The Design and Performance of a
Real-Time CORBA Scheduling Service

Christopher D. Gill, David L. Levine, and Douglas C. Schmidt
{cdgill,levine,schmidt@cs.wustl.edu
Department of Computer Science, Washington University
St. Louis, MO 63130, USA

August 10, 1998

Abstract 1 Introduction

There is increasing demand to extend CORBA middlewareltbl Motivation

supportapplicationswith stringfentquality ofseryice (QoS) '8upporting the quality of service (QoS) demands of next-
quirements. However, conventional CORBA middleware dogseration real-time ~applications requires object-oriented
not define standard features to dynamically schedule opefgio) middleware that is flexible, efficient, predictable, and
tions for applications that possess deterministic and/or stalisnvenient to program. Applications with deterministic real-

tical real-time requirements. This paper presents three contfiy,e requirements, such as avionics mission computing sys-
butions to the study of real-time CORBA operation schedulipg,s [1], impose severe constraints on the design and im-

strategies. plementation of real-time OO middleware. Avionics mission

First, we document our progression from static to dynanff@Mputing applications manage sensors and operator displays,
scheduling for avionics applications with deterministic reaftavigate the awcraftg course, ar?d control weapon release.
time requirements. Second, we describe the flexible schedulifjiddleware for avionics mission computing must support
service framework in our real-time CORBA imp|ementatioﬁpplications with both deterministic and statistical real-time
TAO, which efficiently supports core scheduling strategies IS requirements. Support for deterministic real-time re-
RMS, EDF, MLF, and MUFE. Thn‘d, we present results from Sirﬁulrements are necessary for mission computing tasks that
ulations and empirical benchmarks that quantify the behavigtist meet all their deadlines.g, weapon release and naviga-
of these scheduling strategies and assess the overhead ofifij- Likewise, support for statistical real-time requirements
namic scheduling in TAO. is desirable for tasks like built-in-test and low-priority display

gueues, which can tolerate minor fluctuations in scheduling

Our simulation results show how hybrid static/dynamignd reliability guarantees, but nonetheless require QoS sup-
strategies that consider operation criticality, such as MUF, aigort,

capable of preserving scheduling guarantees for critical oper-
ations under an overloaded schedule. In addition, our em-
pirical results show that under realistic conditions, dynamit, 2 Design and Implementation Challenges
scheduling of CORBA operations can be deterministic and can
achieve acceptable latency for operations, even with moderbigure 1 illustrates the architecture of an OO avionics mis-
levels of queueing. sion computing application developed at Boeing [2] using OO
)] . middleware components and services based on CORBA [3].
Keywords: Middleware and APIs, Quality of Servicecorpa Object Request Brokers (ORB)s allow clients to in-
Issues, Mission Critical/Safety Critical Systems, Dynamig,e operations on target object implementations without con-
Scheduling Algorithms and Analysis, Distributed Systems. ¢ern for where the object resides, what language the object im-
plementations are written in, the OS/hardware platform, or the
type of communication protocols, networks, and buses used to
*This work was supported in part by Boeing, DARPA contract 970151inter09nneCt diStri-bUted -Obj-eCtS [4] However’ achieving these
Lucent, Motorola, NSF grant NCR-9628218, Siémens, and US Sprint. BEneflts for real't'_me avpmcs appllcatlons re,qu'res the reso-
lution of the following design and implementation challenges:

should be flexible. For instance, it should be transparent to
the software design and implementation whether a given oper-
ation resides on the same processor as the client that invokes
it.

3:PUSH (EVENTS) Testability: Avionics software is complex, critical, and
LA NN long-lived. Therefore, maintenance is problematic and expen-
2:PUSH (EVENTS) sive [7]. A large percentage of software maintenance involves
testing. Current scheduling approaches are validated by exten-
sive testing, which is tedious and non-comprehensive. There-
fore, analytical assurance is essential to help reduce validation
- costs by focusing the requisite testing on the most strategic
) system components.

1: SENSORS /}%E Adaptability across product families: Current avionics ap-

plications are custom-built for specific product families. De-
velopment and testing costs can be reduced if large, common
components can be factored out. In addition, validation and

. o - . __ certification of components can be shared across product fam-
Figure 1: Example Avionics Mission Computing Applicationjies potentially reducing development time and effort.

Sensor Sensor
proxy proxy

Scheduling assurance prior to run-time: In avionics ap- 1.3 Applying CORBA to Real-Time Avionics
plications, the consequences of missing a deadline at run-time Applications

can be catastrophic. For example, failure to process an input
from the pilot within the allotted time frame can be disastrousur experience using CORBA on telecommunication [8] and
especially in mission critical situations such as air-to-air emedical imaging projects [9] indicates that it is well-suited for
gagement or weapons release. Therefore, it is essential to gahventional request/response applications with “best-effort”
idate that all critical processing deadlines will be rpgor to QoS requirements. Moreover, CORBA addresses issues of
run-time. distributed processing and adaptation across product families
Historically, validating stringent timing requirements hasy promoting the separation of interfaces from implementa-
implied the use of static, off-line scheduling. For instanctions and supporting component reuse [4].
the ARINC Avionics Application Software Standard Interface However, standard CORBA is not yet ideally suited for real-
(APEX) for Integrated Modular Avionics (IMA) relies on two-time avionics applications since it does not specify features for
level scheduling [5, 6]. One level consistspafrtitions, which scheduling operations that require deterministic and/or statis-
are executed cyclically and scheduled statically, off-line. Tkieal real-time QoS [10]. To meet these requirements, we have
second level consists of applicatiprocessewithin each par- developed a real-time CORBA Object Request Broker (ORB)
tition, which are scheduled via a more flexible approach usisglled TAO [10]. TAO is a CORBA-compliant ORB whose
priority-based preemption [5]. implementation and service extensions support efficient and
predictable real-time, distributed object computing.

Severe resource limitations: Avionics systems must min- Our orior work on TAO has explored several dimensions of
imize processing due to limited resource availability, such as™ " P . P . . ;
I-time ORB design and performance, including real-time

weight and power consumption restrictions. A consequenc

using static, off-line scheduling is that worst-case processfﬁ\gnt processing [2], real-time request demultiplexing [11],

requirements drive the schedule. Therefore, resource alld&: I-time |/O subsystem integration [12], and real-time con-

tion and scheduling must always accommodate the worst c&sdrency and F:onnecuon arch|tec_tures [13]. Th|§ paper ex-
even in Non-worst case SCenarios. Fends our previous yvork ona real—tlme CORBA static schedul-
ing service [10] by incorporating strategized scheduling ser-
Distributed Processing: In complex avionics systems, misvice frameworknto TAO. This framework allows the config-
sion processing must be distributed over several physical pucation and empirical evaluation of multiple static, dynamic,
cessors. Moreover, computations on separate processors angstybrid static/dynamic scheduling strategies, such as Rate
communicate effectively. Clients running on one procesddpnotonic Scheduling (RMS) [14], Earliest Deadline First
must be able to invoke operations on servants in other p@bF) [14], Minimum Laxity First (MLF) [15], and Maximum

cessors. Likewise, the allocation of operations to processdrgency First (MUF) [15].

To maintain scheduling guarantees and to simplify testing, Overview of Dynamic Scheduling
we have extended our prior work on TAO incrementally. In Strategies
particular, our approach focuses on deterministic, statically
configured and scheduled avionics applications with the fi

: L cfjﬁis section describes the limitations of purely static schedul-
lowing characteristics:

ing and outlines the potential benefits of applying dynamic
scheduling. In addition, we evaluate the limitations of purely
« Bounded executiorsoperations stay within the limits ofdynamic scheduling strategies. This evaluation motivates the
their advertised execution times. hybrid static/dynamic MUF scheduling approach used by TAO
to schedule real-time CORBA operations, as described in Sec-
e Bounded rates- dispatch requests will arrive within theiion 3.
advertised period and quantity values.

e Known operations- all operations are known to the2.1 Limitations of Static Scheduling
scheduler before run-time or are reflected entirely with

the execution times of other advertised operations. Many hard real-time systems, such as those for avionics mis-

sion computing and manufacturing process controllers, have
traditionally been scheduled statically using rate monotonic

These types of applications are relativelatic Therefore, scheduling (RMS) [16]. Static scheduling provides schedu-
TAO can minimize run-time overhead that would otherwid@bility assurance prior to run-time and can be implemented
stem from mechanisms used to enforce operation execuMdh low run-time overhead [10]. However, static scheduling
time limits [2] or to perform dynamic admission control. has the following disadvantages:

Within these constraints, the work on TAO's strategizflefficient handling of non-periodic processing: Static
scheduling service framework described in this paper allowgheduling treats aperiodic processing as if it was periodic,
applications to specify custom static and/or dynamic schedu - occurring at its maximum possible rate. Resources are
ing and dispatching strategies. This framework increasggcated to aperiodic operations either directly or through a
adaptability across application families and operating systeSeradic servérto reduce latency. In typical operation, how-
while preserving the rigorous scheduling guarantees and tegigsy, aperiodic processing may not occur at its maximum pos-
bility offered by our previous work on statically schedulegipe rate. One example is interrupts, which potentially may
CORBA operations. occur very frequently, but often do not.

Unfortunately, with static scheduling, resources must be al-
located pessimistically and scheduled under the assumption

1.4 Paper Organization that in.t_erru_pts. occur at the maximum rate. When they do
not, utilization is effectively reduced because unused resources

The remainder of this paper is organized as follows: Sé&&nnotbe reallocated.

Flon Zdre.v'e\’\g’ the (:]rav;backs. of ogf-::ng,.dstatlc' 7ghEd'“l|JtiIization phasing penalty for non-harmonic periods: In

Ing an .Intl’O uces the dynamic and hybri §tat|c Ynangfétically scheduled systems, achievable utilization can be re-
scheduling strategies we are evaluating. Section 3 discu d if the periods of all operations anet related har-

;he deS|grk1 anr(]j_ n;:plementatlon.of TAO’S. scgedulmg Ser\ﬂﬁ?onically. Operations are harmonically related if their pe-

ramework, which supports various static, dynamic, or Nyoqs are integral multiples of one another. When periods

brid static/dynamic real-time scheduling strategies. Sectiog 4 harmonic, the phasing of the operations produces un-
demonstrates how TAO’s scheduling service can be used tos\’:iﬁeduled gaps of ime. This reduces the maximum schedu-

sualize scheduler behavior for different scheduling strateql%ae percentage of the CPUe, the schedulable boundo

at the critical instant. Section 5 presents results from ben¢hs1/n _ 1) [14], wheren is the number of distinct non-

marks that empirically evaluate the dynamic scheduling Str"’\li%'rmonic operation periods in the system
gies to compare the run-time dispatching overhead of stati r very largen, the schedulable bound is slightly larger

and dynamic sgheduling strategies. Seption 6 discusses relfﬁgﬁeg%. With harmonically related periods, the schedulable
work and Section 7 presents concluding remarks. For co 1und can be 100%. Thailization phasing penaltis the dif-

pleteness, Appeqdlx A outlines th? CORBA. reference mo rence between the value of the schedulable bound equation
and Appendix B introduces a unified technique for SChed%ﬁd 100%

feaSib”.ity analysis, which generalizes across the schedulinga sporadic server [17] reserves a portion of the schedule to allocate to
strategies supported by TAO. aperiodic events when they arrive.

DISPATCHING THREAD
STATIC DISPATCHING (QUEUE

PRIORITY PRIORITY

= SELECTION) >‘ _,i’ﬁwm@ ‘

sruct RT_Info
{ DYNAMIC | | pSPATCHING | \
criticality_;) SUBPRIORITY | | SUBPRIORITY (Quee "’2 BRI ‘47 DISPATCHING
worsicase exec_time; 21 [——% ORDER) / QUEUES
period; —— | /
importance ; < DISPATCHING QUEUE THREAD e —>2 RIS
dependencies ; —— T ™/ saTic PRIORITY TYFE PRIORITY
k) SUBPRIORITY ¥ /
4+ (QUEUE RT_OPERATIONS
ENCY CONFIGURATION,
RIT_INFO URGl DISPATCH QUEUE CONFIG)
SCHEDULING STRATEGY (EG., MUF) CONFIGURED DISPATCHING MODULE

Figure 2: Relationships Between Operation, Scheduling, and Dispatching Terminology

Inflexible handling of invocation-to-invocation variation
in resource requirements: Because priorities cannot be ?truct RT_Info

changed easify at rqn-tlme, allqcatlons myst be based 1" criticality criticality ;
worst-case assumptions. Thus, if an operation usually requir Timeworstcase exec time ;
5 msec of CPU time, but under certain conditions requires| Period period_;

. . . Importance importance ;
msec, static scheduling analysis must assume that 8 msec y penendency Info dependencies :

be required for every invocation. Again, utilization is effec}; DISPATCHED AFTER
tively penalized because the resource will be idle for 3 msec
in the usual case. Figure 3: TAO’s Real-time CORBA Operation Characteristics

In general, static scheduling limits the ability of real-time

systems to adapt to changing conditions and changing cgfrey fail to complete execution before their deadlines. Some
figurations. In addition, static scheduling compromises Igsheduling strategies, such as MUF, take criticality into con-

source utilization to guarantee access to resources at run-téfaration, so that more critical operations are given priority
To overcome the limitations of static scheduling, thereforgyer |ess critical ones.

we are investigating the use of dynamic strategies to sched-

ule CORBA operations for applications with real-time QoS ® Worst-case execution time: This is the longest time it
requirements. can take to execute a single dispatch of the operation.

e Period: Period is the interval between dispatches of an
2.2 Synopsis of Scheduling Terminology operation.

Precise terminology is necessary to discuss and evaluate statie, Importance: Importance is a lesser indication of a
dynamic, and hybrid scheduling strategies. Figure 2 shows @@RBA operation’s significance. Like its criticality, an op-
relationships between the key terms defined below. eration’s importance value is supplied by an application. Im-

RT_Operation and RT_Info: In TAO, anRT.Operation portance is used as a “tie-breaker” to distinguish between op-

. . . rations th herwise would have identical priority.
is a scheduled CORBA operation [10]. In this paper, v\vleeato s that otherwise woulld have identical priority

use operation interchangeably withRT_Operation . An ¢ Dependencies: An operationdepends omnother oper-
RT._Info struct is associated with each operation and coation if it is invoked only via a flow of control from the other
tains its QoS parameters. TRA_Info structure contains theoperation.

following operation characteristics shown in Figure 3 and de- i , .
scribed below. . Scheduling Strategy: A scheduling strategy (1) takes the in-

formation provided by an operatior&I_Info , (2) assigns an
o Criticality: ~ Criticality is an application-supplied valueyrgencyto the operation based on its static priority, dynamic
that indicates the significance of a CORBA operation’s coRybpriority, and static subpriority values, (3) maps urgency
pletion prior to its deadline. Higher criticality should be asnto dispatching priority and dispatching subpriority values
signed to operations that incur greater cost to the applicatigpthe operation, and (4) provides dispatching queue configu-
2Priorities can be changed viaode changefl0], but that is too coarse ration information so that each operation can be dispatched

to capture invocation-to-invocation variations in the resource requirementé?@fcording t(? its assigned dispatching 'priority and d.iSpatCh‘
complex applications. ing subpriority. The key elements of this transformation per-

formed by the scheduling strategy are shown in Figure 2 an® Queue Configuration: A separate queue must be con-
defined as follows: figured for each distinct dispatching priority. The scheduling
strategy assigns each queue a dispatching tgpe, 6tatic,

e Urgency: Urgency [15] is an ordered tuple consistingeadline, or laxity), a dispatching priority, and a thread prior-
of (1) static priority, (2) dynamic subpriority, and (3) statidty.
subpriority. Static priority is the highest ranking priority com-
ponent in the urgency tuple, followed by dynamic subpriority Together, urgency and dispatching (sub)priority assignment
and then static subpriority, respectively. Figure 4 illustratepecify requirements that certain operations will meet their

these relationships. deadlines. To support end-to-end QoS requirements, opera-
tions with higher dispatching prioritieshould notbe delayed
HiGH Low by operations with lower dispatching priorities. Two key re-
ORDER ORDER search challenges must be resolved to achieve this goal. First,
/ \ strategies must be identified to correctly specify end-to-end

QoS requirements for different operations. Second, dispatch-
| | ing modules must enforce these end-to-end QoS specifica-

f tions. The following two definitions are useful in addressing
STATIC STATIC these challenges:
PRIORITY SUBPRIORITY e Critical set: The critical set is defined as the set of all
DynAmiC operations whose completion prior to deadline is crucial to
SUBPRIORITY the integrity of the system. If all operations in the critical set
Figure 4: Relationships in the Urgency Tuple can be assured of meeting their deadlines, a schedule that pre-

serves the system’s integrity can be constructed.

