
D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTA Survey of Event Filtering Mechanisms

for Dynamic Multi-Point Applications

Ehab S. Al-Shaer Douglas C. Schmidt
Department of Computer Science Department of Computer Science

Washington University Washington University
St. Louis, MO, USA St. Louis, MO, USA

Abstract

High-performance event filtering is an essential service in a
distributed processing environment. We are developing an
object-oriented event filtering framework to efficiently pro-
cess the large volume of event traffic generated by dynamic
multi-point (DMP) applications (such as automated fault
management in telecommunication systems). Our frame-
work, which is based on CORBA, supports the automated
generation and optimization of event filters in a distributed
system.

Our work represents a major contribution by (1) devis-
ing an integrated model of event filtering that spans several
applicationdomains and (2) improving the functionality, per-
formance, scalability and usability of event filtering.

This paper describes the primary characteristics and chal-
lenges of developing high-performance event filtering for dy-
namic multi-point applications. We survey existing event fil-
tering mechanisms and explain key characteristics for each
technique. In addition, we discuss limitations with existing
event filtering mechanisms. and outline how our framework
will improve key aspects of event filtering.

1 Introduction

The demand for dynamic multi-point (DMP) applications is
increasing. DMP applications deliver messages from one
or more producers to one or more consumers. Examples of
DMP applications include decision support in information
systems, wide-area information servers (such as the WWW
or archie [27]), distributed systems monitoring, performance
and fault management in large-scale network management
systems, real-time market data analysis systems, and on-line
news clipping services.

DMP applications exhibit two primary features:

� They are multi-point – consumers subscribe to subsets of
events that are generated in the system. Consumers may
have different subscription demands and any event that
matches a subscription is delivered to the corresponding
set of consumers;

� They are dynamic – since each event may potentially be
delivered to a different subset of consumers. Consumers

Figure 1: General Structure of a Dynamic Multi-point Ap-
plication

are capable of updating their subscriptions at run-time
in response to changes in their environment.

In contrast, conventional multi-point applications (such as
teleconferencing) exhibit less dynamism. For instance, once
a consumer has joined a multi-point group in an ATM switch,
all data sent by a supplier is received by all other consumers
that are members of the group. Figure 1 shows the general
structure of a DMP application.

In an enterprise-wide DMP application (such as an au-
tomated fault management system for global satellite-based
personal communications system), a large volume of events
can be generated by suppliers. However, consumers may
need to be notified about only a small portion of the events
in the system. Therefore, event filtering mechanisms may be
required to reduce the volume of notifications and efficiently
deliver events to the appropriate consumers.

Event filtering serves as an efficient mechanism for mon-
itoring and detecting events and delivering them to the in-
terested consumers. It also serves as a data reduction mech-
anism that eliminates unnecessary network traffic and un-
necessary processing by consumers. Not all consumers in
DMP applications are interested in every event. Therefore,
aggregate system performance can be enhanced significantly
through the use of event filtering.

This paper presents an integrated model of event filtering
that encompasses the features of a wide range of filtering
mechanisms and satisfies the requirements of DMP applica-
tions, as well. We identify the key criteria that are useful for
evaluating event filtering design alternatives.

Event filtering spans several application domains. How-
ever, existing techniques for event filtering may be insuffi-
cient for DMP applications due to four primary limitations:
functionality, performance, scalability and usability. This
paper motivates and describes the object-oriented framework
and optimization techniques we are developing to improve
the functionality, performance, scalability and usability of
event filtering for DMP applications.

This paper is organized as follows: Section 2 gives an
overview of event filtering and describes the primary char-

1



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTacteristics and requirements of dynamic multi-point applica-

tions; Section 3 classifies existing event filtering mechanisms
according to several criteria; Section 4 surveys existing event
filtering mechanisms; Section 5 illustrates limitations with
existing event filtering mechanisms; and Section 6 presents
concluding remarks.

2 High-Performance Event Filtering
for Dynamic Multi-point Applica-
tions

As background for our discussion of event filtering for DMP
applications, this section introduces basic terminology and
explains the impact of DMP application requirements on the
design of event filtering.

2.1 Terminology

An event is a significant occurrence in a system that is re-
ported by a notification message. The notification message
may contain information that captures event characteristics
such as event type, event values, event generation time, event
source, and event state changes.

For simplicity, we use “event” and “notification” inter-
changeably in this paper. That is, we consider a notification
to represent an event. An event is called a primitive event if
it is based on a single notification message in the system. For
example, an event representing all notifications with destina-
tion address “foo” and application name “ftp” is a primitive
event since detecting this event only requires checking the
fields of a single notification.

An event that depends on more than one notification is
called a composite event. For example, assume a filter is
defined to detect an event represented by notifications from
source address “foo” with subject “overloaded” and all no-
tifications of destination address “foo.” This represents a
composite event since detecting this event requires the recog-
nition of multiple primitive events. We use the term event
pattern to refer to the definition of a primitive or a composite
event.

An event filter is a set of predicates. Each predicate is
defined as a boolean-valued expression that returns true or
false. Predicates may be joined by operators (such as AND,
OR and NOT) that enable the composition of arbitrarily com-
plex filter expressions. Thus a filter or event expression is a
set of predicates joined by operators. Filters can be joined
together to form an optimized filter by a process called filter
composition.

2.2 An Example DMP Application

This section describes an example DMP application to illus-
trate the requirements that will be discussed in Section 2.3.
The example also illustrates how event filtering helps to sat-
isfy the requirements of DMP applications. This example is

taken from the domain of network management (other exam-
ples are discussed in Section 3.1).

In an enterprise-wide network management environment,
the management entities (i.e., managers and agents) are dis-
tributed throughout the network. Using DMP terminology,
managers are event consumers that have different demands
on agents. For example, managers remotely monitor agents
and gather network statistics related to performance and re-
liability. Managed objects in the network (such as routers,
bridges, switches, and workstations) are equipped with agents
that serve as event suppliers. Agents can either generate noti-
fications that report the status of managed objects periodically
(traps) or generate notifications according to explicit requests
from managers (polling).

In an enterprise-wide network, the managers may be un-
able to handle a high-volume of notification messages gen-
erated by suppliers. Filtering agents can be used to alleviate
these bottlenecks. These agents continually receive sub-
scription requests from managers and classify events based
on filters installed by managers. Managers can add, delete
or modify their subscription requests at run-time. To reduce
network traffic, one or more network managers can be no-
tified about an event through dynamic multicast operations
supported by the filtering agent. Filtering agents may reside
in hosts other than suppliers and consumers.

Filtering agents can detect primitive events by efficiently
classifying notifications they receive. For example, a filtering
agent can detect a notification of an inoperable network link
using the following filter expression:

Link Down: (msg type = error and error code =

link down)
Another example, the filtering agent can detect if the uti-

lization of a link is 90 percent or above:
Utilization: (msg type = stat and util stat � 90)
In addition, managers can subscribe to composite events

that consist of other events. For example, a network manager
may want to be notified if a Link is down and the utilization
of any other links is 90 percent or more:

Link Down and Utilization.

2.3 Requirements of Dynamic Multi-point Ap-
plications

The primary goal of our work is to design and develop an
event filtering framework that supports DMP application re-
quirements. Therefore, we first describe the requirements of
DMP applications and explain how these requirements affect
the design of an event filtering framework:

� A high volume of event messages are generated contin-
uously in real-time by one or more suppliers: For ex-
ample, in an enterprise network management system, a large
number of events originating from suppliers (such as network
managed objects like routers, bridges and hosts) are sent to
manages for immediate response. This shows the need for
high-performance event filtering to classify and evaluate the
large volume of events. Moreover, event filtering mechanism

2



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTTable 1: DMP Applications Requirements

must be scalable to handle large numbers of suppliers and
consumers.

� The message formats of events are potentially complex:
message formats contain both header fields (e.g., timestamps,
source/destination addresses, routing ids, priority levels) and
data payloads (e.g., telemetry measurand values). This im-
plies the need to provide high-level programming tools that
allow developers to define filters in a DMP application with-
out being concerned with the low-level details of event for-
mats.

� Zero or more consumers subscribe to a subset of the
total events generated by the supplier(s): Unlike tradi-
tional static multi-point applications (such as teleconferenc-
ing), each generated event may be received by a different sub-
set of consumers. Therefore, an event filtering system should
support a dynamic multicast operation where members in the
multicast groups can change dynamically at run-time.

� Consumers may add, delete, or modify their subscrip-
tions dynamically: The event filtering system must pro-
vide a high level of dynamism. This is important to en-
sure adequate response to selectively monitor, detect, and re-
cover when resource failures occur during system operation.
Moreover, event filtering should be highly re-configurable to
respond to dynamic consumer requests (add/delete/modify)
with minimal performance overhead.

�Event consumers typicallyreside on different hosts than
the suppliers: The suppliers and the consumers are con-
nected via local or wide area networks. In some cases, con-
sumers and suppliers may be separated by high-latency com-
munication links that possess high delay and jitter. Reducing
the volume of events is important to eliminate unnecessary
network traffic and minimize the use of network bandwidth.
In many cases, therefore, event filtering should not take place
in the consumer even if the consumer is powerful enough to
handle the filtering because this consumes excessive network
bandwidth.

� Consumers may need to detect both composite events
and primitive events: Consumers may need to know if
certain events occur together under certain conditions. For
this reason, the event filtering system not only classify events,
but also tracks the event history of the system to detect in-
teresting combinations of events. This feature is required by
many DMP applications. Moreover, many DMP applications
require an integrated event filtering model that classifies both
primitive and composite events. In a filtering agent environ-
ment, for example, a high-volume of notification messages
from sensors or agents are generated. The event filtering
agent tracks the event history flow and classifies individual
events. When a specified event is detected by the event fil-
tering agent, it forwards the notification and/or performs the
action corresponding to the detected event.

