
Object-Oriented Design Case Study with C++

Douglas C. Schmidt
Professor Department of EECS
d.schmidt@vanderbilt.edu Vanderbilt University
www.cs.wustl.edu/�schmidt/ (615) 343-8197

OO Pattern Examples Douglas C. Schmidt

Case Study: Expression Tree Evaluator

� The following inheritance and dynamic binding example constructs
expression trees

– Expression trees consist of nodes containing operators and
operands

� Operators have different precedence levels, different associativities,
and different arities, e.g.,

� Multiplication takes precedence over addition

� The multiplication operator has two arguments, whereas unary
minus operator has only one

� Operands are integers, doubles, variables, etc.

� We’ll just handle integers in this example . . .

Vanderbilt University 1

OO Pattern Examples Douglas C. Schmidt

Expression Tree Diagram

5 3 4

BINARY

NODES

555 333 444

INTEGER

NODES

UNARY

NODE

*

+

Vanderbilt University 2

OO Pattern Examples Douglas C. Schmidt

Expression Tree Behavior
� Expression trees

– Trees may be “evaluated” via different traversals

� e.g., in-order, post-order, pre-order, level-order
– The evaluation step may perform various operations, e.g.,

� Traverse and print the expression tree

� Return the “value” of the expression tree

� Generate code

� Perform semantic analysis

Vanderbilt University 3

OO Pattern Examples Do

Algorithmic Version

� A typical algorithmic method for implementing
expression trees involves using a struct/union to
represent data structure, e.g.,

typedef struct Tree_Node Tree_Node;
struct Tree_Node {

enum { NUM, UNARY, BINARY } tag_;
short use_; /* reference count */
union {

char op_[2];
int num_;

} o;
#define num_ o.num_
#define op_ o.op_

union {
Tree_Node *unary_;
struct { Tree_Node *l_, *r_; } binary_;

} c;
#define unary_ c.unary_
#define binary_ c.binary_
};

Vanderbilt University

O
O

P
attern

E
xam

ples
D

ouglas
C

.S
chm

idt

M
em

ory
LayoutofA

lgorithm
ic

V
ersion

T
ree

N
o
d
e

T
ree

N
o
d
e

1

1
|2

tag
_

u
se_

o
p
_

n
u
m

_

u
n
ary

_

b
in

ary
_

M
E

M
O

R
Y

L
A

Y
O

U
T

C
L

A
S

S

R
E

L
A

T
IO

N
S

H
IP

S

�

H
ere’s

the
m

em
ory

layoutofa
struct

T
re

e
N

o
d
e

object

V
anderbiltU

niversity
5

OO Pattern Examples Do

Print Tree Function

� A typical algorithmic implementation use a switch
statement and a recursive function to build and
evaluate a tree, e.g.,

void print_tree (Tree_Node *root) {
switch (root->tag_) {
case NUM: printf ("%d", root->num_);

break;
case UNARY:

printf ("(%s", root->op_[0]);
print_tree (root->unary_);
printf (")"); break;

case BINARY:
printf ("(");
print_tree (root->binary_.l_);
printf ("%s", root->op_[0]);
print_tree (root->binary_.r_);
printf (")"); break;

default:
printf (error, unknown type\n);

}
}

Vanderbilt University
O

O
P

attern
E

xam
ples

D
ouglas

C
.S

chm
idt

Lim
itations

w
ith

A
lgorithm

ic
A

pproach
�

P
roblem

s
or

lim
itations

w
ith

the
typicalalgorithm

ic
approach

include

–
Little

or
no

use
ofencapsulation

�

Incom
plete

m
odeling

ofthe
application

dom
ain,w

hich
results

in

1.
T

ightcoupling
betw

een
nodes

and
edges

in
union

representation
2.

C
om

plexity
being

in
algorithm

s
rather

than
the

data
structures

–
e.g.,sw

itch
statem

ents
are

used
to

selectbetw
een

various
types

ofnodes
in

the
expression

trees
–

C
om

pare
w

ith
binary

search!
3.

D
ata

structures
are

“passive”
and

functions
do

m
ost

processing
w

ork
explicitly

V
anderbiltU

niversity
7

OO Pattern Examples Douglas C. Schmidt

More Limitations with Algorithmic Approach

� The program organization makes it difficult to extend, e.g.,

– Any small changes will ripple through the entire design and
implementation

� e.g., see the “ternary” extension below
– Easy to make mistakes switching on type tags . . .