S L . . e Minimum critical priority: ~~ The minimum critical pri-
® Static priority: . S_tatlc priority assignment estabhshes 8rity is the lowest dispatching priority level to which opera-
fixed number of priority partitions into which all Operationg, s in the critical set are assigned. Depending on the schedul-

Imt;lst dfaI]L.f I.The 'r&umber Of. St"flt'c pr_'O”tY pgrtltlolns IS esftat?ﬁg strategy, the critical set may span multigispatching pri-
Ished ofi-ine. An operation's static priority value Is ofte rity levels. To ensure that all operations in the critical set

dgtermmed off-line. H_owever, the value asslgned a pal’t.ICU B schedulable, the minimum critical priority level must be
dispatch of the operation could vary at run-time, depend'ng&ghedulable

which scheduling strategy is employed.
Dispatching Module: A dispatching module constructs the
o Dynamic subpriority: Dynamic subpriority is a value appropriate type of queue for each dispatching priority. In ad-
generated and used at run-time to order operatigtisn a dition, it assigns each dispatching thread’s priority to the value
static priority level, according to the run-time and static chaprovided by the scheduling strategy. A TAO ORB endsystem
acteristics of each operation. For example, a subpriority baséd be configured with dispatching modules at several layers,
on “closest deadline” must be computed dynamically. e.g, the I/O subsystem [12], ORB Core [13], and/or the Event
Service [2].
e Static subpriority: Static subpriority values are deter-

mined prior to run-time. Static subpriority acts as atie-breakze_rs Overcoming Static Scheduling Limitations
when both static priority and dynamic subpriority are equal. with Dynamic Scheduling

e Dispatching priority: ~ An operation’s dispatching pri- Several other forms of scheduling exist beyond RMS. For
ority corresponds to the real-time priority of the thread ifstance, Earliest Deadline First (EDF) scheduling assigns
which it will be dispatched. Operations with higher dispatchigher priorities to operations with closer deadlines. EDF is
ing priorities are dispatched in threads with higher rea|-tirﬁ©mmon|y used for dynamic scheduling because it permits
priorities. run-time modification of rates and priorities. In contrast, static

techniques like RMS require fixed rates and priorities.

e Dispatching subpriority: Dispatching subpriority is Dynamic scheduling does not suffer from the drawbacks de-
used to order operations within a dispatching priority levgleribed in Section 2.1. If these drawbacks can be alleviated
Operations with higher dispatching subpriority are dispatche;
ahead of operations with the same dispatching priority hyt
lower dispatching subpriority.

An operation’s laxity is the time until its deadline minus its remaining
cution time.

without incurring too much overhead or non-determinism, dgn time-to-deadline, as shown in Figure 5. Operation execu-
namic scheduling can be beneficial for real-time applicatiaimsns with closer deadlines are dispatched before those with
with deterministic QoS requirements. However, many dgrore distant deadlines. The EDF scheduling strategy is in-
namic scheduling strategies do not offer theriori guaran- voked whenever a dispatch of an operation is requested. The
tees of static scheduling. new dispatch may or may not preempt the currently executing

For instance, purely dynamically scheduled systems can bgeration, depending on the mapping of priority components
have non-deterministically under heavy loads. Therefore, amto thread priorities discussed in Section 3.5.5.
erations that are critical to an application may miss their deadA key limitation of EDF is that an operation with the ear-
lines because they were (1) delayed by non-critical operatigiast deadline is dispatched whether or not there is sufficient
or (2) delayed by an excessive number of critical operatiofifae remaining to complete its execution prior to the deadline.
e.g, if admission control of dynamically generated operatiomerefore, the fact that an operation cannot meet its deadline
is not performed. will not be detected untifterthe deadline has passed.

.)))) If the operation is dispatched even though it cannot com-

The remainder of this section reviews several strategies f&ie jts execution prior to the deadline, the operation con-
dynamic and hybrid static/dynamic scheduling, using the tgfjmes CPU time that could otherwise be allocated to other op-
minology defined in Section 2.2. These scheduling strategigsiions. If the result of the operation is only useful to the ap-

include purely dynamic techniques, such as EDF, Minimugjjcation prior to the deadline, then the entire time consumed
Laxity First (MLF), as well as the hybrid Maximum Urgen%y the operation is essentially wasted.

First (MUF) strategy.

Minimum Laxity First (MLF): MLF [15] refines the EDF
2.3.1 Purely Dynamic Scheduling Strategies strategy by taking into account operation execution time. It
. . . , ispatches the operation whdagity is least, as shown in Fig-
This section reviews two well known purely dynamic SCheOIuﬂre 5. Laxity is defined as the time-to-deadline minus the re-

ing strategies, Earliest Deadline First (EDF) [14, 16], and Mipn'ainin execution time
imum Laxity First (MLF) [15]. These strategies are illus- 9 '

trated in Figure 5 and discussed below. In addition, Figure 5YSiNg MLF, itis possible to detect that an operation will not
meet its deadlingrior to the deadline itself. If this occurs,

7 a scheduler can reevaluate the operation before allocating the
=P ||||||||||//A CPU for the remaining computation time. For example, one
MLF [/ {11] strategy is to simply drop the operation whose laxity is not
MUFE ZZlII sufficient to meet its deadline. This strategy may decrease the
chance that subsequent operations will miss their deadlines,
TIMEAXIS —# especially if the system is overloaded transiently.
[OPERATIONA: OPERATION B:
HIGH CRITICALITY LOW CRITICALITY
40USEC TO DEADLINE 35USEC TO DEADLINE EVaIUation Of EDF and MLF:
25 USEC EXECUTION 25 USEC EXECUTION

e Advantages: From a scheduling perspective, the main
advantage of EDF and MLF is that they overcome the utiliza-
tion limitations of RMS. In particular, the utilization phasing
penalty described in Section 2.1 that can occur in RMS is not
a factor since EDF and MLF prioritize operations according to
their dynamic run-time characteristics.

EDF and MLF also handle harmonic and non-harmonic

eriods comparably. Moreover, they respond flexibly to

depicts the hybrid static/dynamic Maximum Urgency Fir%vocation—to—invocation variations in resource requirements,
(MUF) [15] scheduling strategy discussed in Section 2'3'2'allowing CPU time unused by one operation to be reallo-

_ . _ _ ~ cated to other operations. Thus, they can produce schedules
Earliest Deadline First (EDF): EDF [14, 16] is a dynamiC that are optimal in terms of CPU utilization [14]. In addi-
scheduling strategy that orders dispatCl®perations basedtion, both EDF and MLF can dispatch operations within a sin-

4A dispatchis a particular execution of asperation gle static priority level and need not prioritize operations by
rate [14, 15].

MM] OPERATION C:
LOW CRITICALITY
30 USEC TO DEADLINE
10 USEC EXECUTION

Figure 5: Dynamic Scheduling Strategies

¢ Disadvantages: From a performance perspective, orthe instant of evaluation, dynamic subpriority in MUF is a
disadvantage to purely dynamic scheduling approaches liliaction of the the laxity of an operation.

MLF and EDF is that their scheduling strategies require highelAn example of such a simple dynamic subpriority function
overhead to evaluate at run-time. In addition, these purely @ythe inverse of the operation’s laxityOperations with the
namic scheduling strategies offer no control owdrich op- smallest positive laxities have the highest dynamic subpriori-
erations will miss their deadlines if the schedulable boundtiss, followed by operations with higher positive laxities, fol-
exceeded. As operations are added to the schedule to acHimwved by operations with the most negative laxities, followed
higher utilization, the margin of safety faill operations de- by operations with negative laxities closer to zero. Assigning
creases. Therefore, the risk of missing a deadline increasesiferamic subpriority in this way provides a consistent order-
every operation as the system become overloaded. ing of operations as they move through fendingandlate
dispatching queues, as described below.

By assigning dynamic subpriorities according to laxity,
MUF offers higher utilization of the CPU than the statically
The Maximum Urgency First (MUF) [15] scheduling stratscheduled strategies. MUF also allows deadline failures to
egy supports both the deterministic rigor of the static RM® detectedeforethey actually occur, except when an op-
scheduling approach and the flexibility of dynamic scheduliggation that would otherwise meet its deadline is preempted
approaches such as EDF and MLF. MUF is the default sch84-a higher criticality operation. Moreover, MUF can apply
uler for the Chimera real-time operating system (RTOS) [18prious types of error handling policies when deadlines are
TAO supports a variant of MUF in its strategized CORBANissed [15]. For example, if an operation has negative lax-
scheduling service framework, which is discussed in Sd@.prior to being dispatched, it can be demoted in the priority
tion 3. queue, allowing operations that can still meet their deadlines

MUF can assign both statiend dynamic priority compo- t0 be dispatched instead.

nents. In contrast, RMS. assigns .aII' priority components S&htic Subpriority: In MUF, static subpriorityis a static,
ically and EDF/MLF assign all priority components dynamg plication-specific, optional priority. It is used to order the

cally. The hybrid prio.ri.ty assignmen_t in MUF overcomes t spatches of operations that have the same criticality and the
drawbacks of the individual scheduling strategies by combg}i—me dynamic subpriority. Thus, static subpriority has lower
ing techniques from each, as described below: ’

precedence than either criticality or dynamic subpriority.
Criticality: In MUF, operations with highecriticality are ASSIgning a unique static subpriority to operation that have

assigned to higher static priority levels. Assigning static prighe Same criticality ensures a total dispatching ordering of op-
ities according to criticality prevents operations critical to tHfations at run-time, for any operation laxity values having the
application from being preempted by non-critical operation$ame criticality. A total dispatching ordering ensures that for

Ordering operations by application-defined criticality rét 9'Ven arrival pattern of operation requests, the dispatching

flects a subtle and fundamental shift in the notion of prigffder will always be the same. This, in turn, helps improve the

ity assignment. In particular, RMS, EDF, and MLF exhibfg!iability and testability of the system.

a rigid mapping from empirical operation characteristics to a

single priority value. Moreover, they offer little or no control The variant of MUF used in TAO's strategized scheduling
over which operations will miss their deadlines under overlog€irvice enforces a complete dispatching ordering by provid-
conditions. ing animportance field in the TAORT.Info CORBA op-

In contrast, MUF gives applications the ability to distineration QoS descriptor [10], which is shown in Section 2.2.
guish operations arbitrarily. MUF allows control oughich TAO’s scheduling service usemportance , as well as a
operations will miss their deadlines. Therefore, it can protdepological ordering of operations, to assign a unique static
a criticalsubsebf the entire set of operations. This fundamegubpriority for each operation within a given criticality level.
tal shift in the notion of priority assignment leads to the gen- Incidentally, the original definition of MUF in [15] uses
eralization of scheduling and analysis techniques discussethi termsdynamic priorityanduser priority, whereas we use
Section 3 and Appendix B. the termdynamic subpriorityandstatic subpriorityfor TAO’s

scheduling service. We selected different terminology to indi-

2.3.2 Maximum Urgency First

Dynamic Subpriority: An operation’s dynamic subpriority

is evaluated whenever it must be compared to another oper:To avoid division-by-zero errors, any operation whose laxity is in the
ation’s dynamic subpriority. For example, an operation’s d@-”geie can be assigned (negative) dynamic subpriority/c wherec is

. . L. . _the smallest positive floating point number that is distinguishable from zero.
namic subpriority is evaluated whenever it is enqueued iNHf;s, when the laxity of an operation reachgisis considered to have missed

dequeued from a dynamically ordered dispatching queue. ithteadiine.

in args

operation() OBJECT
(SERVANT)

cate the subordination to static priority. These terms are inte
changeable when referring to MUF, however.

out args + return value

3 The Design of TAO's Strategized

3
RIDL v
Scheduling Service RIDL ORB RuN-11vn [S"“mN] (mmmj

OBJECT
STUBS SCHEDULER ADAPTER

=

tions with the flexibility to specify and use different schedul
ing strategies, according to their specific QoS requiremen
and available OS features. This flexibility allows CORBA ap-
plications to extend the set of available scheduling strategigpeeetss=ss .
withoutimpacting strategies used by other applications. More SUBSYSTEM
over, it shields application developers from unnecessary d
tails of their scheduling strategies. In addition, TAO'S SChed U\ —————— NETWORK SLIOKE ML
ing service provides a common framework to compare existing
scheduling strategies and to empirically evaluate new stratfyure 6: Components in the TAO Real-time ORB Endsystem
gies.

This section outlines the design goals and architecture of
TAO's strategized scheduling service framework. After brief§f active connections, servants, and operations defined in IDL
describing TAO in Section 3.1, Section 3.2 discusses the tdgerfaces.

sign goals of TAO's strategized scheduling service. S?SRB Run-time Scheduler: TAQO's run-time scheduler maps

tion 3.3 offers an overview of its architecture and operatiofy, i ~ion QO0S requirements to ORB endsystem/network re-
Section 3.4 describes the design forces that motivate TA rces [10]. Common QoS requirements include bounding

flgxible Scheduling Service 'architec'ture. F.inaIIy, Section 3e§1d-to—end latency and meeting periodic scheduling deadlines.
discusses the resulting architecture in detail.

Common ORB endsystem/network resources include CPU,
memory, network connections, and storage devices.

3.1 Overview of TAO Real-time ORB Core: The ORB Core delivers client re-

TAO is a high-performance, real-time ORB endsystem té}gests to the Object Adapter and returns responses (if any) to

geted for applications with deterministic and statistical Q&&€Nts- TAO's real-time ORB Core [13] uses a multi-threaded,

requirements, as well as “best-effort’ requirements. The Tﬂ@eemptive, priority-based connection and concurrency archi-

ORB endsystem contains the network interface, OS, comriitfture to provide an efficient and predictable CORBA 110P

nication protocol, and CORBA-compliant middleware conRrotocol engine [19].

ponents and features shown in Figure 6. TAO supports Real-time 1/0 subsystem: TAO's real-time I/O subsystem
standard OMG CORBA reference model [3], with the followj22] extends support for CORBA into the OS. TAO's I/O sub-
ing enhancements designed to overcome the shortcomings@tem assigns priorities to real-time I/0 threads so that the
conventional ORBs [13] for high-performance and real-tirighedulability of application components and ORB endsystem
applications: resources can be enforced.