� Consumers may need to receive events according to
priority order and/or time-constraints associated with
events: This implies the need for real-time processing of
events. For example, in an automated event monitoring of
a large-scale health delivery system, notification messages
received from a critical nodes (such as intensive-care equip-
ment) are given high service priority. Some DMP applica-
tions (such as wide-area information location services) can
tolerate “best-effort” delivery while others (such as real-time
fault management) require reliable “real-time” delivery to
satisfy the hard time-constraints of these applications. A
real-time resource allocation and priority scheduling scheme
may be necessary to support DMP applications with stringent
performance requirements.

3 A Taxonomy of Event Filtering Cri-
teria

Event filtering is useful in several domains including dis-
tributed systems toolkits, network and distributed sys-
tem management, communication protocols, and active
databases. Classifying event filtering systems based on their
key design criteria helps identify and evaluate alternatives
for designing event filtering mechanisms. In this section, we
identify key event filtering criteria and outline different al-
ternatives for each one. Section 3.1 explains the application
of event filtering in four domains, emphasizing the domain-
specific goals of each one; Section 3.2 describes different
internal representations for event filtering; Section 3.3 dis-
cusses the programming interface used to define an event
filter; and Section 3.4 presents alternative approaches for
modeling and defining events.

3.1 Application Domain

Event filtering is used as a classification mechanism in several
application domains. Each domain uses filtering for differ-
ent purposes according to domain-specific goals and require-
ments. In this section, we list several application domains
that use event filtering, explain the purpose of using filtering
as a classification mechanism in each domain, and present
example applications. Table 2 summarizes the discussion in
this section.

Distributed Systems Toolkits: Event filters are used in
distributed systems for the following purposes:

� Validating incoming messages: Filters are used to dis-
tinguish (classify) invalid messages. A message arriving at
a consumer is examined by passing it through a series of
validation filters. For example, the Isis system provides a
facility that protects itself and its clients against errors from
peers [2] (e.g., unauthenticated clients, truncated messages

3



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTTable 2: Application Domains for Event Filtering

from faulty clients). Isis uses filters as a protection facility to
validate authenticated messages in applications such as the
Isis distributed news service.

� Extracting portions of the message: In distributed sys-
tems that support parallel programming (such as Paralex [2]),
filters are used to associate data with processors in data-
parallel computing. Data may be sent to multipledestinations
for parallel processing. Each node uses a filter to extract dif-
ferent subsets of the data to process in parallel [2].

� Agent-based distributed applications: Agent-based
distributed applications [19, 7] require efficient managing
and coordination of a high volume flow of events. In these
applications, event filtering agents are responsible for filter-
ing incoming events. These events are received continuously
as notification messages from active sensors or other remote
agents. The remote agents may poll devices frequently and
generate reports on the health and status of the system. In
this environment, the event filtering agents classify individ-
ual messages, as well as detect composite events of interest
to consumers. Since these systems are distributed by nature,
no agent has complete knowledge of the system. Therefore,
event filters can be used to detect composite events con-
sisting of events sent from one or more agents or sensors.
Some examples of distributed agent applications include the
following:

� Event management in large-scale organizations – In
large organizations (such as hospitals, airports, and au-
tomated factories) event filtering agents can be used to
improve and automate decision management capabili-
ties by monitoring, classifying, and coordinating events
that flow through the system. If the event filtering agent
detects a specified event (such as failure, emergency, or
paging), it immediately performs the action correspond
to this event (such as forwarding a new event to another
agent or consumer).

� Mission critical applications – Mission critical military
applications involvingmissile guidance systems require
a form of filtering. An automatic missile guidance sys-
tem is typically equipped with an intelligent filtering
agent that continually receives notifications from the
radar system (or the agent of the radar system). It fires
at the target automatically when the filter conditions are
satisfied.

� Control systems – Robots systems in a nuclear reactor
may be provided with filtering agents that receive events
from agents distributed throughout the site. The filtering
agents determine the action to be taken if a specified
error condition is detected.

Network and System Management: Managing networks
and distributedsystems is hard since a large number of events
occur simultaneously. Event filtering is used to monitor and

manage the flow of events in networks and distributed sys-
tems. Applications of event filters in network and system
management environments include the following:

� Monitoring and analysis: Using filters, a network ad-
ministrator can classify and analyze certain types of events
and collect statistical information about different aspects of
network operation [3]. In distributed systems, event filters
are used to manage distributedapplications by monitoringthe
events either at the communication level or at the application
level [24]. Events and information collected through filters
may be analyzed further using databases or graphical tools
for debugging and troubleshooting [29].

�Fault management: Event filtering is a basic component
in fault management systems [14, 25]. In these systems, net-
work elements/objects (such as hosts or routers) send alarms
(also called “traps”) to indicate changes in system status.
Event filters are used to classify different types of alarm
events and forward them to management applications based
on prior subscriptions.

� Security management: Event filters may be installed at
different points in the network to capture events that reveal
fraudulent behavior and generate notifications accordingly.
The filters classify events based on a particular pattern of
values in the packet headers, network traffic, or the content
of data in messages.

Examples of events filtering toolkits in the network and
system management domain are the Packet Monitoring Pro-
gram (PMP) [3] and HP OpenView [13].

Communication Protocols: Event filters have been used
to support efficient packet demultiplexing. An event filter
examines incoming packets and forwards them to one or more
end points based on values of fields in the packet [16, 18, 28].
Some applications of packet classification in communication
protocols include:

�Packet demultiplexing: In operating systems, packet fil-
ters are used as an efficient technique to classify packets and
determine the path the packet must follow within an end-
system to route the packet to its communication endpoint
[1].

� User-level protocol implementation: In micro-kernel
operating systems different protocol stacks may coexist to-
gether in user-space. Using event filters in the kernel, packets
are demultiplexed and forwarded to the proper user-level pro-
tocol stack.

The CSPF [18], BPF [16], MPF [28] and PathFinder [1] are
examples of event filtering mechanisms in the communica-
tion protocol domain.

4



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTActive Databases: Active databases are constructed via

triggers in a database environment. Triggers are specified
as event-condition-action tuples. When an event occurs and
a condition is satisfied, the corresponding trigger fires and
the action is executed. In active databases, events may be
classified (or detected) by event filters based on pre-defined
definitions. The following examples show the use of event
filters in active databases [6]:

� Financial applications: Trades can be executed in re-
sponse to an observed pattern of trading events in a stock
market.

� Fraud detection: A particular sequence of credit card
purchases may point to fraudulent use.

� Production management and quality assurance: A
particular sequence of defects indicates problems that must
be brought to attention of a supervisor.

[6] and [5] present examples in this domain.

3.2 Event Filter Internal Representation

The internal representation of a filter is a key issue in studying
and evaluating event filtering mechanisms. The internal rep-
resentation determines the structure and the operation of the
filter. A filter consists of the algorithm and the data structure
used to detect and classify events. The internal representa-
tion of a filter has a major impact on the following filtering
characteristics:

� Performance – The algorithm and data structure used
by the internal representation determines the number of
comparisons needed to process an event. Hence, filter-
ing efficiency can be improved if the internal represen-
tation of the filter reduces the number of comparisons
required to match an event.

� Scalability– The internal representation may provide an
efficient filter composition technique that increases the
scalability of the filtering mechanisms by minimizing
the overhead of adding/deleting/changing filters in the
system.

� Functionality – The internal representation of the filter
determines the scope of the functionality that should
be performed by the filter. For instance, some filter
representations [1, 16, 18, 28] only classify primitive
events since they do not keep track of the event history
in the system. Conversely, other filter representations
[5, 6] are capable of detecting composite events that are
based on extensive history.

In the following, we classify event filtering mechanisms
based on the functionality of filter internal representation.
For each classification, we present key alternative internal
representation models (data structures and algorithms) and
optimization techniques used for each filtering mechanism.
To focus the discussion, we show a filter example and how
it is constructed using each representation. This example

captures all packets with an IP source address “foo” and either
the IP destination address is “bar” or the TCP destination port
is “ftp.”

3.2.1 Primitive Events Classifiers

The internal representation of this type of filter focuses on
supporting an efficient classification of primitive events. In
particular, it does not record any history of events detected
in the system. This makes it impractical for use classifying
composite events. Conventional packet filters [1, 16, 18, 28]
are examples of this type of filter. Packet filters primarily
classifies and demultiplexed communication protocol pack-
ets to user process endpoints. The remainder of this sec-
tion presents alternative internal representations of filters for
primitive events:

Boolean Expression Tree Representation: A boolean ex-
pression tree representation is a binary tree. Each interior
node in the tree represents a boolean operation. The leaves
represent test predicates (also called masks or cells) on event
fields. Each edge in the tree connects the operator (parent
node) with its operand (child node).

The algorithm for manipulating a boolean expression tree
is based on a bottom-up parse of the tree. Events are classified
by evaluating the tree starting at the leaves (test predicates)
and propagating the results up to the binary operator at the
root. The event is matched if the root of the tree evaluates to
“true.” Figure ?? illustrates an example of this representation
model.

A tree representation algorithm can be optimized using a
short circuit expression evaluation technique. In this tech-
nique, the tree parsing process terminates with a value of
“false” whenever a conjunctive predicate evaluates to false.

Directed Acyclic Graph (DAG) Representation: A DAG
representation is implemented as an acyclic graph. Its nodes
represent the test predicates and the edges represent the con-
trol transfer.

