUS

muwi;nitor updates|
Failover

— —» Target
Updates

Redirection
Agent
CORBA
Object

O Process
Host

Figure 2: Experiment Setup

The clients in these experiments used threads runningin

the migration decisions on other objects on the same pro-the Linux real-time scheduling class to invoke operations
cessor. After the new reconfigurations are identified, redi- on server objects at periodic intervals. For the experiment

rection agents are updated to redirect existing clientsifro
the currentprimary service to the newly activatgatimary
service at the start of the next remote invocation. Clients,

conducted for this paper, client applications invoked aper
tions on server objects using one of the following rates: 10
Hz, 5Hz, 2Hz, or 1Hz. As shown in Figure 2, four clients

and thereby their loads, are thus redirected to new targetycL-1, cL-2, cL-3, andcL-4) invoke operations on four

with minimal disturbance.

3.6 Implementation of FLARe

FLARe has been implemented on the TAO Real-time
CORBA middleware [16]. It is implemented in 3400 lines
of C++ source code (excluding the code in TAO). The cur-
rent implementation of FLARe is based on Linux 2.6. It
can easily be ported to other platforms due to the portabil-
ity of TAO and the underlying ACE library [16]. FLARe
uses semi-active replication [13] to provide fault-tolera
capabilities to its middleware replication manager as well
as to the per-processor resource monitor. Since FLARe's
middleware replication manager and its replicas are latate
on a set of dedicated processors they will not experience
overloads after failures. FLARe is available in open-seurc
format fromwaw. dr e. vander bi | t . edu.

4 Empirical Evaluation

This section evaluates FLARe’s ability to handle various
common fault and overload scenarios that can arise during
DRE system operation.

4.1 Experiment Configurations

The experiments were conducted at ISISlalow(dr e.
vanderbilt.edu/ 1Sl Slab) on a testbed of 14 blades.
Each blade has two 2.8 GHz CPUs, 1GB memory, a 40 GB
disk, and runs the Fedora Core 4 Linux distribution. Our

experiments used one CPU per blade and the blades were

connected via a CISCO 3750G switch over a 1 Gbps LAN.

different types of server objecta{1, B-1, c-1, andD-1).

To evaluate FLARe in the presence of resource contention
created by external disturbances, such as dynamic task ar-
rivals, we introduced dynamic requests using two addiiona
clients,cL-5, andcL-6, to invoke operations on two server
objects,py-1 andDy-2, respectively.

The server objects also have backups deployed on other
processors. For example;2, andA-3 are replicas of the
server objech-1 deployed on processoss PHA andLAM -
BADA, respectively. Since the clients invoke operations at
four different rates, the higher each server object’s i@voc
tion rate, the higher the priority at which it was run, per
RMS.

We compared FLARe’s proactive load-aware client
failover strategy (Section 3) with the following two client
failover strategies:

e Staticclient failover strategy, where the client is ini-
tialized with astatic list of IORs, which are not up-
dated based on the replicas’ readiness or effectiveness
to handle client invocations after a failover.

Reactive load-awarelient failover strategy, where the
client-side middleware invokes a remote operation on
the middleware replication managgfter each failure

to obtain the suitable failover target address. The repli-
cation manager uses the replica selection algorithm de-
scribed in Section 3. The reactive load-aware strategy
is thus aron-demandlternative to FLARe'proactive
target update feature, which we evaluate for purposes
of comparison.

As shown in Figure 2, 12 blades at ISISlab ran Real-time As is described in Section 3, the strategy adopted by FLARe

CORBA client/server applications developed using FLARe.
FLARe’s middleware replication manager and its backup
replicas ran in the other two blades.

is both proactiveand load-aware, where the middleware
replication manager proactively pushes failover target up
dates to clients.

4.2 Load-aware Failover Decisions

Rationale. When process or processor failures occur in
a system, FLARe fails over the clients’ server object refer-

ences to backup replicas hosted in other available progsesse

and/or processors. This experiment evaluates how end-to : ,
@bsence of failures. We also measured the following fault-

end response times and processor utilizations are affecte
due to failover decisions made by the different failover
strategies.

