Object-Oriented Design Case Study with C++

Douglas C. Schmidt

Professor Department of EECS

d.schmidt@vanderbilt.edu Vanderbilt University
www.cs.wustl.edu/~schmidt/ (615) 343-8197

p¥alo

OO Pattern Examples

Douglas C. Schmidt

Case Study: Expression Tree Evaluator

e The following inheritance and dynamic binding example constructs
expression trees

— Expression trees consist of nodes containing operators and

operands
x Operators have different precedence levels, different associativities,
and different arities, e.g.,
- Multiplication takes precedence over addition
- The multiplication operator has two arguments, whereas unary
minus operator has only one
x Operands are integers, doubles, variables, etc.
- We'll just handle integers in this example . . .

D-O-C

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt

Expression Tree Diagram

/5 <« BINARY

INTEGER
NODES

D-O-C

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt

Expression Tree Behavior

e EXpression trees

— Trees may be “evaluated” via different traversals
x e.g., in-order, post-order, pre-order, level-order
— The evaluation step may perform various operations, e.g.,
Traverse and print the expression tree
Return the “value” of the expression tree
Generate code
Perform semantic analysis

Vanderbilt University

OO Pattern Examples OO Pattern Examples

Print _Tree Function Algorithmic Version

e Atypical algorithmic implementation use a switch e A typical algorithmic method for implementing
statement and a recursive function to build and expression trees involves using a struct/union to
evaluate a tree, e.g., represent data structure, e.g.,

void print_tree (Tree_Node *root) {

switch (root->tag) {

case NUM: printf ("%d", root->num_);

break;

case UNARY:
printf ("(%s", root->op_[0]); char op_[2];
print_tree (root->unary_); int num - '
printf (")"); break; } o -

case BINARY: #define num_ o.num_

printf ("("); #define o
: : . p_ 0.0p_
print_tree (root->binary_.I_); union {

printf. ("%s", roo>t;op_[0]); _ Tree_Node *unary_;

g::z:f_tzﬁ)?)_(rgg‘;lk.mary_.r_), struct { Tree_Node *|_, *r_; } binary_;
default; "

printf (error, unknown type\n);

typedef struct Tree_Node Tree_Node;
struct Tree Node {
enum { NUM, UNARY, BINARY } tag_;
short use_; /* reference count */
union {

#define unary_ c.unary_
#define binary_ c.binary_

h

[; 'Yw
Vanderbilt University E C LLE Vanderbilt University

LNOAVT
AJOWIN

Ausianiun 1igiapuen
sa|dwex3 ulaned 0O
Ausianiun igiapuen
sa|dwex3 ulaned 0O

Apioijdxa xiom

Buissasoud 1sow op suonoduny pue BAIssed, aJe Sainnis ereq ‘g

iyodeas Areuiq yum aredwod —
SAIHSNOILVTdYd

$9a1) uoIssaidxa ay) ul Sapou Jo

SadA) snoLeA usamag 199|8S 0] Pasn aJe SJUsaWalels YINIms "' —

UO!1'8|I’ISC|'€OU6 JO 8sn ou 10 a7 —

yoeoiddy 21WyIoB)Y yum suonenwi

108lq0 apoN~ @31 10nJ1S ® Jo 1noAe| Alowaw ay) S,01oH e
UOISIBA 21wylliob)y Jo 1noAe Alowa

Sa.njonJjs elep ayl ueyl Jayrel swiyiiobie ul buiaq Alxsjdwo) g
uoneluasaidal uolun ul sabpa pue sspou usamiag Buldnoo bl T
ul s)Nsal yaiym ‘urewop uonealdde ay) Jo Bulgpow a19|dwodu| e

apnjoul yoroudde oiwuyiiobe [eaidA1 syl yum suoneiuwl| 1o swajgoid e

pIwyas "o selbnog
pIwyas "o selbnog

OO Pattern Examples Douglas C. Schmidt
More Limitations with Algorithmic Approach

e The program organization makes it difficult to extend, e.g.,

— Any small changes will ripple through the entire design and
implementation
x e.g., see the “ternary” extension below

— Easy to make mistakes switching on type tags . . .

e Solution wastes space by making worst-case assumptions wrt
structs and unions

— This is not essential, but typically occurs
— Note that this problem becomes worse the bigger the size of the
largest item becomes!

