Object-Oriented Design Case Study with C++

Douglas C. Schmidt

Professor Department of EECS

d.schmidt@vanderbilt.edu Vanderbilt University
www.cs.wustl.edu/~schmidt/ (615) 343-8197

p¥alo

OO Pattern Examples

Douglas C. Schmidt

Case Study: Expression Tree Evaluator

e The following inheritance and dynamic binding example constructs
expression trees

— Expression trees consist of nodes containing operators and

operands
x Operators have different precedence levels, different associativities,
and different arities, e.g.,
- Multiplication takes precedence over addition
- The multiplication operator has two arguments, whereas unary
minus operator has only one
x Operands are integers, doubles, variables, etc.
- We'll just handle integers in this example . . .
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Expression Tree Diagram
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Expression Tree Behavior

e EXpression trees

— Trees may be “evaluated” via different traversals
x e.g., in-order, post-order, pre-order, level-order
— The evaluation step may perform various operations, e.g.,
Traverse and print the expression tree
Return the “value” of the expression tree
Generate code
Perform semantic analysis
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Print _Tree Function Algorithmic Version

e Atypical algorithmic implementation use a switch e A typical algorithmic method for implementing
statement and a recursive function to build and expression trees involves using a struct/union to
evaluate a tree, e.g., represent data structure, e.g.,

void print_tree (Tree_Node *root) {

switch (root->tag ) {

case NUM: printf ("%d", root->num_);

break;

case UNARY:
printf ("(%s", root->op_[0]); char op_[2];
print_tree (root->unary_); int num - '
printf (")"); break; } o -

case BINARY: #define num_ o.num_

printf ("("); #define o
: : . p_ 0.0p_
print_tree (root->binary_.I_); union {

printf. ("%s", roo>t;op_[0]); _ Tree_Node *unary_;

g::z:f_tzﬁ)?)_(rgg‘;lk.mary_.r_), struct { Tree_Node *|_, *r_; } binary_;
default; "

printf (error, unknown type\n);

typedef struct Tree_Node Tree_Node;
struct Tree Node {
enum { NUM, UNARY, BINARY } tag_;
short use_; /* reference count */
union {

#define unary_ c.unary_
#define binary_ c.binary_

h
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More Limitations with Algorithmic Approach

e The program organization makes it difficult to extend, e.g.,

— Any small changes will ripple through the entire design and
implementation
x e.g., see the “ternary” extension below

— Easy to make mistakes switching on type tags . . .

e Solution wastes space by making worst-case assumptions wrt
structs and unions

— This is not essential, but typically occurs
— Note that this problem becomes worse the bigger the size of the
largest item becomes!
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OO0 Alternative
e Contrast previous algorithmic approach with an object-oriented
decomposition for the same problem:

— Start with OO modeling of the “expression tree” application
domain, e.g., go back to original picture
— Discover several classes involved:
x class Node: base class that describes expression tree vertices:
- class Int_Node: used for implicitly converting int to Tree node
- class Unary_Node: handles unary operators, e.g., -10, +10, la
- class Binary_Node: handles binary operators, e.g., a + b, 10 -
30
x class Tree: “glue” code that describes expression-tree edges,
i.e., relations between Nodes
— Note, these classes model entities in the application domain
* i.e., nodes and edges (vertices and arcs)

D-O-C
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Expression Tree Diagram
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Relationships Between Tree and Node Classes

Binary Unary Int
Node Node Node

1 1
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Design Patterns in the Expression Tree Program C++ Node Interface
class Tree; /| Forward declaration

e Factory
/I Describes the Tree vertices

class Node {

friend class Tree;

protected: // Only visible to derived classes
e Bridge Node (): use_ (1) {}

— Decouple an abstraction from its implementation so that the two
can vary independently
* e.g., printing contents of a subtree and managing memory

— Centralize the assembly of resources necessary to create an
object
* e.g., decouple Node subclass initialization from use

[* pure */ virtual void print (ostream &) const = 0;

/I Important to make destructor virtual!
e Adapter virtual “Node ();
private:

int use_; // Reference counter.

h

— Convert the interface of a class into another interface clients expect
x e.g., make Tree conform C++ iostreams

™y
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C++ Tree Interface C++ Int_Node Interface

#include "Node.h"

#include "Node.h"
/I Bridge class that describes the Tree edges and
/I acts as a Factory.
class Tree {
public:
/I Factory operations
Tree (int);
Tree (const string &, Tree &);
Tree (const string &, Tree &, Tree &);
Tree (const Tree &t);
void operator= (const Tree &t);
“Tree ();
void print (ostream &) const;
private:
Node *node_; // pointer to a rooted subtree

class Int_Node : public Node {
public:

Int_Node (int K);

virtual void print (ostream &stream) const;
private:

int num_; // operand value.