The DAG is parsed top-down such that if the test predicate
(also called a cell) is true, the right-hand edge is traversed,
otherwise the left-hand edge is traversed. Thus, the test
predicate (either true or false) determines the edge to traverse.
An event is matched if the terminating node (leaf node) is
denoted as true. There are two terminal nodes in the graph,
the true node that denotes the acceptance of the packet and
the false node that denotes the packet rejection.

A DAG may be optimized [1] by re-arranging the cells so
that the longest common prefix between events is the longest
prefix matched in the DAG. When a new event pattern is
added, the DAG is traversed to determine the longest prefix
that matches the pattern. A new edge is then inserted to form
the suffix for this event. Figure ?? shows an example of an
optimized DAG representation.

The DAG representation model is also known as: a Di-
rected Acyclic Control Flow Graph (DCFG) [16] and a Field
Parsing Tree (FPT) [3], which have similar internal repre-
sentations. Figure ?? shows an example of a DCFG.

5



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFT3.2.2 Composite Events Classifiers

The internal representation of this type of filter is designed
to detect and classify composite events, as well as primitive
events. An example of this type of filter is the event filtering
in active database systems. The main function of the internal
representation of these filters is to track events detected in
the system, classify composite events as they are recognized,
and trigger actions based on events.

In DMP applications, both primitive and composite event
classification functionality may be necessary in filtering sys-
tems. Primitive event classification is required since events
in DMP applications are mostly represented as notification
messages. In addition, composite event classification is re-
quired since the event filter may need to track event history
in the system. Table 3 compares these two types of event
classifiers.

The following examines alternative internal representa-
tions for composite event filters.

Deterministic Finite Automata (DFA) Representation:
The DFA representation is a finite state machine graph. A
transition between two states represents an event occurrence.
Each state represents the history of the system environment
either before or after the occurrence of an event. For exam-
ple, if event x occurs a transition on x from one state (h1) to
the next state (h2) occurs. In this case, h1 and h2 represent
the environment before and after x occurs, respectively [6].

In this model, a filter consisting of a single primitive event
is represented by a three state automaton consisting of a start
state, accept state, and non-acceptance state. From all states,
the transition on event x (the event to be detected) triggers a
transition to the accept state. Otherwise, on all other events
the transition is to the non-acceptance state.

A filter consisting of composite events is constructed by
combining the DFAs of primitive events together into one
DFA using joining rules of Finite Automaton. By definition,
all DFA transitions are deterministic. An example of this
representation model is given in Figure ??.

Reachability and state minimization analysis are used as
optimization techniques to eliminate unreachable states and
to minimize the DFA, respectively [6].

Petri Nets (PN) Representation: A model of Petri nets
called Coloured Petri Nets (CPN) has been used in active
database systems [5] to define event filtering. The following
describes this model:

All predicates are represented as states called places. CPN
has a number of tokens assigned to places that are defined
by a marking. A place is marked when a predicate of that
place is matched. Operations between places (predicates) are
represented by guard functions that are checked after places
are marked.

Whenever a predicate match occurs, the input place of
the CPN is marked with a token. Initially, tokens are stored
in auxiliary places of the CPN to designate the marking at
creation time. Now, if all input places of a state are marked,
the event variables that are denoted as labels in the CPN

arc are bound to the value of the appropriate token and the
guard function is evaluated. If the guard function evaluates
to true, the state transition is fired, the token is transferred
to the output place of the transition, and the variable value
is propagated to the next state. More details of Petri Net
concepts and behavior are found in [5]. Figure 5 ?? illustrates
a simple example of an event filter modeled by a CPN.

3.3 Event Filter Programming Interface

This section describes various ways to program event filters,
which are then implemented using internal representations
discussed in the previous section (Section 3.2). An event filter
programming interface provides a language for defining filter
components (such as filter expressions and actions). An event
filter expression describes all predicates involved in the event
definition (including the message fields and the operators) and
the actions to take when the desired event is detected. The
internal representation then uses this information to construct
a corresponding filter definition.

The event filter programming interface is a crucial crite-
ria for event filtering. It represents the access point that a
developer or application can use to control the filtering en-
gine (which contains the internal representations of an event
filtering system). There are many design alternatives that
determine the characteristics of the event filter programming
interface. Two key characteristics of event filter program-
ming include the following:

� Expressiveness – the expressive power of the event fil-
tering definition depends on the filter operators provided
by the filtering programming language. Providinga rich
set of expression operators offers flexibility in construct-
ing filtering expressions. Filter programming interfaces
that lack this expressiveness limit the capability of the
event filteringmechanism and make it more application-
dependent since it allows to express filters only within
the application domain functions.

� Ease of use – some event filter programming interfaces
are declarative languages where the filter definition is
given as pattern/event match. Thus, no need to specify
the program control and the data structure operations
as it is the case in imperative languages. This allows
users to specify their interest without focusing on low-
level programming details. In contrast, other program-
ming interfaces are more like an imperative “assembly
language.” This requires users to deal with low-level
details (such as message format and bit/byteoperations).

In the following subsections, we discuss several design
trade-offs involved in event filter programming interfaces and
then classify existing event filter programming interfaces.

3.3.1 Design Trade-offs Between Event Filter Program-
ming Interfaces

There are a number of design trade-offs that arise when imple-
menting event filter programming interfaces. In the follow-

6



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTTable 3: Event filtering Internal Representation

ing, we will briefly discuss the trade-offs between alternative
designs for event filter programming interfaces. More details
and examples appear in Section 4.3.

Low-level vs. High-level: The advantage of programming
filters using low-level interfaces (such as a filter “assembly
language”) is that they may perform better than the high-
level interfaces. However, programming filters using high-
level interfaces increases usability (since they are easier to
program) and portability (since they are less dependent on
the hardware and underlying virtual machine of the filtering
engine).

Imperative vs. Declarative: The declarative approach
makes filter programs more concise and easier to write com-
pared with the imperative approach. Thus, the declarative ap-
proach increases the extensibility and maintainability of the
filter programming. However,, the declarative approach im-
poses limitations on programmer expressiveness. This may
decrease the power of event filter programming. For exam-
ple, some declarative filtering interfaces (such as PathFinder
[1]) are customized to work for specific applications (like
demultiplexing TCP/IP packets). In contrast, the imperative
approach helps to avoid this limitation since the user may
write more expressive filter programs.

Basic Operators vs. Advanced Operators: Some fil-
ter programming interfaces provide basic operators (such as
AND, OR, and NOT). Others may provide more advanced
operators such as Before, After, andSequence. Ad-
vanced operators increase the expressive power of event fil-
tering expressions. The disadvantage of using advanced op-
erators is that there may be addition overhead at run-time
caused by translating and processing these operators. Since
the basic operators usually represent core instructions in the
filter expression, they may not incur additional run-time over-
head.

Interpreters vs. Compilers: The choice between using
interpreters versus compilers leads to several design trade-
offs. In the following, we discuss these trade-offs in the
context of event filtering design:

� An interpreter is normally used when filters are imple-
mented in the the OS kernel (where compilation may not
be feasible due to protection and robustness concerns).

� In some environments, a compiler is the favorable
choice to keep the OS protected from any bug gener-
ated by ad-hoc programs.

� A compiler is more convenient when the filtering mech-
anism is implemented in user-level applications since
dynamic linking and run-time optimization can be used.
Compilation increases the efficiency of event filtering
mechanisms.

� Interpretation increases execution overhead since the
program code is continuously re-examined. This causes
a significant degradation in event filtering performance.

� Interpreters may also increase space overhead compared
with compilers. For example, the interpreter and all the
supported routines must usually be kept available. In
contrast, compilers use dynamic linking to link the target
routine at run-time. This feature helps to minimize space
utilization.

3.3.2 Classification of Event Filter Programming Inter-
faces

The filter definition can be programmed at different levels of
abstraction. In the following we classify these abstractions.
For each abstraction level, we discuss examples of filter pro-
gramming interfaces used by existing filtering mechanisms.
In addition, for each filter programming interface, we show
how the filter examples presented in Section 3.2 is imple-
mented. Table 4 summarizes the material discussed below.

Imperative Low-level Programming Interface: Low-
level languages/interpreters (such as assembly or micro-code
languages) have been used to program filters imperatively.
This type of filter programming interface can be combined
with other high-level applications (such as user-interface or
high level description languages) to provide a high-level
interface.1 The following are examples of event filter mech-
anisms that use this level of abstraction to define filters:

� Stack-based Interpreter – A stack-based interpreter uses
push and pop operations to construct a filter [18]. The
push operation causes either a word from a received
packet or a constant to be pushed onto the stack. The
pop operation evaluates the top two words on the stack
and pushes the result back on the stack.

A filter boolean expression is a filter composed of logical
operations. It is constructed by a sequence of push and
pop stack operations. An example is given in Table 5.

� Register-based Assembly Language – Other packet fil-
ter mechanisms use register-based languages to define
packet filter definitions [16, 28]. By using assembly
language instructions (such as load, store, branch/jump
and compare instructions), event or packet filter ex-
pressions are specified as a sequence of load, store and
compare instructions. Some packet filter assembly lan-
guages support more powerful features. For example,
MPF is an extended assembly language that supports fil-
ter composition and packet fragmentation [28]. Table 5
illustrates a short example written in a register-based
assembly language.

Imperative High-level Programming Interface: A high-
level description language (similar to high-level program-
ming languages) has been used to define filters. This pro-
gramming interface is imperative since the filter definition is

1For example, tcpdump Unix network utility uses compiler to translate
the high level filter description into BPF assembly language programs [16].

