
UCLA Extension Course

Software Design Principles and Guidelines

Douglas C. Schmidt
Department of Electrical Engineering and Computer Science

Vanderbilt University
d.schmidt@vanderbilt.edu

http://www.cs.wustl.edu/ schmidt/

UCLA Extension Course OO Programming with C++

Design Principles and Guidelines Overview

� Design Principles

– Important design concepts
– Useful design principles

� Development Methodologies

– Traditional approaches
– Extreme programming

� Design Guidelines

– Motivation
– Common Design Mistakes
– Design Rules

Copyright c
1997-2003 Vanderbilt University 1

UCLA Extension Course OO Programming with C++

Motivation: Goals of the Design Phase

� Decompose System into Modules

– i.e., identify the software architecture
– Modules are abstractions that should:

� be independent,

� have well-specified interfaces, and

� have high cohesion and low coupling.

� Determine Relations Between Modules

– Identify module dependencies
– Determine the form of intermodule communication, e.g.,

� global variables

� parameterized function calls

� shared memory

� RPC or message passing

Copyright c
1997-2003 Vanderbilt University 2

UCLA Extension Course OO Programming with C++

Motivation: Goals of the Design Phase (cont’d)
� Specify Module Interfaces

– Interfaces should be well-defined

� facilitate independent module testing

� improve group communication

� Describe Module Functionality

– Informally

� e.g., comments or documentation
– Formally

� e.g., via module interface specification languages

Copyright c
1997-2003 Vanderbilt University 3



UCLA Extension Course OO Programming with C++

Primary Design Phases

� Preliminary Design

– External design describes the real-world model
– Architectural design decomposes the requirement specification

into software subsystems

� Detailed Design

– Formally specify each subsystem
– Further decomposed subsystems, if necessary

� Note: in design phases the orientation moves

– from customer to developer
– from what to how

Copyright c
1997-2003 Vanderbilt University 4

UCLA Extension Course OO Programming with C++

Key Design Concepts and Principles

� Important design concepts and design principles include:

– Decomposition
– Abstraction
– Information Hiding
– Modularity
– Hierarchy
– Separating Policy and Mechanism

� Main purpose of these concepts and principles is to manage software
system complexity and improve software quality factors.

Copyright c
1997-2003 Vanderbilt University 5

UCLA Extension Course OO Programming with C++

Decomposition

� Decomposition is a concept common to all life-cycle and design
techniques.

� Basic concept is very simple:

1. Select a piece of the problem (initially, the whole problem)
2. Determine its components using the mechanism of choice, e.g.,

functional vs data structured vs object-oriented
3. Show how the components interact
4. Repeat steps 1 through 3 until some termination criteria is met

(e.g., customer is satisfied, run out of money, etc.;-))

Copyright c
1997-2003 Vanderbilt University 6

UCLA Extension Course OO Programming with C++

Decomposition (cont’d)
� Some guiding decomposition principles

– Because design decisions transcend execution time, modules
might not correspond to execution steps . . .

– Decompose so as to limit the effect of any one design decision on
the rest of the system

– Remember, anything that permeates the system will be expensive
to change

– Modules should be specified by all information needed to use the
module and nothing more

Copyright c
1997-2003 Vanderbilt University 7



UCLA Extension Course OO Programming with C++

Abstraction

� Abstraction provides a way to manage complexity by emphasizing
essential characteristics and suppressing implementation details.

� Allows postponement of certain design decisions that occur at
various levels of analysis, e.g.,

– Representational/Algorithmic considerations
– Architectural/Structural considerations
– External/Functional considerations

Copyright c
1997-2003 Vanderbilt University 8

UCLA Extension Course OO Programming with C++

Abstraction (cont’d)

� Three basic abstraction mechanisms

– Procedural abstraction

� e.g., closed subroutines
– Data abstraction

� e.g., ADTs
– Control abstraction

� iterators, loops, multitasking, etc.

Copyright c
1997-2003 Vanderbilt University 9

UCLA Extension Course OO Programming with C++

Information Hiding

� Motivation: details of design decisions that are subject to change
should be hidden behind abstract interfaces, i.e., modules.

– Information hiding is one means to enhance abstraction.

� Modules should communicate only through well-defined interfaces.

