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Abstract

There is increasing demand to extend CORBA middleware to
support applications with stringent quality of service (QoS) re-
quirements. However, conventional CORBA middleware does
not define standard features to dynamically schedule opera-
tions for applications that possess deterministic and/or statis-
tical real-time requirements. This paper presents three contri-
butions to the study of real-time CORBA operation scheduling
strategies.

First, we document our progression from static to dynamic
scheduling for avionics applications with deterministic real-
time requirements. Second, we describe the flexible scheduling
service framework in our real-time CORBA implementation,
TAO, which efficiently supports core scheduling strategies like
RMS, EDF, MLF, and MUF. Third, we present results from sim-
ulations and empirical benchmarks that quantify the behavior
of these scheduling strategies and assess the overhead of dy-
namic scheduling in TAO.

Our simulation results show how hybrid static/dynamic
strategies that consider operation criticality, such as MUF, are
capable of preserving scheduling guarantees for critical oper-
ations under an overloaded schedule. In addition, our em-
pirical results show that under realistic conditions, dynamic
scheduling of CORBA operations can be deterministic and can
achieve acceptable latency for operations, even with moderate
levels of queueing.

Keywords: Middleware and APIs, Quality of Service
Issues, Mission Critical/Safety Critical Systems, Dynamic
Scheduling Algorithms and Analysis, Distributed Systems.
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1 Introduction

1.1 Motivation

Supporting the quality of service (QoS) demands of next-
generation real-time applications requires object-oriented
(OO) middleware that is flexible, efficient, predictable, and
convenient to program. Applications with deterministic real-
time requirements, such as avionics mission computing sys-
tems [1], impose severe constraints on the design and im-
plementation of real-time OO middleware. Avionics mission
computing applications manage sensors and operator displays,
navigate the aircraft’s course, and control weapon release.

Middleware for avionics mission computing must support
applications with both deterministic and statistical real-time
QoS requirements. Support for deterministic real-time re-
quirements are necessary for mission computing tasks that
must meet all their deadlines,e.g., weapon release and naviga-
tion. Likewise, support for statistical real-time requirements
is desirable for tasks like built-in-test and low-priority display
queues, which can tolerate minor fluctuations in scheduling
and reliability guarantees, but nonetheless require QoS sup-
port.

1.2 Design and Implementation Challenges

Figure 1 illustrates the architecture of an OO avionics mis-
sion computing application developed at Boeing [2] using OO
middleware components and services based on CORBA [3].
CORBA Object Request Brokers (ORB)s allow clients to in-
voke operations on target object implementations without con-
cern for where the object resides, what language the object im-
plementations are written in, the OS/hardware platform, or the
type of communication protocols, networks, and buses used to
interconnect distributed objects [4]. However, achieving these
benefits for real-time avionics applications requires the reso-
lution of the following design and implementation challenges:
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Figure 1: Example Avionics Mission Computing Application

Scheduling assurance prior to run-time: In avionics ap-
plications, the consequences of missing a deadline at run-time
can be catastrophic. For example, failure to process an input
from the pilot within the allotted time frame can be disastrous,
especially in mission critical situations such as air-to-air en-
gagement or weapons release. Therefore, it is essential to val-
idate that all critical processing deadlines will be metprior to
run-time.

Historically, validating stringent timing requirements has
implied the use of static, off-line scheduling. For instance,
the ARINC Avionics Application Software Standard Interface
(APEX) for Integrated Modular Avionics (IMA) relies on two-
level scheduling [5, 6]. One level consists ofpartitions, which
are executed cyclically and scheduled statically, off-line. The
second level consists of applicationprocesseswithin each par-
tition, which are scheduled via a more flexible approach using
priority-based preemption [5].

Severe resource limitations: Avionics systems must min-
imize processing due to limited resource availability, such as
weight and power consumption restrictions. A consequence of
using static, off-line scheduling is that worst-case processing
requirements drive the schedule. Therefore, resource alloca-
tion and scheduling must always accommodate the worst case,
even in non-worst case scenarios.

Distributed Processing: In complex avionics systems, mis-
sion processing must be distributed over several physical pro-
cessors. Moreover, computations on separate processors must
communicate effectively. Clients running on one processor
must be able to invoke operations on servants in other pro-
cessors. Likewise, the allocation of operations to processors

should be flexible. For instance, it should be transparent to
the software design and implementation whether a given oper-
ation resides on the same processor as the client that invokes
it.

Testability: Avionics software is complex, critical, and
long-lived. Therefore, maintenance is problematic and expen-
sive [7]. A large percentage of software maintenance involves
testing. Current scheduling approaches are validated by exten-
sive testing, which is tedious and non-comprehensive. There-
fore, analytical assurance is essential to help reduce validation
costs by focusing the requisite testing on the most strategic
system components.

Adaptability across product families: Current avionics ap-
plications are custom-built for specific product families. De-
velopment and testing costs can be reduced if large, common
components can be factored out. In addition, validation and
certification of components can be shared across product fam-
ilies, potentially reducing development time and effort.

1.3 Applying CORBA to Real-Time Avionics
Applications

Our experience using CORBA on telecommunication [8] and
medical imaging projects [9] indicates that it is well-suited for
conventional request/response applications with “best-effort”
QoS requirements. Moreover, CORBA addresses issues of
distributed processing and adaptation across product families
by promoting the separation of interfaces from implementa-
tions and supporting component reuse [4].

However, standard CORBA is not yet ideally suited for real-
time avionics applications since it does not specify features for
scheduling operations that require deterministic and/or statis-
tical real-time QoS [10]. To meet these requirements, we have
developed a real-time CORBA Object Request Broker (ORB)
called TAO [10]. TAO is a CORBA-compliant ORB whose
implementation and service extensions support efficient and
predictable real-time, distributed object computing.

Our prior work on TAO has explored several dimensions of
real-time ORB design and performance, including real-time
event processing [2], real-time request demultiplexing [11],
real-time I/O subsystem integration [12], and real-time con-
currency and connection architectures [13]. This paper ex-
tends our previous work on a real-time CORBA static schedul-
ing service [10] by incorporating astrategized scheduling ser-
vice frameworkinto TAO. This framework allows the config-
uration and empirical evaluation of multiple static, dynamic,
and hybrid static/dynamic scheduling strategies, such as Rate
Monotonic Scheduling (RMS) [14], Earliest Deadline First
(EDF) [14], Minimum Laxity First (MLF) [15], and Maximum
Urgency First (MUF) [15].
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To maintain scheduling guarantees and to simplify testing,
we have extended our prior work on TAO incrementally. In
particular, our approach focuses on deterministic, statically
configured and scheduled avionics applications with the fol-
lowing characteristics:

� Bounded executions– operations stay within the limits of
their advertised execution times.

� Bounded rates– dispatch requests will arrive within the
advertised period and quantity values.

� Known operations– all operations are known to the
scheduler before run-time or are reflected entirely within
the execution times of other advertised operations.

These types of applications are relativelystatic. Therefore,
TAO can minimize run-time overhead that would otherwise
stem from mechanisms used to enforce operation execution
time limits [2] or to perform dynamic admission control.

Within these constraints, the work on TAO’s strategized
scheduling service framework described in this paper allows
applications to specify custom static and/or dynamic schedul-
ing and dispatching strategies. This framework increases
adaptability across application families and operating systems,
while preserving the rigorous scheduling guarantees and testa-
bility offered by our previous work on statically scheduled
CORBA operations.

1.4 Paper Organization

The remainder of this paper is organized as follows: Sec-
tion 2 reviews the drawbacks of off-line, static schedul-
ing and introduces the dynamic and hybrid static/dynamic
scheduling strategies we are evaluating. Section 3 discusses
the design and implementation of TAO’s scheduling service
framework, which supports various static, dynamic, or hy-
brid static/dynamic real-time scheduling strategies. Section 4
demonstrates how TAO’s scheduling service can be used to vi-
sualize scheduler behavior for different scheduling strategies
at the critical instant. Section 5 presents results from bench-
marks that empirically evaluate the dynamic scheduling strate-
gies to compare the run-time dispatching overhead of static
and dynamic scheduling strategies. Section 6 discusses related
work and Section 7 presents concluding remarks. For com-
pleteness, Appendix A outlines the CORBA reference model
and Appendix B introduces a unified technique for schedule
feasibility analysis, which generalizes across the scheduling
strategies supported by TAO.

2 Overview of Dynamic Scheduling
Strategies

This section describes the limitations of purely static schedul-
ing and outlines the potential benefits of applying dynamic
scheduling. In addition, we evaluate the limitations of purely
dynamic scheduling strategies. This evaluation motivates the
hybrid static/dynamic MUF scheduling approach used by TAO
to schedule real-time CORBA operations, as described in Sec-
tion 3.

2.1 Limitations of Static Scheduling

Many hard real-time systems, such as those for avionics mis-
sion computing and manufacturing process controllers, have
traditionally been scheduled statically using rate monotonic
scheduling (RMS) [16]. Static scheduling provides schedu-
lability assurance prior to run-time and can be implemented
with low run-time overhead [10]. However, static scheduling
has the following disadvantages:

Inefficient handling of non-periodic processing: Static
scheduling treats aperiodic processing as if it was periodic,
i.e., occurring at its maximum possible rate. Resources are
allocated to aperiodic operations either directly or through a
sporadic server1 to reduce latency. In typical operation, how-
ever, aperiodic processing may not occur at its maximum pos-
sible rate. One example is interrupts, which potentially may
occur very frequently, but often do not.

Unfortunately, with static scheduling, resources must be al-
located pessimistically and scheduled under the assumption
that interrupts occur at the maximum rate. When they do
not, utilization is effectively reduced because unused resources
cannot be reallocated.

Utilization phasing penalty for non-harmonic periods: In
statically scheduled systems, achievable utilization can be re-
duced if the periods of all operations arenot related har-
monically. Operations are harmonically related if their pe-
riods are integral multiples of one another. When periods
are not harmonic, the phasing of the operations produces un-
scheduled gaps of time. This reduces the maximum schedu-
lable percentage of the CPU,i.e., the schedulable bound, to
n(21=n � 1) [14], wheren is the number of distinct non-
harmonic operation periods in the system.

For very largen, the schedulable bound is slightly larger
than 69%. With harmonically related periods, the schedulable
bound can be 100%. Theutilization phasing penaltyis the dif-
ference between the value of the schedulable bound equation
and 100%.

1A sporadic server [17] reserves a portion of the schedule to allocate to
aperiodic events when they arrive.
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Figure 2: Relationships Between Operation, Scheduling, and Dispatching Terminology

Inflexible handling of invocation-to-invocation variation
in resource requirements: Because priorities cannot be
changed easily2 at run-time, allocations must be based on
worst-case assumptions. Thus, if an operation usually requires
5 msec of CPU time, but under certain conditions requires 8
msec, static scheduling analysis must assume that 8 msec will
be required for every invocation. Again, utilization is effec-
tively penalized because the resource will be idle for 3 msec
in the usual case.

In general, static scheduling limits the ability of real-time
systems to adapt to changing conditions and changing con-
figurations. In addition, static scheduling compromises re-
source utilization to guarantee access to resources at run-time.
To overcome the limitations of static scheduling, therefore,
we are investigating the use of dynamic strategies to sched-
ule CORBA operations for applications with real-time QoS
requirements.

2.2 Synopsis of Scheduling Terminology

Precise terminology is necessary to discuss and evaluate static,
dynamic, and hybrid scheduling strategies. Figure 2 shows the
relationships between the key terms defined below.

RT Operation and RT Info: In TAO, anRT Operation
is a scheduled CORBA operation [10]. In this paper, we
use operation interchangeably withRT Operation . An
RT Info struct is associated with each operation and con-
tains its QoS parameters. TheRT Info structure contains the
following operation characteristics shown in Figure 3 and de-
scribed below. .

� Criticality: Criticality is an application-supplied value
that indicates the significance of a CORBA operation’s com-
pletion prior to its deadline. Higher criticality should be as-
signed to operations that incur greater cost to the application

2Priorities can be changed viamode changes[10], but that is too coarse
to capture invocation-to-invocation variations in the resource requirements of
complex applications.
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Figure 3: TAO’s Real-time CORBA Operation Characteristics

if they fail to complete execution before their deadlines. Some
scheduling strategies, such as MUF, take criticality into con-
sideration, so that more critical operations are given priority
over less critical ones.

� Worst-case execution time: This is the longest time it
can take to execute a single dispatch of the operation.

� Period: Period is the interval between dispatches of an
operation.

� Importance: Importance is a lesser indication of a
CORBA operation’s significance. Like its criticality, an op-
eration’s importance value is supplied by an application. Im-
portance is used as a “tie-breaker” to distinguish between op-
erations that otherwise would have identical priority.

� Dependencies: An operationdepends onanother oper-
ation if it is invoked only via a flow of control from the other
operation.

Scheduling Strategy: A scheduling strategy (1) takes the in-
formation provided by an operation’sRT Info , (2) assigns an
urgencyto the operation based on its static priority, dynamic
subpriority, and static subpriority values, (3) maps urgency
into dispatching priority and dispatching subpriority values
for the operation, and (4) provides dispatching queue configu-
ration information so that each operation can be dispatched
according to its assigned dispatching priority and dispatch-
ing subpriority. The key elements of this transformation per-
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formed by the scheduling strategy are shown in Figure 2 and
defined as follows:

� Urgency: Urgency [15] is an ordered tuple consisting
of (1) static priority, (2) dynamic subpriority, and (3) static
subpriority. Static priority is the highest ranking priority com-
ponent in the urgency tuple, followed by dynamic subpriority
and then static subpriority, respectively. Figure 4 illustrates
these relationships.