J3
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C++ Unary _Node Interface C++ Binary _Node Interface

#include "Node.h" #include "Node.h"

class Unary_Node : public Node { class Binary_Node : public Node {

public: public:
Unary_Node (const string &op, const Tree &t); Binary_Node (const string &op,
virtual void print (ostream &stream) const; const Tree &tl,

private: const Tree &t2);
string operation_; virtual void print (ostream &s) const;
Tree operand_; private:

h const string operation_;

Tree left_;

Tree right_;

h
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C++ Int_Node Implementations

#include "Int_Node.h"

left_
(Tree PART)
middle_
(Tree pART)
right_
(Tree pART)

Int_Node::Int_Node (int k): num_ (k) { }

void Int_Node::print (ostream &stream) const {
stream << this->num_;

left,
(Tree PART)

right
(Tree PART)

}

operan
(Tree pART)

Unary Node

Node
Int_Node

Memory Layout for C++ Version

e Memory layouts for different subclasses of Node

OO Pattern Examples
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C++ Unary _Node Implementations

#include "Unary_Node.h"

Unary_Node::Unary_Node (const string &op, const Tree &tl)
. operation_ (op), operand_ (t1) { }

void Unary_Node::print (ostream &stream) const {
stream << "(" << this->operation_ <<
<< this->operand_ // recursive call!
<< M-
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C++ Binary _Node Implementation

#include "Binary_Node.h"

Binary_Node::Binary_Node (const string &op,
const Tree &t1,
const Tree &t2):

operation_ (op), left_ (t1), right_ (t2) {}

void Binary_Node::print (ostream &stream) const {
stream << "(" << this->left_ // recursive call
<< " " << this->operation_
<< " " << this->right_ // recursive call
<< "7
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Initializing the Node Subclasses

e Problem
— How to ensure the Node subclasses are initialized properly
e Forces

— There are different types of Node subclasses
x e.g., take different number and type of arguments

— We want to centralize initialization in one place because it is likely
to change . . .

e Solution

— Use a Factory pattern to initialize the Node subclasses

Tt
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The Factory Pattern

e [ntent

— Centralize the assembly of resources necessary to create an
object
«x Decouple object creation from object use by localizing creation
knowledge

e This pattern resolves the following forces:

— Decouple initialization of the Node subclasses from their

subsequent use
— Makes it easier to change or add new Node subclasses later on
x e.g., Ternary nodes . . .

e A generalization of the GoF Factory Method pattern
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Structure of the Factory Pattern

Factory

make_product() Q|

AN
N

creates

Product product =.
return product

Product

e ' Mt
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Using the Factory Pattern

e The Factory pattern is used by the Tree class to initialize Node
subclasses:

Tree::Tree (int num)
: node_ (new Int_Node (num)) {}

Tree::Tree (const string &op, const Tree &t)
: node_ (new Unary_Node (op, t)) {}

Tree::Tree (const string &op,
const Tree &tl,
const Tree &t2):
: node_ (new Binary_Node (op, t1, t2)) {}

¥

D
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Printing Subtrees

e Problem
— How do we print subtrees without revealing their types?
e Forces

— The Node subclass should be hidden within the Tree instances

— We don’t want to become dependent on the use of Nodes,
inheritance, and dynamic binding, etc.

— We don’t want to expose dynamic memory management details to
application developers

e Solution

— Use the Bridge pattern to shield the use of inheritance and
dynamic binding

D
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The Bridge Pattern

e [ntent

— Decouple an abstraction from its implementation so that the two
can vary independently

e This pattern resolves the following forces that arise when building
extensible software with C++

1. How to provide a stable, uniform interface that is both closed and
open, i.e.,
— interface is closed to prevent direct code changes
— Implementation is open to allow extensibility
2. How to manage dynamic memory more transparently and robustly
3. How to simplify the implementation of operator<<

D
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Structure of the Bridge Pattern
1: method_impl()

Abstraction Implementor

method() method_impl()

e

Concrete
ImplementorA

method_impl() Concrete
ImplementorB

method _impl()

Vanderbilt University
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Using the Bridge Pattern

1: print()
—_—

Tree Node

print() print()

Int Node

Bina
Node

print()

print()

LH

N
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lllustrating the Bridge Pattern in C++

e The Bridge pattern is used for printing expression trees:

void Tree:print (ostream &o0s) const {
this->node_->print (0s);
}

e Note how this pattern decouples the Tree interface for printing from
the Node subclass implementation

— I.e., the Tree interface is fixed, whereas the Node implementation

varies
— However, clients need not be concerned about the variation . . .
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Integrating with C++ 1/0O Streams

e Problem

— Our Tree interface uses a print method, but most C++
programmers expect to use 1/O Streams

e Forces

— Want to integrate our existing C++ Tree class into the 1/0 Stream
paradigm without modifying our class or C++ I/O

e Solution

— Use the Adapter pattern to integrate Tree with I/O Streams
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The Adapter Pattern

e [ntent

— Convert the interface of a class into another interface client expects
x Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces

e This pattern resolves the following force:

1. How to transparently integrate the Tree with the C++ iostream
operators

Vanderbilt University
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Structure of the Adapter Pattern

1: request ()
—

client Target
request()

Adapter Adaptee

% )
request() 2: specific_request() specific_request()

DR
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Using the Adapter Pattern

1: operator<<
_—>

client Target
operator<<

jiostream

operator<<
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Using the Adapter Pattern

e The Adapter pattern is used to integrate with C++ I/O Streams

ostream &operator<< (ostream &s, const Tree &tree) {
tree.print (s);
/I This triggers Node * virtual call via
/I tree.node_->print (s), which is
/I implemented as the following:
/I (*tree.node_->vptr[1]) (tree.node_, s);
return s;

}

e Note how the C++ code shown above uses I/O streams to “adapt”
the Tree interface . . .