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt
OO0 Alternative
e Contrast previous algorithmic approach with an object-oriented
decomposition for the same problem:

— Start with OO modeling of the “expression tree” application
domain, e.g., go back to original picture
— Discover several classes involved:
x class Node: base class that describes expression tree vertices:
- class Int_Node: used for implicitly converting int to Tree node
- class Unary_Node: handles unary operators, e.g., -10, +10, la
- class Binary_Node: handles binary operators, e.g., a + b, 10 -
30
x class Tree: “glue” code that describes expression-tree edges,
i.e., relations between Nodes
— Note, these classes model entities in the application domain
* i.e., nodes and edges (vertices and arcs)

D-O-C

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt
Expression Tree Diagram

/5 <« BINARY

INTEGER
NODES

D-O-C

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt
Relationships Between Tree and Node Classes

Binary Unary Int
Node Node Node

1 1

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt OO Pattern Examples Douglas C. Schmidt

Design Patterns in the Expression Tree Program C++ Node Interface
class Tree; /| Forward declaration

e Factory
/I Describes the Tree vertices

class Node {

friend class Tree;

protected: // Only visible to derived classes
e Bridge Node (): use_ (1) {}

— Decouple an abstraction from its implementation so that the two
can vary independently
* e.g., printing contents of a subtree and managing memory

— Centralize the assembly of resources necessary to create an
object
* e.g., decouple Node subclass initialization from use

[* pure */ virtual void print (ostream &) const = 0;

/I Important to make destructor virtual!
e Adapter virtual “Node ();
private:

int use_; // Reference counter.

h

— Convert the interface of a class into another interface clients expect
x e.g., make Tree conform C++ iostreams

™y
Vanderbilt University Vanderbilt University E} E L

OO Pattern Examples Douglas C. Schmidt OO Pattern Examples Douglas C. Schmidt
C++ Tree Interface C++ Int_Node Interface

#include "Node.h"

#include "Node.h"
/I Bridge class that describes the Tree edges and
/I acts as a Factory.
class Tree {
public:
/I Factory operations
Tree (int);
Tree (const string &, Tree &);
Tree (const string &, Tree &, Tree &);
Tree (const Tree &t);
void operator= (const Tree &t);
“Tree ();
void print (ostream &) const;
private:
Node *node_; // pointer to a rooted subtree

class Int_Node : public Node {
public:

Int_Node (int K);

virtual void print (ostream &stream) const;
private:

int num_; // operand value.

J3

Vanderbilt University Vanderbilt University

OO Pattern Examples Douglas C. Schmidt OO Pattern Examples Douglas C. Schmidt
C++ Unary _Node Interface C++ Binary _Node Interface

#include "Node.h" #include "Node.h"

class Unary_Node : public Node { class Binary_Node : public Node {

public: public:
Unary_Node (const string &op, const Tree &t); Binary_Node (const string &op,
virtual void print (ostream &stream) const; const Tree &tl,

private: const Tree &t2);
string operation_; virtual void print (ostream &s) const;
Tree operand_; private:

h const string operation_;

Tree left_;

Tree right_;

h

Vanderbilt University) 5 Vanderbilt University

OO Pattern Examples Douglas C. Schmidt
C++ Int_Node Implementations

#include "Int_Node.h"

left_
(Tree PART)
middle_
(Tree pART)
right_
(Tree pART)

Int_Node::Int_Node (int k): num_ (k) { }

void Int_Node::print (ostream &stream) const {
stream << this->num_;

left,
(Tree PART)

right
(Tree PART)

}

operan
(Tree pART)

Unary Node

Node
Int_Node

Memory Layout for C++ Version

e Memory layouts for different subclasses of Node

OO Pattern Examples
Vanderbilt University

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt
C++ Unary _Node Implementations

#include "Unary_Node.h"

Unary_Node::Unary_Node (const string &op, const Tree &tl)
. operation_ (op), operand_ (t1) { }

void Unary_Node::print (ostream &stream) const {
stream << "(" << this->operation_ <<
<< this->operand_ // recursive call!
<< M-

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt
C++ Binary _Node Implementation

#include "Binary_Node.h"

Binary_Node::Binary_Node (const string &op,
const Tree &t1,
const Tree &t2):

operation_ (op), left_ (t1), right_ (t2) {}

void Binary_Node::print (ostream &stream) const {
stream << "(" << this->left_ // recursive call
<< " " << this->operation_
<< " " << this->right_ // recursive call
<< "7

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt
Initializing the Node Subclasses

e Problem
— How to ensure the Node subclasses are initialized properly
e Forces

— There are different types of Node subclasses
x e.g., take different number and type of arguments