STATIC

PRIORITY

STATIC

SUBPRIORITY

DYNAMIC

SUBPRIORITY

HIGH

ORDER
LOW

ORDER

Figure 4: Relationships in the Urgency Tuple

� Static priority: Static priority assignment establishes a
fixed number of priority partitions into which all operations
must fall. The number of static priority partitions is estab-
lished off-line. An operation’s static priority value is often
determined off-line. However, the value assigned a particular
dispatch of the operation could vary at run-time, depending on
which scheduling strategy is employed.

� Dynamic subpriority: Dynamic subpriority is a value
generated and used at run-time to order operationswithin a
static priority level, according to the run-time and static char-
acteristics of each operation. For example, a subpriority based
on “closest deadline” must be computed dynamically.

� Static subpriority: Static subpriority values are deter-
mined prior to run-time. Static subpriority acts as a tie-breaker
when both static priority and dynamic subpriority are equal.

� Dispatching priority: An operation’s dispatching pri-
ority corresponds to the real-time priority of the thread in
which it will be dispatched. Operations with higher dispatch-
ing priorities are dispatched in threads with higher real-time
priorities.

� Dispatching subpriority: Dispatching subpriority is
used to order operations within a dispatching priority level.
Operations with higher dispatching subpriority are dispatched
ahead of operations with the same dispatching priority but
lower dispatching subpriority.

� Queue Configuration: A separate queue must be con-
figured for each distinct dispatching priority. The scheduling
strategy assigns each queue a dispatching type (e.g., static,
deadline, or laxity3), a dispatching priority, and a thread prior-
ity.

Together, urgency and dispatching (sub)priority assignment
specify requirements that certain operations will meet their
deadlines. To support end-to-end QoS requirements, opera-
tions with higher dispatching prioritiesshould notbe delayed
by operations with lower dispatching priorities. Two key re-
search challenges must be resolved to achieve this goal. First,
strategies must be identified to correctly specify end-to-end
QoS requirements for different operations. Second, dispatch-
ing modules must enforce these end-to-end QoS specifica-
tions. The following two definitions are useful in addressing
these challenges:

� Critical set: The critical set is defined as the set of all
operations whose completion prior to deadline is crucial to
the integrity of the system. If all operations in the critical set
can be assured of meeting their deadlines, a schedule that pre-
serves the system’s integrity can be constructed.

� Minimum critical priority: The minimum critical pri-
ority is the lowest dispatching priority level to which opera-
tions in the critical set are assigned. Depending on the schedul-
ing strategy, the critical set may span multipledispatching pri-
ority levels. To ensure that all operations in the critical set
are schedulable, the minimum critical priority level must be
schedulable.

Dispatching Module: A dispatching module constructs the
appropriate type of queue for each dispatching priority. In ad-
dition, it assigns each dispatching thread’s priority to the value
provided by the scheduling strategy. A TAO ORB endsystem
can be configured with dispatching modules at several layers,
e.g., the I/O subsystem [12], ORB Core [13], and/or the Event
Service [2].

2.3 Overcoming Static Scheduling Limitations
with Dynamic Scheduling

Several other forms of scheduling exist beyond RMS. For
instance, Earliest Deadline First (EDF) scheduling assigns
higher priorities to operations with closer deadlines. EDF is
commonly used for dynamic scheduling because it permits
run-time modification of rates and priorities. In contrast, static
techniques like RMS require fixed rates and priorities.

Dynamic scheduling does not suffer from the drawbacks de-
scribed in Section 2.1. If these drawbacks can be alleviated

3An operation’s laxity is the time until its deadline minus its remaining
execution time.
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without incurring too much overhead or non-determinism, dy-
namic scheduling can be beneficial for real-time applications
with deterministic QoS requirements. However, many dy-
namic scheduling strategies do not offer thea priori guaran-
tees of static scheduling.

For instance, purely dynamically scheduled systems can be-
have non-deterministically under heavy loads. Therefore, op-
erations that are critical to an application may miss their dead-
lines because they were (1) delayed by non-critical operations
or (2) delayed by an excessive number of critical operations,
e.g., if admission control of dynamically generated operations
is not performed.

The remainder of this section reviews several strategies for
dynamic and hybrid static/dynamic scheduling, using the ter-
minology defined in Section 2.2. These scheduling strategies
include purely dynamic techniques, such as EDF, Minimum
Laxity First (MLF), as well as the hybrid Maximum Urgency
First (MUF) strategy.

2.3.1 Purely Dynamic Scheduling Strategies

This section reviews two well known purely dynamic schedul-
ing strategies, Earliest Deadline First (EDF) [14, 16], and Min-
imum Laxity First (MLF) [15]. These strategies are illus-
trated in Figure 5 and discussed below. In addition, Figure 5
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Figure 5: Dynamic Scheduling Strategies

depicts the hybrid static/dynamic Maximum Urgency First
(MUF) [15] scheduling strategy discussed in Section 2.3.2.

Earliest Deadline First (EDF): EDF [14, 16] is a dynamic
scheduling strategy that orders dispatches4 of operations based

4A dispatchis a particular execution of anoperation.

on time-to-deadline, as shown in Figure 5. Operation execu-
tions with closer deadlines are dispatched before those with
more distant deadlines. The EDF scheduling strategy is in-
voked whenever a dispatch of an operation is requested. The
new dispatch may or may not preempt the currently executing
operation, depending on the mapping of priority components
into thread priorities discussed in Section 3.5.5.

A key limitation of EDF is that an operation with the ear-
liest deadline is dispatched whether or not there is sufficient
time remaining to complete its execution prior to the deadline.
Therefore, the fact that an operation cannot meet its deadline
will not be detected untilafter the deadline has passed.

If the operation is dispatched even though it cannot com-
plete its execution prior to the deadline, the operation con-
sumes CPU time that could otherwise be allocated to other op-
erations. If the result of the operation is only useful to the ap-
plication prior to the deadline, then the entire time consumed
by the operation is essentially wasted.

Minimum Laxity First (MLF): MLF [15] refines the EDF
strategy by taking into account operation execution time. It
dispatches the operation whoselaxity is least, as shown in Fig-
ure 5. Laxity is defined as the time-to-deadline minus the re-
maining execution time.

Using MLF, it is possible to detect that an operation will not
meet its deadlineprior to the deadline itself. If this occurs,
a scheduler can reevaluate the operation before allocating the
CPU for the remaining computation time. For example, one
strategy is to simply drop the operation whose laxity is not
sufficient to meet its deadline. This strategy may decrease the
chance that subsequent operations will miss their deadlines,
especially if the system is overloaded transiently.

Evaluation of EDF and MLF:

� Advantages: From a scheduling perspective, the main
advantage of EDF and MLF is that they overcome the utiliza-
tion limitations of RMS. In particular, the utilization phasing
penalty described in Section 2.1 that can occur in RMS is not
a factor since EDF and MLF prioritize operations according to
their dynamic run-time characteristics.

EDF and MLF also handle harmonic and non-harmonic
periods comparably. Moreover, they respond flexibly to
invocation-to-invocation variations in resource requirements,
allowing CPU time unused by one operation to be reallo-
cated to other operations. Thus, they can produce schedules
that are optimal in terms of CPU utilization [14]. In addi-
tion, both EDF and MLF can dispatch operations within a sin-
gle static priority level and need not prioritize operations by
rate [14, 15].
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� Disadvantages: From a performance perspective, one
disadvantage to purely dynamic scheduling approaches like
MLF and EDF is that their scheduling strategies require higher
overhead to evaluate at run-time. In addition, these purely dy-
namic scheduling strategies offer no control overwhich op-
erations will miss their deadlines if the schedulable bound is
exceeded. As operations are added to the schedule to achieve
higher utilization, the margin of safety forall operations de-
creases. Therefore, the risk of missing a deadline increases for
every operation as the system become overloaded.

2.3.2 Maximum Urgency First

The Maximum Urgency First (MUF) [15] scheduling strat-
egy supports both the deterministic rigor of the static RMS
scheduling approach and the flexibility of dynamic scheduling
approaches such as EDF and MLF. MUF is the default sched-
uler for the Chimera real-time operating system (RTOS) [18].
TAO supports a variant of MUF in its strategized CORBA
scheduling service framework, which is discussed in Sec-
tion 3.

MUF can assign both staticand dynamic priority compo-
nents. In contrast, RMS assigns all priority components stat-
ically and EDF/MLF assign all priority components dynami-
cally. The hybrid priority assignment in MUF overcomes the
drawbacks of the individual scheduling strategies by combin-
ing techniques from each, as described below:

Criticality: In MUF, operations with highercriticality are
assigned to higher static priority levels. Assigning static prior-
ities according to criticality prevents operations critical to the
application from being preempted by non-critical operations.

Ordering operations by application-defined criticality re-
flects a subtle and fundamental shift in the notion of prior-
ity assignment. In particular, RMS, EDF, and MLF exhibit
a rigid mapping from empirical operation characteristics to a
single priority value. Moreover, they offer little or no control
over which operations will miss their deadlines under overload
conditions.

In contrast, MUF gives applications the ability to distin-
guish operations arbitrarily. MUF allows control overwhich
operations will miss their deadlines. Therefore, it can protect
a criticalsubsetof the entire set of operations. This fundamen-
tal shift in the notion of priority assignment leads to the gen-
eralization of scheduling and analysis techniques discussed in
Section 3 and Appendix B.

Dynamic Subpriority: An operation’s dynamic subpriority
is evaluated whenever it must be compared to another oper-
ation’s dynamic subpriority. For example, an operation’s dy-
namic subpriority is evaluated whenever it is enqueued in or
dequeued from a dynamically ordered dispatching queue. At

the instant of evaluation, dynamic subpriority in MUF is a
function of the the laxity of an operation.

An example of such a simple dynamic subpriority function
is the inverse of the operation’s laxity.5 Operations with the
smallest positive laxities have the highest dynamic subpriori-
ties, followed by operations with higher positive laxities, fol-
lowed by operations with the most negative laxities, followed
by operations with negative laxities closer to zero. Assigning
dynamic subpriority in this way provides a consistent order-
ing of operations as they move through thependingand late
dispatching queues, as described below.

By assigning dynamic subpriorities according to laxity,
MUF offers higher utilization of the CPU than the statically
scheduled strategies. MUF also allows deadline failures to
be detectedbefore they actually occur, except when an op-
eration that would otherwise meet its deadline is preempted
by a higher criticality operation. Moreover, MUF can apply
various types of error handling policies when deadlines are
missed [15]. For example, if an operation has negative lax-
ity prior to being dispatched, it can be demoted in the priority
queue, allowing operations that can still meet their deadlines
to be dispatched instead.

Static Subpriority: In MUF, static subpriorityis a static,
application-specific, optional priority. It is used to order the
dispatches of operations that have the same criticality and the
same dynamic subpriority. Thus, static subpriority has lower
precedence than either criticality or dynamic subpriority.

Assigning a unique static subpriority to operation that have
the same criticality ensures a total dispatching ordering of op-
erations at run-time, for any operation laxity values having the
same criticality. A total dispatching ordering ensures that for
a given arrival pattern of operation requests, the dispatching
order will always be the same. This, in turn, helps improve the
reliability and testability of the system.

The variant of MUF used in TAO’s strategized scheduling
service enforces a complete dispatching ordering by provid-
ing animportance field in the TAORT Info CORBA op-
eration QoS descriptor [10], which is shown in Section 2.2.
TAO’s scheduling service usesimportance , as well as a
topological ordering of operations, to assign a unique static
subpriority for each operation within a given criticality level.

Incidentally, the original definition of MUF in [15] uses
the termsdynamic priorityanduser priority, whereas we use
the termdynamic subpriorityandstatic subpriorityfor TAO’s
scheduling service. We selected different terminology to indi-

5To avoid division-by-zero errors, any operation whose laxity is in the
range�� can be assigned (negative) dynamic subpriority�1=� where� is
the smallest positive floating point number that is distinguishable from zero.
Thus, when the laxity of an operation reaches�, it is considered to have missed
its deadline.
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cate the subordination to static priority. These terms are inter-
changeable when referring to MUF, however.

3 The Design of TAO’s Strategized
Scheduling Service

TAO’s scheduling service provides real-time CORBA applica-
tions with the flexibility to specify and use different schedul-
ing strategies, according to their specific QoS requirements
and available OS features. This flexibility allows CORBA ap-
plications to extend the set of available scheduling strategies
withoutimpacting strategies used by other applications. More-
over, it shields application developers from unnecessary de-
tails of their scheduling strategies. In addition, TAO’s schedul-
ing service provides a common framework to compare existing
scheduling strategies and to empirically evaluate new strate-
gies.

This section outlines the design goals and architecture of
TAO’s strategized scheduling service framework. After briefly
describing TAO in Section 3.1, Section 3.2 discusses the de-
sign goals of TAO’s strategized scheduling service. Sec-
tion 3.3 offers an overview of its architecture and operation.
Section 3.4 describes the design forces that motivate TAO’s
flexible Scheduling Service architecture. Finally, Section 3.5
discusses the resulting architecture in detail.

3.1 Overview of TAO

TAO is a high-performance, real-time ORB endsystem tar-
geted for applications with deterministic and statistical QoS
requirements, as well as “best-effort” requirements. The TAO
ORB endsystem contains the network interface, OS, commu-
nication protocol, and CORBA-compliant middleware com-
ponents and features shown in Figure 6. TAO supports the
standard OMG CORBA reference model [3], with the follow-
ing enhancements designed to overcome the shortcomings of
conventional ORBs [13] for high-performance and real-time
applications:

Real-time IDL Stubs and Skeletons: TAO’s IDL stubs and
skeletons efficiently marshal and demarshal operation param-
eters, respectively [19]. In addition, TAO’s Real-time IDL
(RIDL) stubs and skeletons extend the OMG IDL specifica-
tions to ensure that application timing requirements are speci-
fied and enforced end-to-end [20].