� Each module is specified by as little information as possible.

� If internal details change, client modules should be minimally affected
(may require recompilation and relinking, however . . .)

Copyright c
1997-2003 Vanderbilt University 10

UCLA Extension Course OO Programming with C++

Information Hiding (cont’d)
� Information to be hidden includes:

– Data representations

� i.e., using abstract data types
– Algorithms e.g., sorting or searching techniques
– Input and Output Formats

� Machine dependencies, e.g., byte-ordering, character codes
– Policy/mechanism distinctions

� i.e., when vs how

� e.g., OS scheduling, garbage collection, process migration
– Lower-level module interfaces

� e.g., Ordering of low-level operations, i.e., process sequence

Copyright c
1997-2003 Vanderbilt University 11



UCLA Extension Course OO Programming with C++

Modularity

� A Modular System is a system structured into highly independent
abstractions called modules.

� Modularity is important for both design and implementation phases.

� Module prescriptions:

– Modules should possess well-specified abstract interfaces.
– Modules should have high cohesion and low coupling.

Copyright c
1997-2003 Vanderbilt University 12

UCLA Extension Course OO Programming with C++

Modularity (cont’d)

� Modularity facilitates certain software quality factors, e.g.:

– Extensibility - well-defined, abstract interfaces
– Reusability - low-coupling, high-cohesion
– Compatibility - design “bridging” interfaces
– Portability - hide machine dependencies

� Modularity is an important characteristic of good designs because it:

– allows for separation of concerns
– enables developers to reduce overall system complexity via

decentralized software architectures
– enhances scalability by supporting independent and concurrent

development by multiple personnel

Copyright c
1997-2003 Vanderbilt University 13

UCLA Extension Course OO Programming with C++

Modularity (cont’d)

� A module is

– A software entity encapsulating the representation of an
abstraction, e.g., an ADT

– A vehicle for hiding at least one design decision
– A “work” assignment for a programmer or group of programmers
– a unit of code that

� has one or more names

� has identifiable boundaries

� can be (re-)used by other modules

� encapsulates data

� hides unnecessary details

� can be separately compiled (if supported)

Copyright c
1997-2003 Vanderbilt University 14

UCLA Extension Course OO Programming with C++

Modularity (cont’d)
� A module interface consists of several sections:

– Imports

� Services requested from other modules
– Exports

� Services provided to other modules
– Access Control

� not all clients are equal! (e.g., C++’s distinction between
protected/private/public)

– Heuristics for determining interface specification

� define one specification that allows multiple implementations

� anticipate change

� e.g., use structures and classes for parameters

Copyright c
1997-2003 Vanderbilt University 15



UCLA Extension Course OO Programming with C++

Modularity Dimensions

� Modularity has several dimensions and encompasses specification,
design, and implementation levels:

– Criteria for evaluating design methods with respect to modularity

� Modular Decomposability

� Modular Composability

� Modular Understandability

� Modular Continuity

� Modular Protection
– Principles for ensuring modular designs:

� Language Support for Modular Units

� Few Interfaces

� Small Interfaces (Weak Coupling)

� Explicit Interfaces

� Information Hiding

Copyright c
1997-2003 Vanderbilt University 16

UCLA Extension Course OO Programming with C++

Principles for Ensuring Modular Designs

� Language Support for Modular Units

– Modules must correspond to syntactic units in the language used.

� Few Interfaces

– Every module should communicate with as few others as possible.

� Small Interfaces (Weak Coupling)

– If any two modules communicate at all, they should exchange as
little information as possible.

Copyright c
1997-2003 Vanderbilt University 17

UCLA Extension Course OO Programming with C++

Principles for Ensuring Modular Designs (cont’d)

� Explicit Interfaces

– Whenever two modules A and B communicate, this must be
obvious from the text of A or B or both.

� Information Hiding

– All information about a module should be private to the module
unless it is specifically declared public.

Copyright c
1997-2003 Vanderbilt University 18

UCLA Extension Course OO Programming with C++

The Open/Closed Principle
� A satisfactory module decomposition technique should yield modules

that are both open and closed:

– Open Module: is one still available for extension. This is necessary
because the requirements and specifications are rarely completely
understood from the system’s inception.