Real-time IDL Stubs and Skeletons: TAO's IDL stubs and High-speed network interface: At the core of TAO’s 1/O
skeletons efficiently marshal and demarshal operation paraubsystem is a “daisy-chained” network interface consisting
eters, respectively [19]. In addition, TAO’s Real-time IDlof one or more ATM Port Interconnect Controller (APIC)
(RIDL) stubs and skeletons extend the OMG IDL specificahips [23]. APIC is designed to sustain an aggregate bi-
tions to ensure that application timing requirements are spetirectional data rate of 2.4 Gbps. In addition, TAO runs
fied and enforced end-to-end [20]. on conventional real-time interconnects, such as VME back-

. .) . . lanes, multi-processor shared memory environments, and In-
Real-time Object Adapter: An Object Adapter assomate%)emet protocols like TCP/IP.

servants with the ORB and demultiplexes incoming requests to

servants. TAO's Object Adapter uses perfect hashing [21] andAO is developed atop lower-level middleware called
active demultiplexing [11] optimizations to dispatch servaCE [24], which implements core concurrency and distribu-
operations in constar®(1) time, regardless of the numbetion patterns [25] for communication software. ACE provides

TAQ's scheduling service provides real-time CORBA applica{ %

OS KERNEL

OS KERNEL
REAL-TIME 1/0

reusable C++ wrapper facades and framework componehtsupper timeline, criticality is also included. Both timelines
that support the QoS requirements of high-performance, raddpict schedule overrun. When criticality is considered, only
time applications. ACE runs on a wide range of OS platformspn-critical operations miss their deadlines.
including Win32, most versions of UNIX, and real-time oper-
ating systems like Sun ClassiX, LynxOS, and VxWorks. Goal 3. Adaptive scheduling: The sets of operation blocks
at the bottom of Figure 7 demonstrate our third research goal:
3.2 Design Goals of TAO’s Scheduling Service providing applicgtions with the flexibility to adapt.to varying
application requirements and platform featurdss this exam-
To alleviate the limitations with existing scheduling stratele, the first and second applications use the same five oper-
gies described in Section 2, our research on CORBA real-tiai®ons. However, the first application considers operations A
scheduling focuses on enabling applications ton@hximize and E critical, whereas the second application considers op-
total utilization, (2) preserve scheduling guarantees for critierations B and D critical. By allowing applications to select
cal operationgwhen the set of critical operations can be idemhich operations are critical, it should be possible to provide
tified), and (3)adapt flexibly to different application and plat-scheduling behavior that is appropriate to each application’s
form characteristics These three goals are illustrated in Figndividual requirements.

ure 7 and summarized below:) .)
These goals motivate the design of TAO’s strategized

CRITICAL HIGH UTILIZATION scheduling service framework, described in Section 3.3. For
B) il the real-time systems [2, 10, 22, 13] that TAO has been ap-
NON- VS plied to, it has been possible to identify a core set of oper-

CRITICAL []] ations whose execution before deadlinesritical to the in-
ISOLATE MISSED DEADLINES tggrlt.y of t_he system. Therefore_,_the TAO'’s schedul_mg ser-

] vice is designed to ensure that critical CORBA operations will
NOT) LY meet their deadlines, even when the total utilization exceeds
SCHEDULED VS
the schedulable bound.

[] m If it is possible to ensure deadlines will be met, then adding
DEADLINE

operations to the schedule to increase total CPU utilization
will not increase the risk of missing deadlines. The risk will
only increase for those operations whose execution prior to

TIME AXIS —

ADAPTATION TO

APPLICATION CHARACTERISTICS deadline isnot critical to the integrity of the system. In this
A B A B way, the risk to the whole system is minimized when it is
[] v [] loaded for higher utilization.
]]
D E C D E
FIRST APPLICATION SECOND APPLICATION 3.3 TAO’s Strategized Scheduling Service

Figure 7: Design Goals of TAO’s Dynamic Scheduling Service Framework

TAQ's scheduling service framework is designed to support a
Goal 1. Higher utilization: The upper pair of timelines invariety of scheduling strategies, including RMS, EDF, MLF,
Figure 7 demonstrates our first research gbagher utiliza- and MUF. This flexibility is achieved in TAO via th8trat-
tion. This timeline shows a case where a critical operatiegydesign pattern [25]. This pattern encapsulates a family of
execution did not, in fact, use its worst-case execution tigheduling algorithms within a fixed interface. Within TAO’s
With dynamic scheduling, an additional non-critical operatigfirategized scheduling service, the scheduling strategies them-
could be dispatched, thereby achieving higher resource utiligatves are interchangeable and can be varied independently.
tion. The architecture and behavior of TAO’s strategized schedul-

Goal 2. Preser\/ing schedu"ng guarantees: The lower pair |ng service is illustrated in Figure 8. This architecture evolved
of timelines in Figure 7 demonstrates our second reseati€in our earlier work on a CORBA scheduling service [10]
goal: preserving scheduling guarantees for critical operdhat supported purely static rate monotonic scheduling. The
tions This timeline depicts a statically scheduled timeline, Ff€ps involved in configuring and processing requests are de-
which the worst-case execution time of the critical operati§aribed below. Steps 1-6 typically occur off-line during the
must be scheduled. In the lower timeline, priority is based 8hedule configuration process, whereas steps 7-10 occur on-

traditional scheduling parameters, such as rate and laxity./if¢, underscoring the hybrid nature of TAO’s scheduling ar-
chitecture.

struct RT_Info
{

. OFF-LINE OFF-LINE
wc—-g(def-“me-; (SCHEDULER's STRATEGIZED
Eﬁ't'ica.-i;u INPUT SCHEDULER 3. ASSESS SCHEDULABILITY

importance ; INTERFACE) @ 4, ASSIGN STATIC PRIORITYAND STATIC SUBPRIORITY
RT_INFO 5. MAP STATIC PRIORITY, DYNAMIC SUBPRIORITY, AND
REPOSITORY

dependencies ;
i
STATIC SUBPRIORITYINTO DISPATCHING PRIORITY

1. SPECIFY RT_OPERATION 2. POPULATE SCHEDULING AND DISPATCHING SUBPRIORITY
CHARACTERISTICSAND RT_INFO STRATEGY 6. ASSIGN DISPATCHING QUEUE CONFIGURATION
DEPENDENCIES REPOSITORY
8. CONFIGURE QUEUES BASED - - _ ON-LINE

ON DISPATCHING QUEUE | Opeaim” Opa'atiun” Operation (SCHEDULER'S LTI
CONFIGURATION (OBECT ADAPTER) ouTput sonEbuLER | /- SUPPLY DISPATCHING QUEUE
e T e INTERFACE) iy CONFIGURATION TO THE ORB
DYNAMIC PORTIONS OF uRTruﬁ;\j 9. SUPPLY STATIC PORTIONS OF
DISPATCHING SUBPRIORITY REPOSITORY USSR
(AND POSSIBLY O SN2 DISPATCHING SUBPRIORITY
DISPATCHING PRIORITY) OREIE RS STEN TO THE ORB

Figure 8: Processing Steps in TAO's Dynamic Scheduling Service Architecture

Step 1: A CORBA application specifies QoS informatiorstep 4. Next, TAO’s scheduling service assigns static pri-
and passes it to TAO's scheduling service, which is implerities and subpriorities to operations. These values are as-
mented as a CORBA objedte., it implements an IDL inter- signed according to the specific strategy used to configure the
face. The application specifies a set of valuR¥_(nfo s) scheduling service. For example, when the TAO scheduling
for the characteristics of each of its schedulable operati@esvice is configured with the MUF strategy, static priority
(RT_-Operation s). In addition, the application specifies inis assigned according to operation criticality. Likewise, static
vocation dependencies between these operations. subpriority is assigned according to operation importance and
dependencies.

Step 2: At configuration time, which can occur either offstep 5: Based on the specific strategy used to configure it,
line or on-line, the application passes this QoS informatigao's scheduling service divides the dispatching priority and
into TAO’s scheduling service via itaput interface TAO'S gispatching subpriority components into statically and dynam-
scheduling service stores the QoS information in its reposit@gy|ly assigned portions. The static priority and static subpri-
of RT.Info descriptors. TAO’s scheduling service's inputingyity values are used to assign the static portions of the dis-
terface is described further in Section 3.5.1. patching priority and dispatching subpriority of the operations.
TAO's scheduling service constructs operation depender@yese dispatching priorities and subpriorities reside in TAO's
graphs based on information registered with it by the apgRT_Info repository.
cation. The scheduling service then identifies threads of exe-])) o
cution by examining the terminal nodes of these depende§<§9p 6: Based on the ass[g'ned dispatching priorities, and
graphs. Nodes that have outgoing edges but no incomif pcordance Wlth the _speC|f|c strategy used to conﬂ_gure the
edges in the dependency graph are catiedsumers Con- © -line scheduling service, the number and types of dispatch-
sumers are dispatched after the nodes on which they depéiidueues needed to dispatch the generated schedule are as-
Nodes that have incoming edges but no outgoing edges $fed. For example, when the scheduling service is config-
called suppliers Suppliers correspond to distinct threads ¢€d With the MLF strategy, there is a single queue, which

execution in the system. Nodes with incomiaugd outgoing USes laxity-based prioritization. As before, this configuration
edges can fulfill both roles. information resides in thRT_Info repository.

Step 7: At run-time start up, the configuration information
Step 3: In this step, TAO's scheduling service assessistheRT.Info repository is used by the scheduling service'’s
schedulability. A set of operations is considesathedulable run-time scheduler component, which is collocated within an
if all operations in the critical set are guaranteed to meet th@RB endsystem. The ORB uses the run-time scheduler to re-
deadlines. Schedulability is assessed according to whethierve (1) the thread priority at which each queue dispatches
CPU utilization by operations in and above the minimum cribperations and (2) the type of dispatching prioritization used
ical priority is less than or equal to the schedulable bound. by each queue. The scheduling service’s run-time component

10

provides this information to the ORB via itaitput interface For instance, one (hon-recommended) way to implement the
as described in Section 3.5.2. RMS, EDF, and MLF strategies in TAO’s scheduling service

Step8: Inthis step, the ORB configures i&patching mod- framework would be to implement them as variants of the

ules i.e, the 1/O subsystem, the ORB Core, and/or the EvéjbF strategy. This can be done by manipulating the values
Service. The information from the scheduling service's ot the operation characteristics [15]. However, this approach

put interface is used to create the correct number and ty}y@4!!d tightly couple applications to the MUF scheduling strat-

of queues, and associate them with the correct thread prigHY and the strategy being emulated.

ties that service the queues. This configuration process is dethere is a significant drawback to tightly coupling the be-

scribed further in Section 3.5.3. havior of a scheduling service to the characteristics of appli-
Step 9° When an operation request arrives from a client cgtion operations. In particular, if the value of one opera-
rungim.e the ADDT0 rFi)ate dis atc?hin module must identify tﬁen characteristic used by the application changes, developers
dis atchin u%%e ?o which F[)he re ?Jest belongs and initiallnz1USt remember to manually modify other operation character-
P g,q . . req gs a "allshes specified to the scheduling service in order to preserve
the request’s dispatching subpriority. To accomplish this, the ;) o
.) ?) . . same mapping. In general, we prefer to shield application
dispatching module queries TAO’s scheduling service’s out%u?velo ers from such unnecessary details
interface, as described in Section 3.5.2. The run-time schedy . oP y '

uler component of TAO's scheduling service first retrieves the 1© achieve this encapsulation, TAO's scheduling service al-

static portions of the dispatching priority and dispatching suIBWS applications to specify the entire set of possible opera-

priority from theRT Info repository. It then supplies the dis-,t'on characteristics using its input interface. In the schedul-

patching priority and dispatching subpriority to the dispatcifld Strategies implemented in TAO, mappings between the in-
ing module. put and output interfaces are entirely encapsulated within the

. . . strategies. Therefore, they need not require any unnecessary
Step 10: If the dispatching queue where the operation rfsanipulation of input values. This decouples them from oper-
quest is placed was configured agynamic queud step 8, aiion characteristics they need not consider.

the dynamic portions of the request’s dispatching subpriorityAdditionaI decoupling within the scheduling strategies
(femd possibl_y its dispgtching priority) are assigneo!. Thisqu H&mselves is also beneficial. Thus, each scheduling strategy
first does this when it enqueues the request. This queue t AO specifies the following two distinct levels in its map-

updates these dynamic portions as necessary when other %?ﬁé'from input interface to output interface:
ations are enqueued or dequeued. '

The remainder of this section describes TAO's strategizgd Urgency assignment: The first level assignsirgency

scheduling service framework in detail. Section 3.4 mo“"at@&nponents i.e, static priority, dynamic subpriority, and
why TAO.aIIows applications to vf':lry thelrschedulllng stra’;e%)fatic subpriority, based on (1) the operation characteristics
and Section 3.5 shows how TAO’s framework design achiewes,cified to the input interface and (2) the selected schedul-
this flexibility. ing strategye.g, MUF, MLF, EDF, or RMS.

3.4 Motivation for TAO'’s Strategized Schedul- 5 Dispatching (sub)priority assignment: The second

ing Architecture level assigns dispatching priority and dispatching subpriority
én the output interface based on the urgency components as-

The flexibility of the architecture for TAO's strategize Ligned in the first level.

scheduling service is motivated by the following two goals:

1. Shield application developers from unnecessary imple-By decoupling (1) the strategy for urgency assignment from
mentation details of alternative scheduling strategies(2) the assignment of urgency to dispatching priority and dis-
This improves the system’s reliability and maintainabipatching subpriority, TAO allows the scheduling strategy and
ity, as described below. the underlying dispatching model to vary independently. This

ecoupling allows a given scheduling strategy to be used on an

dispatching model so the two can be varied independe that suppo'rts either preemptiyg or pon-preemptive ”‘Tead'
_ This increases the system’s flexibility to adapt to vari)! models, with only minor modification to the scheduling

ing application requirements and platform features. .trategy. !n addition, it faC|I|ta.tes comparison of schedul-
ing strategies over a range of dispatching models, from fully

TAO's scheduling strategy framework is designed to minpreemptive-by-urgency, through preemptive-by-priority-band,
mize unnecessary constraints on the values application det@kntirely non-preemptive. These models are discussed fur-
opers specify to the input interface described in Section 3.3Her in Section 3.5.6.

2. Decouple the strategy for priority assignment from th

11

3.5 Enhancing TAO’s Scheduling Strategy The remainder of this section describes how TAO’s schedul-

Flexibility ing service implements these fixed interfaces and variable
mappings.