Methodology. The reactive load-aware failover strategy
is similar to our proactive load-aware failover strategy, e
ceptthatin the case of the reactive load-aware strategg the
is an additional delay for a remote call to the middleware
replication manager to locate the failover server objexd's

load-aware failover strategy, those failover decisiomesgo-
dated dynamically when/if failures occur, as processor uti
lization levels and sets of live processes change.

Metrics. We measured the per-invocation roundtrip re-
sponse time a client experienced both in the presence and

recovery metrics: (1FAULT_DETECTION DELAY is the
time taken for the client to receive aoOMM_FAILURE
exception after the server object failure, and (2)
FAILOVER_DELAY is the time taken for the client to find the
next replica address to contact after theMmM_FAILURE
exception is received in the case of a failure. We also mea-
sured processor utilizations throughout the experiment.

dress. The failover object that is chosen is the same as thé\nalysis of results. Figure 3a shows the end-to-end re-

one chosen by FLARe since the supplier of that informa-
tion (the middleware replication manager) is the same in
both the strategies. This experiment therefore compaees th
proactive load-aware strategy and the static strategyab ev
uate the effects of load-awareness.

Client | Server | Invocation | Server Object
Object | Object | Rate (Hz) | Utilization
cL-1 A-1 10 40%

cL-2 B-1 5 30%

cL-3 c-1 2 20%

cL-4 D-1 1 10%

cL-5 DY-1 5 50%

CL-6 DY-2 10 50%

Table 1: Experiment setup

Experiment setup. As shown in Figure 2, in this exper-
iment four different clientscL-1, cL-2, cL-3, andcCL-4,
invoke operations on server objects with configurations de-

scribed in Table 1. This table also describes the configura-

tions for the dynamic clientsL-5 andcL-6. The exper-

sponse times perceived by clients-1 and cL-2 when
they are configured to use the static strategy. At 150
seconds, whem-1 andB-1 fail, cL-1 andcL-2 receive

a COMM_FAILURE exception and make a failover to the
statically-chosen failover targets 3 ands-3 respectively.

As shown in Figure 3a, at 150 seconds, the end-to-end re-
sponse time perceived -1 increases by 10.2 millisec-
onds, which is the combinegAULT _DETECTION _DELAY
andFAILOVER_DELAY.

After failing over to targes-3, the end-to-end response
time perceived by L-2 increases by40% and the proces-
sor utilization atcHARLIE increases from 50% to 80% be-
causes-3 shares the processor resourcesBARLIE with
DY-2, which is accessed byL-6. As described in Table 1,
CL-6 has a higher invocation rate tham-2, so their re-
spective serversdfr-2 andB-3) operate at different prior-
ities (DY-2 has a higher priority). SinceL-2 is the lower
priority client, and the processor utilization is high aftiee
failover, its end-to-end response times increases.

On the other hand, after the failover- 1 invokes remote
operations om-3, which is hosted along withy-1 atLAM -

iment ran for 300 seconds, and as described above all theBADA. As shown in Figure 3c, the utilization cAMBADA

clients made their respective invocations on differentser

grew from 50% to 90%. This utilization increase affects

objects unless a failure happened to cause clients to conCL-5, which accessesy-1. This is becauseL-1 accesses

tinue their invocations on common backup server objects.
Failure scenario. To evaluate the performance of the
different failover strategies, we emulated a failure 156 se

onds after the experiment started. We used a simple fault

injection mechanism, where when clierds-1 or cL-2
make invocations on server objeetsl orB-1 respectively,
the server object calls thexit (1) command, crashing the
process hosting server objectsl andB-1 on processor
TANGO. The clients receiv&OMM_FAILURE exceptions,

A-3 at higher priority because of its higher invocation rate.
Consequently, the end-to-end response times perceived by
cL-5 increases as shown in Figure 3a.

In summary, because of load-agnostic failovers : (1) fail-
ing over clients can affect the performance of the proces-
sor’s previously-active client®(g, the case ofL-1 affect-
ing cL-5), and (2) already active clients in the processor can
affect the failing over clientse(g, the case otL-6 affect-
ing CL-2).

and then make continued invocations on replicas chosen by We repeated the same experiment with FLARe’s proac-

the failover strategy.