Real-time Object Adapter: An Object Adapter associates
servants with the ORB and demultiplexes incoming requests to
servants. TAO’s Object Adapter uses perfect hashing [21] and
active demultiplexing [11] optimizations to dispatch servant
operations in constantO(1) time, regardless of the number

NETWORKNETWORK

ORBORB RUN RUN--TIMETIME

SCHEDULERSCHEDULER

REALREAL--TIMETIME
ORBORB    CORECORE

operation()operation()

RIDLRIDL
STUBSSTUBS

REALREAL--TIMETIME

OBJECTOBJECT

ADAPTERADAPTER

RIDLRIDL
SKELETONSKELETON

in  argsin  args

out  args + return  valueout  args + return  value
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OS  KERNELOS  KERNEL

HIGHHIGH--SPEEDSPEED

NETWORK  INTERFACENETWORK  INTERFACE

REALREAL--TIME  ITIME  I//OO
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OBJECTOBJECT
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Figure 6: Components in the TAO Real-time ORB Endsystem

of active connections, servants, and operations defined in IDL
interfaces.

ORB Run-time Scheduler: TAO’s run-time scheduler maps
application QoS requirements to ORB endsystem/network re-
sources [10]. Common QoS requirements include bounding
end-to-end latency and meeting periodic scheduling deadlines.
Common ORB endsystem/network resources include CPU,
memory, network connections, and storage devices.

Real-time ORB Core: The ORB Core delivers client re-
quests to the Object Adapter and returns responses (if any) to
clients. TAO’s real-time ORB Core [13] uses a multi-threaded,
preemptive, priority-based connection and concurrency archi-
tecture to provide an efficient and predictable CORBA IIOP
protocol engine [19].

Real-time I/O subsystem: TAO’s real-time I/O subsystem
[22] extends support for CORBA into the OS. TAO’s I/O sub-
system assigns priorities to real-time I/O threads so that the
schedulability of application components and ORB endsystem
resources can be enforced.

High-speed network interface: At the core of TAO’s I/O
subsystem is a “daisy-chained” network interface consisting
of one or more ATM Port Interconnect Controller (APIC)
chips [23]. APIC is designed to sustain an aggregate bi-
directional data rate of 2.4 Gbps. In addition, TAO runs
on conventional real-time interconnects, such as VME back-
planes, multi-processor shared memory environments, and In-
ternet protocols like TCP/IP.

TAO is developed atop lower-level middleware called
ACE [24], which implements core concurrency and distribu-
tion patterns [25] for communication software. ACE provides
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reusable C++ wrapper facades and framework components
that support the QoS requirements of high-performance, real-
time applications. ACE runs on a wide range of OS platforms,
including Win32, most versions of UNIX, and real-time oper-
ating systems like Sun ClassiX, LynxOS, and VxWorks.

3.2 Design Goals of TAO’s Scheduling Service

To alleviate the limitations with existing scheduling strate-
gies described in Section 2, our research on CORBA real-time
scheduling focuses on enabling applications to (1)maximize
total utilization, (2) preserve scheduling guarantees for criti-
cal operations(when the set of critical operations can be iden-
tified), and (3)adapt flexibly to different application and plat-
form characteristics. These three goals are illustrated in Fig-
ure 7 and summarized below:

HIGH UTILIZATION

ISOLATE MISSED DEADLINES

vs

vs

CRITICAL

NON-
CRITICAL

DEADLINE

TIME AXIS

NOT

SCHEDULED

ADAPTATION TO

APPLICATION CHARACTERISTICS

A B

C D E

A B

C D E

FIRST APPLICATION SECOND APPLICATION

Figure 7: Design Goals of TAO’s Dynamic Scheduling Service

Goal 1. Higher utilization: The upper pair of timelines in
Figure 7 demonstrates our first research goal:higher utiliza-
tion. This timeline shows a case where a critical operation
execution did not, in fact, use its worst-case execution time.
With dynamic scheduling, an additional non-critical operation
could be dispatched, thereby achieving higher resource utiliza-
tion.

Goal 2. Preserving scheduling guarantees: The lower pair
of timelines in Figure 7 demonstrates our second research
goal: preserving scheduling guarantees for critical opera-
tions. This timeline depicts a statically scheduled timeline, in
which the worst-case execution time of the critical operation
must be scheduled. In the lower timeline, priority is based on
traditional scheduling parameters, such as rate and laxity. In

the upper timeline, criticality is also included. Both timelines
depict schedule overrun. When criticality is considered, only
non-critical operations miss their deadlines.

Goal 3. Adaptive scheduling: The sets of operation blocks
at the bottom of Figure 7 demonstrate our third research goal:
providing applications with the flexibility to adapt to varying
application requirements and platform features. In this exam-
ple, the first and second applications use the same five oper-
ations. However, the first application considers operations A
and E critical, whereas the second application considers op-
erations B and D critical. By allowing applications to select
which operations are critical, it should be possible to provide
scheduling behavior that is appropriate to each application’s
individual requirements.

These goals motivate the design of TAO’s strategized
scheduling service framework, described in Section 3.3. For
the real-time systems [2, 10, 22, 13] that TAO has been ap-
plied to, it has been possible to identify a core set of oper-
ations whose execution before deadlines iscritical to the in-
tegrity of the system. Therefore, the TAO’s scheduling ser-
vice is designed to ensure that critical CORBA operations will
meet their deadlines, even when the total utilization exceeds
the schedulable bound.

If it is possible to ensure deadlines will be met, then adding
operations to the schedule to increase total CPU utilization
will not increase the risk of missing deadlines. The risk will
only increase for those operations whose execution prior to
deadline isnot critical to the integrity of the system. In this
way, the risk to the whole system is minimized when it is
loaded for higher utilization.

3.3 TAO’s Strategized Scheduling Service
Framework

TAO’s scheduling service framework is designed to support a
variety of scheduling strategies, including RMS, EDF, MLF,
and MUF. This flexibility is achieved in TAO via theStrat-
egydesign pattern [25]. This pattern encapsulates a family of
scheduling algorithms within a fixed interface. Within TAO’s
strategized scheduling service, the scheduling strategies them-
selves are interchangeable and can be varied independently.

The architecture and behavior of TAO’s strategized schedul-
ing service is illustrated in Figure 8. This architecture evolved
from our earlier work on a CORBA scheduling service [10]
that supported purely static rate monotonic scheduling. The
steps involved in configuring and processing requests are de-
scribed below. Steps 1-6 typically occur off-line during the
schedule configuration process, whereas steps 7-10 occur on-
line, underscoring the hybrid nature of TAO’s scheduling ar-
chitecture.
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Figure 8: Processing Steps in TAO’s Dynamic Scheduling Service Architecture

Step 1: A CORBA application specifies QoS information
and passes it to TAO’s scheduling service, which is imple-
mented as a CORBA object,i.e., it implements an IDL inter-
face. The application specifies a set of values (RT Info s)
for the characteristics of each of its schedulable operations
(RT Operation s). In addition, the application specifies in-
vocation dependencies between these operations.

Step 2: At configuration time, which can occur either off-
line or on-line, the application passes this QoS information
into TAO’s scheduling service via itsinput interface. TAO’s
scheduling service stores the QoS information in its repository
of RT Info descriptors. TAO’s scheduling service’s input in-
terface is described further in Section 3.5.1.

TAO’s scheduling service constructs operation dependency
graphs based on information registered with it by the appli-
cation. The scheduling service then identifies threads of exe-
cution by examining the terminal nodes of these dependency
graphs. Nodes that have outgoing edges but no incoming
edges in the dependency graph are calledconsumers. Con-
sumers are dispatched after the nodes on which they depend.
Nodes that have incoming edges but no outgoing edges are
calledsuppliers. Suppliers correspond to distinct threads of
execution in the system. Nodes with incomingandoutgoing
edges can fulfill both roles.

Step 3: In this step, TAO’s scheduling service assesses
schedulability. A set of operations is consideredschedulable
if all operations in the critical set are guaranteed to meet their
deadlines. Schedulability is assessed according to whether
CPU utilization by operations in and above the minimum crit-
ical priority is less than or equal to the schedulable bound.

Step 4: Next, TAO’s scheduling service assigns static pri-
orities and subpriorities to operations. These values are as-
signed according to the specific strategy used to configure the
scheduling service. For example, when the TAO scheduling
service is configured with the MUF strategy, static priority
is assigned according to operation criticality. Likewise, static
subpriority is assigned according to operation importance and
dependencies.

Step 5: Based on the specific strategy used to configure it,
TAO’s scheduling service divides the dispatching priority and
dispatching subpriority components into statically and dynam-
ically assigned portions. The static priority and static subpri-
ority values are used to assign the static portions of the dis-
patching priority and dispatching subpriority of the operations.
These dispatching priorities and subpriorities reside in TAO’s
RT Info repository.

Step 6: Based on the assigned dispatching priorities, and
in accordance with the specific strategy used to configure the
off-line scheduling service, the number and types of dispatch-
ing queues needed to dispatch the generated schedule are as-
signed. For example, when the scheduling service is config-
ured with the MLF strategy, there is a single queue, which
uses laxity-based prioritization. As before, this configuration
information resides in theRT Info repository.

Step 7: At run-time start up, the configuration information
in theRT Info repository is used by the scheduling service’s
run-time scheduler component, which is collocated within an
ORB endsystem. The ORB uses the run-time scheduler to re-
trieve (1) the thread priority at which each queue dispatches
operations and (2) the type of dispatching prioritization used
by each queue. The scheduling service’s run-time component
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provides this information to the ORB via itsoutput interface,
as described in Section 3.5.2.

Step 8: In this step, the ORB configures itsdispatching mod-
ules, i.e., the I/O subsystem, the ORB Core, and/or the Event
Service. The information from the scheduling service’s out-
put interface is used to create the correct number and types
of queues, and associate them with the correct thread priori-
ties that service the queues. This configuration process is de-
scribed further in Section 3.5.3.

Step 9: When an operation request arrives from a client at
run-time, the appropriate dispatching module must identify the
dispatching queue to which the request belongs and initialize
the request’s dispatching subpriority. To accomplish this, the
dispatching module queries TAO’s scheduling service’s output
interface, as described in Section 3.5.2. The run-time sched-
uler component of TAO’s scheduling service first retrieves the
static portions of the dispatching priority and dispatching sub-
priority from theRT Info repository. It then supplies the dis-
patching priority and dispatching subpriority to the dispatch-
ing module.

Step 10: If the dispatching queue where the operation re-
quest is placed was configured as adynamic queuein step 8,
the dynamic portions of the request’s dispatching subpriority
(and possibly its dispatching priority) are assigned. This queue
first does this when it enqueues the request. This queue then
updates these dynamic portions as necessary when other oper-
ations are enqueued or dequeued.

The remainder of this section describes TAO’s strategized
scheduling service framework in detail. Section 3.4 motivates
why TAO allows applications to vary their scheduling strategy
and Section 3.5 shows how TAO’s framework design achieves
this flexibility.

3.4 Motivation for TAO’s Strategized Schedul-
ing Architecture

The flexibility of the architecture for TAO’s strategized
scheduling service is motivated by the following two goals:

1. Shield application developers from unnecessary imple-
mentation details of alternative scheduling strategies–
This improves the system’s reliability and maintainabil-
ity, as described below.

2. Decouple the strategy for priority assignment from the
dispatching model so the two can be varied independently
– This increases the system’s flexibility to adapt to vary-
ing application requirements and platform features.

TAO’s scheduling strategy framework is designed to mini-
mize unnecessary constraints on the values application devel-
opers specify to the input interface described in Section 3.5.1.

For instance, one (non-recommended) way to implement the
RMS, EDF, and MLF strategies in TAO’s scheduling service
framework would be to implement them as variants of the
MUF strategy. This can be done by manipulating the values
of the operation characteristics [15]. However, this approach
would tightly couple applications to the MUF scheduling strat-
egy and the strategy being emulated.

There is a significant drawback to tightly coupling the be-
havior of a scheduling service to the characteristics of appli-
cation operations. In particular, if the value of one opera-
tion characteristic used by the application changes, developers
must remember to manually modify other operation character-
istics specified to the scheduling service in order to preserve
the same mapping. In general, we prefer to shield application
developers from such unnecessary details.

To achieve this encapsulation, TAO’s scheduling service al-
lows applications to specify the entire set of possible opera-
tion characteristics using its input interface. In the schedul-
ing strategies implemented in TAO, mappings between the in-
put and output interfaces are entirely encapsulated within the
strategies. Therefore, they need not require any unnecessary
manipulation of input values. This decouples them from oper-
ation characteristics they need not consider.

Additional decoupling within the scheduling strategies
themselves is also beneficial. Thus, each scheduling strategy
in TAO specifies the following two distinct levels in its map-
ping from input interface to output interface:

1. Urgency assignment: The first level assignsurgency
components,i.e., static priority, dynamic subpriority, and
static subpriority, based on (1) the operation characteristics
specified to the input interface and (2) the selected schedul-
ing strategy,e.g., MUF, MLF, EDF, or RMS.

2. Dispatching (sub)priority assignment: The second
level assigns dispatching priority and dispatching subpriority
in the output interface based on the urgency components as-
signed in the first level.