– Closed Module: is available for use by other modules, usually
given a well-defined, stable description and packaged in a library.
This is necessary because otherwise code sharing becomes
unmanageable because reopening a module may trigger changes
in many clients.

Copyright c
1997-2003 Vanderbilt University 19



UCLA Extension Course OO Programming with C++

The Open/Closed Principle (cont’d)

� Traditional design techniques and programming languages do not
offer an elegant solution to the problem of producing modules that
are both open and closed.

� Object-oriented methods utilize inheritance and dynamic binding to
solve this problem.

Copyright c
1997-2003 Vanderbilt University 20

UCLA Extension Course OO Programming with C++

Hierarchy

� Motivation: reduces module interactions by restricting the topology of
relationships

� A relation defines a hierarchy if it partitions units into levels (note
connection to virtual machines)

– Level 0 is the set of all units that use no other units
– Level i is the set of all units that use at least one unit at level < i

and no unit at level � i.

� Hierarchical structure forms basis of design

– Facilitates independent development
– Isolates ramifications of change
– Allows rapid prototyping

Copyright c
1997-2003 Vanderbilt University 21

UCLA Extension Course OO Programming with C++

Hierarchy (cont’d)

� Relations that define hierarchies:

– Uses
– Is-Composed-Of
– Is-A
– Has-A

� The first two are general to all design methods, the latter two are
more particular to object-oriented design and programming.

Copyright c
1997-2003 Vanderbilt University 22

UCLA Extension Course OO Programming with C++

The Uses Relation
� X Uses Y if the correct functioning of X depends on the availability of

a correct implementation of Y

� Note, uses is not necessarily the same as invokes:

– Some invocations are not uses

� e.g., error logging
– Some uses don’t involve invocations

� e.g., message passing, interrupts, shared memory access

� A uses relation does not necessarily yield a hierarchy (avoid cycles .
. .)

Copyright c
1997-2003 Vanderbilt University 23



UCLA Extension Course OO Programming with C++

The Is-Composed-Of Relation

� The is-composed-of relationship shows how the system is broken
down in components.

� X is-composed-of fxig if X is a group of units xi that share some
common purpose

� The system structure graph description can be specified by the is-
composed-of relation such that:

– non-terminals are “virtual” code
– terminals are the only units represented by “actual” (concrete)

code

Copyright c
1997-2003 Vanderbilt University 24

UCLA Extension Course OO Programming with C++

The Is-Composed-Of Relation, (cont’d)

� Many programming languages support the is-composed-of relation
via some higher-level module or record structuring technique.

� Note: the following are not equivalent:

1. level (virtual machine)
2. module (an entity that hides a secret)
3. a subprogram (a code unit)

� Modules and levels need not be identical, as a module may have
several components on several levels of a uses hierarchy.

Copyright c
1997-2003 Vanderbilt University 25

UCLA Extension Course OO Programming with C++

The Is-A and Has-A Relations

� These two relationships are associated with object-oriented design
and programming languages that possess inheritance and classes.

� Is-A or Descendant relationship

– class X possesses Is-A relationship with class Y if instances of
class X are specialization of class Y.

– e.g., a square is a specialization of a rectangle, which is a
specialization of a shape . . .

� Has-A or Containment relationship

– class X possesses a Has-B relationship with class Y if instances
of class X contain one or more instance(s) of class Y.

– e.g., a car has an engine and four tires . . .

Copyright c
1997-2003 Vanderbilt University 26

UCLA Extension Course OO Programming with C++

Separating Policy and Mechanism
� Very important design principle, used to separate concerns at both

the design and implementation phases.

� Multiple policies can be implemented by shared mechanisms.

– e.g., OS scheduling and virtual memory paging

� Same policy can be implemented by multiple mechanisms.

– e.g., FIFO containment can be implemented using a stack based
on an array, or a linked list, or . . .

– e.g., reliable, non-duplicated, bytestream service can be provided
by multiple communication protocols.

Copyright c
1997-2003 Vanderbilt University 27



UCLA Extension Course OO Programming with C++

Program Families and Subsets

� Program families are a collection of related modules or subsystems
that form a framework

– e.g., BSD UNIX network protocol subsystem.
– Note, a framework is a set of abstract and concrete classes.

� Program families are natural way to detect and implement subsets.