� Solution wastes space by making worst-case assumptions wrt
structs and unions

– This is not essential, but typically occurs
– Note that this problem becomes worse the bigger the size of the

largest item becomes!

Vanderbilt University 8

OO Pattern Examples Douglas C. Schmidt

OO Alternative

� Contrast previous algorithmic approach with an object-oriented
decomposition for the same problem:

– Start with OO modeling of the “expression tree” application
domain, e.g., go back to original picture

– Discover several classes involved:

� class Node: base class that describes expression tree vertices:

� class Int Node: used for implicitly converting int to Tree node

� class Unary Node: handles unary operators, e.g., -10, +10, !a

� class Binary Node: handles binary operators, e.g., a + b, 10 -
30

� class Tree: “glue” code that describes expression-tree edges,
i.e., relations between Nodes

– Note, these classes model entities in the application domain

� i.e., nodes and edges (vertices and arcs)

Vanderbilt University 9

OO Pattern Examples Douglas C. Schmidt

Expression Tree Diagram

5 3 4

BINARY

NODES

555 333 444

INTEGER

NODES

UNARY

NODE

*

+

Vanderbilt University 10

OO Pattern Examples Douglas C. Schmidt

Relationships Between Tree and Node Classes

Unary
Node

Node

Tree3
1

1

11

2

Binary
Node

Ternary
Node

Int
Node

has
-a

Vanderbilt University 11

OO Pattern Examples Douglas C. Schmidt

Design Patterns in the Expression Tree Program

� Factory

– Centralize the assembly of resources necessary to create an
object

� e.g., decouple Node subclass initialization from use

� Bridge

– Decouple an abstraction from its implementation so that the two
can vary independently

� e.g., printing contents of a subtree and managing memory

� Adapter

– Convert the interface of a class into another interface clients expect

� e.g., make Tree conform C++ iostreams

Vanderbilt University 12

OO Pattern Examples Douglas C. Schmidt

C++ Node Interface
class Tree; // Forward declaration

// Describes the Tree vertices
class Node {
friend class Tree;
protected: // Only visible to derived classes

Node (): use_ (1) {}

/* pure */ virtual void print (ostream &) const = 0;

// Important to make destructor virtual!
virtual ˜Node ();

private:
int use_; // Reference counter.

};

Vanderbilt University 13

OO Pattern Examples Douglas C. Schmidt

C++ Tree Interface
#include "Node.h"
// Bridge class that describes the Tree edges and
// acts as a Factory.
class Tree {
public:

// Factory operations
Tree (int);
Tree (const string &, Tree &);
Tree (const string &, Tree &, Tree &);
Tree (const Tree &t);
void operator= (const Tree &t);
˜Tree ();
void print (ostream &) const;

private:
Node *node_; // pointer to a rooted subtree

Vanderbilt University 14

OO Pattern Examples Douglas C. Schmidt

C++ Int Node Interface

#include "Node.h"

class Int_Node : public Node {
public:

Int_Node (int k);
virtual void print (ostream &stream) const;

private:
int num_; // operand value.

};

Vanderbilt University 15

OO Pattern Examples Douglas C. Schmidt

C++ Unary Node Interface

#include "Node.h"

class Unary_Node : public Node {
public:

Unary_Node (const string &op, const Tree &t);
virtual void print (ostream &stream) const;

private:
string operation_;
Tree operand_;

};

Vanderbilt University 16

OO Pattern Examples Douglas C. Schmidt

C++ Binary Node Interface

#include "Node.h"

class Binary_Node : public Node {
public:

Binary_Node (const string &op,
const Tree &t1,
const Tree &t2);

virtual void print (ostream &s) const;
private:

const string operation_;
Tree left_;
Tree right_;

};

Vanderbilt University 17

O
O

P
at

te
rn

E
xa

m
pl

es
D

o

M
em

or
y

La
yo

ut
fo

r
C

++
V

er
si

on

ta
g

o
p

v
p
tr

u
se

N
o
d
e

P
A

R
T

n
u
m

N
o
d
e

P
A

R
T

p
tr

o
p
er

at
o
r

o
p
er

an
d

(T
re

e
P

A
R

T
)

N
o
d
e

P
A

R
T

o
p
er

at
o
r

le
ft

(T
re

e
P

A
R

T
)

N
o
d
e

P
A

R
T

o
p
er

at
o
r

ri
g
h
t

(T
re

e
P

A
R

T
)

le
ft

(T
re

e
P

A
R

T
)

ri
g
h
t

(T
re

e
P

A
R

T
)

m
id

d
le

(T
re

e
P

A
R

T
)ta
g

o
p

N
o
d
e

In
t_

N
o
d
e

N
o
d
e

P
A

R
T

T
re

e
o
p
er

at
o
r_

o
p
er

an
d
_

(T
re

e
P

A
R

T
)