By decoupling (1) the strategy for urgency assignment from
(2) the assignment of urgency to dispatching priority and dis-
patching subpriority, TAO allows the scheduling strategy and
the underlying dispatching model to vary independently. This
decoupling allows a given scheduling strategy to be used on an
OS that supports either preemptive or non-preemptive thread-
ing models, with only minor modification to the scheduling
strategy. In addition, it facilitates comparison of schedul-
ing strategies over a range of dispatching models, from fully
preemptive-by-urgency, through preemptive-by-priority-band,
to entirely non-preemptive. These models are discussed fur-
ther in Section 3.5.6.
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3.5 Enhancing TAO’s Scheduling Strategy
Flexibility

The QoS requirements of applications and the hard-
ware/software features of platforms and networks on which
they are hosted often vary significantly. For instance, a
scheduling strategy that is ideal for telecommunication call
processing may be poorly suited for avionics mission com-
puting [2]. Therefore, TAO’s scheduling service framework is
designed to allow applications to vary their scheduling strate-
gies. TAO supports this flexibility by decoupling thefixedpor-
tion of its scheduling framework from thevariableportion, as
follows:

Fixed interfaces: The fixed portion of TAO’s strategized
scheduling service framework is defined by the following two
interfaces:

� Input Interface: As discussed in Section 3.5.1, the in-
put interface consists of the three operations shown in Fig-
ure 9. Application can use these operations to manipulate
QoS characteristics expressed with TAO’sRT Info descrip-
tors [10] (steps 1 and 2 of Figure 8).

� Output Interface: As discussed in Section 3.5.2, the
output interface consists of the two operations shown in Fig-
ure 10. One operation returns the dispatching module config-
uration information (step 7 of Figure 8). The other returns the
dispatching priority and dispatching subpriority components
assigned to an operation (step 9 of Figure 8). Section 3.5.3 de-
scribes how TAO’s dispatching modules use information from
TAO’s scheduling service’s output interface to configure and
manage dispatching queues, as well as dispatch operations ac-
cording to the generated schedule.

Variable mappings: The variable portion of TAO’s schedul-
ing service framework is implemented by the following two
distinct mappings:

� Input Mapping: The input mapping assigns urgen-
cies to operations according to the desired scheduling strat-
egy. Section 3.5.4 describes how each of the strategies im-
plemented in TAO maps from the input interface to urgency
values.

� Output Mapping: The output mapping assigns dis-
patching priority and dispatching subpriority according to the
underlying dispatching model. Section 3.5.5 describes how
the output mapping translates the assigned urgency values into
the appropriate dispatching priority and dispatching subprior-
ity values for the output interface. Section 3.5.6 describes al-
ternatives to the output mapping used in TAO and discusses
key design issues related to these alternatives.

The remainder of this section describes how TAO’s schedul-
ing service implements these fixed interfaces and variable
mappings.

3.5.1 TAO’s Scheduling Service Input Interface

As illustrated in steps 1 and 2 of Figure 8, applications use
TAO’s scheduling service input interface to convey QoS infor-
mation that prioritizes operations. TAO’s scheduling service
input interface consists of the CORBA IDL interface opera-
tions shown in Figure 9 and outlined below.

iinntteerr ffaaccee    SScchheedduulleerr
{{
                ////  ..  ..  ..

                ////  CCrreeaattee  aa  nneeww  RRTT__IInnffoo  ddeessccrr iippttoorr   ffoorr   eennttrryy__ppooiinntt
                hhaannddllee__tt  ccrreeaattee  ((    iinn  ssttrr iinngg  eennttrryy__ppooiinntt    ))
                        rr aaiisseess  ((  DDUUPPLLIICCAATTEE__NNAAMMEE  ));;

                ////  AAdddd  ddeeppeennddeennccyy  ttoo  hhaannddllee''ss  RRTT__IInnffoo  ddeessccrr iippttoorr
                vvooiidd  aadddd__ddeeppeennddeennccyy  ((  iinn  hhaannddllee__tt  hhaannddllee,,
                                                                                                  iinn  hhaannddllee__tt  ddeeppeennddeennccyy    ))
                        rraaiisseess  ((  UUNNKKNNOOWWNN__TTAASSKK  ));;

                ////  SSeett  vvaalluueess  ooff  ooppeerraattiioonn  cchhaarraacctteerr iissttiiccss
                ////  iinn  hhaannddllee''ss  RRTT__IInnffoo  ddeessccrr iippttoorr
                vvooiidd  sseett  ((  iinn  hhaannddllee__tt  hhaannddllee,,
                                                  iinn  CCrr iittiiccaalliittyy  ccrr iittiiccaalliittyy,,
                                                  iinn  TTiimmee  wwoorrssttccaassee__eexxeecc__ttiimmee,,
                                                  iinn  PPeerr iioodd__ppeerr iioodd,,
                                                  iinn  IImmppoorr ttaannccee  iimmppoorr ttaannccee    ))
                        rraaiisseess  ((  UUNNKKNNOOWWNN__TTAASSKK  ));;

                ////  ..  ..  ..
}}

Figure 9: TAO Scheduling Service Input IDL Interface

create(): This operation takes a string with the operation
name as an input parameter. It creates a newRT Info de-
scriptor for that operation name and returns a handle for that
descriptor to the caller. If anRT Info descriptor for that
operation name already exists,create raises theDUPLI-
CATE NAME exception.

add dependency(): This operation takes twoRT Info de-
scriptor handles as input parameters. It places a dependency
on the second handle’s operation in the first handle’sRT Info
descriptor. This dependency informs the scheduler that a flow
of control passes from the second operation to the first. If ei-
ther of the handles refers to an invalidRT Info descriptor,
add dependency raises theUNKNOWN TASK exception.

set(): This operation takes anRT Info descriptor handle
and values for several operation characteristics as input param-
eters. Theset operation assigns the values of operation char-
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acteristics in the handle’sRT Info descriptor to the passed
input values. If the passed handle refers to an invalidRT Info
descriptor,set raises theUNKNOWN TASK exception.

3.5.2 TAO’s Scheduling Service Output Interface

The output interface for TAO’s scheduling service consists of
the CORBA IDL interface operations shown in Figure 10.

iinntteerr ffaaccee    SScchheedduulleerr
{{
                ////  ..  ..  ..

                ////  GGeett  ccoonnffiigguurraattiioonn  iinnffoorrmmaattiioonn  ffoorr   tthhee  qquueeuuee  tthhaatt  wwiillll  ddiissppaattcchh  aallll
                ////  RRTT__OOppeerraattiioonnss  tthhaatt  aarree  aassssiiggnneedd  ddiissppaattcchhiinngg  pprr iioorr iittyy  dd__pprr iioorr iittyy
                vvooiidd  ddiissppaattcchh__ccoonnffiigguurraattiioonn  ((  iinn  DDiissppaattcchhiinngg__PPrr iioorr iittyy  dd__pprr iioorr iittyy,,
                                                                                                                        oouutt  OOSS__PPrr iioorr iittyy  ooss__pprr iioorr iittyy,,
                                                                                                                        oouutt  DDiissppaattcchhiinngg__TTyyppee  dd__ttyyppee  ))
                        rr aaiisseess  ((  UUNNKKNNOOWWNN__DDIISSPPAATTCCHH__PPRRIIOORRIITTYY,,
                                                  NNOOTT__SSCCHHEEDDUULLEEDD  ));;

                ////  GGeett  ssttaattiicc  ddiissppaattcchhiinngg  ssuubbpprr iioorr iittyy  aanndd  ddiissppaattcchhiinngg
                ////    pprr iioorr iittyy  aassssiiggnneedd  ttoo  tthhee  hhaannddllee''ss  RRTT__OOppeerraattiioonn
                vvooiidd  pprr iioorr iittyy  ((  iinn  hhaannddllee__tt  hhaannddllee,,
                                                                  oouutt  DDiissppaattcchhiinngg__SSuubbpprr iioorr iittyy  dd__ssuubbpprr iioorr iittyy,,
                                                                  oouutt  DDiissppaattcchhiinngg__PPrr iioorr iittyy  dd__pprr iioorr iittyy))
                        rraaiisseess  ((  UUNNKKNNOOWWNN__TTAASSKK,,
                                                              NNOOTT__SSCCHHEEDDUULLEEDD  ));;

                ////  ..  ..  ..
}}

Figure 10: TAO Scheduling Service Output IDL Interface

The first operation,dispatch configuration , pro-
vides configuration information for queues in the dispatching
modules used by the ORB endsystem (step 7 of Figure 8). It
takes a dispatching priority value as an input parameter. It re-
turns the OS thread priority and dispatching type correspond-
ing to that dispatching priority level. The run-time scheduler
component of TAO’s scheduling service retrieves these val-
ues from theRT Info repository, where they were stored by
TAO’s off-line scheduling component (step 6 of Figure 8).

The UNKNOWN DISPATCH PRIORITY exception will be
raised if the dispatch configuration operation is
passed a dispatching priority that is not in the sched-
ule. Likewise, if a schedule has not been gener-
ated, thedispatch configuration operation raises the
NOT SCHEDULEDexception.

The second operation,priority , provides dispatching
priority and dispatching subpriority information for an oper-
ation request (step 9 of Figure 8). It takes anRT Info de-
scriptor handle as an input parameter and returns the assigned
dispatching subpriority and dispatching priority as output pa-
rameters.

The run-time component of TAO’s scheduling service re-
trieves the dispatching priority and dispatching subpriority

values stored in theRT Info repository by its off-line com-
ponent (step 5 of Figure 8). If the passed handle does not
refer to a validRT Info descriptor,priority raises the
UNKNOWN TASK exception. If a schedule has not been gen-
erated,priority raises theNOT SCHEDULEDexception.

3.5.3 Integrating the TAO’s Scheduling Service with Its
Dispatching Modules

As noted in Section 2.2, a key research challenge is to imple-
ment dispatching modules that can enforce end-to-end QoS re-
quirements. This section (1) shows these dispatching modules
fit within TAO’s overall architecture, (2) describes the internal
queueing mechanism of TAO’s dispatching modules, and (3)
discusses the issue of run-time control over dispatching prior-
ity within these dispatching modules.

Architectural placement: The output interface of TAO’s
scheduling service is designed to work with dispatching mod-
ules in any layer of the TAO architecture. For example, TAO’s
real-time extensions to the CORBA Event Service [2] uses
the scheduler output interface, as does its I/O subsystem [12].
Figure 11(A) illustrates dispatching in TAO’s real-time Event
Service [2]. The client application pushes an event to TAO’s
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Figure 11: Alternative Placement of Dispatching Modules

Event Service. The Event Service’s dispatching module en-
queues events and dispatches them according to dispatching
priority and then dispatching subpriority. Each dispatched
event results in a flow of control down through the ORB lay-
ers on the client and back up through the ORB layers on the
server, where the operation is dispatched.

Figure 11(B) illustrates dispatching in TAO’s I/O subsys-
tem [22]. The client application makes direct operation calls
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to the ORB, which passes requests down through the ORB
layers on the client and back up to the I/O subsystem layer
on the server. The I/O subsystem’s dispatching module en-
queues operation requests and dispatches them according to
their dispatching priority and dispatching subpriority, respec-
tively. Each dispatched operation request results in a flow of
control up through the higher ORB layers on the server, where
the operation is dispatched.

Internal architecture: Figure 12 illustrates the general
queueing mechanism used by the dispatching modules in
TAO’s ORB endsystem. In addition, this figure shows how
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Figure 12: Example Queueing Mechanism in a TAO Dispatch-
ing Module

the output information provided by TAO’s scheduling service
is used to configure and operate a dispatching module.

During system initialization, each dispatching module ob-
tains the thread priority and dispatching type for each of its
queues from the scheduling service’s output interface, as de-
scribed in Section 3.5.2. Next, each queue is assigned a unique
dispatching priority number, a unique thread priority, and an
enumerated dispatching type. Finally, each dispatching mod-
ule has an ordered queue of pending dispatches per dispatch-
ing priority.

To preserve QoS guarantees, operations are inserted into the
appropriate dispatching queue according to their assigned dis-
patching priority. Operations within a dispatching queue are
ordered by their assigned dispatching subpriority. To mini-
mize priority inversions, operations are dispatched from the
queue with the highest thread priority, preempting any oper-
ation executing in a lower priority thread [2]. To minimize
preemption overhead, there is no preemption within a given
priority queue.

The following three values are defined for the dispatching
type:

STATIC DISPATCHING: This type specifies a queue that
only considers the static portion of an operation’s dispatching
subpriority.

DEADLINE DISPATCHING: This type specifies a queue
that considers the dynamic and static portions of an operation’s
dispatching subpriority, and updates the dynamic portion ac-
cording to the time remaining until the operation’s deadline.

LAXITY DISPATCHING: This type specifies a queue that
considers the dynamic and static portions of an operation’s dis-
patching subpriority, and updates the dynamic portion accord-
ing to the operation’s laxity.

The deadline- and laxity-based queues update operation dis-
patching subpriorities whenever an operation is enqueued or
dequeued.

Run-time dispatching priority: Run-time control over dis-
patching priority can be used to achieve the preemptive-by-
urgency dispatching model discussed in Section 3.5.6. How-
ever, this model incurs greater complexity in the dispatching
module implementation, which increases run-time overhead.
Therefore, once an operation is enqueued in TAO’s dispatch-
ing modules, none of the queues specified by the above dis-
patching types exerts control over an operation’s dispatching
priority at run-time.

As noted in Section 3.5.5, all the strategies implemented
in TAO map static priority directly into dispatching priority.
Compared with strategies that modify an operation’s dispatch-
ing priority dynamically, this mapping simplifies the dispatch-
ing module implementation since queues need not maintain
references to one another or perform locking to move mes-
sages between queues. In addition, TAO’s strategy imple-
mentations also minimize run-time overhead since none of the
queues specified by its dispatching types update any dynamic
portion of an operation’s dispatching priority. These charac-
teristics meet the requirements of real-time avionics systems
to which TAO has been applied [1, 2, 10, 13].

It is possible, however, for an application to define strate-
gies thatdo modify an operation’s dispatching priority dy-
namically. A potential implementation of this is to add a new
constant to the enumerated dispatching types. In addition, an
appropriate kind of queue must be implemented and used to
configure the dispatching module according to the new dis-
patching type. Supporting this extension is simplified by the
flexible design of TAO’s scheduling service framework.

