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Case Study: Expression Tree Evaluator

� The following inheritance and dynamic binding example constructs
expression trees

– Expression trees consist of nodes containing operators and
operands

� Operators have different precedence levels, different associativities,
and different arities, e.g.,

� Multiplication takes precedence over addition

� The multiplication operator has two arguments, whereas unary
minus operator has only one

� Operands are integers, doubles, variables, etc.

� We’ll just handle integers in this example . . .

Vanderbilt University 1

OO Pattern Examples Douglas C. Schmidt

Expression Tree Diagram
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Expression Tree Behavior
� Expression trees

– Trees may be “evaluated” via different traversals

� e.g., in-order, post-order, pre-order, level-order
– The evaluation step may perform various operations, e.g.,

� Traverse and print the expression tree

� Return the “value” of the expression tree

� Generate code

� Perform semantic analysis
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Algorithmic Version

� A typical algorithmic method for implementing
expression trees involves using a struct/union to
represent data structure, e.g.,

typedef struct Tree_Node Tree_Node;
struct Tree_Node {

enum { NUM, UNARY, BINARY } tag_;
short use_; /* reference count */
union {

char op_[2];
int num_;

} o;
#define num_ o.num_
#define op_ o.op_

union {
Tree_Node *unary_;
struct { Tree_Node *l_, *r_; } binary_;

} c;
#define unary_ c.unary_
#define binary_ c.binary_
};
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Print Tree Function

� A typical algorithmic implementation use a switch
statement and a recursive function to build and
evaluate a tree, e.g.,

void print_tree (Tree_Node *root) {
switch (root->tag_) {
case NUM: printf ("%d", root->num_);

break;
case UNARY:

printf ("(%s", root->op_[0]);
print_tree (root->unary_);
printf (")"); break;

case BINARY:
printf ("(");
print_tree (root->binary_.l_);
printf ("%s", root->op_[0]);
print_tree (root->binary_.r_);
printf (")"); break;

default:
printf (error, unknown type\n);

}
}
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More Limitations with Algorithmic Approach

� The program organization makes it difficult to extend, e.g.,

– Any small changes will ripple through the entire design and
implementation

� e.g., see the “ternary” extension below
– Easy to make mistakes switching on type tags . . .

� Solution wastes space by making worst-case assumptions wrt
structs and unions

– This is not essential, but typically occurs
– Note that this problem becomes worse the bigger the size of the

largest item becomes!
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OO Alternative

� Contrast previous algorithmic approach with an object-oriented
decomposition for the same problem:

– Start with OO modeling of the “expression tree” application
domain, e.g., go back to original picture

– Discover several classes involved:

� class Node: base class that describes expression tree vertices:

� class Int Node: used for implicitly converting int to Tree node

� class Unary Node: handles unary operators, e.g., -10, +10, !a

� class Binary Node: handles binary operators, e.g., a + b, 10 -
30

� class Tree: “glue” code that describes expression-tree edges,
i.e., relations between Nodes

– Note, these classes model entities in the application domain

� i.e., nodes and edges (vertices and arcs)
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Expression Tree Diagram
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Relationships Between Tree and Node Classes
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Design Patterns in the Expression Tree Program

� Factory

– Centralize the assembly of resources necessary to create an
object

� e.g., decouple Node subclass initialization from use

� Bridge

– Decouple an abstraction from its implementation so that the two
can vary independently

� e.g., printing contents of a subtree and managing memory

� Adapter

– Convert the interface of a class into another interface clients expect

� e.g., make Tree conform C++ iostreams
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C++ Node Interface
class Tree; // Forward declaration

// Describes the Tree vertices
class Node {
friend class Tree;
protected: // Only visible to derived classes

Node (): use_ (1) {}

/* pure */ virtual void print (ostream &) const = 0;

// Important to make destructor virtual!
virtual ˜Node ();

private:
int use_; // Reference counter.

};
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C++ Tree Interface
#include "Node.h"
// Bridge class that describes the Tree edges and
// acts as a Factory.
class Tree {
public:

// Factory operations
Tree (int);
Tree (const string &, Tree &);
Tree (const string &, Tree &, Tree &);
Tree (const Tree &t);
void operator= (const Tree &t);
˜Tree ();
void print (ostream &) const;

private:
Node *node_; // pointer to a rooted subtree
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C++ Int Node Interface

#include "Node.h"

class Int_Node : public Node {
public:

Int_Node (int k);
virtual void print (ostream &stream) const;

private:
int num_; // operand value.