7



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTTable 4: Event Filter Programming Interface Dimensions

Table 5: This example represents an event filter that captures all packets of IP source address= “foo” and either IP destination
address= “bar” or the TCP destination port= “ftp”

given as a program that describes the semantics of the filter
predicates. The following is an example of this type of filter
programming interface:

� Interpretive Pseudo-Machine (IPM)– The interpretive
pseudo-machine is an interpreter of the packet monitor-
ing program (PMP) [3] that parses incoming messages
and analyzes their field values. Message fields are pro-
cessed by two objects: a filtering object and a record-
ing object. Filtering objects cause message fields to
be checked based on test predicates. Recording objects
record the message fields to keep track of statistics. IPM
is described further in Section 4. The filter example is
shown in Table 5.

Declarative High-level Programming interface: Event
filters may be specified in a high-level declarative language.
The previous event filter programming interfaces use impera-
tive languages where filter definitions are given as programs.
Other event filtering interfaces use a declarative program-
ming interface where filter definitions are given by a pat-
tern/event match [1, 26]. The following are examples of this
declarative filter programming interfaces:

� Rule and Database Languages – Active Databases have
been used to define and implement event filters. In [26]
an event filter is specified by a query-based language
using SQL embedded with a rule-based language similar
to Prolog. Basic events and actions2 are specified by
normal SQL queries:

SELECT X = IP FROM Host table
WHERE Retransmission > 5

This example defines the following filter: if a host re-
transmissioncounter exceeds 5, then extract and display
the IP address.

From an end-user perspective, correlated events3 and
inferences4 may be described by a ruled-based language
such as Prolog. Using this notation, the correlated event
is placed on the left-hand side of the rule and the com-
ponent event is placed on the right-hand side, e.g.:

Overload(X) :- Users_Count(X,C),
CPU_Response(X,T), C > 100, T > 0.5.

These rules specify that the Overload event of ma-
chine X occurs if the number of users C is more than
100 and the average CPU response time exceeds 0.5
seconds. Another example of a declarative rule is:

Terminate(X) :- Overload(X).

2what is intended to be done if an event occurs.
3called also composite events – compose more than one event.
4function that maps one or more events to a set of actions/test

This shows an inference constructor example where the
action Terminate causes the machine X to stop ac-
cepting any more users when it gets overloaded (i.e., the
Overload event occurs). Table 5 shows a complete
example of this user interface.

� Declarative Scripting Language –

This special-purpose declarative language was devel-
oped to describe filters such as the PathFinder packet
classifier [1]. In this scripting language, a filter is de-
scribed by defining the packet headers and a pattern
match [1]. Based on the declarative script, a packet
classifier can identify all packets that match the pattern.
More details on this language appear in Section 4.3. An
example of this scripting language is shown in Table 5.

3.4 Models of Event Filtering

Defining the model of an event filtering mechanism deter-
mines the structure of event filter components such as pred-
icates, event definition, and filter expression. This model
determines the generality of the event filtering mechanism.
A powerful filtering model is one that is flexible enough to ex-
press any desired filtering functionality. For example, mod-
eling an event filter expression to handle composite events,
as well as primitive events, helps to support a broad range of
applications. Moreover, integrating the notion of time into
the filter expression model enables the management of events
according to when they occur.

Many existing event filtering mechanisms are application-
dependent [1, 3, 18, 16, 28]) because they are modeled based
on application domain requirements. This design reduces the
generality and flexibility of the event filtering mechanisms.
More discussion is presented in Section 5. The existing
mechanisms of event filtering use different models. In this
section, we present a taxonomy of alternative approaches to
model event filters. Table 6 summarizes our discussion.

3.4.1 Event Definitions

Events are defined concisely in a filter program. An event
can either be a primitive or a composite event constructed
from one or more primitive events. Hence, modeling the
event filter requires defining primitive and composite events
definitions.

Primitive Event Definitions: The primitive event is a ba-
sic event that does not depend on the occurrence of other
events. Composite events are composed from multiple prim-
itive events. Different event filtering mechanisms use dif-
ferent definitions for primitive events based on application
requirements. The following is a discussion of different

8



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTTable 6: Models of Event Filtering

models of a primitive events that are used in existing filtering
mechanisms:

� Relational Operations– The primitive event definition
is set of test conditions (predicates) that are related to
a single event occurrence. Every predicate compares
the message field value with a matching value using a
relational operator such as =,<,�,>,�. For example,
an example of a primitive event definition using two
predicates is:

message id = 51 or 17� transaction number
< 40

The primitive event classifiers such as packet filters [18,
16, 28, 1, 3] use this model to define events in the filter
definition.

� Database Operations – Database manipulation op-
erations such as retrieve, add, delete, or
update represent the primitive events in this filter
model [5, 6]. Whenever one of these database oper-
ations is performed, a notification is generated and sent
to the event filtering system [4]. This notification con-
veys event information to the filtering system, which
then classifies the event and performs any associated
actions. This model is normally used by composite
event classifiers (such as filtering in active databases).

� Database and Data-pattern Match Operations – This
model is similar to the previous model. The primi-
tive events are represented by database operations ex-
ecuted in the system. In addition, primitive events are
also represented as a data-pattern match in the database
[26]. Examples of this model are presented in rule and
database languages illustrated in Section 3.3.2.

Composite Event Definitions: As discussed in Sec-
tion 3.2, existing mechanisms have two different considera-
tions for composite events:

� No composite events support– Primitive events classi-
fiers (such as packet filters [1, 3, 18, 16, 28]) typically
do not support composite events. The primary focus in
these techniques is to dispatch incoming events (pack-
ets) to endpoint processes rather to track the event his-
tory of the system.5

� Supporting composite events– In composite event clas-
sifiers, primitive events can be combined by special log-
ical operators to construct composite events. There are
two types of operators, basic operators and advanced
operators. The next subsection presents more discus-
sion of this issue.

5Although MPF [28] and the PathFinder [1] provide a mechanism to
track the IP fragmentation number, this does not adequately support global
tracking of event history in a system.

3.4.2 Filter Expression Definitions

The event filtering expression represents the relation between
the event filter basic elements (predicates/events). In this
section, we discuss different models of filtering expressions:

Filter Expression Operators: A filter expression can be
either an expression of predicates or an expression of events.
The primitive event classifiers use the former but the com-
posite event classifiers use the later. In either case, special
operators are required to join the predicates in a filter expres-
sion.

There are two classes of filter expression operators:

� Basic Operators– Simple logical operators such as OR,
AND and NOT operators combine predicates or events to
form a filtering expression. The primitive event classi-
fiers [1, 3, 16, 18, 26, 28] support this class of operators
to construct a filtering expression. However, some com-
posite event classifiers use basic operators to join prim-
itive events as well as construct advanced operators.

� Advanced Operators– These are constructed (derived)
from basic operators. The advanced operators make
composite event expression easier to define [5, 6]. Sec-
tion 4 presents more discussion of advanced operators.

Defining the expression operators involves the same trade-
offs shown above. Basic operators offer better performance
and simplify the implementation. However, basic operators
do not provide the same expressive power that the advanced
operators provide. In particular, although the advanced oper-
ators can be transformed into basic operators, it is not trivial
from the programmer perspective since the translation pro-
cess is complicated. Thus, there are two trade-offs in this
issue: (1) performance vs. expressiveness, and (2) imple-
mentation simplicity vs. programming simplicity.

Parameterized Filter Expression: Predicates in a filter
expression consist of one or more parameters that are used to
analyze and compare against a message (e.g., message id
and transaction number are predicates parameters in
the previous event filter example). Event filtering mecha-
nisms deal with parameters in different ways:

� Constant Parameters – Some event filtering mecha-
nisms require filter parameter values to be determined
during the filter programming stage. Typically, match-
ing patterns, evaluation expressions, and extracted por-
tions of messages are constants in the event filter pro-
gram and remain constants during filter operation. For
example, in [18, 16, 28] predicates parameters (e.g.,
packet type = ARP) must be specifically specified
as constant values (e.g., string and integer) and cannot
vary during filtering operation.

� Variable Parameters – In this type of event filtering
scheme, parameters in the filter definition are modi-
fiable. They are updated whenever specified in the

9



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTfilter definition language as shown in [1, 5, 6, 26].

The PathFinder packet filter [1] illustrates this feature.
PathFinder uses a parameter called IP fragmentation
number as a variable parameter to keep track of the
IP fragments. The IP fragmentation number parameter
value gets assigned/changed during filtering operation
rather than during filter programming.

Parameterized event filters are discussed further in Section
4.

Time-Intervals in Event Filtering: Some applications re-
quire classifying events based on time-interval functions
(such event creation time and event temporal ordering).
Moreover, some applications require detection of temporal
events. Thus, monitoring time-intervals may be needed to fil-
ter events. Defining time and interval functions may be sup-
ported in the event filters definitions. Event filtering mech-
anisms are classified according to support for time-intervals
criteria as follows:

� No time-interval support– The event filtering mecha-
nisms, (such as packet filters), classify events according
to message fields only. Thus monitoring time functions
and intervals are not supported in these mechanisms
[1, 18, 16, 28].

� Primitive Support– The event time creation available in
each event must be used explicitly to implement time
functions. For example, to indicate that �Event A oc-
curs before Event B, we use the relational expres-
sion Time(Event A) < Time(Event B). There-
fore, the absolute time and the temporal ordering be-
tween events can be specified in an event filter definition
[26, 6].

� Advanced Support– A set of advanced time monitoring
interval functions are defined [5]. These functions are
used transparently without explicitly using the absolute
time of an event.For example, to define the same pre-
vious example, we use Event A before Event B.
Moreover, the time interval is defined by two points in
time: a start time and end time. The time function can
be defined absolutely as a specific point in time (e.g.,
11:31:00PM), or relatively to the event occurrence. For
example,

1 : 15 : 00 + Event A

specifies 1 hour and 15 minutes after Event A oc-
curred.