Failover strategy configurations. The static failover strat-
egy makes failover decisions at deployment time, as fol-
lows: if A-1 fails, contactr-3 followed byA-2; and ifB-1
fails, contacs-3 followed bys-2. With FLARe’s proactive

tive load-aware failover strategy. Figure 3b shows the end-
to-end response times perceived by clientsl, cL-2, CL-

5, andcL-6 and figure 3d shows the utilizations of all their
server's respective processors. After system bootstrappi
the middleware replication manager monitors the CPU uti-

180000
160000
140000
120000
100000
80000
60000
40000

Client Response Times Before/After Failure

Response time (microseconds)

20000 -

0 E L L L L
0 50 100 150 200 250

Time (sec)

300

(a) End-to-end response times with static strategy

CPU Utilization at Replica Hosts

100

ALPHA ALPHA
_ LAMBADA A M b bbb _ LAMBADA -
) BETA H N @) BETA =
& 80 [cHARLIE A ? & 80 [cHARLIE 1
£ TANGO £ TANGO
° i 5
g 60 i 1 g 6o " it
5 e kibogimeibbibbih 5 {rridesmdaboad E A A
g 40 B g 40 Bttt NS A St
3 3
g 20 I WY Wy PR ITWTIWE WY w g PR T IO UV SOV W il

e w b A b b s wbesbargd sty sty it
O L L L O L L L

0

200

250

300

50

100

150
Time (sec)

(c) Utilization with static strategy

Response time (microseconds)

(b)

Client Response Times Before/After Failure

180000
160000
140000
120000
100000

80000 -
60000 -
40000

100

20000 :
0 : L L L L

0 50 100 150 200 250
Time (sec)

CPU Utilization at Replica Hosts

300

End-to-end response times with proactive load-awaegesty

0 50

100

150

200

250

Time (sec)
(d) Utilization with proactive load-aware strategy

300

Figure 3: End-to-end response times and utilizations wifferént failover strategies

sponse times perceived by -2 after the failover are 3 times
ands-1, which are accessed by cliemts-1 andcL-2. less than those perceived by-2 using the static strategy.

At 0 seconds,cL-3 and cL-4 make invocations on This result demonstrates the significant positive impact of
serversc-1 andb-1 respectively. As described in Table 1, proactive load-aware failover on the real-time performeanc
the utilizations at their respective processarsHA and of DRE systems.

BETA increase by 20% and 10% respectively. At 50 sec- Moreover, the end-to-end response times perceived by
onds, the utilizations ofAMBADA andCHARLIE increases CL-5 andcL-6 did not change after the failover of clients
by 50% because of the activation of the serveysl and CL-1 andcL-2. The behavior is unchanged because the
DY-2, respectively. Since the utilizations of these proces- replica selection algorithm did not choosemBADA and
sors are higher than the utilizationsafPHA andBETA, the CHARLIE as the failover target processors, ompe 1 and
middleware replication manager chooses the failover targe DY-2 were activated in those processors. This result demon-
for A-1 ands-1 asA-2 (hosted oraLPHA) andB-2 (hosted strates that FLARe proactively updates failover targets
ONBETA), respectively. when system workload changes dynamically.

At 150 secondsa-1 andB-1 fail. As shown in Fig- Figure 3d shows the utilizations of processatsHA
ure 3b, the end-to-end response times perceived by clientand BETA where the failover targets were hosted. After
cL-1 andcL-2 increases by 10.2 milliseconds at 150 sec- failover the utilizations of these processors are simdahe
onds because of thealLovER_DELAY. The end-to-end utilizations of processorsAMBADA and CHARLIE, which
response time perceived oL -2 decreases by about 40% host the other replicas of the failed objeetsl andB-1.
after the failover t@-2 on hostBETA, which also host®- This result contrasts the processor utilizations with thés
1 at a lower priority tharB-2. The sharp decrease in the strategy shown in Figure 3c, where the utilizations of the
end-to-end response time perceiveddiy 2 is caused by processors hosting the failover targets are 4 times and 8
the low processor utilization a8ETA, which does not in- times higher than the utilizations of the processors hgstin
crease by more than 40% throughout the experiment. More-the other replicas ok-1 ands-1.
over, B-2 serves requests at the highest priority BETA. By keeping the utilizations balanced, FLARe’s proactive
Using the proactive load-aware strategy, the end-to-end re load-aware strategy not only provides timely responses to