– Reasons for providing subsets include cost, time, personnel
resources, etc.

– Identifying subsets:

� Analyze requirements to identify minimally useful subsets.

� Also identify minimal increments to subsets.

Copyright c
1997-2003 Vanderbilt University 28

UCLA Extension Course OO Programming with C++

A General Design Process

� Given a requirements specification, design involves an iterative
decision making process with the following general steps:

– List the difficult decisions and decisions likely to change
– Design a module specification to hide each such decision

� Make decisions that apply to whole program family first

� Modularize most likely changes first

� Then modularize remaining difficult decisions and decisions
likely to change

� Design the uses hierarchy as you do this (include reuse
decisions)

Copyright c
1997-2003 Vanderbilt University 29

UCLA Extension Course OO Programming with C++

A General Design Process (cont’d)

� General steps (cont’d)

– Treat each higher-level module as a specification and apply above
process to each

– Continue refining until all design decisions are:

� hidden in a module

� contain easily comprehensible components

� provide individual, independent, low-level implementation
assignments

Copyright c
1997-2003 Vanderbilt University 30

UCLA Extension Course OO Programming with C++

Traditional Development Methodologies
� Waterfall Model

– Specify, analyze, implement, test (in sequence)
– Assumes that requirements can be specified up front

� Spiral Model

– Supports iterative development
– Attempts to assess risks of changes

� Rapid Application Development

– Build a prototype
– Ship it :-)

Copyright c
1997-2003 Vanderbilt University 31



UCLA Extension Course OO Programming with C++

eXtreme Programming

� Stresses customer satisfaction, and therefore, involvement

– Provide what the customer wants, as quickly as possible
– Provide only what the customer wants

� Encourages changes in requirements

� Relies on testing

� XP Practices

– Planning, designing, coding, testing

Copyright c
1997-2003 Vanderbilt University 32

UCLA Extension Course OO Programming with C++

eXtreme Programming: Planning

Technology
Spike

System
Prototype

User
Story

Planning
Game

IterationCommitment
Schedule

Change in Requirements, Risk,
or Developement Environment

Risk Estimates

Time

Requirements

based on http://www.extremeprogramming.org/rules/planninggame.html

� Start with user stories
– Written by customers, to

specify system
requirements

– Minimal detail, typically
just a few sentences on a
card

– Expected development
time: 1 to 3 weeks each,
roughly

� Planning game creates
commitment schedule for
entire project

� Each iteration should take
2-3 weeks

Copyright c
1997-2003 Vanderbilt University 33

UCLA Extension Course OO Programming with C++

eXtreme Programming: Designing

� Defer design decisions as long as possible

� Advantages:

– Simplifies current task (just build what is needed)
– You don’t need to maintain what you haven’t built
– Time is on your side: you’re likely to learn something useful by the

time you need to decide
– Tomorrow may never come: if a feature isn’t needed now, it might

never be needed

� Disadvantages:

– Future design decisions may require rework of existing
implementation

– Ramp-up time will probably be longer later

� Therefore, always try to keep designs as simple as possible

Copyright c
1997-2003 Vanderbilt University 34

UCLA Extension Course OO Programming with C++

eXtreme Programming: Coding
� Pair programming

– Always code with a partner
– Always test as you code

� Pair programming pays off by supporting good implementation,
reducing mistakes, and exposing more than one programmer to the
design/implementation

� If any deficiencies in existing implementation are noticed, either fix
them or note that they need to be fixed.

Copyright c
1997-2003 Vanderbilt University 35



UCLA Extension Course OO Programming with C++

eXtreme Programming: Testing

� Unit tests are written before code.

� Code must pass both its unit test and all regression tests before
committing.

� In effect, the test suite defines the system requirements.

– Significant difference from other development approaches.
– If a bug is found, a test for it must be added.
– If a feature isn’t tested, it can be removed.

Copyright c
1997-2003 Vanderbilt University 36

UCLA Extension Course OO Programming with C++

eXtreme Programming: Information Sources

� Kent Beck, Extreme Programming Explained: Embrace Change,
Addison-Wesley, ISBN 0201616416, 1999.

� Kent Beck, “Extreme Programming”, C++ Report 11:5, May 1999, pp.
26–29+.