The QoS requirements of applications and the hard-

ware/software features of pIatform; and networl;s on whighs_1 TAO's Scheduling Service Input Interface

they are hosted often vary significantly. For instance, a

scheduling strategy that is ideal for telecommunication cal illustrated in steps 1 and 2 of Figure 8, applications use

processing may be poorly suited for avionics mission coAQO’s scheduling service input interface to convey QoS infor-

puting [2]. Therefore, TAO’s scheduling service framework isation that prioritizes operations. TAO’s scheduling service

designed to allow applications to vary their scheduling strateput interface consists of the CORBA IDL interface opera-

gies. TAO supports this flexibility by decoupling tfieedpor- tions shown in Figure 9 and outlined below.

tion of its scheduling framework from theriable portion, as

follows: interface Scheduler

Fixed interfaces: The fixed portion of TAO’s strategized ..

scheduling service framework is defined by the following two // Create anew RT_Info descriptor for entry_point
interfaces: handle_t create (in string entry_point)
raises (DUPLICATE_NAME);
e Input Interface: As discussed in Section 3.5.1, the in-
put interface consists of the three operations shown in Fig- / Add dependency to handle'sRT_Info descriptor
ure 9. Application can use these operations to manipulate Vo'd add_dependency (in handle_t handle,
. . . in handle_t dependency)
QoS characteristics expressed with TA®$_Info descrip- raises (UNKNOWN_TASK);

tors [10] (steps 1 and 2 of Figure 8).

e Output Interface: As discussed in Section 3.5.2, the // iﬁ;’f&fiﬂ?ﬁ?ﬁg’g%ﬁgmsm

output interface consists of the two operations shown in Fig- void sat (in handle_t handle,

ure 10. One operation returns the dispatching module config- in Criticality criticality,
uration information (step 7 of Figure 8). The other returns the ;:,T,g‘iz"j:fgje—@(ec—“me’
dispatching priority and dispatching subpriority components in Importanceimportance)

assigned to an operation (step 9 of Figure 8). Section 3.5.3 de- raises (UNKNOWN_TA);
scribes how TAO's dispatching modules use information from

TAO’s scheduling service’s output interface to configure and

manage dispatching queues, as well as dispatch operations ac-

cording to the generated schedule. Figure 9: TAO Scheduling Service Input IDL Interface

Variable mappings: The variable portion of TAO’s schedul-

ing service framework is implemented by the following twéréate(): This operation takes a string with the operation
distinct mappings: name as an input parameter. It creates a Rdunfo de-

scriptor for that operation name and returns a handle for that
e Input Mapping: The input mapping assigns urgendescriptor to the caller. If aRT_Info descriptor for that
cies to operations according to the desired scheduling stegteration name already existsteate raises thebuPpLI-
egy. Section 3.5.4 describes how each of the strategies (mMTE_NAME exception.

plemented in TAO maps from the input interface to “rgen%d_dependency(): This operation takes twBT Info de-

values. scriptor handles as input parameters. It places a dependency
on the second handle’s operation in the first hand®@'dnfo

e Output Mapping: The output mapping assigns dis- . . :
i . . . S ; escriptor. This dependency informs the scheduler that a flow
patching priority and dispatching subpriority according to t control passes from the second operation to the first. If ei-

underlying dispatching model. Section 3.5.5 describes h%v vah X
the output mapping translates the assigned urgency valuestl of the handles rgfers to an invaid-Info descpptor,
_dependency raises theJ/NKNOWN_TASK exception.

the appropriate dispatching priority and dispatching subpriSl -
ity values for the output interface. Section 3.5.6 describessdt(): This operation takes aRT.Info descriptor handle
ternatives to the output mapping used in TAO and discussesl values for several operation characteristics as input param-
key design issues related to these alternatives. eters. Theset operation assigns the values of operation char-

12

acteristics in the handleRT.Info descriptor to the passedvalues stored in th&®T_Info repository by its off-line com-
inputvalues. Ifthe passed handle refersto aninRilidnfo ~ ponent (step 5 of Figure 8). If the passed handle does not

descriptorset raises theJNKNOWN_TASK exception. refer to a validRT_Info descriptor,priority raises the
UNKNOWN_TASK exception. If a schedule has not been gen-
3.5.2 TAO’s Scheduling Service Output Interface eratedpriority raises theuOT_SCHEDULEDexception.

The output interface for TAO’s scheduling service consists gfs 3

the CORBA IDL interface operations shown in Figure 10. Integrating the TAQ's Scheduling Service with lts

Dispatching Modules

Interface Scheduler As noted in Section 2.2, a key research challenge is to imple-

{ ... ment dispatching modules that can enforce end-to-end QoS re-
i o . o quirements. This section (1) shows these dispatching modules
/I Get configuration information for the queuethat will dispatch all it \yjthin TAO's overall architecture, (2) describes the internal
/Il RT_Operationsthat are assigned dispatching priority d_priority
void dispatch_configuration (in Dispatching_Priority d_priority, gueueing mechanism of TAO’s dispatching modules, and (3)
out OS_Priority os priority, discusses the issue of run-time control over dispatching prior-
. out Dispatching_Typed_type) ity within these dispatching modules.
raises (UNKNOWN_DISPATCH_PRIORITY,
NOT_SCHEDULED); Architectural placement: The output interface of TAO's
scheduling service is designed to work with dispatching mod-
/] Get tatic dispatching subpriority and dispatching ules in any layer of the TAO architecture. For example, TAO’s
Il priority assigned tothehandle's RT_Operation real-time extensions to the CORBA Event Service [2] uses
void priority (in handle_t handle, . .
out Dispatching_Subpriority d_subpriority, the scheduler. output mterface, as dges its I/O sub;ystem [12].
_ out Dispatching_Priority d_priority) Figure 11(A) illustrates dispatching in TAO's real-time Event
raises (UNKNOWN_TAK, Service [2]. The client application pushes an event to TAO’S
NOT_SCHEDULED);
... a 1: CLIENT PUSHESEVENT TO
X X r e 212N NITEY 5: £CDISPATCHING MODULE
EVENT CHANNEL = oy e ENQUEUESAND DISPATCHES
Figure 10: TAO Scheduling Service Output IDL Interface __cuentstus |) EVENTSACORDINGTO
3: CONTROL FLOWSDOWN
The first operationdispatch _configuration , pro- THROUGH CLIENT SIDE ORS,
. AND UPTHROUGH SERVER
vides configuration information for queues in the dispatching CLIENT SDEORBTOTHE

RT_OPERATION SERVANT

modules used by the ORB endsystem (step 7 of Figure 8) It .+ cHANNEL DISPATCHING
takes a dispatching priority value as an input parameter. It te

turns the OS thread priority and dispatching type correspond- [cLient arrication (o] o] [o] 1: CONTROL FLOWSFROM

CLIENT DOWN THROUGH

ing to that dispatching priority level. The run-time scheduler CLIENT STUB OBJECT ADAPTER CLIENT SDEORB, ANDUP
component of TAO's scheduling service retrieves these val :ﬁ;{;’ggjﬁ”m
ues from theRT_Info repository, where they were stored by e 2 1/OSUBSYSTEM ENQUEUES
TAO’s off-line scheduling component (step 6 of Figure 8). AT e e
The UNKNOWN_DISPATCHPRIORITY exception will be 0 PRIORITY
raised if the dispatch _configuration operation is 3 CONTROL FLOWSUP THROUGH
passed a dispatching priority that is not in the scheB-!/0SUBSYSTEM DISPATCHING RT_OPERATION SERVANT
ule. Likewise, if a schedule has not been gener-
ated, thadispatch _configuration operation raises the Figure 11: Alternative Placement of Dispatching Modules
NOT_SCHEDULEDexception.
The second operatiomriority , provides dispatching Event Service. The Event Service’s dispatching module en-

priority and dispatching subpriority information for an opeiqueues events and dispatches them according to dispatching
ation request (step 9 of Figure 8). It takesRfInfo de- priority and then dispatching subpriority. Each dispatched
scriptor handle as an input parameter and returns the assignant results in a flow of control down through the ORB lay-
dispatching subpriority and dispatching priority as output pears on the client and back up through the ORB layers on the
rameters. server, where the operation is dispatched.

The run-time component of TAO's scheduling service re- Figure 11(B) illustrates dispatching in TAO’s I/O subsys-
trieves the dispatching priority and dispatching subprioritgm [22]. The client application makes direct operation calls

13

to the ORB, which passes requests down through the OBRBATIC _DISPATCHING: This type specifies a queue that
layers on the client and back up to the I/O subsystem layely considers the static portion of an operation’s dispatching
on the server. The I/O subsystem'’s dispatching module sobpriority.

gueues operation requests and dispatches them accordirlgl':tRDLlNE DISPATCHING:

their dispatching priority and dispatching subpriority, respeg. This type specifies a queue

tivelv. Each dispatched operation request results in a flow ?t considers the dynamic and static portions of an operation’s
- P P q ﬁspatching subpriority, and updates the dynamic portion ac-

control up 'thrqugh the higher ORB layers on the server, Whecroerding to the time remaining until the operation’s deadline.
the operation is dispatched.
LAXITY _DISPATCHING: Thistype specifies a queue that
considers the dynamic and static portions of an operation’s dis-

Internal architecture: Figure 12 illustrates the generahaiching subpriority, and updates the dynamic portion accord-
queueing mechanism used by the dispatching modulesiig 1o the operation’s laxity.

TAO's ORB endsystem. In addition, this figure shows how
The deadline- and laxity-based queues update operation dis-

DISPATCHING TYPE patching subpriorities whenever an operation is enqueued or
IOW queue man:
digatcﬂingprioriff:snd dequeued-
dispatching subpriority) DISPATCHING
B B [EJ susPRIORITY Run-time dispatching priority: ~ Run-time control over dis-
o patching priority can be used to achieve the preemptive-by-
<: R urgency dispatching model discussed in Section 3.5.6. How-

OPERATIONS

.—__
-
% % %‘/ ever, this model incurs greater complexity in the dispatching
oy / module implementation, which increases run-time overhead.
QuEUE \ / Therefore, once an operation is enqueued in TAO’s dispatch-
ing modules, none of the queues specified by the above dis-

D'stg[.gs*""v':ghpgﬂgg'” pqtchlng types_ exerts control over an operation’s dispatching

priority at run-time.

) SUPPLIED BY CONFIGURED QUEUE As noted in Section 3.5.5, all the strategies implemented
IN THE DISPATCHING MODULE in TAO map static priority directly into dispatching priority.
[supruien Y soHEDULING seRvicE Compared with strategies that modify an operation’s dispatch-

Figure 12: Example Queueing Mechanismin a TAO Dispatc'I[]Lq priority dynamlcally, th's mapping simplifies the d'SpaFCh'.
ing Module ing module implementation since queues need not maintain

references to one another or perform locking to move mes-
sages between queues. In addition, TAO'’s strategy imple-

the output information provided by TAO’s scheduling service) L . :
. : : : Mmentations also minimize run-time overhead since none of the
is used to configure and operate a dispatching module.

During system initialization, each dispatching module OE_ueues specified by its dispatching types update any dynamic

tains the thread priority and dispatching type for each of ortion of an operation’s dispatching priority. These charac-

Leues from the scheduling service's outout interface. as éi_stics meet the requirements of real-time avionics systems
q 9 P ' 0 which TAO has been applied [1, 2, 10, 13].

spnbed n Sect'lor.1 3.5.2. Next, eaqh queuels asglgrjed auniayes possible, however, for an application to define strate-
dispatching priority number, a unique thread priority, and an

. X . ; i ies thatdo modify an operation’s dispatching priority dy-
enumerated dispatching type. Finally, each dispatching m%g;]n]ically. A potential implementation of this is to add a new

ule has an ordered queue of pending dispatches per dISp"’Eonstant to the enumerated dispatching types. In addition, an

Ing priority. . . . appropriate kind of queue must be implemented and used to
To preserve QoS guarantees, operations are inserted intq gﬁ?igure the dispatching module according to the new dis-

appropriate dispatching queue according to their assigned Ia‘ffching type. Supporting this extension is simplified by the

patching priority. Operations within a dispatching queue . . \ : .
ordered by their assigned dispatching subpriority. To minlgxIble design of TAO's scheduling service framework.

mize priority inversions, operations are dispatched from the))]
queue with the highest thread priority, preempting any opé>-4 Input Mappings Implemented in TAO's Scheduling
ation executing in a lower priority thread [2]. To minimize Service

prf-:-emption overhead, there is no preemption within a giveNeach of TAO's scheduling strategies, an input mapping as-
priority queue. signs urgency to an operation according to a specific schedul-

The following three values are defined for the dispatchiriwg strategy. Input mappings for MUF, MLF, EDF, and RMS
type: L} 1 L

14

have been implemented in TAO’s strategized scheduling ser-
vice. Below, we outline each mapping.

In each mapping, static subpriority is assigned first using
importance and second using a topological ordering based on
dependencies. The canonical definitions of MLF, EDF, and
RMS do not include a minimal static ordering. Adding it to
TAQO's strategy implementations for these strategies has no ad-
verse effect, however. This is because MLF, EDF, and RMS CONSTANT
require thatall operations are guaranteed to meet their dead-
lines for the schedule to be feasible, undeyordering of op-

CRITICALITY DEPENDENCIES IMPORTANCI

EXECUTION TIME

erations with otherwise identical priorities. Moreover, static I | |
ordering has the benefit of ensuring determinism for each pos-

. . STATIC DYNAMIC STATIC
sible assignment of urgency values. PRIORITY SUBPRIORITY SUBPRIORITY

MUF mapping: The mapping from operation characteris- Figure 14: MLF Input Mapping

tics onto urgency for MUF is shown in Figure 13. Static prior-

EDF mapping: The EDF mapping shown in Figure 15 also
assigns a constant (zero) value to the static priority of each
operation. Moreover, the EDF strategy assigns the dynamic

CRITICALITY DEPENDENCIES IMPORTANCE

EXECUTION TIME PERIOD

CRITICALITY DEPENDENCIES |IMPORTANCE

EXECUTION TIME \ PERIOD

CONSTANT
STATIC DyNAMIC STATIC
PRIORITY SUBPRIORITY SUBPRIORITY
Figure 13: MUF Input Mapping] | |

SraTic DYNAMIC STATIC
PRIORITY SUBPRIORITY SUBPRIORITY

Figure 15: EDF Input Mapping

ity is assigned according to criticality in this mapping. There
are only two static priorities since we use only two criticality
levels in TAO’s MUF implementation. The critical set in this

version .Of MUF Is the set of operations that were assigned tshue"opriority of each operation according totitae-to-deadling
high criticality value.

g , - which is a function of its period, its arrival time, and the time
When MUF is implemented with only two criticality Ievels1Of evaluation.
the minimum critical priority is the static priority correspond-
ing to the high criticality value. In the more general version fMS mapping: The RMS mapping shown in Figure 16 as-
MUF [15], in which multiple criticality levels are possible, théigns the static priority of each operation according tgés
critical set may span multiple criticality levels. riod, with higher static priority for each shorter period. The
Dynamic subpriority is assigned in the MUF input mappirigiod for aperiodic execution must be assumed to be the worst
according tdaxity. Laxity is a function of the operation’s pe-case. In RMS, all operations are critical, so the minimum crit-
riod, execution time, arrival time, and the time of evaluationiC@! priority is the minimum static priority in the system. The
RMS strategy assigns a constant (zero) value to the dynamic

MLF mapping: The MLF mapping shown in Figure 14 assubpriority of each operation.

signs a constant (zero) value to the static priority of each oprps section explored the well known RMS, EDF, MLF, and
eratlon. Th|§ rgsultg ina smglg StQtIC' priority. The minimury e priority mappings. These mappings reflect opposing de-
critical priority is this lone static priority. The MLF stra’[egysign forces of commonality and difference. TAO's strategized

assigns the dynamic subpriority of each operation accordigheqyling service leverages the commonality among these
to its laxity.