— We want to centralize initialization in one place because it is likely
to change . . .

e Solution

— Use a Factory pattern to initialize the Node subclasses

Tt

Vanderbilt University E} —_—

OO Pattern Examples Douglas C. Schmidt

The Factory Pattern

e [ntent

— Centralize the assembly of resources necessary to create an
object
«x Decouple object creation from object use by localizing creation
knowledge

e This pattern resolves the following forces:

— Decouple initialization of the Node subclasses from their

subsequent use
— Makes it easier to change or add new Node subclasses later on
x e.g., Ternary nodes . . .

e A generalization of the GoF Factory Method pattern

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt
Structure of the Factory Pattern

Factory

make_product() Q|

AN
N

creates

Product product =.
return product

Product

e ' Mt

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt

Using the Factory Pattern

e The Factory pattern is used by the Tree class to initialize Node
subclasses:

Tree::Tree (int num)
: node_ (new Int_Node (num)) {}

Tree::Tree (const string &op, const Tree &t)
: node_ (new Unary_Node (op, t)) {}

Tree::Tree (const string &op,
const Tree &tl,
const Tree &t2):
: node_ (new Binary_Node (op, t1, t2)) {}

¥

D

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt
Printing Subtrees

e Problem
— How do we print subtrees without revealing their types?
e Forces

— The Node subclass should be hidden within the Tree instances

— We don’t want to become dependent on the use of Nodes,
inheritance, and dynamic binding, etc.

— We don’t want to expose dynamic memory management details to
application developers

e Solution

— Use the Bridge pattern to shield the use of inheritance and
dynamic binding

D

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt

The Bridge Pattern

e [ntent

— Decouple an abstraction from its implementation so that the two
can vary independently

e This pattern resolves the following forces that arise when building
extensible software with C++

1. How to provide a stable, uniform interface that is both closed and
open, i.e.,
— interface is closed to prevent direct code changes
— Implementation is open to allow extensibility
2. How to manage dynamic memory more transparently and robustly
3. How to simplify the implementation of operator<<

D

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt

Structure of the Bridge Pattern
1: method_impl()

Abstraction Implementor

method() method_impl()

e

Concrete
ImplementorA

method_impl() Concrete
ImplementorB

method _impl()

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt

Using the Bridge Pattern

1: print()
—_—

Tree Node

print() print()

Int Node

Bina
Node

print()

print()

LH

N
Vanderbilt University E} g L

OO Pattern Examples Douglas C. Schmidt

lllustrating the Bridge Pattern in C++

e The Bridge pattern is used for printing expression trees:

void Tree:print (ostream &o0s) const {
this->node_->print (0s);
}

e Note how this pattern decouples the Tree interface for printing from
the Node subclass implementation

— I.e., the Tree interface is fixed, whereas the Node implementation

varies
— However, clients need not be concerned about the variation . . .

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt
Integrating with C++ 1/0O Streams

e Problem

— Our Tree interface uses a print method, but most C++
programmers expect to use 1/O Streams

e Forces

— Want to integrate our existing C++ Tree class into the 1/0 Stream
paradigm without modifying our class or C++ I/O

e Solution

— Use the Adapter pattern to integrate Tree with I/O Streams

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt

The Adapter Pattern

e [ntent

— Convert the interface of a class into another interface client expects
x Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces

e This pattern resolves the following force:

1. How to transparently integrate the Tree with the C++ iostream
operators

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt

Structure of the Adapter Pattern

1: request ()
—

client Target
request()

Adapter Adaptee

%)
request() 2: specific_request() specific_request()

DR

Vanderbilt University iy -

OO Pattern Examples Douglas C. Schmidt

Using the Adapter Pattern

1: operator<<
_—>

client Target
operator<<

jiostream

operator<<

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt

Using the Adapter Pattern

e The Adapter pattern is used to integrate with C++ I/O Streams

ostream &operator<< (ostream &s, const Tree &tree) {
tree.print (s);
/I This triggers Node * virtual call via
/I tree.node_->print (s), which is
/I implemented as the following:
/I (*tree.node_->vptr[1]) (tree.node_, s);
return s;

}

e Note how the C++ code shown above uses I/O streams to “adapt”
the Tree interface . . .