3.5.4 Input Mappings Implemented in TAO’s Scheduling
Service

In each of TAO’s scheduling strategies, an input mapping as-
signs urgency to an operation according to a specific schedul-
ing strategy. Input mappings for MUF, MLF, EDF, and RMS
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have been implemented in TAO’s strategized scheduling ser-
vice. Below, we outline each mapping.

In each mapping, static subpriority is assigned first using
importance and second using a topological ordering based on
dependencies. The canonical definitions of MLF, EDF, and
RMS do not include a minimal static ordering. Adding it to
TAO’s strategy implementations for these strategies has no ad-
verse effect, however. This is because MLF, EDF, and RMS
require thatall operations are guaranteed to meet their dead-
lines for the schedule to be feasible, underanyordering of op-
erations with otherwise identical priorities. Moreover, static
ordering has the benefit of ensuring determinism for each pos-
sible assignment of urgency values.

MUF mapping: The mapping from operation characteris-
tics onto urgency for MUF is shown in Figure 13. Static prior-
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Figure 13: MUF Input Mapping

ity is assigned according to criticality in this mapping. There
are only two static priorities since we use only two criticality
levels in TAO’s MUF implementation. The critical set in this
version of MUF is the set of operations that were assigned the
highcriticality value.

When MUF is implemented with only two criticality levels,
the minimum critical priority is the static priority correspond-
ing to the high criticality value. In the more general version of
MUF [15], in which multiple criticality levels are possible, the
critical set may span multiple criticality levels.

Dynamic subpriority is assigned in the MUF input mapping
according tolaxity. Laxity is a function of the operation’s pe-
riod, execution time, arrival time, and the time of evaluation.

MLF mapping: The MLF mapping shown in Figure 14 as-
signs a constant (zero) value to the static priority of each op-
eration. This results in a single static priority. The minimum
critical priority is this lone static priority. The MLF strategy
assigns the dynamic subpriority of each operation according
to its laxity.
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Figure 14: MLF Input Mapping

EDF mapping: The EDF mapping shown in Figure 15 also
assigns a constant (zero) value to the static priority of each
operation. Moreover, the EDF strategy assigns the dynamic
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Figure 15: EDF Input Mapping

subpriority of each operation according to itstime-to-deadline,
which is a function of its period, its arrival time, and the time
of evaluation.

RMS mapping: The RMS mapping shown in Figure 16 as-
signs the static priority of each operation according to itspe-
riod, with higher static priority for each shorter period. The
period for aperiodic execution must be assumed to be the worst
case. In RMS, all operations are critical, so the minimum crit-
ical priority is the minimum static priority in the system. The
RMS strategy assigns a constant (zero) value to the dynamic
subpriority of each operation.

This section explored the well known RMS, EDF, MLF, and
MUF priority mappings. These mappings reflect opposing de-
sign forces of commonality and difference. TAO’s strategized
scheduling service leverages the commonality among these
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Figure 16: RMS Input Mapping

mappings to make its implementation more uniform. The dif-
ferences between these mappings provide hot spots for adap-
tation to the requirements of specific applications.

3.5.5 Output Mapping Implemented in TAO’s Schedul-
ing Service

The need to correctly specify enforcable end-to-end QoS re-
quirements for different operations motivates both the input
and output mappings in TAO’s strategized scheduling service.
The input mappings described in Section 3.5.4 specify pri-
orities and subpriorities for operations. However, there is
no mechanism to enforce these priorities, independent of the
specific OS platform dispatching models. In each of TAO’s
scheduling strategies, an output mapping transforms these pri-
ority and subpriority values into dispatching priority and sub-
priority requirements that can be enforced by the specific dis-
patching models in real systems.

As described in Section 3.5.3, operations are distributed
to priority dispatching queues in the ORB according to their
assigned dispatching priority. Operations are ordered within
priority dispatching queues according to their designated dis-
patching subpriority. The scheduling strategy’s output map-
ping assigns dispatching priority and dispatching subpriority
to operations as a function of the urgency values specified by
the scheduling strategy’s input mapping.

Figure 17 illustrates the output mapping used by the
scheduling strategies implemented in TAO. Each mapping is
described below.

Dispatching Priority: In this mapping, static priority maps
directly to dispatching priority. This mapping corresponds to
the priority band dispatching model described in Section 3.5.2.
Each unique static priority assigned by the input mapping re-
sults in a distinct thread priority in TAO’s ORB request dis-
patching module.
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Figure 17: Output Mapping Implemented in TAO

Dispatching Subpriority: Dynamic subpriority and static
subpriority map to dispatching subpriority. TAO’s strategized
scheduling service performs this mapping efficiently at run-
time by transforming both dynamic and static subpriorities
into a flat binary representation. A binary integer format of
lengthk bits is used to store the dispatching subpriority value.

Because the range of dynamic subpriority values and the
number of static subpriorities are known prior to run-time, a
fixed number of bits can be reserved for each. Dynamic sub-
priority is stored in them highest order bits, wherem =

dlg(ds)e, andds is the number of possible dynamic subpri-
orities. Static subpriority is stored in the nextn lower order
bits, wheren = dlg(ss)e, andss is the number of static sub-
priorities.

TAO’s preemption subpriority mapping scheme preserves
the ordering of operation dispatches according to their as-
signed urgency values. Static subpriorities correspond to
thread priorities. Thus, an operation with higher static priority
will always preempt one with lower static subpriority. Opera-
tions with the same static priority are ordered first by dynamic
subpriority and second by static subpriority.

3.5.6 Alternative Output Mappings

It is useful to consider the consequences of the specific output
mapping described in Section 3.5.5 and to evaluate the uses
and implications of alternative output mappings. The schedul-
ing strategies implemented in TAO strike a balance between
preemption granularity and run-time overhead. This design
is appropriate for the hard real-time avionics applications we
have developed.

However, TAO’s strategized scheduling architecture is de-
signed to adapt to the needs of a range of applications, not just
hard real-time avionics systems. Different types of applica-
tions and platforms may require different resolutions of key
design forces.

For example, an application may run on a platform thatdoes
not support preemptive multi-threading. Likewise, other plat-
forms do not support thread preemption and multiple thread
priority levels. In such cases, TAO’s scheduling service frame-
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work assigns all operations the same constant dispatching pri-
ority and maps the entire urgency tuple directly into the dis-
patching subpriority [15]. This mapping correctly assigns dis-
patching priorities and dispatching subpriorities for a non-
preemptive dispatching model. On a platform without pre-
emptive multi-threading, the application could thus dispatch
all operations in a single thread of execution, from a single
priority queue.

Another application might run on a platform thatdoessup-
port preemptive multi-threading and a large number of distinct
thread priorities. Where thread preemption and a very large
number of thread priorities are supported, one alternative is a
dispatching model that is preemptive byurgency. This design
may incur higher run-time overhead, but can allow finer pre-
emption granularity. The application in this second example
might accept the additional time and space overhead needed
to preemptively dispatch operations by urgency, in exchange
for reducing the amount of priority inversion incurred by the
dispatching module.

Depending on (1) whether the OS supports thread preemp-
tion, (2) the number of distinct thread priorities supported, and
(3) the preemption granularity desired by the application, sev-
eral dispatching models can be supported by the output inter-
face of TAO’s scheduling service. Below, we examine three
canonical variations supported by TAO, which are illustrated
in Figure 18.
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Figure 18: Dispatching Models supported by TAO

Preemptive-by-urgency: One consequence of the input and
output mappings implemented in TAO is that the purely dy-
namic EDF and MLF strategies are non-preemptive. Thus, a
newly arrived operation will not be dispatched until the opera-
tion currently executing has run to completion, even if the new
operation has greater urgency. By assigning dispatching prior-
ity according to urgency, all scheduling strategies can be made
fully preemptive.

This dispatching model maintains the invariant that the

highest urgency operation that is able to execute is execut-
ing at any given instant, modulo the OS dispatch latency over-
head [26]. This model can be implemented only on platforms
that (1) support fully preemptive multitasking and (2) provide
at least as many distinct real-time thread priorities as the num-
ber of distinct operation urgencies possible in the application.

The preemptive-by-urgency dispatching model can achieve
very fine-grained control over priority inversions incurred by
the dispatching modules. This design potentially reduces the
time bound of an inversion to that for a thread context switch
plus any switching overhead introduced by the dispatching
mechanism itself. Preemptive-by-urgency achieves its preci-
sion at the cost of increased time and space overhead, however.
Although this overhead can be reduced for applications whose
operations are known in advance, using techniques like perfect
hashing [21], overhead from additional context switches will
still be incurred.

Preemptive-by-priority-band: This model divides the
range of all possible urgencies into fixed priority bands. It
is similar to the non-preemptive dispatching model used by
message queues in the UNIX System V STREAMS I/O sub-
system [27, 12]. This dispatching model maintains a slightly
weaker invariant than the preemptive-by-urgency model. At
any given instant, an operation from the highest fixed-priority
band that has operations able to execute is executing.

This dispatching model requires thread preemption and
at least a small number of distinct thread priority levels.
These features are now present in many operating systems.
The preemptive-by-priority-bandmodel is a reasonable choice
when it is desirable or necessary to restrain the number of dis-
tinct preemption levels.

For example, a dynamic scheduling strategy can produce a
large number of distinct urgency values. These values must
be constrained on operating systems, such as like Windows
NT [28], that support only a small range of distinct thread pri-
orities. Operations in the queue are ordered by a subpriority
function based on urgency. The strategies implemented TAO’s
strategized scheduling service use a form of this model, as de-
scribed in Section 3.5.5.

Non-preemptive: This model uses a single priority queue
and is non-preemptive. It maintains a still weaker invariant:
the operation executing at any instant had the greatest urgency
at the time of last dispatch. As before, operations are ordered
according to their urgency within the single dispatching queue.
Unlike the previous models, however, this model can be used
on platforms that lack thread preemption or multi-threading.
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4 Simulating TAO’s Critical Instant
Behavior

As described in Section 3.2, two of our research goals are
(1) to increase effective CPU utilization while (2) preserv-
ing scheduling guarantees for critical operations. This sec-
tion presents the results of a simulation that visualizes the be-
havior of TAO’s scheduling service under overload conditions,
focusing on thecritical instant. In real-time systems, the dis-
tribution of when operation requests arrive is important. The
critical instant for a preemptive schedule occurs when all op-
eration requests arrive simultaneously [14]. Simulating our
strategized scheduling service framework’s behavior after this
critical instant illustrates how it performs for a given set of pe-
riodic operations under a worst-case request dispatching sce-
nario.

The remainder of this section (1) describes the simula-
tion design, (2) compares simulation results for the different
scheduling strategies in terms of operation latency, laxity, and
missed deadlines, and (3) presents conclusions supported by
the simulation results. The simulation results indicate the fea-
sibility of achieving our research goals and motivate our em-
pirical experiments described in Section 5.

4.1 Simulation Design

We instrumented TAO’s scheduling service framework to gen-
erate timelines for the dispatching and preemption order of the
operations after the critical instant. To measure this behavior,
operation dispatches were simulated over a one second time
frame, from the critical instant. Each simulation was run until
the last operation finished executing.

To present a fair comparison of TAO’s supported schedul-
ing strategies,i.e., MUF, MLF, EDF, and RMS, our simulation
employs apreemptive-by-urgencydispatching model, as dis-
cussed in Section 3.5.6. This model always executes the high-
est priority operation that is ready to execute at a given time,
preempting any lower priority operation when a higher prior-
ity operation arrives. Strategies like EDF and MLF, which rely
entirely on dynamic prioritization of operations, would other-
wise exhibit a disproportional number of priority inversions.
Moreover, the canonical definition of EDF [14] specifies that
it is dispatched in a fully preemptive manner.

In our simulation, we used a set of operations spanning a
range of criticality and period values. The combined utiliza-
tion of these operations exceeded the maximum schedulable
bound, which is the maximum percentage of the CPU that can
be utilized. Table 1 summarizes the characteristics of each op-
eration in the simulation.

Each scheduling strategy emphasizes different static and
dynamic operation characteristics. Our simulations were de-

worst-case
period execution

operation Hz time, msec Criticality Importance

“low 1” 1 18 LOW HIGH
“low 5” 5 18 LOW HIGH
“low 10” 10 18 LOW HIGH
“low 20” 20 18 LOW HIGH
“high 1” 1 18 HIGH LOW
“high 5” 5 18 HIGH LOW
“high 10” 10 18 HIGH LOW
“high 20” 20 18 HIGH LOW

Table 1:Characteristics of Simulated Operations

signed to examine the effects of simple variations in opera-
tion characteristics on the scheduling behavior of the various
strategies. We have varied only those parameters necessary
to demonstrate meaningful differences between the strategies,
while holding the others constant. In particular, we do not vary
the worst-case execution times of the operations because the
variations in period already produce variations in laxity and
time-to-deadline. To avoid unnecessary complexity in exper-
imental parameters, all operations possessed the same execu-
tion time: 18 milliseconds.

The latency and laxity of each operation dispatch were cal-
culated from the simulation timelines. Operations with neg-
ative laxity at the time they were dispatched were marked as
having missed their deadlines. Operations with shorter peri-
ods had more dispatches over the frame. To compare opera-
tions that execute at different rates, values for average latency
and the fraction of deadlines missed were calculated for each
operation.

4.2 Comparing Operation Latency in the
Scheduling Strategies

Figure 19 depicts the average latency values for the operations
using each of the scheduling strategies in the simulation. Only
the MUF strategy minimizes the latency of critical operations,
as shown in the left half of the figure. In addition, MUF detects
which operations will fail to meet their deadlines. This results
in an overall decrease in both latency and laxity of operations
that can meet their deadlines in an overloaded system.

In contrast, the other scheduling strategies do not fare as
well. RMS minimizes the latency of operations with shorter
periods, while increasing the latency of operations with longer
periods. EDF behaves similarly since time-to-deadline is a
function of an operation’s period. MLF also minimizes the
latency of operations with shorter periods, but detects which
operations will fail to meet their deadlines, thereby showing
better overall latency than RMS or EDF.