15

STATIC DyNAMIC STATIC
PRIORITY SUBPRIORITY SUBPRIORITY

DISPATCHING DISPATCHING
PRIORITY SUBPRIORITY

Figure 17: Output Mapping Implemented in TAO

CRITICALITY DEPENDENCIES IMPORTANCE

EXECUTION TIME

PERIOD

CONSTANT

STATIC DYNAMIC SraTIC Dispatching Subpriority: Dynamic subpriority and static
PRIORITY SUBPRIORITY SUBPRIORITY , .
, _ . subpriority map to dispatching subpriority. TAO's strategized
Figure 16: RMS Input Mapping scheduling service performs this mapping efficiently at run-
time by transforming both dynamic and static subpriorities

mappings to make its implementation more uniform. The le_tO a flat binary representation. A binary integer format of

; . En thk bits is used to store the dispatching subpriority value.
ferences between these mappings provide hot spots for a agqeca <e the range of dvnamic suboriority values and the
tation to the requirements of specific applications. u 9 y Ic subprionty vaiu

number of static subpriorities are known prior to run-time, a
fixed number of bits can be reserved for each. Dynamic sub-
3.5.5 Output Mapping Implemented in TAO’s Schedul- priority is stored in them highest order bits, wherg: =

ing Service [lg(ds)], andds is the number of possible dynamic subpri-

orities. Static subpriority is stored in the nexiower order

The need to correctly specify enforcable end-to-end QoS Fgs, wheren = [lg(ss)], andss is the number of static sub-
quirements for different operations motivates both the ingfiorities.
and output mappings in TAO's strategized scheduling serviceTao's preemption subpriority mapping scheme preserves
The input mappings described in Section 3.5.4 specify pifie ordering of operation dispatches according to their as-
orities and subpriorities for operations. However, there é@ned urgencyvalues. Static subpriorities correspond to
no mechanism to enforce these priorities, independent of {hgad priorities. Thus, an operation with higher static priority
specific OS platform dispatching models. In each of TAGi|| always preempt one with lower static subpriority. Opera-
scheduling strategies, an output mapping transforms these@is with the same static priority are ordered first by dynamic

ority and subpriority values into dispatching priority and 5U§ubpriority and second by static subpriority.
priority requirements that can be enforced by the specific dis-

patching models in real systems.) ,

As described in Section 3.5.3, operations are distribut%‘g'6 Alternative Output Mappings
to priority dispatching queues in the ORB according to thetris useful to consider the consequences of the specific output
assigned dispatching priority. Operations are ordered withiapping described in Section 3.5.5 and to evaluate the uses
priority dispatching queues according to their designated digrd implications of alternative output mappings. The schedul-
patching subpriority. The scheduling strategy’s output mapy strategies implemented in TAO strike a balance between
ping assigns dispatching priority and dispatching subpriorfiyeemption granularity and run-time overhead. This design
to operations as a function of the urgency values specifiedi®¥ppropriate for the hard real-time avionics applications we
the scheduling strategy’s input mapping. have developed.

Figure 17 illustrates the output mapping used by theHowever, TAO’s strategized scheduling architecture is de-
scheduling strategies implemented in TAO. Each mappingsigned to adapt to the needs of a range of applications, not just
described below. hard real-time avionics systems. Different types of applica-

)] o]] o tions and platforms may require different resolutions of key
Dispatching Priority: In this mapping, static priority mapsdesign forces.
directly to dispatching priority. This mapping corresponds to g, example, an application may run on a platform tas
the priority band dispatching model described in Section 3.52 5 nnort preemptive multi-threading. Likewise, other plat-
Each unique static priority assigned by the input mapping §8¢ms do not support thread preemption and multiple thread

sults in a distinct thread priority in TAO’s ORB request dissioity levels. In such cases, TAO's scheduling service frame-
patching module.

16

work assigns all operations the same constant dispatching lpighest urgency operation that is able to execute is execut-
ority and maps the entire urgency tuple directly into the digg at any given instant, modulo the OS dispatch latency over-
patching subpriority [15]. This mapping correctly assigns disead [26]. This model can be implemented only on platforms
patching priorities and dispatching subpriorities for a notirat (1) support fully preemptive multitasking and (2) provide

preemptive dispatching model. On a platform without prat least as many distinct real-time thread priorities as the num-
emptive multi-threading, the application could thus dispatbler of distinct operation urgencies possible in the application.

aII' operations in a single thread of execution, from a single-l-he preemptive-by-urgency dispatching model can achieve
priority queue. L , very fine-grained control over priority inversions incurred by
Another application might run on a platform théessup- ¢ dispatching modules. This design potentially reduces the
port preemptive multi-threading and a large number of distingl,e hound of an inversion to that for a thread context switch
thread priorities. Where thread preemption and a very latges any switching overhead introduced by the dispatching
number of thread priorities are supported, one alternative ig,achanism itself. Preemptive-by-urgency achieves its preci-
dispatching model that is preemptive bgency This design gjon 4t the cost of increased time and space overhead, however.
may incur higher run-time overhead, but can allow finer prggnough this overhead can be reduced for applications whose
emption granularity. The application in this second examplerations are known in advance, using techniques like perfect

might accept the additional time and space overhead neefgching [21], overhead from additional context switches will
to preemptively dispatch operations by urgency, in exchangg pe incurred.

for reducing the amount of priority inversion incurred by the
dispatching module.

Depending on (1) whether the OS supports thread preemp-] o] o
tion, (2) the number of distinct thread priorities supported, aR§emptive-by-priority-band: ~ This model divides the
(3) the preemption granularity desired by the application, Ségnge.of all possible urgencies into flxed. priority bands. It
eral dispatching models can be supported by the output intérSimilar to the non-preemptive dispatching model used by
face of TAO’s scheduling service. Below, we examine thr&aessage queues in the UNIX System V STREAMS 1/O sub-

canonical variations supported by TAO, which are illustrat&yStem [27, 12]. This dispatching model maintains a slightly
weaker invariant than the preemptive-by-urgency model. At

in Figure 18.
any given instant, an operation from the highest fixed-priority
_,2 _,2 _,2 _,2 _,2 _,2 band that has operations able to execute is executing.
This dispatching model requires thread preemption and
N N I . - at least a small number of distinct thread priority levels.
PREEMPTIVE-BY-URGENCY These features are now present in many operating systems.
__2 The preemptive-by-priority-band model is a reasonable choice
_>2 _>2 ->2 when it is desirable or necessary to restrain the number of dis-

tinct preemption levels.

For example, a dynamic scheduling strategy can produce a
- large number of distinct urgency values. These values must
be constrained on operating systems, such as like Windows
NT [28], that support only a small range of distinct thread pri-
orities. Operations in the queue are ordered by a subpriority
i i . function based on urgency. The strategies implemented TAO's
Figure 18: Dispatching Models supported by TAO girateqgized scheduling service use a form of this model, as de-

scribed in Section 3.5.5.

PREEMPTIVE-BY -PRIORITY-BAND

NON-PREEMPTIVE

Preemptive-by-urgency: One consequence of the inputand

output mappings implemented in TAO is that the purely dy-

namic EDF and MLF strategies are non-preemptive. ThusNan-preemptive: This model uses a single priority queue

newly arrived operation will not be dispatched until the operand is non-preemptive. It maintains a still weaker invariant:

tion currently executing has run to completion, even if the nate operation executing at any instant had the greatest urgency

operation has greater urgency. By assigning dispatching pririhe time of last dispatch. As before, operations are ordered

ity according to urgency, all scheduling strategies can be magdeording to their urgency within the single dispatching queue.

fully preemptive. Unlike the previous models, however, this model can be used
This dispatching model maintains the invariant that tloa platforms that lack thread preemption or multi-threading.

17

4 Simulating TAO’s Critical Instant

worst-case
Behavior period | execution
operation || Hz time, msec| Criticality | Importance

. . . “low_1" 1 18 LOW HIGH
As despnbed in Sect!on 3.2, tWC.J'Of our resfearch goals are Tow 5 5 18 COW HIGH
(1) to increase effective CPU utilization while (2) preserv- [=iow_10" | 10 18 [OW AIGH
ing scheduling guarantees for critical operations. This sec-{| “low 20" || 20 18 LOW HIGH
tion presents the results of a simulation that visualizes the bey_‘high-1"]| 1 18 HIGH LOW
havior of TAO’s scheduling service under overload conditions, “hfgh-‘r’ _ 5 18 HIGH LOW
focusing on thecritical instant In real-time systems, the dis- high-10" || 10 18 HIGH LOW
9 y , “high_20" || 20 18 HIGH LOW

tribution of when operation requests arrive is important. The
critical instant for a preemptive schedule occurs when all op- Taple 1:Characteristics of Simulated Operations
eration requests arrive simultaneously [14]. Simulating our
strategized scheduling service framework’s behavior after this
critical instant illustrates how it performs for a given set of paigned to examine the effects of simple variations in opera-
riodic operations under a worst-case request dispatching sat characteristics on the scheduling behavior of the various
nario. strategies. We have varied only those parameters necessary
The remainder of this section (1) describes the simula-demonstrate meaningful differences between the strategies,
tion design, (2) compares simulation results for the differenhile holding the others constant. In particular, we do not vary
scheduling strategies in terms of operation latency, laxity, aifie worst-case execution times of the operations because the
missed deadlines, and (3) presents conclusions supportediasiations in period already produce variations in laxity and
the simulation results. The simulation results indicate the fé#ne-to-deadline. To avoid unnecessary complexity in exper-
sibility of achieving our research goals and motivate our efmental parameters, all operations possessed the same execu-
pirical experiments described in Section 5. tion time: 18 milliseconds.
The latency and laxity of each operation dispatch were cal-
. . . culated from the simulation timelines. Operations with neg-
4.1 Simulation Design ative laxity at the time they were dispatched were marked as

We instrumented TAO’s scheduling service framework to gef@ving missed their deadlines. Operations with shorter peri-

erate timelines for the dispatching and preemption order of fs had more dispatches over the frame. To compare opera-
operations after the critical instant. To measure this behavi§f1S that execute at different rates, values for average latency
operation dispatches were simulated over a one second tﬂﬂg the fraction of deadlines missed were calculated for each

frame, from the critical instant. Each simulation was run unfPeration.
the last operation finished executing.
To present a fair comparison of TAO's supported sched4:2 Comparing Operation Latency in the
ing strategies,e., MUF, MLF, EDF, and RMS, our simulation Scheduling Strategies
employs apreemptive-by-urgenagispatching model, as dis-
cussed in Section 3.5.6. This model always executes the higiyure 19 depicts the average latency values for the operations
est priority operation that is ready to execute at a given timsing each of the scheduling strategies in the simulation. Only
preempting any lower priority operation when a higher priothe MUF strategy minimizes the latency of critical operations,
ity operation arrives. Strategies like EDF and MLF, which relys shown in the left half of the figure. In addition, MUF detects
entirely on dynamic prioritization of operations, would othewhich operations will fail to meet their deadlines. This results
wise exhibit a disproportional number of priority inversionsn an overall decrease in both latency and laxity of operations
Moreover, the canonical definition of EDF [14] specifies th#tat can meet their deadlines in an overloaded system.
it is dispatched in a fully preemptive manner. In contrast, the other scheduling strategies do not fare as
In our simulation, we used a set of operations spanningvell. RMS minimizes the latency of operations with shorter
range of criticality and period values. The combined utilizgeriods, while increasing the latency of operations with longer
tion of these operations exceeded the maximum schedulgi#@eods. EDF behaves similarly since time-to-deadline is a
bound, which is the maximum percentage of the CPU that danction of an operation’s period. MLF also minimizes the
be utilized. Table 1 summarizes the characteristics of each lapency of operations with shorter periods, but detects which
eration in the simulation. operations will fail to meet their deadlines, thereby showing
Each scheduling strategy emphasizes different static dredter overall latency than RMS or EDF.
dynamic operation characteristics. Our simulations were deUpward spikes in the latency graph in Figure 19 show which

18

latency (usec)

RME

laxity (usec)

low_20

operation low_10

low_5

low_1

Figure 19: Latency of Operations for each Strategy

low_20

i low_10
operation = ow 5

operations incur high average latency under each strar _, T e

Where MLF, EDF, and RMS show latency spikes for both crit- Figure 20: Laxity of Operations for each Strategy
ical and non-critical operations, MUF shows a latency spike

only in the non-critical set. Maximum average laxity is lowest

for MUF and MLF, which consider both the worst-case exe-

cution time and time-to-deadline. Maximum average laxity is

higher for EDF, which only considers time-to-deadline. It is

higher still for RMS, which does not consider any dynamic

characteristics.

4.3 Comparing Operation Laxity in the Strate-
gies

The laxity of an operation is defined as its time-to-deadline |
nus its remaining execution time. Figure 20 shows the avel
laxity values for the operations for each scheduling strate
As with Figure 19, only the MUF strategy protects the set 5 °
critical operations. The other strategies have negative ave :
laxities for the critical operations with rates less than 20 H:

Operations that have negative laxity when they complete &
ecution have missed their deadlines. Conversely, operat ,
that have positive laxity when they complete their execut
have met their deadlines. Another way to visualize the opt
tion behavior with respect to laxity is to graph the fraction
all dispatches of an operation that miss their respective dt o
line. Figure 21 depicts this graph for the simulated operati T e s o
and strategies. operston 0 s

The MUF strategy prevents the critical operations fr¢ Figure 21: Fraction of Deadlines Missed for each Strategy
missing their deadlines. It does so at a cost of missed deadlines
in the non-critical set. However, MUF minimizes the overall
percentage of missed deadlines better than the other strategies.

The other strategies missed deadlines for the critical opera-

deadli

strategy

19

tions with rates less than 20 Hz. The MUF and MLF strategi€haracteristics considered: Varying which operation char-
detect scheduling failures prior to deadline. They preempt @wteristics a scheduling strategy considers has a significant im-
erations with negative laxity in favor of operations with pospact on scheduling behavior. For example, only MUF consid-
tive laxity, and thus allow more operations to meet their deagts operation criticality, and thus only MUF can selectively
lines. protect critical operations from missed deadlines.

Combinations of characteristics: Considering certainom-
binationsof operation characteristics, may have an additional
impact. For instance, MUF and MLF consider execution time
Our simulation results illustrate that the characteristics condfd-combination with period, which gives them the ability to
ered by each scheduling strategy significantly affects operatitiect deadline failures early and reallocate resources.

latency, laxity, and percentage of deadlines missed. Thesegigmadth of characteristics: Strategies that consider more of
sults, grouped by the operation characteristic, are summariggdavailable information about static and dynamic operation
below: characteristics generally exhibit an advantage over strategies
o - that use less information. For example, MUF considers crit-
Criticality: ~ Under conditions of overload, only the Muﬁcality, execution time, and period, and shows (1) lower la-
strategy reduced latency and preserved the deadline guara@m, (2) fewer missed deadlines, and (3) no missed deadlines
for operations in the critical set. The MUF strategy considgts critical operations. This is in contrast to RMS, MLF, and

operation criticality in assigning priority, so operations in thepe each of which considers fewer operation characteristics
critical set make their deadlines in preference to non-criticglq fails to meet at least one of these criteria.

operations in MUF. The EDF, MLF, and RMS strategies do
not consider criticality when assigning priority. Neither do

they preserve deadline guarantees for operations in the critgal The Performance of TAQO’s Strate-
set under conditions of overload. . . .
gized Scheduling Service

4.4 Analysis of Simulation Results

Execution time: The MUF and MLF strategies, which con- . . . , ,
sider time-to-deadline and worst-case execution time, redud&t§ conditions under which we ran the simulations in Sec-

the impact of scheduling failures on other operations by detdi@" 4 Were somewhat idealized. In particular, factors such
ing failure prior to deadline. In addition, they showed lowétS run-time overhead for dynamic scheduling mechanisms and

average latency per-operation than the other scheduling streg-dispatch latency [26] significantly affect the scheduling be-
gies. havior of these strategies in actual systems. Therefore, empiri-

cal measurements are needed to validate the simulation results.

Period: All strategies consider operation period. When allo ensure that TAO's strategized scheduling service frame-
other factors are equal, each strategy shows differencedvfik is efficient and predictable, we measure the dispatching
missed deadlines for operations with different periods. Amof¥erhead in TAO's strategized scheduling service.

the non-critical operations in the MUF strategy simulation, the We used time stamps to measure latency, the amount of time
low criticality, 20 Hz period operation has lower initial laxan operation is delayed. We subtracted the CPU time used by
ity, because it has a closer deadline. However, is also mbie operation from the time between when it was requested
likely to miss its deadline as a result of preemption by critnd when it finished executing. We used the measured la-
ical operations. The MUF, MLF, and EDF strategies, whidBNncY to compare the run-time overhead for static and dynamic
consider time-to-deadline, show lower maximum and overgheduling strategies.

|atency than the RMS strategy, which does not consider an)yve conducted two experiments. The first determines the
dynamic operation characteristics. run-time cost of dynamic dispatching for end-to-end perfor-

mance. The second assesses the potential increase in dispatch-
Importance: Operations with higher criticality values wereng overhead as varying loads are placed on the dispatching
given lower importance values. Thus, for strategies that do qoeues described in Section 3.5.3. These tests demonstrate
consider criticality, operations with higher importance valuéisat TAO’s dispatching modules can enforce dynamic end-to-
had fewer missed deadlines, all other factors being equal. end QoS requirements within acceptable levels of overhead.