lizations at the hosts of theackupreplicas of services-1

the failing over clients, but also did not affect the already processor. As shown in Figure 5a, at 150 seconds, the end-
active servers (which is significantly better performance to-end response times of client-2 increases by-40%
than the static strategy). For example, as shown in Fig-due to the overloads caused by the simultaneous failure of
ure 3b, the end-to-end response timescot3 andcL-4 theprimary replicaa-1. The end-to-end response times of
increases by only 35% and 50% after the failoveccafl client cL-1 is not affected, however, since it still invokes
andcL-2. This result is much better when compared to the remote operations on the higher priority serverZ) after
90% increase in end-to-end response time<cioss in the the failover to process@HIVA.
static strategy. The increase in loads in the processenva (see Fig-
4.3 Overload Management ure 5b) is immediately reported via event-driven updates
to the middleware replication manager. The middleware
We now evaluate how FLARe manages a class of Over- g pjication manager invoked the overload management al-
loads Wherg multlplgnmaryrepllcafall_ures cause an over- gorithm, which immediately detected that the load gener-
load. In this experiment as shown in the Figure 4, four giaq by the replica-2 can be redistributed to the replica

different clients,CL-1, CL-2, CL-3, andCL-4, invoke 0p- g_3in the processarHARLIE. The redirection agents were
erations on server objects with configurations described injnformed of the decision to redirect clients to the replica

Table 2. The experiment ran for 300 seconds and similar 3 \yithin 500 milliseconds. The next time, when the client

to the experiment described in Section 4.2, at 150 seconds;| .5 invoked a remote operation, the redirection agent au-
A-1 andg-1 fail on processorsANGO andALPHA respec- ysmatically redirected the clients to the replis3, and the
tively. With our proactive load-aware failover stratedyet gnq_tg-end response times of the client decreased around
failover decisions are made at runtimeai1 fails, contact 153 seconds (within 3 seconds after the overload) as shown
A-2 followed byA-3 (-1 is collocated witha-3 andA- in Figure 5a. Thus FLARe can handle overloads in a faster
2 is deployed in an idle processar;2 is the least-loaded manner and also manage the utilization levels of all the pro-
failover target). Similarly, if8-1 fails, contacg-2, andthen ¢assors as shown in Figure 5b to maintain soft real-time per-
followed by8-3. formance for clients.

| Client | Server| Rate (Hz)| CPUULtIl. % |

4.4 Proactive Failover Decisions

cL-1 A-1 10 40%

cL-2 | B-1 S 50% When compared with the proactive load-aware and static

ct-3 | ¢l 2 20% failover strategies, the reactive load-aware strategyrisc

ci-4 | ol 1 10% more time to failover to the next server object. This inceeas
Table 2: Overload Experiment Setup stems from the remote invocation of FLARe’s middleware

replication manager after receiving tteOMM_FAILURE

A exception from a server object failure. To evaluate theydela
i i @ N @L @ empirically, we ran an experiment with clieot-1 invoking
[TANGO (W)-+ [LAMBADA | LY operations on server objegt1. No other processes operate
L@\ @ @ in the processor hosting-1, so that the response time will
: e R @ e, —_— equal the execution time of the server.
| ALPHA (W)= o We ran the experiment for 10,000 iterations. A fault is
r @ @@ S injected to kill the server while executing the 560 quest.
: @. N == The clients then failover to backup server objest and
[- s b A-3, which execute the remaining 5,000 requests (including
L i e the one experiencing the failure).
Process Figure 6a shows the different response times perceived
m—— =as] host by clientc-1 in the presence of server object failures. The

failover delays for the static and proactive load-awaratstr
gies are similar because both strategies know the failover
Analysis of results. Figure 5a shows the end-to-end re- decisiona priori and just use the next available address.
sponse times perceived by clieats-1 andcL-2 beforeand In the reactive load-aware strategy, however, the decision
after theprimary replica failure. When FLARe’s failover is not knowna priori, so FLARe’s middleware replication
target selection algorithm makes failover target decision manager is contacted to get the next address to try. This re-