Upward spikes in the latency graph in Figure 19 show which
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Figure 19: Latency of Operations for each Strategy

operations incur high average latency under each strategy.
Where MLF, EDF, and RMS show latency spikes for both crit-
ical and non-critical operations, MUF shows a latency spike
only in the non-critical set. Maximum average laxity is lowest
for MUF and MLF, which consider both the worst-case exe-
cution time and time-to-deadline. Maximum average laxity is
higher for EDF, which only considers time-to-deadline. It is
higher still for RMS, which does not consider any dynamic
characteristics.

4.3 Comparing Operation Laxity in the Strate-
gies

The laxity of an operation is defined as its time-to-deadline mi-
nus its remaining execution time. Figure 20 shows the average
laxity values for the operations for each scheduling strategy.
As with Figure 19, only the MUF strategy protects the set of
critical operations. The other strategies have negative average
laxities for the critical operations with rates less than 20 Hz.

Operations that have negative laxity when they complete ex-
ecution have missed their deadlines. Conversely, operations
that have positive laxity when they complete their execution
have met their deadlines. Another way to visualize the opera-
tion behavior with respect to laxity is to graph the fraction of
all dispatches of an operation that miss their respective dead-
line. Figure 21 depicts this graph for the simulated operations
and strategies.

The MUF strategy prevents the critical operations from
missing their deadlines. It does so at a cost of missed deadlines
in the non-critical set. However, MUF minimizes the overall
percentage of missed deadlines better than the other strategies.

The other strategies missed deadlines for the critical opera-
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tions with rates less than 20 Hz. The MUF and MLF strategies
detect scheduling failures prior to deadline. They preempt op-
erations with negative laxity in favor of operations with posi-
tive laxity, and thus allow more operations to meet their dead-
lines.

4.4 Analysis of Simulation Results

Our simulation results illustrate that the characteristics consid-
ered by each scheduling strategy significantly affects operation
latency, laxity, and percentage of deadlines missed. These re-
sults, grouped by the operation characteristic, are summarized
below:

Criticality: Under conditions of overload, only the MUF
strategy reduced latency and preserved the deadline guarantees
for operations in the critical set. The MUF strategy considers
operation criticality in assigning priority, so operations in the
critical set make their deadlines in preference to non-critical
operations in MUF. The EDF, MLF, and RMS strategies do
not consider criticality when assigning priority. Neither do
they preserve deadline guarantees for operations in the critical
set under conditions of overload.

Execution time: The MUF and MLF strategies, which con-
sider time-to-deadline and worst-case execution time, reduced
the impact of scheduling failures on other operations by detect-
ing failure prior to deadline. In addition, they showed lower
average latency per-operation than the other scheduling strate-
gies.

Period: All strategies consider operation period. When all
other factors are equal, each strategy shows differences in
missed deadlines for operations with different periods. Among
the non-critical operations in the MUF strategy simulation, the
low criticality, 20 Hz period operation has lower initial lax-
ity, because it has a closer deadline. However, is also more
likely to miss its deadline as a result of preemption by crit-
ical operations. The MUF, MLF, and EDF strategies, which
consider time-to-deadline, show lower maximum and overall
latency than the RMS strategy, which does not consider any
dynamic operation characteristics.

Importance: Operations with higher criticality values were
given lower importance values. Thus, for strategies that do not
consider criticality, operations with higher importance values
had fewer missed deadlines, all other factors being equal.

4.5 Conclusions from Simulation Experiments

The following conclusions can be drawn from comparing the
results for the scheduling strategies used in the simulation:

Characteristics considered: Varying which operation char-
acteristics a scheduling strategy considers has a significant im-
pact on scheduling behavior. For example, only MUF consid-
ers operation criticality, and thus only MUF can selectively
protect critical operations from missed deadlines.

Combinations of characteristics: Considering certaincom-
binationsof operation characteristics, may have an additional
impact. For instance, MUF and MLF consider execution time
in combination with period, which gives them the ability to
detect deadline failures early and reallocate resources.

Breadth of characteristics: Strategies that consider more of
the available information about static and dynamic operation
characteristics generally exhibit an advantage over strategies
that use less information. For example, MUF considers crit-
icality, execution time, and period, and shows (1) lower la-
tency, (2) fewer missed deadlines, and (3) no missed deadlines
for critical operations. This is in contrast to RMS, MLF, and
EDF, each of which considers fewer operation characteristics
and fails to meet at least one of these criteria.

5 The Performance of TAO’s Strate-
gized Scheduling Service

The conditions under which we ran the simulations in Sec-
tion 4 were somewhat idealized. In particular, factors such
as run-time overhead for dynamic scheduling mechanisms and
OS dispatch latency [26] significantly affect the scheduling be-
havior of these strategies in actual systems. Therefore, empiri-
cal measurements are needed to validate the simulation results.
To ensure that TAO’s strategized scheduling service frame-
work is efficient and predictable, we measure the dispatching
overhead in TAO’s strategized scheduling service.

We used time stamps to measure latency, the amount of time
an operation is delayed. We subtracted the CPU time used by
the operation from the time between when it was requested
and when it finished executing. We used the measured la-
tency to compare the run-time overhead for static and dynamic
scheduling strategies.

We conducted two experiments. The first determines the
run-time cost of dynamic dispatching for end-to-end perfor-
mance. The second assesses the potential increase in dispatch-
ing overhead as varying loads are placed on the dispatching
queues described in Section 3.5.3. These tests demonstrate
that TAO’s dispatching modules can enforce dynamic end-to-
end QoS requirements within acceptable levels of overhead.

The remainder of this section (1) describes an experiment
to measure the minimum achievable end-to-end overhead for
both static and dynamic scheduling strategies using TAO’s
Event Service over the TAO ORB, (2) describes an exper-
iment to measure the overhead for static and dynamic dis-
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patching queues as the load on these queues increases, and (3)
draws conclusions about dynamic scheduling from the results
of these experiments.

5.1 Measuring Dynamic Scheduling Overhead
in TAO’s Real-Time Event Service

The first experiment quantified the dynamic scheduling over-
head in TAO’s Event Service [29], shown in Figure 22.
This experiment consisted of a single high-priority sup-
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Figure 22:TAO’s Event Service Architecture

plier/consumer pair, and a varied number of low-priority event
supplier/consumer pairs, ranging from 1 to 1,000 pairs. By
varying the number of low-priority suppliers and consumers,
this experiment measured (1) the effect of increasing low-
priority load on high-priority performance, and (2) the mini-
mum relative overhead associated with dynamic operation dis-
patching.

We measured the latency in event delivery between the high-
priority supplier and consumer. This latency included (1) the
time required for the TAO run-time scheduler to satisfy the
Event Service dispatch module scheduling request plus (2) the
time the request spent enqueued in the dispatch module. The
test was run for two different scheduling strategies on a Sun

Ultra 30 uni-processor 300 MHz UltraSPARC CPU using the
Solaris real-time (RT) scheduling class [12].

TAO’s strategized scheduling service was configured with
an off-line RMS strategy and anO(1) table lookup at run-time.
The dynamic strategy used MUF, and therefore required an ad-
ditional run-time laxity calculation. The high-priority supplier
and consumer were paced so that each high-priority operation
was dequeued before the next was enqueued. This design re-
move any queueing effect from the high-priority queue, so its
minimum relative overhead could be measured accurately.

The results of this experiment are shown in Figure 23. This
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Figure 23: End-to-end Run-time Overhead of Dynamic
Scheduling

figure illustrates that there was no significant change in high-
priority performance with increasing low-priority load. Like-
wise, there appears to be only a small (up to 10 percent) over-
head end-to-end for dynamic dispatching with no queueing ef-
fect. In addition, the absolute overhead was between 80 and
100�secs.

5.2 Measuring Dynamic Scheduling Overhead
in TAO’s Dispatching Modules

The experiment described in Section 5.1 established the mini-
mum relative end-to-end overhead for dynamic scheduling in
TAO. Our second experiment gauged the potential impact of
an increasing number of enqueued messages on this overhead.
To measure this queueing effect accurately, we eliminated as
many sources of constant overhead as possible. For instance,
the queues were tested in isolation from TAO’s Event Service
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and only the overhead of the enqueue and dequeue operations
was measured.

The test was run in the Windows NT Real-Time scheduling
class on a dual-CPU Intel 333 MHz Micron Powerdigm. The
test used time stamps to measure the latency added by enqueue
and dequeue operations for an increasing number of messages
in the queue. A separate iteration of the test was run for each of
an increasing number of enqueued messages. Messages were
enqueued in random order. The same order was used for all
queues in a given test iteration.

The test was run with three different kinds of dispatching
queues. We tested static-, deadline-, and laxity-based queues.
The static queue, which was used by the RMS scheduling
strategy, used aO(1) table lookup at run-time. The deadline-
based queue, which was used by the EDF scheduling strategy,
required an additional deadline calculation at run-time. The
laxity-based queue, which was used by the MUF and MLF
scheduling strategies, required an additional laxity calculation
at run-time.

The overhead for the laxity-based queue was highest, fol-
lowed by the deadline-based queue, and then the static queue.
As shown in Figure 24, there was an initial increase in over-
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Figure 24: Static and Dynamic Dequeue Overhead

head for dequeue operations in the laxity and deadline-based
queues as the number of enqueued messages increases. How-
ever, the overhead per-dequeue operation rapidly saturated at
�14�secs per operation for these queues. Thus, as the number
of enqueued operations increased, the overhead for dequeue
operations for the laxity- and deadline-based queues remained
within a constant factor of roughly seven times the overhead
of the static queue.

The overhead for randomly ordered enqueue operations was
highest for the laxity-based queue, followed by the overhead
for deadline-based queue, and last for the static queue. As
shown in Figure 25, the overhead per enqueue operation in-
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Figure 25: Static and Dynamic Enqueue Overhead

creased linearly with the number of enqueued operations for
all three kinds of queues. The overhead for enqueue operations
for the laxity- and deadline-based queues remained within a
constant factor of roughly six of the static queue overhead as
the number of enqueued operations increased.

5.3 Analysis of Empirical Results

The tests described in Section 5.1 and Section 5.2 were run in-
dependently and in different experimental settings. Taken to-
gether, their results confirm empirically that dynamic schedul-
ing strategies can be used effectively in real-time systems. Fur-
ther, these results identify potential targets for optimization
in cases where application requirements, such as heavy queue
loading, degrade performance.

The remainder of this section (1) considers the implications
of these results for systems with either moderate or heavy
queueing, and (2) discusses alternative dispatching implemen-
tations and the conditions under which each may be preferable.

5.3.1 Moderately-loaded systems

Figure 23 shows that the minimal end-to-end latency for the
laxity-based MUF scheduling strategy was only slightly higher
than for the static RMS scheduling strategy. For systems
where the maximum number of messages that can be en-
queued at one time remains very small, the additional end-to-
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end overhead for dynamically scheduled dispatching should
be relatively low.

If the number of messages that can be enqueued at one
time increases, however, the effects of dynamic queue man-
agement become more prevalent, assuming a randomized en-
queueing order. This dynamic queue management overhead is
distributed between the enqueue and dequeue operations, so
the measured overhead for both must be considered.

As shown in Figure 24, the overhead for dequeue operations
does not appear significant for systems with fewer than 50
messages enqueued at one time. As the number of enqueued
messages reaches 100 messages, however, the overhead per
dequeue operation jumped to�12 �secs in the experimental
environment described in Section 5.2. Even with a large num-
ber of enqueued messages, this overhead remained around 14
�secs per dequeue operation. Thus, the overhead from de-
queue operations in the laxity- and deadline-based queues re-
mains reasonable, even as the number of enqueued operations
increases significantly.

As shown in Figure 25, the overhead for laxity- and
deadline-based enqueue operations does not appear to be sig-
nificant if fewer than 20 messages are enqueued at one time.
As the number of enqueued messages reached 60 in the ex-
periment described in Section 5.2, the overhead per dequeue
operation jumped to�20�secs, and near 150 enqueued mes-
sages to 50�secs. Although the laxity- and deadline-based
enqueue performance remained within a constant factor of the
static enqueue behavior, the significance of this constant factor
increased with the number of enqueued messages.

5.3.2 Heavily-loaded systems

Depending on the characteristics of the specific application,
the overhead for laxity- or deadline-based dispatching may
reach unacceptable levels as the number of enqueued messages
increases. Figure 25 shows that as the number of enqueued
messages reached 1,000, the average overheadper enqueue
operationexceeded 300�secs for messages enqueued in ran-
domized order. Thus, the total CPU time needed to enqueue
these 1,000 messages was above0:3 seconds.

For systems with such a large queueing effect, the over-
head from dequeue operations will be minimal compared to
the overhead for enqueue operations in the dispatching queues.
Section 5.3.3 discusses two alternative dispatching priority
queue implementations and describes when each are optimal
for different numbers of enqueued messages and different ap-
plication characteristics.

5.3.3 Alternative dispatching mechanisms

The dispatching queues described in Section 3.5.3 are imple-
mented as linked lists. This minimizes the dequeue overhead

for the static-, deadline-, and laxity-based dispatching queues,
even as the number of enqueued messages becomes large.

For the statically dispatched queues, the dispatching over-
head remains reasonable as well, even as the number of en-
queued messages approaches 1,000. However, for the laxity-
and deadline-based queues, the enqueue overhead grows sig-
nificantly as the number of enqueued messages increases.

One alternative to a linked list message queue implementa-
tion is to use aheap. A heap is a partially-ordered, almost-
complete binary tree that ensures the average- and worst-case
time complexity for enqueueing or dequeueing isO(lg n).
The trade-off is that in the linked list priority queue imple-
mentation, enqueue operations areO (n) and dequeue opera-
tions areO (1). Conversely, in the heap-based priority queue
implementation, both enqueue and dequeue operations are
O (logn).