The remainder of this section (1) describes an experiment

to measure the minimum achievable end-to-end overhead for

4.5 Conclusions from Simulation Experiments both static and dynamic scheduling strategies using TAO's

Event Service over the TAO ORB, (2) describes an exper-

The following conclusions can be drawn from comparing fi¢ent to measure the overhead for static and dynamic dis-
results for the scheduling strategies used in the simulation:

20

patching queues as the load on these queues increases, andlia)30 uni-processor 300 MHz UltraSPARC CPU using the
draws conclusions about dynamic scheduling from the resislaris real-time (RT) scheduling class [12].
of these experiments. TAO’s strategized scheduling service was configured with
an off-line RMS strategy and ai(1) table lookup at run-time.
) . . The dynamic strategy used MUF, and therefore required an ad-
5.1 Measuring Dynamic Scheduling Overhead gitional run-time laxity calculation. The high-priority supplier
in TAO’s Real-Time Event Service and consumer were paced so that each high-priority operation
)) -]] was dequeued before the next was enqueued. This design re-
The f|r§t experiment quantlflgd the dynamic sghed_ulmg OVEave any queueing effect from the high-priority queue, so its
head in TAO's Event Service [29], shown in Figure 2Zninimum relative overhead could be measured accurately.
This experiment consisted of a single high-priority SUP- 1pg resyits of this experiment are shown in Figure 23. This

G — -

> push (event) ¥

[
Consumer
Proxies

[N
o
o

80

60

Dispatching
Module

—+ MUF

—=-RMS

EVENT
CHANNEL Event Event
Correlation Flow

40

20

average end-to-end latency per message (usec)

Subscription
& Filtering

0

- = " 1 101 201 301 401 501 601 701 801 901
PI.'IOI'Ity Supp_ller low priority consumers
Timers| Proxies

v 4 ha g

push (event) Figure 23: End-to-end Run-time Overhead of Dynamic
w Scheduling

figure illustrates that there was no significant change in high-

priority performance with increasing low-priority load. Like-
Figure 22:TAO'’s Event Service Architecture wise, there appears to be only a small (up to 10 percent) over-

head end-to-end for dynamic dispatching with no queueing ef-

plier/consumer pair, and a varied number of low-priority evefCt: In addition, the absolute overhead was between 80 and
supplier/consumer pairs, ranging from 1 to 1,000 pairs. B{0#Secs.

varying the number of low-priority suppliers and consumers,
this experiment measured (1) the effect of increasing log-o Measuring Dynamic Scheduling Overhead

priority load on high-priority performance, and (2) the mini- in TAO’s Dispatching Modules
mum relative overhead associated with dynamic operation dis-

patching. The experiment described in Section 5.1 established the mini-
We measured the latency in event delivery between the highum relative end-to-end overhead for dynamic scheduling in
priority supplier and consumer. This latency included (1) tA&O. Our second experiment gauged the potential impact of
time required for the TAO run-time scheduler to satisfy than increasing number of enqueued messages on this overhead.
Event Service dispatch module scheduling request plus (2) Tleemeasure this queueing effect accurately, we eliminated as
time the request spent enqueued in the dispatch module. @y sources of constant overhead as possible. For instance,
test was run for two different scheduling strategies on a Sine queues were tested in isolation from TAO’s Event Service

21

and only the overhead of the enqueue and dequeue operatiofitie overhead for randomly ordered enqueue operations was
was measured. highest for the laxity-based queue, followed by the overhead
The test was run in the Windows NT Real-Time schedulifigr deadline-based queue, and last for the static queue. As
class on a dual-CPU Intel 333 MHz Micron Powerdigm. Trghown in Figure 25, the overhead per enqueue operation in-
test used time stamps to measure the latency added by enqueue
and dequeue operations for an increasing number of messages®
inthe queue. A separate iteration of the test was run for each of
an increasing number of enqueued messages. Messages wet® |
enqueued in random order. The same order was used for éll /N/
queues in a given test iteration. o 20
The test was run with three different kinds of dispatchingg
gueues. We tested static-, deadline-, and laxity-based queugs.
The static queue, which was used by the RMS scheduling
strategy, used @(1) table lookup at run-time. The deadline- &
based queue, which was used by the EDF scheduling strateéy100

age

random laxity avg
—+— random deadlineavg|

required an additional deadline calculation at run-time. Thg = random static avg
laxity-based queue, which was used by the MUF and MLF |
scheduling strategies, required an additional laxity calculation ru-n-'"""'""r.

el
at run-time. M

0
PELPLLLLERPL,LL,L S S P
The overhead for the laxity-based queue was highest, fol- messages enqueued
lowed by the deadline-based queue, and then the static queue.
As shown in Figure 24, there was an initial increase in over-

Figure 25: Static and Dynamic Enqueue Overhead

18

creased linearly with the number of enqueued operations for

16 all three kinds of queues. The overhead for enqueue operations
wl A K A NN S for the laxity- and deadline-based queues remained within a

\ W N/N Y constant factor of roughly six of the static queue overhead as
12 ’*\ / \/ VR the number of enqueued operations increased.

10

5.3 Analysis of Empirical Results

random laxity avg
—— random deadline avg
—= random static avg

) The tests described in Section 5.1 and Section 5.2 were run in-

‘ dependently and in different experimental settings. Taken to-

4 , gether, their results confirm empirically that dynamic schedul-
Q’Q

average latency per message (usec)

2 — 7 ing strategies can be used effectively in real-time systems. Fur-
/‘"-« S ther, these results identify potential targets for optimization
[e o o e L e e e e e e
in cases where application requirements, such as heavy queue
PERLELL L P LL LSS PP q i

loading, degrade performance.

The remainder of this section (1) considers the implications
of these results for systems with either moderate or heavy
gueueing, and (2) discusses alternative dispatching implemen-

tations and the conditions under which each may be preferable.
head for dequeue operations in the laxity and deadline-based

gueues as the number of enqueued messages increases. ’5'%‘.'\1' Moderately-loaded systems

ever, the overhead per-dequeue operation rapidly saturated at

~14 secs per operation for these queues. Thus, as the nunitigure 23 shows that the minimal end-to-end latency for the
of enqueued operations increased, the overhead for dequaxity-based MUF scheduling strategy was only slightly higher
operations for the laxity- and deadline-based queues remaitieth for the static RMS scheduling strategy. For systems
within a constant factor of roughly seven times the overheatiere the maximum number of messages that can be en-
of the static queue. gueued at one time remains very small, the additional end-to-

messages dequeued

Figure 24: Static and Dynamic Dequeue Overhead

22

end overhead for dynamically scheduled dispatching shotddthe static-, deadline-, and laxity-based dispatching queues,
be relatively low. even as the number of enqueued messages becomes large.

If the number of messages that can be enqueued at onfeor the statically dispatched queues, the dispatching over-
time increases, however, the effects of dynamic queue mhead remains reasonable as well, even as the number of en-
agement become more prevalent, assuming a randomizedjeirued messages approaches 1,000. However, for the laxity-
gueueing order. This dynamic queue management overheahid deadline-based queues, the enqueue overhead grows sig-
distributed between the enqueue and dequeue operationgyificantly as the number of enqueued messages increases.
the measured overhead for both must be considered. One alternative to a linked list message queue implementa-

As shown in Figure 24, the overhead for dequeue operatitiog is to use dheap A heap is a partially-ordered, almost-
does not appear significant for systems with fewer than &@mplete binary tree that ensures the average- and worst-case
messages enqueued at one time. As the number of enquéineel complexity for enqueueing or dequeueing(slg n).
messages reaches 100 messages, however, the overheathgetrade-off is that in the linked list priority queue imple-
dequeue operation jumped 4al2 psecs in the experimentalmentation, enqueue operations érén) and dequeue opera-
environment described in Section 5.2. Even with a large nutions areO (1). Conversely, in the heap-based priority queue
ber of enqueued messages, this overhead remained arourichpfementation, both enqueue and dequeue operations are
usecs per deqgueue operation. Thus, the overhead from @dlogn).
gueue operations in the laxity- and deadline-based queues ré&witching from a linked list implementation to a heap im-
mains reasonable, even as the number of enqueued operatiEmentation can reduce the cost of enqueue operations while
increases significantly. raising the cost of dequeue operations. Therefore, the selec-

As shown in Figure 25, the overhead for laxity- antion of a dispatch queue implementation depends on applica-
deadline-based enqueue operations does not appear to bdigigcharacteristics. For example, even with a large number
nificant if fewer than 20 messages are enqueued at one tigignessages enqueued, a laxity-based queue may GHaw
As the number of enqueued messages reached 60 in theesgueue overhead if all messages have nearly identical execu-
periment described in Section 5.2, the overhead per dequiénetimes and times to deadline. Such idealized characteris-
operation jumped te-20 usecs, and near 150 enqueued mdiss occur infrequently, however. Therefore, in systems where
sages to 5Qusecs. Although the laxity- and deadline-basdbere is a larger queueing effect, heap-based implementations
enqueue performance remained within a constant factor of ibelaxity- and deadline-based queues may be preferable.
static enqueue behavior, the significance of this constant factor

increased with the number of enqueued messages. 5.4 Conclusions from Empirical Experiments

The following conclusions can be drawn from the empirical
results of our experiments with TAO's strategized scheduling

Depending on the characteristics of the specific applicatiégfvice:

the overhead for laxity- or deadline-based dispatching m@nimal end-to-end overhead: The minimal end-to-end
reach unacceptable levels as the number of enqueued messig#fiead for dynamic scheduling strategies is comparable to
increases. Figure 25 shows that as the number of enqueggfor static scheduling strategies, with only a small increase
messages reached 1,000, the average overpexaenqueue gye to dynamic priority computations. This indicates that dy-
operationexceeded 30@secs for messages enqueued in raRamic end-to-end QoS requirements can be enforced within

domized order. Thus, the total CPU time needed to enqug@eptable levels of overhead, assuming other sources of sys-
these 1,000 messages was ab@3eseconds. tem overhead are minimized.

For systems with such a large queueing effect, the ovsr- f tabl ‘ - Th f i-
head from dequeue operations will be minimal compared { nge of acceptable periormance. The range ot accep
the overhead for enqueue operations in the dispatching queﬂ Ise. performance is sustained for dynamic scheduling sFrate-
Section 5.3.3 discusses two alternative dispatching prio S, up to a load 0f-150 messages enqueued at one time.

queue implementations and describes when each are opti é?sstrategmed scheduling service and dispatching modules

for different numbers of enqueued messages and di1‘ferentt o ?:rar?é;l@:blly tg aILernatlt\)/e qL(Jjeuemg |mplerrt1)entat|;)ns,blso
plication characteristics. vier loads, heap-based queues may be preferable.

5.3.2 Heavily-loaded systems

Our empirical results validate the simulation results pre-
sented in Section 4. The overhead of enforcing dynamic end-
to-end QoS requirements remains within acceptable limits for
The dispatching queues described in Section 3.5.3 are imglestems with light to moderate queue loading. Further, the em-
mented as linked lists. This minimizes the dequeue overhgéital results suggest alternative queueing implementations to

5.3.3 Alternative dispatching mechanisms

23

give optimal performance under increasing loads. Thus, dyThe QuO project at BBN [34] has defined a model for com-
namic scheduling using TAO's strategized scheduling servio@nicating changes in QoS characteristics between applica-
framework can be achieved both efficiently and predictablytions, middleware, and the underlying endsystems and net-
work. The QuO model uses the concept afannectiorbe-
tween a client and an object to define QoS characteristics.
6 Related Work These characteristics are treated as first-class objects. Objects
,) , o _can be aggregated to enable characteristics to be defined at var-
Real-time middleware is an emerging field of study. An if5 s jevels of granularitye.g, for a single method invocation,
creasing number of research efforts are focusing on integra{lga 11 method invocations on a group of objects, and similar
QoS and real-time scheduling into middleware like CORBR,mpinations. The QuO model also uses several QoS defini-
This section compares our work on TAO with related QQRy |anguages (QDLs) that describe the QoS characteristics
middleware integration research. of various objects, such as expected usage patterns, structural
CORBA-related QoS research: Krupp, etal, [30] at details of objects, and resource availability.
MITRE Corporation were among the first to elucidate the re-The QuO architecture differs from our work on real-time
quirements of real-time CORBA systems. A system consi§leS provisioning in TAO since QuO does not provide hard
ing of a commercial off-the-shelf RTOS, a CORBA-compliamtal-time guarantees of ORB endsystem CPU scheduling. Fur-
ORB, and a real-time object-oriented database manageniestmore, the QuO programming model involves the use of
system is under development [31]. Similar to the initial ageveral QDL specifications, in addition to OMG IDL, based
proach provided by TAO, their initial static scheduling amn the separation of concerns advocated by Aspect-Oriented
proach uses RMS, though a strategy for dynamic deadlPgramming (AoP) [35]. We believe that although the
monotonic scheduling support has been designed [32]. AOP paradigm is powerful, the proliferation of definition lan-
Wolfe, et al, are developing a real-time CORBA system gjuages may be overly complex for common application use-
the US Navy Research and Development Laboratories (NRa@ages. Therefore, the TAO programming model focuses on
and the University of Rhode Island (URI) [20]. The sysheRT.Operation andRT.Info QoS specifiers, which can
tem supports expression and enforcement of dynamic ebd-expressed in standard OMG IDL and integrated seamlessly
to-end timing constraints through timed distributed operatioith the existing CORBA programming model.
invocations TDMIs) [33]. A TDMI corresponds to TAO'S The Realize project at UCSB [36] supports soft real-time
RT Operation [10]. Likewise, anRTEnvironment resource management of CORBA distributed systems. Real-
structure contains QoS parameters similar to those in TAG¥g aims to reduce the difficulty of developing real-time sys-
RT.Info . tems and to permit distributed real-time programs to be pro-
One difference between TAO and the URI approaches is thgdmmed, tested, and debugged as easily as single sequential
TDMIs express required timing constrairdsy, deadlines rel- programs. The key innovations in Realize are its integration of
ative to the current time, where&J_Operation s publish distributed real-time scheduling with fault-tolerance, of fault-
their resources.g, CPU time, requirements. The difference ifolerance with totally-ordered multicasting, and of totally-
approaches may reflect the different time scales, seconds geflered multicasting with distributed real-time scheduling,
sus milliseconds, respectively, and scheduling requiremenghin the context of object-oriented programming and exist-
dynamic versus static, of the initial application targets. Howng standard operating systems. Realize can be hosted on top
ever, the approaches should be equivalent with respect to $fSFAO [36].
tem schedulability and analysis. The Epiq project [37] defines an open real-time CORBA
In addition, NRaD/URI supply a new CORBA Global Priorscheme that provides QoS guarantees and run-time scheduling
ity Service (analogous to TAO's Scheduling Service), and aygxibility. Epiq explicitly extends TAO's off-line scheduling
mentthe CORBA Concurrency and Event Services. The initigbdel to provide on-line scheduling. In addition, Epiq allows
implementation useEDF within importance levetlynamic, cjients to be added and removed dynamically via an admis-

on-line scheduling, supported by global priorities. A globg|on test at run-time. The Epiq project is work-in-progress and
priority is associated with eacdfDMI, and all processing assoempirical results are not yet available.