};
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C++ Unary Node Interface

#include "Node.h"

class Unary_Node : public Node {
public:

Unary_Node (const string &op, const Tree &t);
virtual void print (ostream &stream) const;

private:
string operation_;
Tree operand_;

};
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C++ Binary Node Interface

#include "Node.h"

class Binary_Node : public Node {
public:

Binary_Node (const string &op,
const Tree &t1,
const Tree &t2);

virtual void print (ostream &s) const;
private:

const string operation_;
Tree left_;
Tree right_;

};
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C++ Int Node Implementations

#include "Int_Node.h"

Int_Node::Int_Node (int k): num_ (k) { }

void Int_Node::print (ostream &stream) const {
stream << this->num_;

}
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C++ Unary Node Implementations

#include "Unary_Node.h"

Unary_Node::Unary_Node (const string &op, const Tree &t1)
: operation_ (op), operand_ (t1) { }

void Unary_Node::print (ostream &stream) const {
stream << "(" << this->operation_ <<

<< this->operand_ // recursive call!
<< ")";

}
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C++ Binary Node Implementation

#include "Binary_Node.h"

Binary_Node::Binary_Node (const string &op,
const Tree &t1,
const Tree &t2):

operation_ (op), left_ (t1), right_ (t2) {}

void Binary_Node::print (ostream &stream) const {
stream << "(" << this->left_ // recursive call

<< " " << this->operation_
<< " " << this->right_ // recursive call
<< ")";

}
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Initializing the Node Subclasses

� Problem

– How to ensure the Node subclasses are initialized properly

� Forces

– There are different types of Node subclasses

� e.g., take different number and type of arguments
– We want to centralize initialization in one place because it is likely

to change . . .

� Solution

– Use a Factory pattern to initialize the Node subclasses

Vanderbilt University 22
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The Factory Pattern
� Intent

– Centralize the assembly of resources necessary to create an
object

� Decouple object creation from object use by localizing creation
knowledge

� This pattern resolves the following forces:

– Decouple initialization of the Node subclasses from their
subsequent use

– Makes it easier to change or add new Node subclasses later on

� e.g., Ternary nodes . . .

� A generalization of the GoF Factory Method pattern
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Structure of the Factory Pattern

FactoryFactory

make_product()

Product product = ...Product product = ...

return productreturn product

createscreates

ProductProduct
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Using the Factory Pattern

� The Factory pattern is used by the Tree class to initialize Node
subclasses:

Tree::Tree (int num)
: node_ (new Int_Node (num)) {}

Tree::Tree (const string &op, const Tree &t)
: node_ (new Unary_Node (op, t)) {}

Tree::Tree (const string &op,
const Tree &t1,
const Tree &t2):

: node_ (new Binary_Node (op, t1, t2)) {}
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Printing Subtrees

� Problem

– How do we print subtrees without revealing their types?

� Forces

– The Node subclass should be hidden within the Tree instances
– We don’t want to become dependent on the use of Nodes ,

inheritance, and dynamic binding, etc.
– We don’t want to expose dynamic memory management details to

application developers

� Solution

– Use the Bridge pattern to shield the use of inheritance and
dynamic binding
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The Bridge Pattern
� Intent

– Decouple an abstraction from its implementation so that the two
can vary independently

� This pattern resolves the following forces that arise when building
extensible software with C++

1. How to provide a stable, uniform interface that is both closed and
open, i.e.,
– interface is closed to prevent direct code changes
– Implementation is open to allow extensibility

2. How to manage dynamic memory more transparently and robustly
3. How to simplify the implementation of operator<<
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Structure of the Bridge Pattern

ImplementorImplementor

method_impl()

1: method_impl()

ConcreteConcrete
ImplementorAImplementorA

method_impl() ConcreteConcrete
ImplementorBImplementorB

method_impl()

AbstractionAbstraction

method()
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Using the Bridge Pattern

Int  NodeInt  Node

print() BinaryBinary
NodeNode

print()

NodeNode

print()

1: print()

UnaryUnary
NodeNode
print()

TernaryTernary
NodeNode

print()

TreeTree

print()

Vanderbilt University 29

OO Pattern Examples Douglas C. Schmidt

Illustrating the Bridge Pattern in C++

� The Bridge pattern is used for printing expression trees:

void Tree::print (ostream &os) const {
this->node_->print (os);

}

� Note how this pattern decouples the Tree interface for printing from
the Node subclass implementation

– i.e., the Tree interface is fixed, whereas the Node implementation
varies

– However, clients need not be concerned about the variation . . .
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Integrating with C++ I/O Streams
� Problem

– Our Tree interface uses a print method, but most C++
programmers expect to use I/O Streams

� Forces

– Want to integrate our existing C++ Tree class into the I/O Stream
paradigm without modifying our class or C++ I/O

� Solution

– Use the Adapter pattern to integrate Tree with I/O Streams

Vanderbilt University 31



OO Pattern Examples Douglas C. Schmidt

The Adapter Pattern

� Intent

– Convert the interface of a class into another interface client expects

� Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces

� This pattern resolves the following force:

1. How to transparently integrate the Tree with the C++ iostream
operators

Vanderbilt University 32
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Structure of the Adapter Pattern