Figure 4: Overload Experiment Setup

for the primary replicaB-1, it does not consider that-1 mote invocation increases the response time of the failover
could fail simultaneously with thprimary replicaa-1. In request further. When combined with the results shown in
this experiment, since th@imaryreplicasa-1 ands-1 fail Section 4.2, the results in Figure 6a clearly show that the

together at 150 seconds, both clients failover to the sameproactive load-aware strategy is better than either the-rea

Client Response Times Before/After Failure CPU Utilization at Replica Hosts

200000 100

Client CL-1 —— TANGO ——

180000 | Client CL-2 - ALPHA -
- Client CL- SHIVA -
S 160000 - Client CL-4 - T 80 CHARLIE -
Q ©
§ 140000 - £
(%] (0]
o o
5 120000 - 3 60| N
€ 3 .
S 100000 S b s sidraensadamermsendent st mess Bt
£ T
; 80000 N 40 - " i A
€ 60000 | 5
o 2
3 40000 | S 20 f
o

20000 . e

0 . . . ‘ ‘ 0
o 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (sec) Time (sec)
(a) End-to-end response times under overloads (b) CPU utilizations under overloads

Figure 5: FLARe’s overload management performance

m Withol uti interceptors.

. T
351 m Without FLARe T 'm With interceptors

Response time (miliseconds)

Before Failover Client

Client Server

(a) Failover delay (b) Code size overhead (c) Runtime overhead
Figure 6: Failover delay and overhead measurements

tive load-aware or static failover strategy, and thus isenor plementation. The server process activates a single object
suitable for use in DRE systems. and the client process invokes an operation on that object.
We measured the memory footprintin one of the blades and
then compared the baseline version to a version linked with

FLARe provides fault tolerance capabilities to DRE sys- the FLARe middleware.
tems using a lightweight middleware architecture, as de- Figure 6b shows the memory footprint of the client and
scribed in Section 3. A DRE system spends the bulk of server applications with and without FLARe. The figure
the time performing its application logic, and compardgive shows that in the chosen platform, FLARe increases the
less time detecting and recovering from failures. It is¢her memory footprint of the client and the server application
fore worthwhile to determine what time/space overhead is by 10.2MmB, which stems largely from the memory foot-
added by the FLARe middleware to the normal functioning print added by the threads that run the forwarding agents
of applications in DRE systems. and resource monitors.

Memory footprint and run-time invocation overhead On the Linux platform we used for our experiments, the
are important time/space metrics for DRE systems sincedefault minimum stack size of a thread is 10,240 Kbytes,
they affect the ability of applications to run in resource- which is governed by the constaPltHREAD_STACK_MIN.
constrained environments. The following capabilities of Every new thread created by an application will thus incur a
FLARe affect the memory footprint and runtime perfor- corresponding increase in its memory footprint. The defaul
mance of applications in DRE systems: forwarding agents value of the stacksize is clearly excessive for the forwagdi
are added to handle proactive updates from the middlewareagent’s functionality. For applications with more strimge
replication manager; client requestinterceptors aredtllle footprint requirements, it may require recompiling the OS
catchcoMM_FAILURE exceptions and transparently redi- kernel with a much smaller value of the default thread stack
rect requests to suitable failover targets; and resourag mo size. This result indicates that the footprint overheadiis d
itors are added to track host utilizations and the livenéss o primarily to the thread stack size, rather than FLARe’s in-
processes. frastructure elements, such as the forwarding agent and re-

4.5 Overhead Measurements

Measuring FLARe’s memory footprint overhead. To source monitor.