U
n
ar

y

N

o
d
e

N
o
d
e

P
A

R
T

o
p
er

at
o
r_

le
ft

_
(T

re
e

P
A

R
T
)

B
in

ar
y

N
o
d
e

N
o
d
e

P
A

R
T

o
p
er

at
o
r_

ri
g
h
t_

(T
re

e
P

A
R

T
)

le
ft

_
(T

re
e

P
A

R
T
)

ri
g
h
t_

(T
re

e
P

A
R

T
)

m
id

d
le

_
(T

re
e

P
A

R
T
)

T
er

n
ar

y
N

o
d
e

v
p
tr

u
se

_

N
o
d
e

P
A

R
T

n
u
m

_

n
o
d
e_

�

M
em

or
y

la
yo

ut
s

fo
r

di
ffe

re
nt

su
bc

la
ss

es
of

N
o
d
e

V
an

de
rb

ilt
U

ni
ve

rs
ity

OO Pattern Examples Douglas C. Schmidt

C++ Int Node Implementations

#include "Int_Node.h"

Int_Node::Int_Node (int k): num_ (k) { }

void Int_Node::print (ostream &stream) const {
stream << this->num_;

}

Vanderbilt University 19

OO Pattern Examples Douglas C. Schmidt

C++ Unary Node Implementations

#include "Unary_Node.h"

Unary_Node::Unary_Node (const string &op, const Tree &t1)
: operation_ (op), operand_ (t1) { }

void Unary_Node::print (ostream &stream) const {
stream << "(" << this->operation_ <<

<< this->operand_ // recursive call!
<< ")";

}

Vanderbilt University 20

OO Pattern Examples Douglas C. Schmidt

C++ Binary Node Implementation

#include "Binary_Node.h"

Binary_Node::Binary_Node (const string &op,
const Tree &t1,
const Tree &t2):

operation_ (op), left_ (t1), right_ (t2) {}

void Binary_Node::print (ostream &stream) const {
stream << "(" << this->left_ // recursive call

<< " " << this->operation_
<< " " << this->right_ // recursive call
<< ")";

}

Vanderbilt University 21

OO Pattern Examples Douglas C. Schmidt

Initializing the Node Subclasses

� Problem

– How to ensure the Node subclasses are initialized properly

� Forces

– There are different types of Node subclasses

� e.g., take different number and type of arguments
– We want to centralize initialization in one place because it is likely

to change . . .

� Solution

– Use a Factory pattern to initialize the Node subclasses

Vanderbilt University 22

OO Pattern Examples Douglas C. Schmidt

The Factory Pattern
� Intent

– Centralize the assembly of resources necessary to create an
object

� Decouple object creation from object use by localizing creation
knowledge

� This pattern resolves the following forces:

– Decouple initialization of the Node subclasses from their
subsequent use

– Makes it easier to change or add new Node subclasses later on

� e.g., Ternary nodes . . .

� A generalization of the GoF Factory Method pattern

Vanderbilt University 23

OO Pattern Examples Douglas C. Schmidt

Structure of the Factory Pattern

FactoryFactory

make_product()

Product product = ...Product product = ...

return productreturn product

createscreates

ProductProduct

Vanderbilt University 24

OO Pattern Examples Douglas C. Schmidt

Using the Factory Pattern

� The Factory pattern is used by the Tree class to initialize Node
subclasses:

Tree::Tree (int num)
: node_ (new Int_Node (num)) {}

Tree::Tree (const string &op, const Tree &t)
: node_ (new Unary_Node (op, t)) {}

Tree::Tree (const string &op,
const Tree &t1,
const Tree &t2):

: node_ (new Binary_Node (op, t1, t2)) {}

Vanderbilt University 25

OO Pattern Examples Douglas C. Schmidt

Printing Subtrees

� Problem

– How do we print subtrees without revealing their types?