Monitoring intervals can also be represented as periodic
functions. For example,

EVERY MONTH [11, 16:00-11, 22:00]

specifies to the interval from 4:00PM to 10:00PM of the
11th day of every month.

Time-intervals can also be manipulated by more ad-
vanced operators such as overlap or extend operators
that perform an intersection or union between time in-
tervals, respectively.

Figure 2: Decentralized Event Filtering

3.5 Performance Enhancements

Section 3.2 outlines the optimization and performance en-
hancement techniques possessed by current event filtering
mechanisms. In this section, we describe these performance
enhancement techniques in greater detail.

� Kernel vs. user-level implementation: Many packet
filters are kernel-resident programs that can be controlled
from user-level processes [18, 16, 28, 1]. Conversely, other
mechanisms implement event filters as programs running in
user space [6, 5]. In general, kernel-resident filters perform
better than user-level filters. Kernel-resident filters avoid
extra copying of messages across the kernel boundary since
only interesting events are passed. Thus, packet filters im-
plemented in the kernel are capable of achieving efficient
demultiplexing that is beyond the capability of most user-
space packet filters.

� Efficient filter composition: Different filter composi-
tion techniques have been investigated to achieve an efficient
composition and detection of composite events. MPF [28]
presented a filter composition algorithm for primitive events
in the packet filtering environment. Deterministic Finite Au-
tomata [12, 6] and Petri Nets [5], (discussed in Section 3.2)
are alternatives for composition of composite events.

�Efficient Internal Representation: As discussed in Sec-
tion 3.2, the internal representation has a major impact on
the performance of event filtering. For example, different
arrangements of DAG ordering yield different performance
results. In addition, in the next section, we show through
comparing different internal representation techniques how
performance depends on the internal representation adopted
by the event filtering mechanism.

� State Minimization: Minimizing the search space yields
a significant improvement in event filtering performance.
Some event filtering internal representations use algorithms
to delete any unreachable (useless) states [6] and/or redun-
dant states (common states) [6, 28].

� Enhanced Instructions: Some event filtering mecha-
nisms [16, 28] gain better performance by using low-level
instructions such as assembly language. Moreover, some
event filters use register-based instructions rather than stack-
based instructions to reduce the number of memory opera-
tions. Section 4 discusses this issue in more detail.

� Hardware Support: The PathFinder [1] packet classi-
fier is partially implemented in the hardware of the network
adaptor. As a result, PathFinder gains a significant increase
in performance compared with other packet filters.

�Distribution Architecture: Several types of event filter-
ing distribution architectures are possible:

� Decentralized event filtering – In certain DMP environ-
ments, it is beneficial to decentralize event filtering by

10



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTFigure 3: Centralized Event Filtering

Figure 4: Distributed Event Filtering

performing it on consumer hosts (shown in Figure 2).
This configuration is appropriate when the following
conditions occur:

– the consumer hosts are powerful workstation plat-
forms;

– a high-speed network is available to connect the
suppliers to the consumer hosts;

– consumers subscribe to most events;
– event filters are relatively complex.

When these conditions occur it may become more effi-
cient to perform filtering in the consumer end-systems.

� Centralized event filtering – In other DMP environ-
ments, it is beneficial to centralize the event filtering
at a central event server (shown in Figure 3). This con-
figuration is appropriate when the following conditions
occur:

– an event server is installed on a high-performance
platform (such as a multi-processor);

– the consumer hosts are run on less powerful plat-
forms (such as inexpensive PCs);

– a relatively low-bandwidth (or highly congested)
network connects the event server to the consumer
hosts;

– consumers subscribe to a relatively limited subset
of events;

– the complexity and number of event filters sub-
scribed to by consumers does not produce a major
processing bottleneck at the event server.

When these conditions occur, the network and the
consumer hosts at the edges of the network are typi-
cally the processing bottleneck, rather than the event
server. Therefore, a centralized event filtering architec-
ture helps to off-load work from the network and the
consumer hosts.

� Distributed event filtering – More complex event filter-
ing scenarios are also possible (shown in Figure 4). For
example, the network topology that interconnects sup-
pliers, event servers, and consumers may span multiple
routers and switches, across local-area and wide-area
networks.

4 A Survey of Event Filtering Mecha-
nisms

Work on event filtering spans a number of domains, includ-
ing distributed system toolkits [11], network and system

management [25, 17], user-level communication protocols
[18, 16, 28, 1], and active databases [6]. This section out-
lines related work on event filtering and evaluates this related
work in terms of its support for DMP applications.

4.1 Distributed System Toolkits

Isis [2] supports event filtering as part of its Reliable Dis-
tributed Objects (RDO) News service [11]. In Isis RDO
News, all consumers in a process group receive all events
sent by suppliers and filtering is performed at the destinations.
This mechanism presents a distributed event filtering that pro-
tects the DMP applications from erroneous clients. However,
two basic limitations are considered in this technique: (1)
consumer filtering is limited to matching on character strings
“keywords”, (2) due to its decentralized architecture, the fil-
tering in RDO News may not scale to accommodate a large
numbers of DMP consumers that possess complex filtering
requirements, and (3) it may wast the network bandwidth
since the filtering is performed in the destination node.

4.2 Network and System Management

HP OpenView: [13] HP OpenView provides an implemen-
tation of the ISO OSI event report management services [25].
HP OpenView filtering supports the registration of Event
Forwarding Discriminators (EFDs) on remote agents in a
network. An EFD contains a filter expression based on event
type, event value, event generation time, and event frequency.
EFD filter expressions are described using GDMO, which is a
schema for defining managed objects in a network. ISO OSI
does not dictate the implementation of EFDs. However, the
implementation of HP OpenView event filtering suffers from
a highly inefficient process architecture that requires 4 con-
text switches and 3 interprocess communication exchanges
to send and filter each event[22].

Packer Monitoring Program: The Packet Monitoring
Program (PMP) is a packet monitoring tool that uses event
filtering for gathering statistics of packets in the network and
analyzing traffic patterns. The packet parsing mechanism in
PMP parses the packet according to the Field Parsing Tree
(FPT) which is equivalent to the DAG. Any message field
that has to be extracted for statistical analysis must be spec-
ified in FPT as nodes. For efficiency purposes, the packet
headers format are hard-coded in the PMP code and known
at compile time. On the other hand, PMP obtain flexibil-
ity by providing a dynamic configuration for the recording
and statistics rules since they can be specified at run-time.
PMP uses interpretive pseudo-machine (IPM) presented in
Section 3.3. In this section, we describe the structure of IPM
by illustrating some examples. IPM contains two objects:

� Filtering Objects (FObj) – which causes the message
fields to be checked based on test predicates.

11



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFT� Recording Objects (RObj) – which records the message

fields for statistical purposes.

Each message field (Fa)is processed by one or moreRObj
or FObj after calling the Invoke operation. RObj causes
the message field Fa to be recorded for statistical purposes.
However, in case of a filtering object, FObj is applied over
the Fa message field and the result of either True or False is
returned. Hence, the Invoke instruction takes two parame-
ters, the message field (Fa) and the object (FObj or RObj)
as follows:
Invoke (Fa, FObj)

The Fa message field is to be filtered by the FObj filter; or
Invoke (Fa, RObj)

The Fa message field is to be recorded by RObj filter.

Invoke specifies two types of instructions:

� unconditional instructions– define the invocation of
RObj over Fa, and

� conditional instructions– constructed by an if state-
ment and an invocation of FObj over Fa:

if (Invoke (Fa, FObj))
<true-part>

else
<false-part>

PMP uses some optimization techniques for efficient filter-
ing composition. If there is a redundant filtering object (i.e.
two filters have the same test condition), the Boolean result
of the invocation of the first filter is saved and reused when
the second filter is invoked. This technique allow evaluat-
ing the filtering object without unnecessary recomputation.
However, this requires adding two extra fields in the filtering
components: the filter result and the indirect pointer[?].

The filtering technique used in PMP suffices the following
limitations: (1) it does not support detection of composite
events, (2) in addition to the space overhead required by the
filtering composition technique, it also costs a performance
overhead because of the extra lookup needed to get the result,
and (3) the expression operators are primitive (AND) and do
not accommodate more complex applications.

4.3 Communication Protocols

Several studies have reported measurements based upon var-
ious types of packet filters (also known as packet classifiers
[1]). Packet filters were developed originally to support ef-
ficient demultiplexing for user-level implementations of net-
work protocols [18]. In addition, they have been used to
enable unobtrusive traffic monitoring on promiscuous-mode
networks [17]. In the following section, we present the evo-
lution of packet filtering mechanisms and an overview of
each technique.

CSPF and BPF : The CMU/Stanford Packet Filter (CSPF)
[18] and the Berkeley Packet Filter (BPF) [16] were two in-
fluential first generation packet filter implementations. CSPF
is a stack-based packet filter that uses binary operation (pop
and push). The stack-based interpreter causes either a word
from a received packet or a constant to be pushed on the stack.
The binary operation (such as EQ, GT) pops and evaluates
the top two words from the stack and pushes the result back
on the stack. The CSPF filter engine uses boolean expres-
sions with a tree graph model for filtering. The stack-based
interpreter and tree model limit the performance of CSPF. In
contrast, BPF achieves better performance. It uses a register-
based assembly language (load and store instructions) and
an acyclic control flow graph (CFG) instead of stack-based
language and tree graph, respectively.

For example, in CSPF each logical operation requires five
stack operations (three pushes and two pops) to be executed.
This makes it perform poorly compared to the register-based
interpreter that uses one simple compare operation (i.e., jeq,
jgt). In addition, using CFG instead of a tree graph model is
another reason of the performance difference between BPF
and CSPF. A tree model often does unnecessary or redundant
computation [16]. For example, in Figure (1-a),ip.src and
Ether.Type are checked twice to evaluate the entire tree.
Moreover, BPF handles additional features that are not sup-
ported by CSPF (such variable header-length and extracting
portion of a packet).