evaluate the effect of FLARe on the memory footprint of a Measuring FLARe’s runtime overhead during fault-free
DRE system, we designed a baseline single-threaded servetonditions. FLARe uses a client request interceptor to
and client application process using TAO's RT-CORBA im- catchcomM_FAILURE exceptions and transparently redi-

rect clients to suitable failover targets. CORBA intercept 6 Concluding Remarks
check every invocation made by the client, when a request The FLARe middleware described in this paper provides
is sent to a server, as well as when the reply/exception isboth timeliness and availability to distributed real-tiiaed
received from the server. To evaluate the runtime overheadembedded (DRE) systems. FLARe focuses on passive repli-
of these per-request interceptions, we ran a simple experi-cation to meet the needs of resource-constrained environ-
ment with clientcL-1 making invocations on server object ments. FLARe overcomes limitations of passive replication
A-1 with and without client request interceptors. No other for DRE systems by providing a load-aware, proactive and
processes operated in the processor hostirig so thatthe adaptive solution for clients (predictable and fast fafigv
response time was equal to the execution time of the serverand servers (overload management). Lessons learned in de-
We ran this experiment for 50,000 iterations, and mea- veloping FLARe include:
sured the average end-to-end response time perceived by ¢ Common CORBA features, such as portable inter-
cL-1. Figure 6¢ shows that the average end-to-end responsé&eptors, and POSIX features, such as local sockets, can
time perceived bycL-1 increased by only 8 microseconds be leveraged to provide fault tolerance capabilities td sof
when using the client request interceptor. This result show real-time systems without modifying the implementation of
that the interceptor adds negligible overhead to the normalstandard-compliant Real-time CORBA ORBs.

operations of a real-time application. Moreover, it presd e Our experimental results demonstrate the effectiveness
capabilities to add client redirection transparentighout ~ and efficiency of FLARe's replica selection and overload
modifying TAO’s RT-CORBA implementation. management algorithms in the context of multiple different
kinds of failure and overload scenarios. The configurabil-
5. Related Work ity and flexibility offered by FLARe can be used to tune

parameters, such as the replica selection and overload man-
agement intervals, and to trade off some extra overhead for
even faster reaction.

In its current design, FLARe does not support alterna-
tive consistency models for stateful fault tolerance anelsdo
not handle network failures, which will be the focus of our
“future work..

Our work on FLARe can be compared with related work
along two dimensions:
1. Scheduling algorithms Fundamental ideas and chal-
lenges in combining real-time and fault tolerance are de-
scribed in [20], where imprecise computations are used to
provide degraded QoS to applications operating in the pres
ence of failures. [4] proposes adaptive fault tolerance
mechanisms to choose a suitable redundancy strategy foReferences

dynamically arriving aperiodic tasks based on system re- [1] T. F. Abdelzaher, S. Dawson, W. chang Feng, F. Jahanian,

source availability. [6] proposes a fixed priority preempti S. Johnson, A. Mehra, T. Mitton, A. Shaikh, K. G. Shin,
scheduling scheme to preallocate time intervals to both the 7. wang, H. Zou, M. Bjorkland, and P. Marron. ARMADA
primary and backup replicas of a task, and adaptively exe- middleware and communication serviceReal-Time Sys-

cutes either the primary or a backup depending on failures tems 16(2-3):127-153, 1999. -
and available time. FLARe differs from these approaches in [2] T-Bennani, L. Blain, L. Courtes, J.-C. Fabre, M.-O. fiddn,
providing fault tolerance capabilities to soft real-tinepé- E. Marsden, and F. Taiani. Implementing Simple Replication

. - - - Protocols using CORBA Portable Interceptors and Java Seri-
cations. Rather than ensuring hard deadlines are met in the alization. INDSN' 04 pages 549-554, Florence, ltaly, 2004.

presence of failures, FLARe focuses on minimizing the im- (31 p_corman. WSOA-Weapon Systems Open Architecture
pact of failure recovery on client response times and system =~ pemonstration-Using Emerging Open System Architecture
resource utilization, and also provides timely clientdair Standards to Enable Innovative Techniques for Time Clitica
to appropriate failover targets. Target (TCT) Prosecution. IBPASC’2001 Oct. 2001.

2. Real-time fault-tolerant systems Delta-4/XPA [13] [4] O Gonzalez, .H. Shrikumar, J. A. Stankovic, and K. Rgmam-
provided real-time fault-tolerant solutions to distribdt ritham. Adaptive fault tolerance and graceful degradation

systems bv using the semi-active replication model der dynamic hard real-time scheduling.RTSS '97page 79,
Y y 9 P ' San Francisco, CA, USA, 1997.