� Forces

– The Node subclass should be hidden within the Tree instances
– We don’t want to become dependent on the use of Nodes ,

inheritance, and dynamic binding, etc.
– We don’t want to expose dynamic memory management details to

application developers

� Solution

– Use the Bridge pattern to shield the use of inheritance and
dynamic binding

Vanderbilt University 26

OO Pattern Examples Douglas C. Schmidt

The Bridge Pattern
� Intent

– Decouple an abstraction from its implementation so that the two
can vary independently

� This pattern resolves the following forces that arise when building
extensible software with C++

1. How to provide a stable, uniform interface that is both closed and
open, i.e.,
– interface is closed to prevent direct code changes
– Implementation is open to allow extensibility

2. How to manage dynamic memory more transparently and robustly
3. How to simplify the implementation of operator<<

Vanderbilt University 27

OO Pattern Examples Douglas C. Schmidt

Structure of the Bridge Pattern

ImplementorImplementor

method_impl()

1: method_impl()

ConcreteConcrete
ImplementorAImplementorA

method_impl() ConcreteConcrete
ImplementorBImplementorB

method_impl()

AbstractionAbstraction

method()

Vanderbilt University 28

OO Pattern Examples Douglas C. Schmidt

Using the Bridge Pattern

Int NodeInt Node

print() BinaryBinary
NodeNode

print()

NodeNode

print()

1: print()

UnaryUnary
NodeNode
print()

TernaryTernary
NodeNode

print()

TreeTree

print()

Vanderbilt University 29

OO Pattern Examples Douglas C. Schmidt

Illustrating the Bridge Pattern in C++

� The Bridge pattern is used for printing expression trees:

void Tree::print (ostream &os) const {
this->node_->print (os);

}

� Note how this pattern decouples the Tree interface for printing from
the Node subclass implementation

– i.e., the Tree interface is fixed, whereas the Node implementation
varies

– However, clients need not be concerned about the variation . . .

Vanderbilt University 30

OO Pattern Examples Douglas C. Schmidt

Integrating with C++ I/O Streams
� Problem

– Our Tree interface uses a print method, but most C++
programmers expect to use I/O Streams

� Forces

– Want to integrate our existing C++ Tree class into the I/O Stream
paradigm without modifying our class or C++ I/O

� Solution

– Use the Adapter pattern to integrate Tree with I/O Streams

Vanderbilt University 31

OO Pattern Examples Douglas C. Schmidt

The Adapter Pattern

� Intent

– Convert the interface of a class into another interface client expects

� Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces

� This pattern resolves the following force:

1. How to transparently integrate the Tree with the C++ iostream
operators

Vanderbilt University 32

OO Pattern Examples Douglas C. Schmidt

Structure of the Adapter Pattern

AdapterAdapter

request()

1: request ()

2: specific_request()

TargetTarget

request()

clientclient

AdapteeAdaptee

specific_request()

Vanderbilt University 33

OO Pattern Examples Douglas C. Schmidt

Using the Adapter Pattern

iostreamiostream

operator<<
2: print()

TreeTree

print()

1: operator<<

clientclient TargetTarget

operator<<

Vanderbilt University 34

OO Pattern Examples Douglas C. Schmidt

Using the Adapter Pattern
� The Adapter pattern is used to integrate with C++ I/O Streams

ostream &operator<< (ostream &s, const Tree &tree) {
tree.print (s);
// This triggers Node * virtual call via
// tree.node_->print (s), which is
// implemented as the following:
// (*tree.node_->vptr[1]) (tree.node_, s);
return s;

}

� Note how the C++ code shown above uses I/O streams to “adapt”
the Tree interface . . .

Vanderbilt University 35

OO Pattern Examples Douglas C. Schmidt

C++ Tree Implementation

� Reference counting via the “counted body” idiom

Tree::Tree (const Tree &t): node_ (t.node_) {
// Sharing, ref-counting.

++this->node_->use_;
}

void Tree::operator= (const Tree &t) {
// order important here!
++t.node_->use_;
--this->node_->use_;
if (this->node_->use_ == 0)

delete this->node_;
this->node_ = t.node_;

}

Vanderbilt University 36

OO Pattern Examples Douglas C. Schmidt

C++ Tree Implementation (cont’d)

Tree::˜Tree () {
// Ref-counting, garbage collection
--this->node_->use_;
if (this->node_->use_<= 0)

delete this->node_;
}

Vanderbilt University 37

OO Pattern Examples Douglas C. Schmidt

C++ Main Program
#include <iostream.h>
#include "Tree.h"

int main (int, char *[]) {
const Tree t1 = Tree ("*", Tree ("-", 5),

Tree ("+", 3, 4));
cout << t1 << endl; // prints ((-5) * (3 + 4))
const Tree t2 = Tree ("*", t1, t1);

// prints (((-5) * (3 + 4)) * ((-5) * (3 + 4))).
cout << t2 << endl;

return 0;
// Destructors of t1 and t2 recursively

} // delete entire tree when leaving scope.