Both CSPF and BPF maintain a list of configured packet
filters. The list may reorganized to move frequently accessed
filters to the front of the list. This approach works well if there
are relatively few packet filters, or if only a small number
of consumers are active simultaneously. When hundreds
of filters (or hundreds of consumers) exist, however, this
approach does not scale well since the time required to filter
packets grows linearly with the number of filters.

MPF : Recent research on packet filters/classifiers ad-
dresses scalability limitation by enabling the composition
of multiple filters. [28] describes the composition technique
used in the Mach Packet Filter (MPF). MPF is designed
to support user-level implementations of layered protocol
stacks (such as TCP/IP). Often, packets destined for separate
TCP connections on an endsystem contain a common prefix,
followed by variation at a single point in the packet. For
example, active TCP connections on an endsystem will have
many IP header and TCP header fields in common (such as
source and destination IP addresses). In this case, the TCP
destination port number is the only demultiplexing field that
varies among packets. Thus, a hash table can be used to
efficiently demultiplex packets to different endpoints.

MPF uses a register-based assembly language with some
added instructions to deal with this issue. MPF has three ma-
jor advantages over the previous packet filters: (1) efficient
demultiplexing of incoming messages by combining sim-
ilar filters together, (2) dispatching fragmented packets and
out-of-orderfragments, and (3) enabling dynamic bindingbe-

12



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTtween filters and processes such that filters can be re-assigned

to another process dynamically. This dynamic binding is ap-
plicable in MPF by changing the hash table entry to handel
new IP ports [28].

MPF has the some limitations:

� MPF[28] provides a mechanism to track a limited
amount of event history to support IP fragmentation.
However, this is a rather restricted mechanim since it
does not support global tracking of event history in the
system.

� The optimization technique described in [28] possesses
low setup/remove latency. However, it does not gener-
alize to more general complex composition of filters.

� The hash table processing overhead due to retrieving
and updating entries per fragment arrival degrades the
performance of MPF.

PathFinder : The PathFinder tool described in [1] presents
a more general technique for coalescing filters with com-
mon prefixes. PathFinder is a packet classifier that combines
software and hardware to optimize the composition of com-
plex filtering patterns. The software portion of PathFinder
builds a directed-acyclic graph (DAG) interpreter (similar to
CFG in BPF) based upon patterns specified by a user-defined
declarative syntax. The PathFinder interpreter matches fields
of incoming packets using information stored in the DAG.
PathFinder has several novel features that makes it perform
better than earlier packet filters:

� Caching key-pattern – PathFinder adaptively reorders
the DAG when a match occurs on a composite pattern.
The reordering process synthesizes and caches a new
“lightweight” representation (called a key-pattern). The
new key pattern reduces the number of comparisons for
subsequent packets matching the composite pattern.

� Simple operation semantics of test and set operations –
PathFinder uses a cell to match (test) incoming packets
or load (set) a value extracted from a packet. The cell
consists of four parts (1) the offset where the matched
part of the message starts, (2) the length of the matched
part, (3) the masking pattern, and finally (4) the value
to be compared with the extracted part of the masked
part. Due to the simple semantics of cell operations
(compared to other semantics based on assembly lan-
guage) the test and set (cell) operations can be imple-
mented more efficiently in PathFinder than in the previ-
ous packet filters. In other packet filters, a sequence of
push and pop instructions (in the case of CSPF) and se-
quence of load/store and compare assembly instruction
(in the case of BPF and MPF) are required to implement
an equivalent single cell instruction.

� PathFinder hardware support – PathFinder off loads
portions of the packet classification logic into hardware,
which may run on a network adaptor. Despite losing
the flexibility by having a packet filter in hardware, the

existence of a packet filter in a network adaptor provides
a significant increase in the performance of the packet
filter operation.

The primary limitations with PathFinder are:

� The high latency required to setup/remove patterns from
the DAG.

� The software implementation of the DAG uses an inter-
preter, rather than a compiler. This precludes a variety
of performance optimizations.

� PathFinder provides a mechanism called “dual line”
to deal with fragmented packets. This mechanism is
considered to be more flexible than the previous ones.
However, the “dual-line” facility in PathFinder is still
restricted mechanism in tracking global event history
(composite events) for the following reasons: (1) acti-
vation of the event represented by the “dual-line” de-
pends on the activation of the event represented by the
“primary-line”. This imposes a real restriction on the
process of tracking composite events since composite
event should be detected independent of each other, and
(2) the only possible operator that can be used between
the “dual-line” and the “primary-line” is AND operator
which implies more restriction in the composite events
expression.

� Some optimizations in PathFinder lack generality,
which further limits its functionality and efficiency in
other environments. For example (1) the proposed com-
position optimization technique does not work when
common suffixes or intermediate states exist. This case
is expected in DMP event filtering environment where
messages become complicated and have no format re-
striction (as it is the case in protocol packets), (2) val-
ues in a cell operation are restricted to be loaded only
once (when first line is matched) during filter opera-
tion. Loading multiple values in the cells of the dual
line is possible but it is restricted to be simultaneous
and when matching of first line (primary line) occurs,
and (3) the inability to support relational (such as LE,
GT,..etc) and logical operations (such as complement).
This limits the application of PathFinder in the other
application domains such as DMP event services and
traffic monitoring.

4.4 Active Databases

Support for triggers is an important distinction between ac-
tive and standard databases. A trigger is an event-condition-
action expression where an event can be either a primitive
or composite event6. In an active database, event filters are
used to detect a composite event. A number of approaches
were presented for modeling and detecting composite events
(triggers) in active databases [20]. However, in this section,

6Notice that. in this section, composite event, trigger and event filter
have the same meaning.

13



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTwe discuss the three approaches proposed in [5], [6] and

[26]. We categorized these approaches based on the event
composition techniques they used: Finite Automat, Petri
nets and Rule-based technique. This section is divided into
three subsections: Section 4.4.1 discusses general and com-
mon characteristics of event filtering (event composition) in
active database systems, Section 4.4.2 describes briefly the
specifics of each approach.

4.4.1 Event Filtering in Active Databases

Many different techniques have been presented to support
event filtering in active databases. The common goals of this
work are modeling and detecting composite events. Mod-
eling of event composition is defined as combining primi-
tive events using special operators called “event composi-
tion event operators”. For example, [6] uses regular expres-
sion notation with pre-defined operators to model composite
events. Different algorithms were developed for composite
event detection such as finite automata, Petri nets and rule-
base language (discussed in Section 3.2). The following is
an outline of some common characteristics of these different
approaches:

�Primitive event: It is the basic entity of composite events
and is defined as a database manipulation operation, namely,
a retrieve, add, delete or update the database.

�Event Filter Operators: These are also called event filter
constructors. They are used to construct a composite event
(event filter) by combining primitive events together in an
expression. For example, AND, OR, NOT, SEQUENCE7 are
event operators. More examples in other operators can be
found in [6, 5].

� Time functions: The three approaches supports time
functions in event composition definition. The following
are some examples:

� Absolute time – [12:30PM],

� Relative time – before (EventA, EventB),

� Periodic function – EVERY MONTH[12, 17:00-
13, 20:30]

In addition, temporal-ordering8 of events is also supported in
composite event definition as presented in [26, 6, 5].

� Parameterized Events: Events can be associated with
parameters (or attributes) such as network address, transac-
tion id, error number and so on. Some parameters values are
saved over different event occurrences; for example:

Overload(X) :- Users_Count(X,C),
CPU_Response(X,T), C > 100, T > 0.5.

The common parameter X indicates that Users Count
and CPU Response must have the same machine name (X
in this case).

7SEQUENCE indicates a composite event of sequence of events occur
in a consecutive manner.

8events occur according to specified time-precedence.

� Masks/Conditions: Events9 can be masked by condi-
tional expressions. Event (or event filters) may only be fired
if the conditional predicate evaluates to true. Otherwise the
predicate will “mask” the occurrence of the corresponding
event. The concept of conditional predicate appears under
different names in the literature. It is called a mask in [6],
guard functions in [5], and conditional predicates as in [26].

4.4.2 Event Filtering Categories in Active Databases

Event filtering in active databases are divided into three cate-
gories, based on its event composition techniques, as follows:

� Finite Automata: The COMPOSE system [6] uses reg-
ular expressions with special operators, called event com-
position operators, to define composite event expressions.
COMPOSE has two types of event composition operators,
basic and additional operators. There are four basic opera-
tors, namely, OR, NOT, relative, relative+ op-
erators. The additional operators are constructed from these
basic operators to make composite events easier to define.
Composite events can be implemented and detected using De-
terministic Finite Automata (DFA) (explained in Section 3.2).
The task of composite event detection is straightforward.
First, the finite automata, (implementing the event expres-
sion) are fed as input the primitive events that makes up the
event expression. This, Subsequently, this determines which
composite event the primitive event contributes. Second, for
each of the determined composite events, a check is made
to see if all of its primitive events occurred already. If so,
the automata associated with a composite event reaches an
accepting state, and the composite event is matched.

There are many advantages of using DFA to represent com-
posite events: (1) utilizing the expressive power of regular
expressions and (2) the ability to use DFA optimization tech-
niques for more efficient composite events implementation.
COMPOSE notation is extended beyond regular expression
and DFA to support parameters and masks. For optimization
purposes, reachability and minimization analysis are used to
eliminate unreachable states and to minimize the number of
states, respectively.

� Petri nets : This approach uses a modified version of
Petri nets called SAMOS10 Petri nets (S-PN) to model and
detect composite events. Event composition expression is
constructed using basic operators called event composition
constructors. There are six basic constructors:

� OR, AND, NOT – logical operations.