=

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt OO Pattern Examples Douglas C. Schmidt
C++ Tree Implementation C++ Tree Implementation (contd)

e Reference counting via the “counted body” idiom Tree::"Tree () {
/I Ref-counting, garbage collection
--this->node_->use_;
if (this->node_->use_<= 0)
delete this->node_;

Tree::Tree (const Tree &t): node_ (t.node) {
/I Sharing, ref-counting.
++this->node_->use_;

}

void Tree::operator= (const Tree &t) {
/I order important here!
++t.node_->use_;
--this->node_->use_;
if (this->node_->use_ == 0)
delete this->node_;
this->node_ = t.node_;

}

D-O-C

Vanderbilt University Vanderbilt University

OO Pattern Examples Douglas C. Schmidt
C++ Main Program

#include <iostream.h>

#include "Tree.h"

int main (int, char *]) {
const Tree t1 = Tree (™", Tree ("-", 5),
Tree (+, 3, 4));
cout << tl1 << endl; // prints ((-5) * (3 + 4))
const Tree t2 = Tree (™", t1, tl);

((-5)*(3+4))

/I prints (((-5) * (3 + 4)) * ((-5) * (3 + 4))).
cout << t2 << endl

return O;
/I Destructors of t1 and t2 recursively
} /I delete entire tree when leaving scope.

D-O-C

Expression Tree Diagram 1

e Expression tree for t1

OO Pattern Examples
Vanderbilt University

Vanderbilt University

Expression Tree Diagram 2

n
Q2
[=%
£
I
<
]
c
£
]
E=
I
o
o
o

e Expression tree for t2 = (t1 * t1)

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt

Adding Ternary _Nodes

e Extending the existing program to support ternary nodes is
straightforward

— lLe., just derive new class Ternary_Node to handle ternary
operators, e.g.,a==b? c: d, etc.

#include "Node.h"
class Ternary Node : public Node {
public:
Ternary_Node (const string &, const Tree &,
const Tree &, const Tree &);
virtual void print (ostream &) const;
private:
const string operation_;
Tree left_, middle_, right_; };

D-O-C

Vanderbilt University

OO Pattern Examples

Douglas C. Schmidt

C++ Ternary _Node Implementation

#include "Ternary_Node.h"

Ternary_Node::Ternary_Node (const string &op,
const Tree &a,
const Tree &b,
const Tree &c)

. operation_ (op), left_ (a), middle_ (b),
right_ (c) {}

void Ternary_Node::print (ostream &stream) const {
stream << this->operation_ << "("
<< this->left_ // recursive call
<< "" << this->middle_ // recursive call
<< "" << this->right_ // recursive call
<< ")

}

D-O-C

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt

C++ Ternary _Node Implementation (cont'd)

/I Modified class Tree Factory
class Tree {
/l add 1 class constructor
public:

Tree (const string &, const Tree &,

const Tree &, const Tree &)

: node_ (new Ternary_Node (op, I, m, r) {}

/I Same as before . . .

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt
Differences from Algorithmic Implementation

e On the other hand, modifying the original algorithmic approach
requires changing (1) the original data structures, e.g.,

struct Tree_Node {
enum {
NUM, UNARY, BINARY, TERNARY
} tag_; // same as before
union {
/I same as before. But, add this:
struct {
Tree_Node *_, *m_, *r_;
} ternary_;
}c
#define ternary_ c.ternary_

h

LI

Vanderbilt University E} g L

OO Pattern Examples Douglas C. Schmidt
Differences from Algorithmic Implementation (cont'd)

e and (2) many parts of the code, e.g.,

void print_tree (Tree Node *root) {

Il same as before

case TERNARY: // must be TERNARY.
printf ("(");
print_tree (root->ternary .l);
printf ("%c", root->op_[0]);
print_tree (root->ternary_.m_);
printf ("%c", root->op_[1]);
print_tree (root->ternary_.r_);
printf (")"); break;

Il same as before

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt
Summary of Expression Tree Example

e OO version represents a more complete modeling of the application
domain

— e.g., splits data structures into modules that correspond to
“objects” and relations in expression trees

e Use of C++ language features simplifies the design and facilitates
extensibility

— e.g., implementation follows directly from design

e Use of patterns helps to motivate, justify, and generalize design
choices

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt

Potential Problems with OO Design

Solution is very “data structure rich”

— e.g., requires configuration management to handle many headers
and .cc files!

May be somewhat less efficient than original algorithmic approach
— e.g., due to virtual function overhead

In general, however, virtual functions may be no less inefficient than
large switch statements or if/else chains . . .

As a rule, be careful of micro vs. macro optimizations

— Ie., always profile your code!

e
Vanderbilt University E} E L