Switching from a linked list implementation to a heap im-
plementation can reduce the cost of enqueue operations while
raising the cost of dequeue operations. Therefore, the selec-
tion of a dispatch queue implementation depends on applica-
tion characteristics. For example, even with a large number
of messages enqueued, a laxity-based queue may showO (1)

enqueue overhead if all messages have nearly identical execu-
tion times and times to deadline. Such idealized characteris-
tics occur infrequently, however. Therefore, in systems where
there is a larger queueing effect, heap-based implementations
for laxity- and deadline-based queues may be preferable.

5.4 Conclusions from Empirical Experiments

The following conclusions can be drawn from the empirical
results of our experiments with TAO’s strategized scheduling
service:

Minimal end-to-end overhead: The minimal end-to-end
overhead for dynamic scheduling strategies is comparable to
that for static scheduling strategies, with only a small increase
due to dynamic priority computations. This indicates that dy-
namic end-to-end QoS requirements can be enforced within
acceptable levels of overhead, assuming other sources of sys-
tem overhead are minimized.

Range of acceptable performance: The range of accept-
able performance is sustained for dynamic scheduling strate-
gies, up to a load of�150 messages enqueued at one time.
TAO’s strategized scheduling service and dispatching modules
can adapt flexibly to alternative queueing implementations, so
that for heavier loads, heap-based queues may be preferable.

Our empirical results validate the simulation results pre-
sented in Section 4. The overhead of enforcing dynamic end-
to-end QoS requirements remains within acceptable limits for
systems with light to moderate queue loading. Further, the em-
pirical results suggest alternative queueing implementations to
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give optimal performance under increasing loads. Thus, dy-
namic scheduling using TAO’s strategized scheduling service
framework can be achieved both efficiently and predictably.

6 Related Work

Real-time middleware is an emerging field of study. An in-
creasing number of research efforts are focusing on integrating
QoS and real-time scheduling into middleware like CORBA.
This section compares our work on TAO with related QoS
middleware integration research.

CORBA-related QoS research: Krupp, et al., [30] at
MITRE Corporation were among the first to elucidate the re-
quirements of real-time CORBA systems. A system consist-
ing of a commercial off-the-shelf RTOS, a CORBA-compliant
ORB, and a real-time object-oriented database management
system is under development [31]. Similar to the initial ap-
proach provided by TAO, their initial static scheduling ap-
proach uses RMS, though a strategy for dynamic deadline
monotonic scheduling support has been designed [32].

Wolfe, et al., are developing a real-time CORBA system at
the US Navy Research and Development Laboratories (NRaD)
and the University of Rhode Island (URI) [20]. The sys-
tem supports expression and enforcement of dynamic end-
to-end timing constraints through timed distributed operation
invocations (TDMIs) [33]. A TDMI corresponds to TAO’s
RT Operation [10]. Likewise, anRT Environment
structure contains QoS parameters similar to those in TAO’s
RT Info .

One difference between TAO and the URI approaches is that
TDMIs express required timing constraints,e.g., deadlines rel-
ative to the current time, whereasRT Operation s publish
their resource,e.g., CPU time, requirements. The difference in
approaches may reflect the different time scales, seconds ver-
sus milliseconds, respectively, and scheduling requirements,
dynamic versus static, of the initial application targets. How-
ever, the approaches should be equivalent with respect to sys-
tem schedulability and analysis.

In addition, NRaD/URI supply a new CORBA Global Prior-
ity Service (analogous to TAO’s Scheduling Service), and aug-
ment the CORBA Concurrency and Event Services. The initial
implementation usesEDF within importance leveldynamic,
on-line scheduling, supported by global priorities. A global
priority is associated with eachTDMI, and all processing asso-
ciated with the TDMI inherits that priority. In contrast, TAO’s
initial Scheduling Service was static and off-line; it uses im-
portance as a “tie-breaker” following the analysis of other re-
quirements such as data dependencies. Both NRaD/URI and
TAO readily support changing the scheduling policy by en-
capsulating it in their CORBA Global Priority and Scheduling
Services, respectively.

The QuO project at BBN [34] has defined a model for com-
municating changes in QoS characteristics between applica-
tions, middleware, and the underlying endsystems and net-
work. The QuO model uses the concept of aconnectionbe-
tween a client and an object to define QoS characteristics.
These characteristics are treated as first-class objects. Objects
can be aggregated to enable characteristics to be defined at var-
ious levels of granularity,e.g., for a single method invocation,
for all method invocations on a group of objects, and similar
combinations. The QuO model also uses several QoS defini-
tion languages (QDLs) that describe the QoS characteristics
of various objects, such as expected usage patterns, structural
details of objects, and resource availability.

The QuO architecture differs from our work on real-time
QoS provisioning in TAO since QuO does not provide hard
real-time guarantees of ORB endsystem CPU scheduling. Fur-
thermore, the QuO programming model involves the use of
several QDL specifications, in addition to OMG IDL, based
on the separation of concerns advocated by Aspect-Oriented
Programming (AoP) [35]. We believe that although the
AOP paradigm is powerful, the proliferation of definition lan-
guages may be overly complex for common application use-
cases. Therefore, the TAO programming model focuses on
theRT Operation andRT Info QoS specifiers, which can
be expressed in standard OMG IDL and integrated seamlessly
with the existing CORBA programming model.

The Realize project at UCSB [36] supports soft real-time
resource management of CORBA distributed systems. Real-
ize aims to reduce the difficulty of developing real-time sys-
tems and to permit distributed real-time programs to be pro-
grammed, tested, and debugged as easily as single sequential
programs. The key innovations in Realize are its integration of
distributed real-time scheduling with fault-tolerance, of fault-
tolerance with totally-ordered multicasting, and of totally-
ordered multicasting with distributed real-time scheduling,
within the context of object-oriented programming and exist-
ing standard operating systems. Realize can be hosted on top
of TAO [36].

The Epiq project [37] defines an open real-time CORBA
scheme that provides QoS guarantees and run-time scheduling
flexibility. Epiq explicitly extends TAO’s off-line scheduling
model to provide on-line scheduling. In addition, Epiq allows
clients to be added and removed dynamically via an admis-
sion test at run-time. The Epiq project is work-in-progress and
empirical results are not yet available.

Non-CORBA-related QoS research: The ARMADA
project [38, 39] defines a set of communication and mid-
dleware services that support fault-tolerant and end-to-end
guarantees for real-time distributed applications. ARMADA
provides real-time communication services based on the
X-kernel and the Open Group’s MK microkernel. This infras-
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tructure provides a foundation for constructing higher-level
real-time middleware services.

TAO differs from ARMADA in that most of the real-time in-
frastructure features in TAO are integrated into its ORB Core.
In addition, TAO implements the OMG’s CORBA standard,
while also providing the hooks that are necessary to integrate
with an underlying real-time I/O subsystem and OS. Thus,
the real-time services provided by ARMADA’s communica-
tion system can be utilized by TAO’s ORB Core to support a
vertically and horizontally integrated real-time system.

Rajkumar,et al., [40] at the Carnegie Mellon University
Software Engineering Institute, developed a real-time Pub-
lisher/Subscriber model. It is functionally similar to the TAO’s
Real-time Event Service [2]. For instance, it uses real-time
threads to prevent priority inversion within the communication
framework.

The CMU model does not utilize any QoS specifications
from publishers (event suppliers) or subscribers (event con-
sumers). Therefore, scheduling is based on the assignment of
request priorities, which is not addressed by the CMU model.
In contrast, TAO’s Scheduling Service and real-time Event
Service utilize QoS parameters from suppliers and consumers
to assure resource access via priorities. One interesting aspect
of the CMU Publisher/Subscriber model is the separation of
priorities for subscription and data transfer. By handling these
activities with different threads, with possibly different priori-
ties, the impact of on-line scheduling on real-time processing
can be minimized.

7 Concluding Remarks

Many hard real-time systems, such as avionics mission com-
puting and manufacturing process control systems, have tradi-
tionally been scheduled statically using variants of rate mono-
tonic scheduling (RMS). Static scheduling provides assur-
ance of schedulability prior to run-time and can be imple-
mented with low run-time overhead. However, static schedul-
ing handles non-periodic processing inefficiently and treats
invocation-to-invocation variations in resource requirements
inflexibly. As a consequence, scheduled resources are under-
utilized and the resulting systems are hard to adapt to meet
worst-case processing requirements.

Dynamic scheduling alleviates many limitations of static
scheduling. However, purely dynamic scheduling strategies
offer little or no control over which operations will miss their
deadlines in an overloaded schedule. In addition, dynamic
scheduling has a higher run-time cost because certain compu-
tations must be performed on-line, so it is necessary to mea-
sure this additional overhead and assess its significance.

To quantify the tradeoffs between static and dynamic
scheduling algorithms, we have developed astrategized

scheduling service frameworkand integrate this with
TAO [10], which is our real-time ORB. This paper describes
how we then used TAO’s scheduling service to generate sim-
ulated dispatching timelines for four scheduling strategies,
RMS, EDF, MLF, and MUF, and analyze the latency, laxity,
and missed deadlines for the operations dispatched in each
simulation. In addition, we used TAO’s Event Service and
run-time Scheduling Service to empirically measure end-to-
end latency with and without queueing.

Our results indicate that hybrid static/dynamic scheduling
strategies can be used in real-time CORBA applications to
(1) offer higher resource utilization than purely static schedul-
ing strategies with acceptable run-time cost, (2) preserve the
scheduling guarantees for critical operations even under an
overloaded schedule, and (3) provide applications the flexibil-
ity to adapt to varying application requirements and platform
features.

A C++ implementation of TAO’s strategized scheduling
service framework is available with the TAO ORB at URL
www.cs.wustl.edu/ �schmidt/TAO.html . TAO of-
fers applications the flexibility to specify and use different
scheduling strategies, according to their specific needs. Our
simulations and empirical measurements provide a foundation
upon which we will develop practical guidelines for config-
uring and using appropriate scheduling strategies for real-time
CORBA applications. We believe the following areas of future
work on dynamic scheduling of real-time CORBA operations
are beneficial:

Varying operation characteristics: Additional simulations
and empirical measurements are needed to assess the impact
of varying the values of different operation characteristics on
the performance of the scheduling strategies.

Distributed scheduling behavior: Further empirical mea-
surements are needed to determine the impact of factors such
as network latency on the end-to-end performance of dynami-
cally scheduled distributed systems.

Available platform features: We plan to explore the im-
pact of various platform-specific features, such as preemptive
multi-threading, on run-time scheduling behavior.

Application requirements: A detailed examination of the
impact of application specific requirements, such as policies
for handling missed deadlines, will help guide the develop-
ment of additional protocols for dynamically scheduled sys-
tems.
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A Overview of the CORBA Reference
Model

CORBA Object Request Brokers (ORBs) [4] allow clients to
invoke operations on distributed objects without concern for:

Object location: CORBA objects can be collocated with the
client or distributed on a remote server, without affecting their
implementation or use.

Programming language: The languages supported by
CORBA include C, C++, Java, Ada95, COBOL, and
Smalltalk, among others.

OS platform: CORBA runs on many OS platforms, includ-
ing Win32, UNIX, MVS, and real-time embedded systems like
VxWorks, Chorus, and LynxOS.

Communication protocols and interconnects: The com-
munication protocols and interconnects that CORBA can run
on include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Eth-
ernet, embedded system backplanes, and shared memory.

Hardware: CORBA shields applications from side-effects
stemming from differences in hardware such as storage layout
and data type sizes/ranges.

Figure 26 illustrates the components in the CORBA refer-
ence model, all of which collaborate to provide the portability,
interoperability, and transparency outlined above. Each com-
ponent in the CORBA reference model is outlined below:

Client: This program entity performs application tasks by
obtaining object references to objects and invoking opera-
tions on them. Objects can be remote or collocated rela-
tive to the client. Ideally, accessing a remote object should
be as simple as calling an operation on a local object,i.e.,
object !operation(args) . Figure 26 shows the un-
derlying components that ORBs use to transmit remote opera-
tion requests transparently from client to object.

Object: In CORBA, an object is an instance of an Interface
Definition Language (IDL) interface. The object is identified
by an object reference, which uniquely names that instance

27



INTERFACEINTERFACE

REPOSITORYREPOSITORY

IMPLEMENTATIONIMPLEMENTATION

REPOSITORYREPOSITORY

IDLIDL
COMPILERCOMPILER

DIIDII ORBORB
INTERFACEINTERFACE

ORBORB    CORECORE

operation()operation()

OBJECTOBJECT

ADAPTERADAPTER

in  argsin  args

out  args + return  valueout  args + return  value

CLIENTCLIENT

GIOPGIOP//IIOPIIOP

OBJECTOBJECT
((SERVANTSERVANT))

IDLIDL
STUBSSTUBS

STANDARD  INTERFACESTANDARD  INTERFACE STANDARD  LANGUAGE  MAPPINGSTANDARD  LANGUAGE  MAPPING

ORB-ORB-SPECIFIC  INTERFACESPECIFIC  INTERFACE STANDARD  PROTOCOLSTANDARD  PROTOCOL

INTERFACEINTERFACE

REPOSITORYREPOSITORY

IMPLEMENTATIONIMPLEMENTATION

REPOSITORYREPOSITORY

IDLIDL
COMPILERCOMPILER

IDLIDL
SKELETONSKELETON

DSIDSI

Figure 26: Components in the CORBA Reference Model

across servers. AnObjectIdassociates an object with its ser-
vant implementation, and is unique within the scope of an Ob-
ject Adapter. An object has one or more servants associated
with it that implement the interface.