� SEQUENCE – requires events occurrence to be in order.

� TIMES – indicates the n-th occurrence of an event in a
specified time interval.

� ‘‘*’’-constructor – indicates the first occur-
rence only of an event in specified time interval.

9and event filters also as filters are composite events.
10SAMOS is the name of the prototype active database used in this

approach.

14



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTTable 7: Comparing Event Filtering of Active Databases

More information about these operators and examples can be
found in [5]. The S-PN uses a step-by-step (or incremental)
procedure to detect a composite event. In this case, the order
sequence of all primitive events forming a composite event is
known by a composite event detector that checks all ordered
sequences whenever a primitive event occurs. If an ordered
sequence is matched, one forward step is made and the place
is marked. Consequently, “step forward” continues until the
last element of the appropriate sequence is marked. This
implies that the corresponding composite event is detected
[5]. Many advantages have been reported in [5] justifying
the S-PN approach:

� The ability to model complex composite events that
includes parameters and time-interval functions.

� Convenient for implementing composite event detectors
due to the simplicity of the data structure that represents
S-PN.

� In general, fewer states are needed, compared to the
DFA approach, to represent composite events.

In S-PN, event occurrence is represented by just marking an
event place with a token. Therefore, events reserve only one
place in S-PN, regardless of the number of occurrences. In
contrast, for each event in a DFA model, the number of states
is as many as the number of event occurrences (i.e., is every
event occurrence associates with one state in the automata).

� Rule-Based Languages: In this approach, rule-based
language (such as Prolog) may be used to define event com-
position. Events are combined using AND, OR and NOT
operators only. Parameters and time functions are supported
in event composition definition. The temporal ordering be-
tween events can also be specified in the composite events.
Table 7 compares and contrasts the previously described ap-
proaches according to some criteria.11.

For example, the rule
Crash-at-5 :- Crash, 5:00 A.M. = 20

specifies that the composite event the Crash-at-5 will be
triggered if Crash event occurs within 20 minutes (after or
before) from 5:00 A.M.

5 Limitations with Existing Event Fil-
tering Mechanisms

The existing packet/event filtering mechanisms are not suit-
able as filtering techniques in high-performance DMP envi-
ronment due to many limitations in these mechanisms. To
overcome these limitations, we are developing an object-
oriented framework for event filtering based on OMG
CORBA [8], CORBA is the emerging standard for open dis-
tributed object computing. In this section, we discuss the
limitations of the existing mechanisms in four major criteria:

11ND in the table denotes “Not Defined”.

functionality, performance, scalability and user-interface. In
addition, we explain the enhancements that are being imple-
mented in our framework to overcome the existing limita-
tions.

5.1 Functionality in Application Domain:

The packet filtering has been used in many areas, including
network monitoring, event services and user-level commu-
nication protocols. In this section, we discuss the lack of
the functionality of the described in section 4 mechanisms to
support high-performance event filtering.

Extracting Message Subsets: This function is highly de-
manding function when filters deal with large messages and
only small portion of this message/packet is interesting. In
centralized event filter model, the features of extracting mes-
sage subset saves the consumer the effort of parsing and
extracting message fields in addition to a tremendous saving
in the network bandwidth. In this case, event filters should be
capable of extracting the desired part of the message/packet
and pass it up to the requesting consumer. This function is
commonly used in trace generation applications where only
few bytes out of a packet are saved in a trace file. It also
commonly used in high-performance event services where
the consumer is a low-performance endsystem (e.g., a PC)
and is willing to report just a small portion of an event mes-
sage. All of the above mechanisms, except BPF and MPF,
do not support this functionality. BPF and MPF partially
support it by extracting just one contiguous portion of the
packet. This is not sufficient when more than one portion
of the packet is desired (e.g., consumers subscribing to the
same events but having different views according to their in-
terests). For example, a consumer may be interested in type
and address portion of the message, while another consumer
is interested in getting type and time portion of the same mes-
sage. These portions may not be contiguous in the message
format.

Adaptive Filtering Parameters: Most of the packet fil-
ters described above require packet filter parameters to be
specified by a schema definition language before installa-
tion. Typically, matching patterns, evaluation expressions
and portions to be extracted are constants in the packet fil-
ter language before execution. This imposes a restriction on
the functionality and the flexibility of packet filter operations
since these values may not be known before installation time
or before a particular event occurs. For example, in monitor-
ing applications, it is useful to monitor the network activity
of any machine sending ARP requests frequently during the
day. Another example of an event service application is a
consumer interested in receiving all events from any device
sending more than five failure notifications within twenty
four hours. In this case, src ip is not known until the fre-
quent ARP requests event happens. A later onedev addr is
not known until “five” failures occur within 24 hours. Other

15



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTexamples can also be shown to present the importance of

dynamic binding of filter parameter. Although PathFinder
provides a similar functionality to deal with IP fragmenta-
tion, it does not provide a general implementation of this
function due to the same limitations explained in section 4.3.

State-based Filters: In many event filter applications, fil-
tering is based upon changes to the value of measurands over
time (such as an aperture constraint exceeding a pre-defined
threshold), as well as other frequency-based filtering criteria
(such as a particular error condition occurring x times in a
row). In contrast, packet filters have traditionally permitted
the definition of expressions that operate primarily on “state-
less” filtering criteria (such as matching the value of a field
in a packet against a particular value). In general, the only
support for “state-based” filtering has been ad hoc, focusing
on support for filtering based on IP packet fragments [28, 1].
Dynamic binding of filter parameters function can be useful
in implementing this criteria.

External Events: Packet filters described above do not
consider any information out side the range of the packet
fields. This limits the operation of the packet/event filter
where filtering of events/packet may depend on external fac-
tors such as date, time, counter, duration, ..etc [26, 9]. There-
fore, packet/event filters should be extended to accommodate
external events.

Filter Composition: First-generation packet filters [18,
16] do not support filter composition. However, recent ones
(such as MPF [28] and PathFinder citePeterson:94) do sup-
port it. MPF and PathFinder support filter decomposition by
factoring out the common prefix of the combined filters. how-
ever, this approach lacks generality for two reasons (1) does
not support other composition parameters such as comple-
ment (negation of a filter) and (2) more efficient composition
techniques can be employed as explained in the next section
4.2.

Protection Domain: DMP applications usually run in user-
space rather than in an OS kernel. Therefore, optimization
techniques (such as compilation, explicit dynamic linking,
and parallelism) are more feasible in our DMP environ-
ment. In contrast, existing packet filter implementations are
based on interpreters, either stack-based [18], register-based
[16, 28], or DAG-based [1]. Interpretation is used in lieu
of compilation due to the kernel-resident environment of tra-
ditional packet filters. For security reasons, most operating
systems do not provide convenient ways of compiling and
dynamically linking filter code into the OS kernel.

Dynamism: Dynamic mapping between filters and des-
tined processes in the consumer end is a required function
for DMP applications. Consumers may add, delete, or up-
date their subscriptions rapidly in response to changes in
external conditions. For instance, the automated network
fault management correlation engine may need to install new
filters in response to alarms triggered by managed objects
in a high-speed network. Previous mechanisms use a static

mapping between filters in the kernel and processes in the
user space.

Our preliminary experiments on prototypes of the frame-
work indicate that the appropriate choice of filtering op-
timization is affected significantly by the degree of dy-
namism required by a DMP application. Applications
that tolerate high installation latency (such as SV teleme-
try processing, whose filtering constraints are generally
fixed at initialization-time) benefit from the compiler-based
optimizations. Conversely, applications that require fre-
quent interactive updates (such as fault management ap-
plications initiated by network administrators) benefit from
the parallel-based or tri-based schemes due to their lower
(re)configuration latency.

5.2 Performance Enhancements:

In this section, we proposed some optimization techniques
to reduce the time required to match an event message with
the subset of consumers that have subscribed to receive that
message. The following techniques is designed to increase in
the performance substantially over the existing packet filters:

Efficient Filter Composition: The composition approach
presented by previous packet filters [MPF, PathFinder] is not
sufficient.

Another technique we are exploring involves optimizing
event filtering by composing multiple filter expressions to-
gether using a tri-based data structure. This tri-based ap-
proach is a generalization of the DAG-based techniques pre-
sented in [1]. Every node in the tri implements a particular
type of branching mechanism. The branching mechanism se-
lected at a node employs a lookup function (such as a hashing
function, a binary search, or a series of inlined relational ex-
pression comparisons) that is tuned to the type and the range
of data values. The advantages of using tries is that they
reduce the number of operations required to processM mes-
sages of size L throughN event filters fromO(M �L�N )

to O(M � L). This represents a substantial performance
improvement when N becomes large.

A related optimization involves the use of automated com-
piler parsing and code generation techniques. In this ap-
proach, a finite automaton is created based upon combining
a set of context free grammars that describe the composite
filter expressions. A novel technique known as “skip-ahead
parsing” [12] is used to eliminate unnecessary access to data
fields during the parsing operations. An advantage of this
approach is that the generated code may be optimized us-
ing highly efficient compiler optimization technology. The
drawback to using compilation tactics is the relatively high
latency required to compile and install, modify, or delete an
event filter. OS support for explicit dynamic linking [21]
helps to reduce this overhead to some extent, but the latency
remains higher than the techniques based on parallel process-
ing or tries.

More optimal composition can be achieved by consider-
ing all common states (test or load states) in the combined

16



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFTfilters (appears as a prefix, a suffix or as an intermediate

state). Common states create unnecessary redundant work
that should be avoided in the composition process (union,
intersection, complement,..etc). This approach can be incor-
porated with the skip-ahead parsing or Tri-DAG composition
techniques.