AdapterAdapter

request()

1: request ()

2: specific_request()

TargetTarget

request()

clientclient

AdapteeAdaptee

specific_request()
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Using the Adapter Pattern

iostreamiostream

operator<<
2: print()

TreeTree

print()

1: operator<<

clientclient TargetTarget

operator<<
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Using the Adapter Pattern
� The Adapter pattern is used to integrate with C++ I/O Streams

ostream &operator<< (ostream &s, const Tree &tree) {
tree.print (s);
// This triggers Node * virtual call via
// tree.node_->print (s), which is
// implemented as the following:
// (*tree.node_->vptr[1]) (tree.node_, s);
return s;

}

� Note how the C++ code shown above uses I/O streams to “adapt”
the Tree interface . . .
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C++ Tree Implementation

� Reference counting via the “counted body” idiom

Tree::Tree (const Tree &t): node_ (t.node_) {
// Sharing, ref-counting.

++this->node_->use_;
}

void Tree::operator= (const Tree &t) {
// order important here!
++t.node_->use_;
--this->node_->use_;
if (this->node_->use_ == 0)

delete this->node_;
this->node_ = t.node_;

}
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C++ Tree Implementation (cont’d)

Tree::˜Tree () {
// Ref-counting, garbage collection
--this->node_->use_;
if (this->node_->use_<= 0)

delete this->node_;
}

Vanderbilt University 37
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C++ Main Program
#include <iostream.h>
#include "Tree.h"

int main (int, char *[]) {
const Tree t1 = Tree ("*", Tree ("-", 5),

Tree ("+", 3, 4));
cout << t1 << endl; // prints ((-5) * (3 + 4))
const Tree t2 = Tree ("*", t1, t1);

// prints (((-5) * (3 + 4)) * ((-5) * (3 + 4))).
cout << t2 << endl;

return 0;
// Destructors of t1 and t2 recursively

} // delete entire tree when leaving scope.
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Adding Ternary Nodes

� Extending the existing program to support ternary nodes is
straightforward

– i.e., just derive new class Ternary Node to handle ternary
operators, e.g., a == b ? c : d, etc.

#include "Node.h"
class Ternary_Node : public Node {
public:

Ternary_Node (const string &, const Tree &,
const Tree &, const Tree &);

virtual void print (ostream &) const;
private:

const string operation_;
Tree left_, middle_, right_; };
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C++ Ternary Node Implementation
#include "Ternary_Node.h"
Ternary_Node::Ternary_Node (const string &op,

const Tree &a,
const Tree &b,
const Tree &c)

: operation_ (op), left_ (a), middle_ (b),
right_ (c) {}

void Ternary_Node::print (ostream &stream) const {
stream << this->operation_ << "("

<< this->left_ // recursive call
<< "," << this->middle_ // recursive call
<< "," << this->right_ // recursive call
<< ")";

}

Vanderbilt University 42

OO Pattern Examples Douglas C. Schmidt

C++ Ternary Node Implementation (cont’d)

// Modified class Tree Factory
class Tree {
// add 1 class constructor
public:

Tree (const string &, const Tree &,
const Tree &, const Tree &)

: node_ (new Ternary_Node (op, l, m, r)) {}
// Same as before . . .
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Differences from Algorithmic Implementation

� On the other hand, modifying the original algorithmic approach
requires changing (1) the original data structures, e.g.,

struct Tree_Node {
enum {

NUM, UNARY, BINARY, TERNARY
} tag_; // same as before
union {

// same as before. But, add this:
struct {

Tree_Node *l_, *m_, *r_;
} ternary_;

} c;
#define ternary_ c.ternary_
};

Vanderbilt University 44
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Differences from Algorithmic Implementation (cont’d)

� and (2) many parts of the code, e.g.,

void print_tree (Tree_Node *root) {
// same as before
case TERNARY: // must be TERNARY.

printf ("(");
print_tree (root->ternary_.l_);
printf ("%c", root->op_[0]);
print_tree (root->ternary_.m_);
printf ("%c", root->op_[1]);
print_tree (root->ternary_.r_);
printf (")"); break;

// same as before
}
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Summary of Expression Tree Example

� OO version represents a more complete modeling of the application
domain

– e.g., splits data structures into modules that correspond to
“objects” and relations in expression trees

� Use of C++ language features simplifies the design and facilitates
extensibility

– e.g., implementation follows directly from design

� Use of patterns helps to motivate, justify, and generalize design
choices
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Potential Problems with OO Design
� Solution is very “data structure rich”

– e.g., requires configuration management to handle many headers
and .cc files!

� May be somewhat less efficient than original algorithmic approach

– e.g., due to virtual function overhead

� In general, however, virtual functions may be no less inefficient than
large switch statements or if/else chains . . .

� As a rule, be careful of micro vs. macro optimizations

– i.e., always profile your code!
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