ciated with the TDMI inherits that priority. In contrast, TAO'’s

initial Scheduling Service was static and off-line; it uses inNon-CORBA-related QoS research: The ARMADA
portance as a “tie-breaker” following the analysis of other rproject [38, 39] defines a set of communication and mid-
guirements such as data dependencies. Both NRaD/URI dleivare services that support fault-tolerant and end-to-end
TAO readily support changing the scheduling policy by eguarantees for real-time distributed applications. ARMADA
capsulating it in their CORBA Global Priority and Schedulingrovides real-time communication services based on the
Services, respectively. X-kernel and the Open Group’s MK microkernel. This infras-

24

tructure provides a foundation for constructing higher-levetheduling service frameworkand integrate this with
real-time middleware services. TAO [10], which is our real-time ORB. This paper describes
TAQ differs from ARMADA in that most of the real-time in- how we then used TAO's scheduling service to generate sim-
frastructure features in TAO are integrated into its ORB Corgdated dispatching timelines for four scheduling strategies,
In addition, TAO implements the OMG’s CORBA standar®RMS, EDF, MLF, and MUF, and analyze the latency, laxity,
while also providing the hooks that are necessary to integratel missed deadlines for the operations dispatched in each
with an underlying real-time I/O subsystem and OS. Thugmulation. In addition, we used TAO’s Event Service and
the real-time services provided by ARMADAs communicaun-time Scheduling Service to empirically measure end-to-
tion system can be utilized by TAO's ORB Core to supportend latency with and without queueing.
vertically and horizontally integrated real-time system. Our results indicate that hybrid static/dynamic scheduling
Rajkumar,et al, [40] at the Carnegie Mellon Universitystrategies can be used in real-time CORBA applications to
Software Engineering Institute, developed a real-time Pu) offer higher resource utilization than purely static schedul-
lisher/Subscriber model. It is functionally similar to the TAO'#g strategies with acceptable run-time cost, (2) preserve the
Real-time Event Service [2]. For instance, it uses real-tirmeheduling guarantees for critical operations even under an
threads to prevent priority inversion within the communicati@verloaded schedule, and (3) provide applications the flexibil-
framework. ity to adapt to varying application requirements and platform
The CMU model does not utilize any QoS specificatiorfigatures.
from publishers (event suppliers) or subscribers (event conA C++ implementation of TAO’s strategized scheduling
sumers). Therefore, scheduling is based on the assignmeiseo¥ice framework is available with the TAO ORB at URL
request priorities, which is not addressed by the CMU modelvw.cs.wustl.edu/ ~schmidt/TAO.html . TAO of-
In contrast, TAO’s Scheduling Service and real-time Evefers applications the flexibility to specify and use different
Service utilize QoS parameters from suppliers and consunggigeduling strategies, according to their specific needs. Our
to assure resource access via priorities. One interesting aspieutilations and empirical measurements provide a foundation
of the CMU Publisher/Subscriber model is the separationigion which we will develop practical guidelines for config-
priorities for subscription and data transfer. By handling theseng and using appropriate scheduling strategies for real-time
activities with different threads, with possibly different prioriCORBA applications. We believe the following areas of future
ties, the impact of on-line scheduling on real-time processiwgrk on dynamic scheduling of real-time CORBA operations
can be minimized. are beneficial:

Varying operation characteristics: Additional simulations
7 Concluding Remarks and empirical measurements are needed to assess the impact
of varying the values of different operation characteristics on

Many hard real-time systems, such as avionics mission cdft Performance of the scheduling strategies.

puting and manufacturing process control systems, have tralistributed scheduling behavior: Further empirical mea-
tionally been scheduled statically using variants of rate mor@rements are needed to determine the impact of factors such
tonic scheduling (RMS). Static scheduling provides assuis network latency on the end-to-end performance of dynami-
ance of schedulability prior to run-time and can be impleally scheduled distributed systems.

mented with low run-time overhead. However, static schedul- .)

ing handles non-periodic processing inefficiently and treat$ailable platform features: We plan to explore the im-

invocation-to-invocation variations in resource requireme@ct of various platform-specific features, such as preemptive
inflexibly. As a consequence, scheduled resources are ungifiti-threading, on run-time scheduling behavior.

utilized and the resulting systems are hard to adapt to mggplication requirements: A detailed examination of the
Worst-cas.e processing reqwr.ements. S impact of application specific requirements, such as policies
Dynamic scheduling alleviates many limitations of stat{gr handling missed deadlines, will help guide the develop-

scheduling. However, purely dynamic scheduling strategi@ent of additional protocols for dynamically scheduled sys-
offer little or no control over which operations will miss theigems.

deadlines in an overloaded schedule. In addition, dynamic
scheduling has a higher run-time cost because certain compu-
tations must be performed on-line, so it is necessary to m&a- Acknowledgments
sure this additional overhead and assess its significance.
To quantify the tradeoffs between static and dynamitis work was funded in part by Boeing. We gratefully ac-
scheduling algorithms, we have developedstiategized knowledge the support and direction of the Boeing Principal

25

Investigator, Bryan Doerr. In addition, we would like to thani5] D. B. Stewart and P. K. Khosla, “Real-Time Scheduling of
Priya Narasimhan for her extensive comments on this paper.

References

(1]

(2]

(3]
(4]

(5]

[16]

C.D.Gill, D. L. Levine, , and D. C. Schmidt, “A Survey of Dy-
namic Scheduling Strategies for Avionics Mission Computing,”
in Proceedings of the 17th IEEE/AIAA Digital Avionics Syster?f7
Conference (DASCDct/Nov 1998.]

T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The De-
sign and Performance of a Real-time CORBA Event Service,”
in Proceedings of OOPSLA '9TAtlanta, GA), ACM, October
1997. [18]

Object Management Groufihe Common Object Request Bro-
ker: Architecture and Specificatip@.2 ed., Feb. 1998.

S. Vinoski, “CORBA: Integrating Diverse Applications Within[lg
Distributed Heterogeneous Environment&EE Communica-
tions Magazinevol. 14, February 1997.

N. Audsley and A. Wellings, “Analysing APEX Applications,”
in Proceedings of the 16th Real-Time Systems Symppsium
pp. 39-44, Dec. 1996. [20]

[6] ARINC Incorporated, Annapolis, Maryland, USAocument

(7]
(8]

9]

[10]

[11]

[12]

[13]

[14]

No. 653: Avionics Application Software Standard Inteface
(Draft 15), Jan. 1997.

J. R. NewportAvionics Systems DesigBoca Raton, Florida: [21]
CRC Press, 1994.

D. C. Schmidt, “A Family of Design Patterns for Application-
level Gateways,'The Theory and Practice of Object Systenj22]
(Special Issue on Patterns and Pattern Languaged) 2, no. 1,
1996.

I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design
and Performance of an Object-Oriented Framework for High-
Performance Electronic Medical ImagindJSENIX Comput- [23]
ing Systemsvol. 9, November/December 1996.

D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Broketeimputer
Communicationsvol. 21, pp. 294—-324, Apr. 1998. [24]

A. Gokhale and D. C. Schmidt, “Evaluating the Performance
of Demultiplexing Strategies for Real-time CORBA,” Rro-
ceedings of GLOBECOM '97Phoenix, AZ), IEEE, November
1997.

D. C. Schmidt, F. Kuhns, R. Bector, and D. L. Levine, “The Dd25]
sign and Performance of an 1/0 Subsystem for Real-time ORB
Endsystem Middleware Submitted to the International Jour-

nal of Time-Critical Computing Systems, special issue on Ref@lé]
Time Middleware

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Alleviating Priority Inversion and Non-determinism in Real{27]
time CORBA ORB Core Architectures,” iRroceedings of the
Fourth IEEE Real-Time Technology and Applications Symp@B]
sium (Denver, CO), IEEE, June 1998.

C. Liu and J. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time EnvironmeniACM vol. 20,
pp. 46-61, January 1973.

26

Sensor-Based Control Systems,” Real-Time Programming
(W. Halang and K. Ramamritham, eds.), Tarrytown, NY: Perg-
amon Press, 1992.

M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Har-
bour,A Practitioner's Handbook for Real-Time Analysis: Guide
to Rate Monotonic Analysis for Real-Time SysterNerwell,
Massachusetts: Kluwer Academic Publishers, 1993.

J. P. Lehoczky, L. Sha, and J. K. Strosnider, “Enhanced Aperi-
odic Scheduling in Hard Real-Time Environments,Proceed-
ings of the IEEE Real-Time Systems Sympagsi&#BE Com-
puter Society Press, 1987.

D. B. Stewart, D. E. Schmitz, and P. K. Khosla, “Implementing
Real-Time Robotic Systems using CHIMERA II,” Proceed-
ings of 1990 IEEE International Conference on Robotics and
Automation (Cincinnatti, OH), 1992.

] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA [IOP

Protocol Engine for Minimal Footprint Multimedia Systems,”
submitted to the Journal on Selected Areas in Communications
special issue on Service Enabling Platforms for Networked
Multimedia System4.998.

V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever,

I. Zykh, and R. Johnston, “Real-Time CORBA,"Rroceedings

of the Third IEEE Real-Time Technology and Applications Sym-
posium (Montréal, Canada), June 1997.

D. C. Schmidt, “GPERF: A Perfect Hash Function Generator,”
in Proceedings of th@"¢ C++ Conference (San Francisco,
California), pp. 87-102, USENIX, April 1990.

D. C. Schmidt, R. Bector, D. Levine, S. Mungee, and
G. Parulkar, “An ORB Endsystem Architecture for Stati-
cally Scheduled Real-time Applications,” Rroceedings of the
Workshop on Middleware for Real-Time Systems and Seyvices
(San Francisco, CA), IEEE, December 1997.

Z. D. Dittia, G. M. Parulkar, and J. Jerome R. Cox, “The APIC
Approach to High Performance Network Interface Design: Pro-
tected DMA and Other Techniques,” Proceedings of INFO-
COM '97, (Kobe, Japan), IEEE, April 1997.

D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-

nication Systems,IEE/BCS Distributed Systems Engineering

Journal (Special Issue on Configurable Distributed Systems)
vol. 2, pp. 280-293, December 1994.

E. Gamma, R. Helm, R. Johnson, and J. Vlissi@Esign Pat-
terns: Elements of Reusable Object-Oriented SoftwRead-
ing, MA: Addison-Wesley, 1995.

S. Khanna and et. al., “Realtime Scheduling in SunOS 5.0,” in
Proceedings of the USENIX Winter Confergnpp. 375-390,
USENIX Association, 1992.

S. RagolUNIX System V Network Programmirigeading, MA:
Addison-Wesley, 1993.

K. Ramamritham, C. Shen, O. Gonzales, S. Sen, and S. Shir-
gurkar, “Using Windows NT for Real-time Applications: Ex-
perimental Observations and RecommendationsPrioceed-
ings of the Fourth IEEE Real-Time Technology and Applications
Symposium(San Francisco, CA), IEEE, December 1997.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

T. H. Harrison, C. O’'Ryan, D. Levine, and D. C. Schmidt, “The =~ SIGPLAN '97 Conference on Programming Language Design
Design and Performance of a Real-time CORBA Event Ser- and Implementation (PLDJ])(Las Vegas, NV), ACM, June
vice,” submitted to the Journal on Selected Areas in Commu- 1997.

nications special issue on Service Enabling Platforms for NE[‘EZ]
worked Multimedia System$998.

B. Thuraisingham, P. Krupp, A. Schafer, and V. Wolfe, “O
Real-Time Extensions to the Common Object Request Bro
Architecture,” inProceedings of the Object Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA) Work-
shop on Experiences with CORBACM, Oct. 1994.

“Statement of Work for the Extend Sentry Program, CPF :
Project, ECSP Replacement Phase II,” Feb. 1997. Submité\i Overview Of the CORBA Reference

to OMG in response to RFI ORBOS/96-09-02. Model

G. Cooper, L. C. DiPippo, L. Esibov, R. Ginis, R. Johnston,
P. Kortman, P. Krupp, J. Mauer, M. Squadrito, B. ThuraisingZORBA Object Request Brokers (ORBs) [4] allow clients to

ham, S. Wohlever, and V. F. Wolfe, “Real-Time CORBA Develnyoke operations on distributed objects without concern for:
opment at MITRE, NRaD, Tri-Pacific and URI,” Proceedings

of the Workshop on Middleware for Real-Time Systems and S®bject location: CORBA objects can be collocated with the
vices (San Francisco, CA), IEEE, December 1997. client or distributed on a remote server, without affecting their
V. Fay-Wolfe, J. K. Black, B. Thuraisingham, and P. Krupgdmplementation or use.

“Real-time Method Invocations in Distributed Environments,” .
Tech. Rep. 95-244, University of Rhode Island, Department BfOQramm'ng language: The languages supported by
Computer Science and Statistics, 1995. CORBA include C, C++, Java, Ada95, COBOL, and

J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Suéma”talk’ among others.

port for Quality of Service for CORBA ObjectsTheory and OS platform: CORBA runs on many OS platforms, includ-

Practice of Object Systeneol. 3, no. 1, 1997. ing Win32, UNIX, MVS, and real-time embedded systems like
G. Kiczales, “Aspect-Oriented Programming,” Rroceedings \/x\\Works. Chorus. and LynxOS.

of the 11th European Conference on Object-Oriented Program-

ming June 1997. Communication protocols and interconnects: The com-

V. Kalogeraki, P. Melliar-Smith, and L. Moser, “Soft Realmunication protocols and interconnects that CORBA can run
Time Resource Management in CORBA Distributed Systemgh include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Eth-

in Proceedings of the Workshop on Middleware for Real-Tinggnet, embedded system backplanes, and shared memory.
Systems and ServigelSan Francisco, CA), IEEE, December

1997. Hardware: CORBA shields applications from side-effects
W. Feng, U. Syyid, and J.-S. Liu, “Providing for an Open, Reaffemming from Qiﬁerences in hardware such as storage layout
Time CORBA,” in Proceedings of the Workshop on Middleand data type sizes/ranges.

ware for Real-Time Systems and Servi¢8an Francisco, CA),

IEEE, December 1997. Figure 26 illustrates the components in the CORBA refer-
A. Mehra, A. Indiresan, and K. G. Shin, “Structuring Comence model, all of which collaborate to provide the portability,
munication Software for Quality-of-Service Guarante#8EE jnteroperability, and transparency outlined above. Each com-

g;nsieégi?ons on Software Engineeringpl. 23, pp. 616-634, honent in the CORBA reference model is outlined below:

T. Abdelzaher, S. Dawson, W.-C.Feng, F.Jahanian, S. Johndghent: This program entity performs application tasks by
A. Mehra, T. Mitton, A. Shaikh, K. Shin, Z. Wang, and H. Zoupbtaining object references to objects and invoking opera-
“ARMADA Middleware Suite,” inProceedings of the Workshoptions on them. Objects can be remote or collocated rela-
on Middleware for Real-Time Systems and Servi(®an Fran- tive to the client. Ideally, accessing a remote object should
cisco, CA), IEEE, December 1997. be as simple as calling an operation on a local objeet,

R. Rajkumar, M. Gagliardi, and L. Sha, “The Real-Time Pulpbject —operation(args) . Figure 26 shows the un-
lisher/Subscriber Inter-Process Communication Model for Diger|ying components that ORBs use to transmit remote opera-

tributed Real-Time Systems: Design and Implementation,” jjjn requests transparently from client to object.
First IEEE Real-Time Technology and Applications Symposium

May 1995. Object: In CORBA, an object is an instance of an Interface
E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flicko€finition Language (IDL) interface. The object is identified
A Flexible, Optimizing IDL Compiler,” inProceedings of ACM by anobject referencewhich uniquely names that instance

Object Management Groupjessaging Service Specificatjon
OMG Document orbos/98-05-05 ed., May 1998.

é?] M. Henning, “Binding, Migration, and Scalability in CORBA,"
Communications of the ACM special issue on CORRA 41,
Oct. 1998.