More research studies has been done to provide more gen-
eral and more efficient composition techniques 12 [6, 5].

Parallelism: One optimization technique we are exploring
involves the use of parallel processing to improve the event
filtering performance [23]. The main advantage of this ap-
proach is the relative easy of dynamically configuring and
reconfiguring event filters in response to changing consumer
subscriptions.

None of the previous work in packet/event filtering had
touched this issue. One of the big motivations behind using
parallelism in event filtering is utilizing the power of multi-
processor platforms. Most of the previous work in packet
filters were concentrating on optimizing the parsing models
such as DAG or CFG vs Tree model employing a sequential
operations. Our proposed model is to extend DAG graph so
independent test/load states (cells) will be combined together
on one big state (called parallel-state) that represents a par-
allel execution of the contained sub-states. These sub-states
can be ordered vertically in the parallel-state and preceding
and following connections to the rest of the graph will be
through the parallel-state. The event/packet filter passes a
parallel-state if all subs-tate are already matched. Therefore,
the subs-tate that has maximum execution time determines
the running time of its parallel-state.

The challenging issues in parallelism are (1) determining
the independent states in the graph which could be generated
automatically by a smart compiler or it could be the user
responsibility to define the independent states that could be
run concurrently when coding the filter definitions and (2)
synchronization process that should take place when multiple
states are running concurrently [Schmidt]. The disadvantage
of this approach is that the current generation of parallel
processing platforms exact a performance penalty for sharing
data on the I/O bus.

Support for Real-Time Event Services: In real-time event
services, one or more consumer may subscribe for number
of events which have different levels of priority. A large
number of event messages may exist that may impose some
unbounded delay on high-priority event messages. For crit-
ical faults and recovery procedures, consumers in charge of
fault management may require a certain events to be reported
within a specific time constraints. This time limit (called re-
freshness period [Kaiser]) is negotiated during subscription
time in case of centralized event filtering. In either cen-
tralized or decentralized event filtering, filtering technique
should be extended to support real-time events. In existing
packet/event filters, incoming packets/events are buffered to
the end of the queues based in FIFO model regardless how

12This is left as future extension.

long queue is. However, in real-time event filtering, queuing
and task scheduling is done based on the priority reference
of a certain event.

High-priority events are classified by special-purpose fil-
ters called real-time event filters which are automatically
generated (or combined using the proposed optimal compo-
sition technique) at the suppliers and consumer end whenever
a consumer subscribes for it. There are two level of filtering
in the supplier end: (1) in coming real-time events filters to
classify high-priority event in the supplier end (and before
sent report generation starts) and (2) traditional out going
event filters to classify events according to the consumers
subscription. Similarly, in the consumers end, an in coming
real-time filters is used to to take care of high-priority events
in the consumer end. Consequently, the preference will be
given to high-priority events in both ends13.

6 Concluding Remarks

This paper motivates and outlines research being con-
ducted at Washington University on optimizations for high-
performance event filtering. Efficient event filtering helps
to reduce the large volume of event traffic processed by dy-
namic multi-point (DMP) applications. Unlike most related
work, our optimizations are targeted for DMP applications.
Existing tools for event filtering (such as Isis, HP OpenView,
and packet filters) do not adequately address the usability,
extensibility, performance, and scalability requirements of
DMP applications.

To improve usability and extensibility we are developing
an object-oriented framework for event filtering based on
CORBA [8]. The framework supports the automated gen-
eration and optimization of filter expressions based on the
CORBA interface definition language (IDL). By selecting
CORBA, we plan to leverage off emerging distributed object
development tools [10] and open system protocol specifica-
tion techniques [15].

To improve DMP application performance and scalabil-
ity, we are exploring optimization techniques to reduce event
filtering overhead. These techniques employ parallel pro-
cessing, dynamic tri-based search structures, and compiler
technology based on context-free grammars to reduce the
time required to filter events received.

References
[1] Mary L. Bailey, Burra Gopal, Michael A. Pagels, Larry Peter-

son, and Prasenjit Sarkar. PathFinder: A Pattern-Based Packet
Classifier. In Proceedings of the 1st Symposium on Operat-
ing System Design and Implementation. USENIX Association,
November 1994.

[2] Kenneth Birman and Robbert van Renesse. Reliable Dis-
tributed Computing with the Isis Toolkit. IEEE Computer
Society Press, Los Alamitos, 1994.

13discussion of kernel vs user-level in real-time support is left as a pending
issue for future work.

17



D
R

A
FT

: S
ep

te
m

be
r 

11
, 1

99
6 DRAFT[3] Robert T. Braden. A Pseudo-Machine for Packet Monitoring

and Statistics. In Proceedings of the Symposium on Commu-
nications Architectures and Protocols (SIGCOMM). ACM,
August 1988.

[4] S. Chakravarthy and D. Mishra. Snoop: An expressive event
specifiation languagefor active databases. In Data and Knowl-
edge Enginnering, volume 14, pages 1–26, Nvember 1994.

[5] Stella Gatziu and Klaus R. Dittrich. Detecting Composite
Events in Active Database Systems Using Petri Nets. In Pro-
ceedings of the 4th International Workshop on Research Is-
sues in Data Engineering: Active Database Systems, February
1994.

[6] Narian Gehani, H. V. Jagadish, and Oded Shmueli. COM-
POSE A System for Composite Event Specification and De-
tection. In Book Cahpter in Advanced Database Concepts and
Research Issues,pages 454–469. Lecture Notes Computer Sci-
ence, 1993.

[7] Michael R. Genesereth and Steven P. Ketchpel. Software
Agents. In Communication of ACM, pages 48–54. ACM, July
1994.

[8] Object Management Group. The Common Object Request
Broker: Architecture and Specification. Tech. Rep. CCITT
X.734/ISO 10164-5, 1993.

[9] David Holden. Presictive Languages for Management. In In-
tegrated Network Management I, pages 585–596. IFIP, 1989.

[10] C. Horn. The Orbix Architecture.Tech. Rep., September1994.

[11] Isis Distributed Systems, Inc., Marlboro, MA. Isis Users’s
Guide: Reliable Distributed Objects for C++, April 1994.

[12] Mahesh Jayaram, Ron K. Cytron, Douglas C. Schmidt, and
George Varghese. Efficient Demultiplexing of Network Pack-
ets by Automatic Parsing. In Submitted to the ACM SIG-
PLAN’95 Conference on Programming Language Design and
Implementation. ACM, 1994.

[13] Keith S. Klemba. Openview’s Architectural Models. In B. Me-
andzija and J. Westcott, editors, Proceedings of the 1st In-
ternational Symposium on Integrated Network Management,
pages 565–572. IFIP, 1989.

[14] Lee LaBarre. Management By Exception: OSI Event Gener-
ation, Reporting and Logging. In Integrated Network Man-
agement I, pages 308–323. IFIP, 1991.

[15] D. Lea and J. Marlowe. PSL: Protocol and Pragmatics for
Open Systems. In Tech. Rep. 94-0369, Septemeber 1994.

[16] Steve McCanne and Van Jacobson. The BSD Packet Filter.
In Winter USENIX, pages 259–269. USENIX Association,
January 1993.

[17] Jeffrey C. Mogul. Effecient Use of Worksattions For Passive
Monitoring of Local Area Networks. In Proceedings of the
Symposium on Communications Architectures and Protocols
(SIGCOMM). ACM, September 1990.

[18] Jeffrey C. Mogul, Richard F. Rashid, and Micheal J. Accetta.
The Packet Filter: An Effecient Mechanism of User-Level
Network Code. In Proceedings of the 11th Symposium on
Operating Systems Principles, pages 39–51.ACM, November
1987.

[19] Dan Murray. Developing Reactive Software Agents. In AI
Expert Magazine, pages 27–30. ACM, March 1995.

[20] T. Risch. Monitoring Database Objects. In Proceedings of
VLDB, Augest 1989.

[21] D. C. Schmidt and T. Suda. An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems. In IEE/BCS Distributed Systems Enginner-
ing Journal, December 1994.

[22] D. C. Schmidt and T. Suda. Scalable High-Performance Event
Filtering for Dynamic Multi-point Applications. In Proceed-
ings of the 1st International Workshop on High-Performance
Protocol Architecture, December 1994.

[23] D. C. Schmidt and T. Suda. Measuring the Performance of
Parallel Message-basedProcess Architecture. In IEEE INFO-
COM Conference, April 1995.

[24] J. Scholten and J. Pothuma. Monitoring Multimedia Systems.
In Proceedingsof the Third Workshopon Future Trendsof Dis-
tributed Computing Systems, pages 377–380. IEEE Computer
Society, April 1992.

[25] I. O. Standarization. Information Processing Systems - Open
Systems Interconnection - Part 5: Event Report Management
Function. Tech. Rep. CCITT X.734/ISO 10164-5, 1993.

[26] Ouri Wolfson, Soumitra Sengupta, and Yechiam Yemini. Man-
aging Communication Networks by Monitoring Databases. In
IEEE Transactions on Software Engineering, pages 944–953,
September 1991.

[27] Tak W. Yan and Hector Garcia-Molina. SIFT - A Tool for
Wide-Area Information Dissemination. In 1995 USENIX
Technical Conference, pages 16–20. USENIX Association,
January 1995.

[28] Masanobu Yuhara, Brain Bershad, Chirs Maeda, and J. El-
liot B. Moss. Efficient Packet Demultiplexing for Multiple
Endpoints and Large Messages. In Winter 1994 USENIX Con-
ference. USENIX Association, January 1994.

[29] John A. Zinky and Fredric M. White. Visualizing Packet
Traces. In Proceedings of the Symposium on Communica-
tions Architectures and Protocols (SIGCOMM), pages 293–
304, Augest 1992.

18