MEAD [12] and its proactive recovery strategy for dis- (5] g, Hadad. Architectures for Fault-Tolerant Middleware Ser-
tributed CORBA applications can minimize the recovery vices PhD thesis, Technion - Israel Institute of Technology,
time for DRE systems. The Time-triggered Message- 2006.

triggered Objects (TMO) project [8] considers replica- [6] C.-C.Han, K. G. Shin, and J. Wu. A fault-tolerant scheuiyll
tion schemes such as the primary-shadow TMO replica- ?'9?ri”|‘£‘E‘;‘E”Trea"“meCF:’e”OdSiZ tgsgzg"i;@gozgg’f saite

; ; i aults. rans. on Com :362-372, .

tion (PSTR)_scheme, fqr which recovery time bounds can [7] V. Kalogeraki, P. M. Melliar?Sngit)h, and L. E. Moser. Dy-
be quantitatively establl_shed, and r?a"F'me fault t(]ieEa_ namic migration algorithms for distributed object systeins
guarantees can be provided to applications. FLARe builds cpcs 01 page 119, Phoenix, AZ, USA, 2001.

upon and extends this prior work by focusing on maintain- [g] K. H. K. Kim and C. Subbaraman. The pstr/sns scheme for
ing soft real-time performance after failure recovery. real-time fault tolerance via active object replicatior aet-

10

work surveillance. IEEE Trans. on Know. and Data Engg.
12(2), 2000.

[9] S. Krishnamurthy, W. Sanders, and M. Cukier. A Dynamic
Replica Selection Algorithm for Tolerating Timing Faults.
DSN’ 01, pages 107-116, 2001.

[10] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior. IRTSS’ 89pages 166-171, 1989.

[11] A. P. A. V. Moorsel. The 'qos query service’ for improved
quality-of-service decision making in corba. 8RDS '99
page 274, Lausanne, Switzerland, 1999.

[12] S. Pertet and P. Narasimhan. Proactive recovery in dis-
tributed corba applications. IDSN '04 page 357, Florence,
Italy, 2004.

[13] D. Powell. Distributed fault tolerance: Lessons frositd-4.
IEEE Micro, 14(1):36-47, 1994.

[14] P. Ramanathan. Overload management in real-time @ontr
applications using m,km, k)-firm guarantee. |[EEE Trans.
Parallel Distrib. Syst.10(6):549-559, 1999.

[15] R. D. Schlichting and F. B. Schneider. Fail-stop preoes:
an approach to designing fault-tolerant computing systems
ACM Trans. Comput. SystL(3):222-238, 1983.

[16] D. C. Schmidt, B. Natarajan, A. Gokhale, N. Wang, and
C. Gill. TAO: A Pattern-Oriented Object Request Broker for
Distributed Real-time and Embedded SystemBEE Dis-
tributed Systems Onlin&(2), Feb. 2002.

[17] J. Schonwalder, S. Garg, Y. Huang, A. van Moorsel, and
S. Yajnik. A Management Interface for Distributed Fault-Tol
erant CORBA Services. IEEEE International Workshop on
System Managemermages 98-107, Newport, RI, Apr. 1998.

[18] D. B. Stewart and P. K. Khosla. Real-time Schedul-
ing of Sensor-Based Control Systems. In W. Halang and
K. Ramamritham, editorsReal-time ProgrammingPerga-
mon Press, Tarrytown, NY, 1992.

[19] R. Stewart and Q. Xie.Stream Control Transmission Pro-
tocol (SCTP) A Reference Guid@ddison-Wesley, Boston,
2001.

[20] F. Wang, K. Ramamritham, and J. A. Stankovic. Determin-
ing redundancy levels for fault tolerant real-time systems
IEEE Transactions on Compute##4(2):292—-301, 1995.

[21] N. Wang, D. C. Schmidt, O. Othman, and K. Parameswaran.
Evaluating Meta-Programming Mechanisms for ORB Mid-
dleware. IEEE Communication Magazine, special issue on
Evolving Communications Software: Techniques and Tech-
nologies 39(10):102—-113, Oct. 2001.

[22] H. Zou and F. Jahanian. A real-time primary-backupicepl
tion service. Parallel and Distributed Systems, |IEEE Trans-
actions on 10(6):533-548, 1999.

11