27

INTERFACE IDL IMPLEMENTATION common data-level representation. Conversely, skeletons de-
REPOSITORY COMPILER REPOSITORY marshal the data-level representation back into typed parame-
- ters that are meaningful to an application.

in args

operation() OBJECT . . _
out args + return value (SERvANT) [IDL Compiler: An IDL compiler automatically transforms
- OMG IDL definitions into an application programming lan-
¥ L | per guage like C++ or Java. In addition to providing program-
DI IDL o SKELETON OBIECT ming language transparency, IDL compilers eliminate com-
STUBS INTERFACE ADAPTER mon sources of network programming errors and provide op-
portunities for automated compiler optimizations [41].
GIOP/TIOP %] . .
[Dynamic Invocation Interface (DIl): The DIl allows
() STANDARD INTERFACE () stanaro Lancuace MapPING clients to generate requests at run-time. This flexibility is
OORB-SPECIFIC INTERFACE OSTANDARD PROTOCOL useful when an application has no compile-time knowledge

of the interface it is accessing. The DIl also allows clients
Figure 26: Components in the CORBA Reference Modelto makedeferred synchronousalls, which decouple the re-

guest and response portions of twoway operations to avoid

blocking the client until the servant responds. In contrast,
across servers. A@bjectldassociates an object with its sers|| stubs currently only suppasoway i.e., request/response,
vantimplementation, and is unique within the scope of an Qdhdonewayi.e., request only operations, though the OMG has
ject Adapter. An object has one or more servants associagghdardized an asynchronous method invocation interface in
with it that implement the interface. the recent Messaging Service specification [42].

Servant: This component implements the operations dB’ynamic Skeleton Interface (DSI): The DSl is the server’s

fined by an OMG Interface Definition Language (IDL) inzp5i0gue to the client's DII. The DSI allows an ORB to deliver

terface. In languages like C++ and Java that support objgely jests to a servant that has no compile-time knowledge of
oriented (OO) programming, servants are implemented US{fd |p|_ interface it is implementing. Clients making requests
one or more objects. In non-O0 languages like C, servants gk 4 ot know whether the server ORB uses static skeletons or

typically implemented using functions astiuct s. Aclient 4y namic skeletons. Likewise, servers need not know if clients
never interacts with a servant directly, but always through 8% the DIl or Sl to invoke requests.

object.

tg?bject Adapter: An Object Adapter associates a servant
é/%ilth objects, demultiplexes incoming requests to the servant,
pd dispatches the appropriate operation upcall on that ser-
nt. Recent CORBA portability enhancements [3] define
e Portable Object Adapter (POA), which supports multi-
ple nested POAs per ORB. Object Adapters enable ORBs to

ORB Protocol (IIOP), which runs atop the TCP transport prggpport various types of servants that possess similar require-

tocol. An ORB Core is typically implemented as a run—tim@entsj This deS|gr_1 results in a gmall and S'WP'G ORB that

library linked into both client and server applications. can S.t'” gupport aW'd? range of object granularltle_s, litetimes,
policies, implementation styles, and other properties.

ORB Interface: An ORB is an abstraction that can be im-

plemented various waye,g, one or more processes or a sépterface Repository: The Interface Repository provides
of libraries. To decouple applications from implementatiddn-time information about IDL interfaces. Using this infor-
details, the CORBA specification defines an interface to Btion, it is possible for a program to encounter an object
ORB. This ORB interface provides standard operations ti{¢iose interface was not known when the program was com-
(1) initialize and shutdown the ORB, (2) convert object refiled, yet, be able to determine what operations are valid on
erences to strings and back, and (3) create argument listst6r object and make invocations on it. In addition, the In-
requests made through tgnamic invocation interfag@®ll). terface Repository provides a common location to store ad-

ditional information associated with interfaces ORB objects,
OMG IDL Stubs and Skeletons: IDL stubs and skeletons

: >such as stub/skeleton type libraries.
serve as a “glue” between the client and servants, respectively,

and the ORB. Stubs provide a strongly-typsetitic invoca- Implementation Repository: The Implementation Reposi-
tion interface(Sll) that marshals application parameters intotary [43] contains information that allows an ORB to activate

ORB Core: When a client invokes an operation on an o
ject, the ORB Core is responsible for delivering the requ
to the object and returning a response, if any, to the clieft
For objects executing remotely, a CORBA-compliant [3] OR
Core communicates via some version of the General Int
ORB Protocol (GIOP), most commonly the Internet Inte

28

servers to process servants. Most of the information in the laperations, the frame size is simply the longest operation pe-
plementation Repository is specific to an ORB or OS enviratied.
ment. In addition, the Implementation Repository provides aOperations that are not harmonically related come into and
common location to store information associated with servessit of phase with one another. Therefore, they do not exhibit
such as administrative control, resource allocation, securttye nesting property. Instead, the pattern of arrivals only re-
and activation modes. peats after all periods come back into the same phasing rela-
tionships they had at the beginning.
This observation leads to the invariant that covers both the
B Generalized Schedu|abi|ity Ana|ysis harmonic and non-harmonic cases. The frame size in both
cases is the product of all non-duplicated factors of all opera-
Itis not strictly necessary to know all operations in advanceliin Periods. For non-harmonic cases, we calculate this value
order to schedule them using the canonical definitions of EBY: starting with a frame size of one time unit and iterating
or MLF. However, the real-time applications we have workdBrough the set of unique operation periods. For each unique
with do exhibit this useful property. If all operations are knowperiod, we (possibly) expand the frame size by multiplying
in advance, off-line analysis of schedule feasibility is possibfé€ Previous frame size by the greatest common divisor of the
for RMS, EDF, MLF, and MUF. previous frame size and the operation period. For harmonic
The output of each of the scheduling strategies in TAO §&S€S: all operation periods are factors_of the I_ong.est operation
a schedule This schedule defines a set of operation dispat@§fiod. Therefore, the longest operation period is the frame
ing priorities, dispatching subpriorities, and a minimum crit®'2®- _ , _ , ,
cal dispatching priority. Our goal in this appendix is to presentFi9ure 27 depicts the relationships between operation peri-
a feasibility analysis technique for these schedules, that is94S @nd frame size for both the harmonic and non-harmonic
dependent of the specific strategy used to produce a particGi€S:- For harmonically related operation rates, all of the
schedule. Such an analysis technique must establish invari-

ants that hold across all urgency and dispatching priority mafrmonically 100ms| | | | |
pings. By doing this, the off-line schedule feasibility analysislated periods GLIUTS
(1) decouples the application from the details of a particular 1000 ms
scheduling strategy, and (2) allows alternative strategies to be Frame size = 1000 ms
compared for a given application .
The remainder of this appendix is organized as follows. 50¢ rﬂs ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Section B.1 discusses the notion of a schedul@me size Non-harmonically ‘ ‘875 rﬁs ‘ ‘ ‘ ‘
Section B.2 describes how we measure a schedule’s CPU figliated periods | ‘ ‘1000 m | ‘
lization. Finally, Section B.3 describes the generalized sched- S
ule feasibility analysis technique, which is based on a sched- Frame size = 7000 ms
ule’s utilization, frame size, and the respective priorities of the
operations. Figure 27: Frame Size Examples for Harmonic and Non-
Harmonic Cases
B.1 Frame Size smaller periods fit evenly into the largest period. There-

_ _ o _ fore, the largest operation periéglthe frame size. For non-
The frame size for a schedule is the minimum time that cRrmonically related rates, the frame size is larger than the

contain all possible phasing relationships between all opefgygest operation period, because it is a multiple of all of the
tions. The frame size provides an invariant for the largest tiggeration periods.

within which all operation executions will fit. This assumes,
of course, that the scheduling parameters, such as ratesg
worst-case execution times, specified by applications are n6
exceeded by operations at run-time. Total CPU utilization is the sum of the actual execution times

When the periods of all operations are integral multiples a$ed by all operation dispatches over the schedule frame size,
one another.g, 20 Hz, 10 Hz, 5 Hz, and 1 Hz, the operationdivided by the frame size itself. TAO's strategized scheduling
are said to béarmonically related Harmonically related op- service calculates the maximum total utilization for a given
erations have completely nested phasing relationships. Thaafiedule by summing, over all operations, the fraction of each
the arrival pattern of each subsequently shorter period fits eperation’s period that is consumed by its worst-case execu-
actly within the next longer period. For harmonically relatetibn time, according to the following formula:

Utilization

29

eration occurs when it arrives simultaneously with all other
operations.
U =3 Cp/Ty For other dispatching models, the critical instant for a given
vk operation differs slightly. It occurs only when the operation ar-
where, for each operatidh Cj, is its worst case executionrives immediately after another operation that will cause it the
time anéTk is its period k greateshdditionalpreemption delay was dispatched. Further,

In addition to total utilization, TAO’s scheduling serviceg1 Ifglye?gggrr;\:)v{;g; :Eznot[?]iritéoenczrégiis i'ggéﬁgigfﬂi:’;h_
calculates the CPU utilization by the set of critical oper P 9 P P

tions. This indicates the percentage of time the CPU is ﬁPn delay. If an operation is schedulable at its critical instant,

. .) =~ itis assured of schedulability under any other arrival pattern
located to operations whose completion prior to deadline is .
of the same operations.

be enforced. Operations whose assigned dispatching priorit)& key research challenge in assessing schedule feasibility

is greater than or equal to the minimum critical priority bound o ; - :
are considered to be in the critical set. In the RMS, EDF alr?ddeterm|_n|ng whet_her e_ach operatl_on has SuffICIG.I’]t time to
: . T g .’ cognplete its execution prior to deadline. The deadline for an
MLF scheduling strategies, the entire schedule is considere :) I o
critical, so the critical set utilization is the same as total ufi® eration at its critical instant falls exactly at the critical in-
Iizatior; stant plus its period. Not only must a given operation be able

S ., to complete execution in that period, it must do so in the time
Ifthe t.Otal ut|I|;at|on exceeds thﬂ:hgdglable bound"AOs hat is not used by preferentially dispatched operations. All
scheduling service also stores the priority level previous to t

. . erations that have higher dispatching priority than the cur-
one that_exceeded th(_a sphedulable bound. _Th|.s PrEVIOUS Pty operation will be dispatched preferentially. All operations
ity level is called theminimum guaranteed priority leveOp-

erations having dispatching priority greater than or equalthat have the same dispatching priority, but have deadlines at

L T é prior to the deadline of the current operation, must also be
the minimum guaranteed priority level are assured of megL. cidered to be dispatched preferentially

ing their deadlines. In contrast, operations having dispa’[chlnq_he goal of assessing schedule feasibility off-line in a way

priority immediately below the minimum guaranteed priori% t (1) is independent of a particular strategy, and (2) cor-

level may execute prior to their deadlines, but are not assure by determines whether each operation will meet its dead-

of doing so. If the total utilization does not exceed the schef{fﬁ-el motivates the following analysis. TAO's strategized

:ﬁwbdfnbglzj;ri,nttzeeLO;\;?;:itsr:ZC;{ szzléﬂ t:;e‘?’;tsigenrg ;éh:S?Jgéheduling service performs this analysis for each operation
of meeting their deadlines ' off-line. We call the operation upon which the analysis is
: being performed theurrent operation The number of ar-
rivals, during the period of the current operation, of an op-
B.3 Schedule Feasibility eration having higher dispatching priority than the current op-
eration is given by, /T, whereT, andTj, are the respec-
It may or may not be possible to achievéeasibleschedule tive periods of the current operation and the higher priority
that utilizes 100% of the CPU. Achieving 100% utilization desperation. The time consumed by the higher priority oper-
pends on the phasing relationships between operations indtien during the period of the current operation is given by
schedule, and the scheduling strategy itself. The maximym /T}, |Cy, + min (T. — |T./Tw|Th,Cr), Where themin
percentage of the CPU that can be utilized is calledtedu- function returns the minimum of the values, a4 is the
lable bound computation time used for each dispatch of the higher prior-

The schedulable bound is a function of the scheduling strig-operation.
egy and in some cases of the schedule itself. A schedule iSimilarly, the number of deadlines of another operation hav-
feasibleif and only if all operations in the critical set are asing the same dispatching priority as the current operation is
sured of meeting their deadlines. The critical set is identifigiven by | T.. /T |, whereT5 is the period of the other opera-
by the minimum critical priority. All operations having distion having the same dispatching priority as the current opera-
patching priority greater than or equal to the minimum criticabn. The time consumed by the other same priority operation
priority are in the critical set. over the period of the current operation is given By/ T | Cs,

The schedulability of each operation in the critical set dehereC; is the computation time used by the other same pri-
pends on the worst-case operation arrival pattern, whichority operation [14]. Figure 28 illustrates the various possible
called thecritical instant The critical instant for an operatiorrelationships between the periods of operations in two priority
occurs when the delay between its arrival and its completiemels.
is maximal [14]. For the preemptive-by-urgency dispatchingChoosing the fourth operation, with peri@d, as the cur-
model described in Section 3.5.6, the critical instant for an apnt operation, the number of arrivals of each of the higher pri-

30

Higher Priority Operations

= (IOI00000M
e[i

Lower Priority Operations

1 [

Figure 28: Schedulability of the Current Operation

ority operations is as expectefdfy /T,] = [9/2] = [4.5] =

the longest execution time of any operation that has a longer
period: if there are no such operationi,., ;) is zero.

For each current operation having dispatching priokity
be schedulable, the following must hold. All deadlines of op-
erations having the same dispatching priority or higher, includ-
ing the deadline of the current operation itself, plt}s. q(;)
plus any time scheduled for higher priority operations that ar-
rive within but do not have a deadline within the period of
the current operations, must be schedulable within the period
of the current operation. This invariant is evaluated for each
decreasing dispatching priority level of a schedule, from the
highest to the lowest. The lowest dispatching priority level for
which the invariant holds is thus identified as the minimum
priority for which schedulability of all operations can be guar-
anteed, known as thainimum guaranteed priority

In summary, the schedule feasibility analysis technique
presented in this appendix establishes and uses invariants
that hold across all urgency and dispatching priority map-
pings. This gives applications the ability to examine differ-
ent scheduling strategies off-line, and discard those that do not
produce feasible schedules for their particular operation char-
acteristics. Further, it decouples applications from the details

5and[Ty/T»] = [9/15] = [0.6] = 1. The number of dead-©f any particular scheduling strategy, so that changes in strate-
lines of operations having the same priority level is also 8isS to notrequire changes in their operation characteristics.

expected:|Ty/T5| = |9/7] = [1.3] = 1 and|T4/T4] =
9/9] = [1.0] =land|T,/T5] = |9/10] = |0.9] = 0.

Having established the time consumed by an operation hav-

ing higher dispatching priority than the current operation as
|\T./T,|Ch + min (T. — |T./Th]Th, Cr), and the time con-
sumed by an operation having the same dispatching priority as
the current operation 49 /75| Cs, it is now possible to state
the invariant that must hold for all operations having dispatch-
ing priority A to be schedulable:

V{jkeS [(p() =N A(pk) >=)}

Cuwepajy + > |Tj/Tk|Cr +
p(k)>=X

<=Tj
(%:)\min (T; — |T5/Tk)Ty , Ck)
p(k)>

S is the set of all operations in the schedule. The func-
tion p(j) simply returns the priority assigned to operatipn
Cuepa(j) is the worst-case preemption delay for operation
Operatiory suffers a preemption delay if and only if it arrives
while an operation in the same dispatching priority level that
does not have a deadline within operatjos period is exe-
cuting. Operations that have deadlines within operajisn
period must be counted anyway, and thus do not impose any
additionaldelay, should operatiofarrive while they are ex-
ecuting. The worst-case preemption delay for operatids

31