� John Vlissides, “XP”, interview with Kent Beck in the Pattern Hatching
Column, C++ Report 11:6, June 1999, pp. 44-52+.

� Kent Beck, “Embracing Change with Extreme Programming”, IEEE
Computer 32:10, October 1999, pp. 70-77.

� http://www.extremeprogramming.org/

� http://www.xprogramming.com/

� http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap

Copyright c
1997-2003 Vanderbilt University 37

UCLA Extension Course OO Programming with C++

Rules of Design

� Make sure that the problem is well-defined

– All design criteria, requirements, and constraints, should be
enumerated before a design is started.

– This may require a “spiral model” approach.

� What comes before how

– i.e., define the service to be performed at every level of abstraction
before deciding which structures should be used to realize the
services.

� Separate orthogonal concerns

– Do not connect what is independent.
– Important at many levels and phases . . .

Copyright c
1997-2003 Vanderbilt University 38

UCLA Extension Course OO Programming with C++

Rules of Design (cont’d)
� Design external functionality before internal functionality.

– First consider the solution as a black-box and decide how it should
interact with its environment.

– Then decide how the black-box can be internally organized. Likely
it consists of smaller black-boxes that can be refined in a similar
fashion.

� Keep it simple.

– Fancy designs are buggier than simple ones; they are harder to
implement, harder to verify, and often less efficient.

– Problems that appear complex are often just simple problems
huddled together.

– Our job as designers is to identify the simpler problems, separate
them, and then solve them individually.

Copyright c
1997-2003 Vanderbilt University 39



UCLA Extension Course OO Programming with C++

Rules of Design (cont’d)

� Work at multiple levels of abstraction

– Good designers must be able to move between various levels of
abstraction quickly and easily.

� Design for extensibility

– A good design is “open-ended,” i.e., easily extendible.
– A good design solves a class of problems rather than a single

instance.
– Do not introduce what is immaterial.
– Do not restrict what is irrelevant.

� Use rapid prototyping when applicable

– Before implementing a design, build a high-level prototype and
verify that the design criteria are met.

Copyright c
1997-2003 Vanderbilt University 40

UCLA Extension Course OO Programming with C++

Rules of Design (cont’d)

� Details should depend upon abstractions

– Abstractions should not depend upon details
– Principle of Dependency Inversion

� The granule of reuse is the same as the granule of release

– Only components that are released through a tracking system can
be effectively reused

� Classes within a released component should share common closure

– That is, if one needs to be changed, they all are likely to need to
be changed

– i.e., what affects one, affects all

Copyright c
1997-2003 Vanderbilt University 41

UCLA Extension Course OO Programming with C++

Rules of Design (cont’d)

� Classes within a released component should be reused together

– That is, it is impossible to separate the components from each
other in order to reuse less than the total

� The dependency structure for released components must be a DAG

– There can be no cycles

� Dependencies between released components must run in the
direction of stability

– The dependee must be more stable than the depender

� The more stable a released component is, the more it must consist
of abstract classes

– A completely stable component should consist of nothing but
abstract classes

Copyright c
1997-2003 Vanderbilt University 42

UCLA Extension Course OO Programming with C++

Rules of Design (cont’d)
� Where possible, use proven patterns to solve design problems

� When crossing between two different paradigms, build an interface
layer that separates the two

– Don’t pollute one side with the paradigm of the other

Copyright c
1997-2003 Vanderbilt University 43



UCLA Extension Course OO Programming with C++

Rules of Design (cont’d)

� Software entities (classes, modules, etc) should be open for
extension, but closed for modification

– The Open/Closed principle – Bertrand Meyer

� Derived classes must usable through the base class interface without
the need for the user to know the difference

– The Liskov Substitution Principle

Copyright c
1997-2003 Vanderbilt University 44

UCLA Extension Course OO Programming with C++

Rules of Design (cont’d)

� Make it work correctly, then make it work fast

– Implement the design, measure its performance, and if necessary,
optimize it.

� Maintain consistency between representations

– e.g., check that the final optimized implementation is equivalent to
the high-level design that was verified.

– Also important for documentation . . .

� Don’t skip the preceding rules!

– Clearly, this is the most frequently violated rule!!! ;-)

Copyright c
1997-2003 Vanderbilt University 45