=
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C++ Tree Implementation C++ Tree Implementation (contd)

e Reference counting via the “counted body” idiom Tree::"Tree () {
/I Ref-counting, garbage collection
--this->node_->use_;
if (this->node_->use_<= 0)
delete this->node_;

Tree::Tree (const Tree &t): node_ (t.node ) {
/I Sharing, ref-counting.
++this->node_->use_;

}

void Tree::operator= (const Tree &t) {
/I order important here!
++t.node_->use_;
--this->node_->use_;
if (this->node_->use_ == 0)
delete this->node_;
this->node_ = t.node_;

}

D-O-C
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C++ Main Program

#include <iostream.h>

#include "Tree.h"

int main (int, char *]) {
const Tree t1 = Tree (™", Tree ("-", 5),
Tree (+, 3, 4));
cout << tl1 << endl; // prints ((-5) * (3 + 4))
const Tree t2 = Tree (™", t1, tl);

((-5)*(3+4))

/I prints  (((-5) * (3 + 4)) * ((-5) * (3 + 4))).
cout << t2 << endl

return O;
/I Destructors of t1 and t2 recursively
} /I delete entire tree when leaving scope.

D-O-C

Expression Tree Diagram 1

e Expression tree for t1
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Expression Tree Diagram 2
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e Expression tree for t2 = (t1 * t1)

Vanderbilt University

OO Pattern Examples Douglas C. Schmidt

Adding Ternary _Nodes

e Extending the existing program to support ternary nodes is
straightforward

— lLe., just derive new class Ternary_Node to handle ternary
operators, e.g.,a==b? c: d, etc.

#include "Node.h"
class Ternary Node : public Node {
public:
Ternary_Node (const string &, const Tree &,
const Tree &, const Tree &);
virtual void print (ostream &) const;
private:
const string operation_;
Tree left_, middle_, right_; };

D-O-C
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C++ Ternary _Node Implementation

#include "Ternary_Node.h"

Ternary_Node::Ternary_Node (const string &op,
const Tree &a,
const Tree &b,
const Tree &c)

. operation_ (op), left_ (a), middle_ (b),
right_ (c) {}

void Ternary_Node::print (ostream &stream) const {
stream << this->operation_ << "("
<< this->left_ // recursive call
<< "" << this->middle_ // recursive call
<< "" << this->right_ // recursive call
<< ")

}

D-O-C
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C++ Ternary _Node Implementation (cont'd)

/I Modified class Tree Factory
class Tree {
/l add 1 class constructor
public:

Tree (const string &, const Tree &,

const Tree &, const Tree &)

: node_ (new Ternary_Node (op, I, m, r) {}

/I Same as before . . .
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Differences from Algorithmic Implementation

e On the other hand, modifying the original algorithmic approach
requires changing (1) the original data structures, e.g.,

struct Tree_Node {
enum {
NUM, UNARY, BINARY, TERNARY
} tag_; // same as before
union {
/I same as before. But, add this:
struct {
Tree_Node *_, *m_, *r_;
} ternary_;
}c
#define ternary_ c.ternary_

h

LI
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Differences from Algorithmic Implementation (cont'd)

e and (2) many parts of the code, e.g.,

void print_tree (Tree Node *root) {

Il same as before

case TERNARY: // must be TERNARY.
printf ("(");
print_tree (root->ternary .l );
printf ("%c", root->op_[0]);
print_tree (root->ternary_.m_);
printf ("%c", root->op_[1]);
print_tree (root->ternary_.r_);
printf (")"); break;

Il same as before
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Summary of Expression Tree Example

e OO version represents a more complete modeling of the application
domain

— e.g., splits data structures into modules that correspond to
“objects” and relations in expression trees

e Use of C++ language features simplifies the design and facilitates
extensibility

— e.g., implementation follows directly from design

e Use of patterns helps to motivate, justify, and generalize design
choices
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Potential Problems with OO Design

Solution is very “data structure rich”

— e.g., requires configuration management to handle many headers
and .cc files!

May be somewhat less efficient than original algorithmic approach
— e.g., due to virtual function overhead

In general, however, virtual functions may be no less inefficient than
large switch statements or if/else chains . . .

As a rule, be careful of micro vs. macro optimizations

— Ie., always profile your code!

e
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