Vanderbilt University 38 O
O

P
at

te
rn

E
xa

m
pl

es
D

o

E
xp

re
ss

io
n

Tr
ee

D
ia

gr
am

1

B
in

ar
y

N
o
d
e

U
n
ar

y
N

o
d
e

In
t

N
o
d
e

t1

55
33

44

-

p
ri

n
t(

)
*

+

�

E
xp

re
ss

io
n

tr
ee

fo
r

t1
=

((
-5

)
*

(3
+

4)
)

V
an

de
rb

ilt
U

ni
ve

rs
ity

O
O

P
at

te
rn

E
xa

m
pl

es
D

o

E
xp

re
ss

io
n

Tr
ee

D
ia

gr
am

2 B
in

ar
y

N
o
d
e

U
n
ar

y
N

o
d
e

In
t

N
o
d
e

t1

55
33

44

-

p
ri

n
t(

)

t2 * *

+

�

E
xp

re
ss

io
n

tr
ee

fo
r

t2
=

(t
1

*
t1

)

V
an

de
rb

ilt
U

ni
ve

rs
ity

OO Pattern Examples Douglas C. Schmidt

Adding Ternary Nodes

� Extending the existing program to support ternary nodes is
straightforward

– i.e., just derive new class Ternary Node to handle ternary
operators, e.g., a == b ? c : d, etc.

#include "Node.h"
class Ternary_Node : public Node {
public:

Ternary_Node (const string &, const Tree &,
const Tree &, const Tree &);

virtual void print (ostream &) const;
private:

const string operation_;
Tree left_, middle_, right_; };

Vanderbilt University 41

OO Pattern Examples Douglas C. Schmidt

C++ Ternary Node Implementation
#include "Ternary_Node.h"
Ternary_Node::Ternary_Node (const string &op,

const Tree &a,
const Tree &b,
const Tree &c)

: operation_ (op), left_ (a), middle_ (b),
right_ (c) {}

void Ternary_Node::print (ostream &stream) const {
stream << this->operation_ << "("

<< this->left_ // recursive call
<< "," << this->middle_ // recursive call
<< "," << this->right_ // recursive call
<< ")";

}

Vanderbilt University 42

OO Pattern Examples Douglas C. Schmidt

C++ Ternary Node Implementation (cont’d)

// Modified class Tree Factory
class Tree {
// add 1 class constructor
public:

Tree (const string &, const Tree &,
const Tree &, const Tree &)

: node_ (new Ternary_Node (op, l, m, r)) {}
// Same as before . . .

Vanderbilt University 43

OO Pattern Examples Douglas C. Schmidt

Differences from Algorithmic Implementation

� On the other hand, modifying the original algorithmic approach
requires changing (1) the original data structures, e.g.,

struct Tree_Node {
enum {

NUM, UNARY, BINARY, TERNARY
} tag_; // same as before
union {

// same as before. But, add this:
struct {

Tree_Node *l_, *m_, *r_;
} ternary_;

} c;
#define ternary_ c.ternary_
};

Vanderbilt University 44

OO Pattern Examples Douglas C. Schmidt

Differences from Algorithmic Implementation (cont’d)

� and (2) many parts of the code, e.g.,

void print_tree (Tree_Node *root) {
// same as before
case TERNARY: // must be TERNARY.

printf ("(");
print_tree (root->ternary_.l_);
printf ("%c", root->op_[0]);
print_tree (root->ternary_.m_);
printf ("%c", root->op_[1]);
print_tree (root->ternary_.r_);
printf (")"); break;

// same as before
}

Vanderbilt University 45

OO Pattern Examples Douglas C. Schmidt

Summary of Expression Tree Example

� OO version represents a more complete modeling of the application
domain

– e.g., splits data structures into modules that correspond to
“objects” and relations in expression trees

� Use of C++ language features simplifies the design and facilitates
extensibility

– e.g., implementation follows directly from design

� Use of patterns helps to motivate, justify, and generalize design
choices

Vanderbilt University 46

OO Pattern Examples Douglas C. Schmidt

Potential Problems with OO Design
� Solution is very “data structure rich”

– e.g., requires configuration management to handle many headers
and .cc files!

� May be somewhat less efficient than original algorithmic approach

– e.g., due to virtual function overhead

� In general, however, virtual functions may be no less inefficient than
large switch statements or if/else chains . . .

� As a rule, be careful of micro vs. macro optimizations

– i.e., always profile your code!

Vanderbilt University 47