Servant: This component implements the operations de-
fined by an OMG Interface Definition Language (IDL) in-
terface. In languages like C++ and Java that support object-
oriented (OO) programming, servants are implemented using
one or more objects. In non-OO languages like C, servants are
typically implemented using functions andstruct s. A client
never interacts with a servant directly, but always through an
object.

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request
to the object and returning a response, if any, to the client.
For objects executing remotely, a CORBA-compliant [3] ORB
Core communicates via some version of the General Inter-
ORB Protocol (GIOP), most commonly the Internet Inter-
ORB Protocol (IIOP), which runs atop the TCP transport pro-
tocol. An ORB Core is typically implemented as a run-time
library linked into both client and server applications.

ORB Interface: An ORB is an abstraction that can be im-
plemented various ways,e.g., one or more processes or a set
of libraries. To decouple applications from implementation
details, the CORBA specification defines an interface to an
ORB. This ORB interface provides standard operations that
(1) initialize and shutdown the ORB, (2) convert object ref-
erences to strings and back, and (3) create argument lists for
requests made through thedynamic invocation interface(DII).

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs provide a strongly-typed,static invoca-
tion interface(SII) that marshals application parameters into a

common data-level representation. Conversely, skeletons de-
marshal the data-level representation back into typed parame-
ters that are meaningful to an application.

IDL Compiler: An IDL compiler automatically transforms
OMG IDL definitions into an application programming lan-
guage like C++ or Java. In addition to providing program-
ming language transparency, IDL compilers eliminate com-
mon sources of network programming errors and provide op-
portunities for automated compiler optimizations [41].

Dynamic Invocation Interface (DII): The DII allows
clients to generate requests at run-time. This flexibility is
useful when an application has no compile-time knowledge
of the interface it is accessing. The DII also allows clients
to makedeferred synchronouscalls, which decouple the re-
quest and response portions of twoway operations to avoid
blocking the client until the servant responds. In contrast,
SII stubs currently only supporttwoway, i.e., request/response,
andoneway, i.e., request only operations, though the OMG has
standardized an asynchronous method invocation interface in
the recent Messaging Service specification [42].

Dynamic Skeleton Interface (DSI): The DSI is the server’s
analogue to the client’s DII. The DSI allows an ORB to deliver
requests to a servant that has no compile-time knowledge of
the IDL interface it is implementing. Clients making requests
need not know whether the server ORB uses static skeletons or
dynamic skeletons. Likewise, servers need not know if clients
use the DII or SII to invoke requests.

Object Adapter: An Object Adapter associates a servant
with objects, demultiplexes incoming requests to the servant,
and dispatches the appropriate operation upcall on that ser-
vant. Recent CORBA portability enhancements [3] define
the Portable Object Adapter (POA), which supports multi-
ple nested POAs per ORB. Object Adapters enable ORBs to
support various types of servants that possess similar require-
ments. This design results in a small and simple ORB that
can still support a wide range of object granularities, lifetimes,
policies, implementation styles, and other properties.

Interface Repository: The Interface Repository provides
run-time information about IDL interfaces. Using this infor-
mation, it is possible for a program to encounter an object
whose interface was not known when the program was com-
piled, yet, be able to determine what operations are valid on
the object and make invocations on it. In addition, the In-
terface Repository provides a common location to store ad-
ditional information associated with interfaces ORB objects,
such as stub/skeleton type libraries.

Implementation Repository: The Implementation Reposi-
tory [43] contains information that allows an ORB to activate
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servers to process servants. Most of the information in the Im-
plementation Repository is specific to an ORB or OS environ-
ment. In addition, the Implementation Repository provides a
common location to store information associated with servers,
such as administrative control, resource allocation, security,
and activation modes.

B Generalized Schedulability Analysis

It is not strictly necessary to know all operations in advance in
order to schedule them using the canonical definitions of EDF
or MLF. However, the real-time applications we have worked
with do exhibit this useful property. If all operations are known
in advance, off-line analysis of schedule feasibility is possible
for RMS, EDF, MLF, and MUF.

The output of each of the scheduling strategies in TAO is
a schedule. This schedule defines a set of operation dispatch-
ing priorities, dispatching subpriorities, and a minimum criti-
cal dispatching priority. Our goal in this appendix is to present
a feasibility analysis technique for these schedules, that is in-
dependent of the specific strategy used to produce a particular
schedule. Such an analysis technique must establish invari-
ants that hold across all urgency and dispatching priority map-
pings. By doing this, the off-line schedule feasibility analysis
(1) decouples the application from the details of a particular
scheduling strategy, and (2) allows alternative strategies to be
compared for a given application .

The remainder of this appendix is organized as follows.
Section B.1 discusses the notion of a schedule’sframe size.
Section B.2 describes how we measure a schedule’s CPU uti-
lization. Finally, Section B.3 describes the generalized sched-
ule feasibility analysis technique, which is based on a sched-
ule’s utilization, frame size, and the respective priorities of the
operations.

B.1 Frame Size

The frame size for a schedule is the minimum time that can
contain all possible phasing relationships between all opera-
tions. The frame size provides an invariant for the largest time
within which all operation executions will fit. This assumes,
of course, that the scheduling parameters, such as rates and
worst-case execution times, specified by applications are not
exceeded by operations at run-time.

When the periods of all operations are integral multiples of
one another,e.g., 20 Hz, 10 Hz, 5 Hz, and 1 Hz, the operations
are said to beharmonically related. Harmonically related op-
erations have completely nested phasing relationships. Thus,
the arrival pattern of each subsequently shorter period fits ex-
actly within the next longer period. For harmonically related

operations, the frame size is simply the longest operation pe-
riod.

Operations that are not harmonically related come into and
out of phase with one another. Therefore, they do not exhibit
the nesting property. Instead, the pattern of arrivals only re-
peats after all periods come back into the same phasing rela-
tionships they had at the beginning.

This observation leads to the invariant that covers both the
harmonic and non-harmonic cases. The frame size in both
cases is the product of all non-duplicated factors of all opera-
tion periods. For non-harmonic cases, we calculate this value
by starting with a frame size of one time unit and iterating
through the set of unique operation periods. For each unique
period, we (possibly) expand the frame size by multiplying
the previous frame size by the greatest common divisor of the
previous frame size and the operation period. For harmonic
cases, all operation periods are factors of the longest operation
period. Therefore, the longest operation period is the frame
size.

Figure 27 depicts the relationships between operation peri-
ods and frame size for both the harmonic and non-harmonic
cases. For harmonically related operation rates, all of the

1000 ms
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200 ms
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Frame size = 1000 ms

Frame size = 7000 ms

Non-harmonically
related periods

500 ms

875 ms

1000 ms

Figure 27: Frame Size Examples for Harmonic and Non-
Harmonic Cases

smaller periods fit evenly into the largest period. There-
fore, the largest operation periodis the frame size. For non-
harmonically related rates, the frame size is larger than the
largest operation period, because it is a multiple of all of the
operation periods.

B.2 Utilization

Total CPU utilization is the sum of the actual execution times
used by all operation dispatches over the schedule frame size,
divided by the frame size itself. TAO’s strategized scheduling
service calculates the maximum total utilization for a given
schedule by summing, over all operations, the fraction of each
operation’s period that is consumed by its worst-case execu-
tion time, according to the following formula:
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where, for each operationk, Ck is its worst case execution
time, andTk is its period.

In addition to total utilization, TAO’s scheduling service
calculates the CPU utilization by the set of critical opera-
tions. This indicates the percentage of time the CPU is al-
located to operations whose completion prior to deadline is to
be enforced. Operations whose assigned dispatching priority
is greater than or equal to the minimum critical priority bound
are considered to be in the critical set. In the RMS, EDF, and
MLF scheduling strategies, the entire schedule is considered
critical, so the critical set utilization is the same as total uti-
lization.

If the total utilization exceeds theschedulable bound, TAO’s
scheduling service also stores the priority level previous to the
one that exceeded the schedulable bound. This previous prior-
ity level is called theminimum guaranteed priority level. Op-
erations having dispatching priority greater than or equal to
the minimum guaranteed priority level are assured of meet-
ing their deadlines. In contrast, operations having dispatching
priority immediately below the minimum guaranteed priority
level may execute prior to their deadlines, but are not assured
of doing so. If the total utilization does not exceed the schedu-
lable bound, the lowest priority level in the system is the min-
imum guaranteed priority level, and all operations are assured
of meeting their deadlines.

B.3 Schedule Feasibility

It may or may not be possible to achieve afeasibleschedule
that utilizes 100% of the CPU. Achieving 100% utilization de-
pends on the phasing relationships between operations in the
schedule, and the scheduling strategy itself. The maximum
percentage of the CPU that can be utilized is called theschedu-
lable bound.

The schedulable bound is a function of the scheduling strat-
egy and in some cases of the schedule itself. A schedule is
feasibleif and only if all operations in the critical set are as-
sured of meeting their deadlines. The critical set is identified
by the minimum critical priority. All operations having dis-
patching priority greater than or equal to the minimum critical
priority are in the critical set.

The schedulability of each operation in the critical set de-
pends on the worst-case operation arrival pattern, which is
called thecritical instant. The critical instant for an operation
occurs when the delay between its arrival and its completion
is maximal [14]. For the preemptive-by-urgency dispatching
model described in Section 3.5.6, the critical instant for an op-

eration occurs when it arrives simultaneously with all other
operations.

For other dispatching models, the critical instant for a given
operation differs slightly. It occurs only when the operation ar-
rives immediately after another operation that will cause it the
greatestadditionalpreemption delay was dispatched. Further,
it only occurs when the operation arrives simultaneously with
all operations other than the one causing it additional preemp-
tion delay. If an operation is schedulable at its critical instant,
it is assured of schedulability under any other arrival pattern
of the same operations.

A key research challenge in assessing schedule feasibility
is determining whether each operation has sufficient time to
complete its execution prior to deadline. The deadline for an
operation at its critical instant falls exactly at the critical in-
stant plus its period. Not only must a given operation be able
to complete execution in that period, it must do so in the time
that is not used by preferentially dispatched operations. All
operations that have higher dispatching priority than the cur-
rent operation will be dispatched preferentially. All operations
that have the same dispatching priority, but have deadlines at
or prior to the deadline of the current operation, must also be
considered to be dispatched preferentially.

The goal of assessing schedule feasibility off-line in a way
that (1) is independent of a particular strategy, and (2) cor-
rectly determines whether each operation will meet its dead-
line, motivates the following analysis. TAO’s strategized
scheduling service performs this analysis for each operation
off-line. We call the operation upon which the analysis is
being performed thecurrent operation. The number of ar-
rivals, during the period of the current operation, of an op-
eration having higher dispatching priority than the current op-
eration is given bydTc=The, whereTc andTh are the respec-
tive periods of the current operation and the higher priority
operation. The time consumed by the higher priority oper-
ation during the period of the current operation is given by
bTc=ThcCh + min (Tc � bTc=ThcTh; Ch), where themin

function returns the minimum of the values, andCh is the
computation time used for each dispatch of the higher prior-
ity operation.

Similarly, the number of deadlines of another operation hav-
ing the same dispatching priority as the current operation is
given bybTc=Tsc, whereTs is the period of the other opera-
tion having the same dispatching priority as the current opera-
tion. The time consumed by the other same priority operation
over the period of the current operation is given bybTc=TscCs,
whereCs is the computation time used by the other same pri-
ority operation [14]. Figure 28 illustrates the various possible
relationships between the periods of operations in two priority
levels.

Choosing the fourth operation, with periodT4, as the cur-
rent operation, the number of arrivals of each of the higher pri-
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Figure 28: Schedulability of the Current Operation

ority operations is as expected:dT4=T1e = d9=2e = d4:5e =
5 anddT4=T2e = d9=15e = d0:6e = 1. The number of dead-
lines of operations having the same priority level is also as
expected:bT4=T3c = b9=7c

:
= b1:3c = 1 andbT4=T4c =

b9=9c = b1:0c = 1 andbT4=T5c = b9=10c = b0:9c = 0.
Having established the time consumed by an operation hav-

ing higher dispatching priority than the current operation as
bTc=ThcCh + min (Tc � bTc=ThcTh; Ch), and the time con-
sumed by an operation having the same dispatching priority as
the current operation asbTc=TscCs, it is now possible to state
the invariant that must hold for all operations having dispatch-
ing priority � to be schedulable:
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S is the set of all operations in the schedule. The func-
tion p(j) simply returns the priority assigned to operationj.
Cwcpd(j) is the worst-case preemption delay for operationj.
Operationj suffers a preemption delay if and only if it arrives
while an operation in the same dispatching priority level that
does not have a deadline within operationj’s period is exe-
cuting. Operations that have deadlines within operationj’s
period must be counted anyway, and thus do not impose any
additionaldelay, should operationj arrive while they are ex-
ecuting. The worst-case preemption delay for operationj is

the longest execution time of any operation that has a longer
period: if there are no such operations,Cwcpd(j) is zero.

For each current operation having dispatching priority� to
be schedulable, the following must hold. All deadlines of op-
erations having the same dispatching priority or higher, includ-
ing the deadline of the current operation itself, plusCwcpd(j),
plus any time scheduled for higher priority operations that ar-
rive within but do not have a deadline within the period of
the current operations, must be schedulable within the period
of the current operation. This invariant is evaluated for each
decreasing dispatching priority level of a schedule, from the
highest to the lowest. The lowest dispatching priority level for
which the invariant holds is thus identified as the minimum
priority for which schedulability of all operations can be guar-
anteed, known as theminimum guaranteed priority.

In summary, the schedule feasibility analysis technique
presented in this appendix establishes and uses invariants
that hold across all urgency and dispatching priority map-
pings. This gives applications the ability to examine differ-
ent scheduling strategies off-line, and discard those that do not
produce feasible schedules for their particular operation char-
acteristics. Further, it decouples applications from the details
of any particular scheduling strategy, so that changes in strate-
gies to not require changes in their operation characteristics.
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