The Center for Distributed Object Computing

Research Synopsis

David L. Levine

www.cs.wustl.edu/~levine/

Director, Center for

Computer Science Dept. Distributed Object Computing Washington University, St. Louis

Sponsors

NSF, DARPA, Bellcore/Telcordia, BBN, Boeing, CDI/GDIS, Comverse, Hughes, Kodak, Lockheed, Lucent, Microsoft, Motorola, Nokia, Nortel, OCI, OTI, Raytheon, SAIC, Siemens SCR, Siemens MED, Siemens ZT, Sprint, USENIX

24 November 1999

DOC Center

Washington University, St. Louis

Motivation: the Communication Software Crisis

Symptoms

www.arl.wustl.edu/arl/

Communication *hardware* gets smaller, faster, cheaper

- Communication *software* gets larger, slower, more expensive
- Culprits
 - Inherent and accidental complexity
- Solution Approach
 - Standard communication middleware

DOC Center

Washington University, St. Louis

DOC Center Research Focus

Mission Patterns, Pattern Languages, and Frameworks High Configurable Critical Distributed Performance Communication and Simulation Real-Time Embedded **Systems CORBA Systems** The ACE Orb (TAO) Adaptive Communication Environment (ACE)

DOC Center

Washington University, St. Louis

DOC Center Members

- · David L. Levine, Director
- Fred Kuhns, Associate Director
- Douglas C. Schmidt, Former Director
- Full-time staff: C. Gill, C. O'Ryan, J. Parsons, I. Pyarali, N. Wang
- PhD students: C. Gill, J. Hu, C. O'Ryan, O. Othman, I. Pyarali, N. Wang
- Masters students: L. Baker, D. Brunsch, P. Gore, V. Kachroo, Y. Krishnamurthy, B. Natarajan, K. Parameswaran, J. Parsons, M. Spivak
- Undergrads: K. Pathayapura

DOC Center

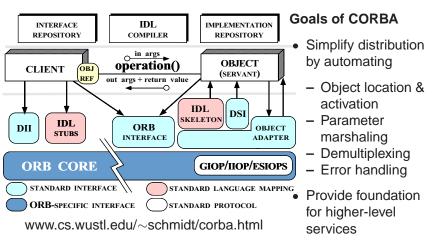
DOC Center Sponsors

Bellcore/Telcordia Motorola BBN Nokia Boeing Nortel CDI/GDIS NSF Comverse OCI DARPA OTI

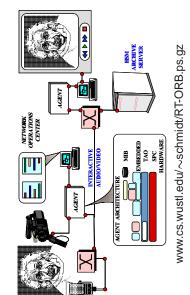
Hughes Raytheon Kodak SAIC Lockheed Martin Siemens Lucent Sprint Microsoft **USENIX**

Problem: Lack of QoS-enabled Middleware

DOC Center


- Many applications require QoS guarantees
 - e.g., avionics, telecom, WWW, medical, high-energy physics
- · Building these applications manually is hard
- Existing middleware doesn't support QoS effectively
 - e.g., CORBA, DCOM, DCE, Java
- · Solutions must be integrated horizontally & vertically

5


Washington University, St. Louis

Candidate Solution: CORBA

Washington Ur ਰ **CORBA for QoS-enabled Systems** Caveat: Requirements/Limitations DOC Center

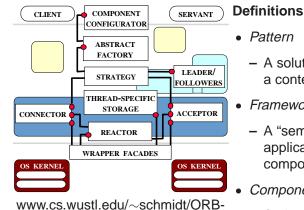
ack of real-time specifications enforcement Lack of QoS Limitations Reliability tranparency Requirements transparency **Predictability**

_ack of performance

Problem: Optimizing Complex Software

JSAC-99.ps.gz

Common Problems →


- · Optimizing complex software is hard
- Small "mistakes" can be costly

Solution Approach (Iterative) →

- · Pinpoint overhead via white-box metrics
 - e.g., Quantify and **VMEtro**
- Apply patterns and framework components
- · Revalidate via white-box and black-box metrics

Solution 1: Patterns and Framework Components

patterns.ps.gz

- A solution to a problem in a context
- Framework
 - A "semi-complete" application built with components
- Components
 - Self-contained, "pluggable" **ADTs**

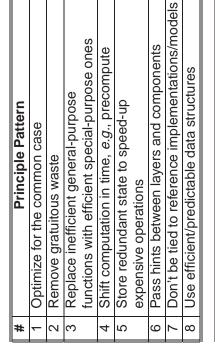
DOC Center

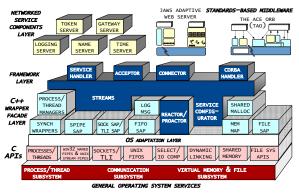
DOC Center

Washington University, St. Louis

Patterns for Communication Middleware

- Failures rarely result from unknown scientific principles, but from failing to apply proven engineering practices and patterns
- . Benefits of Patterns
 - Facilitate design reuse
 - Preserve crucial design information
- Guide design choices




Solution 2: ORB Optimization

DOC Center

Key Principle Patterns Used in TAO

The ADAPTIVE Communication Environment (ACE)

ACE Overview

- Concurrent OO networking framework
- Available for C++ and Java
- Ported to POSIX, Win32, VxWorks, Chorus, PharLap TNT, et al.

www.cs.wustl.edu/~schmidt/ACE.html

12

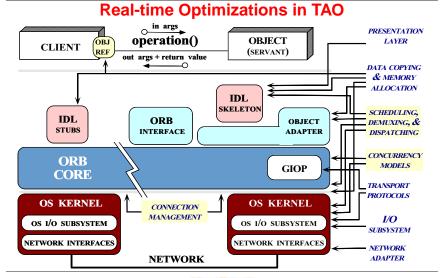
14

DOC Center

Washington University, St. Louis

ACE and TAO Statistics

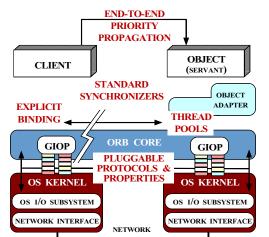
- Over 30 person-years of effort
 - ACE > 200,000 LOC
 - TAO > 125,000 LOC
 - TAO IDL compiler > 100,000 LOC
 - TAO CORBA Object Services > 150,000 LOC
- Ported to POSIX, Win32, VxWorks, et al.
- Large user community
 - www.cs.wustl.edu/~schmidt/ACEusers.html


- Currently used by dozens of companies
 - Bellcore, Boeing,
 Ericsson, Kodak,
 Lockheed, Lucent,
 Motorola, Nokia, Nortel,
 Raytheon, SAIC,
 Siemens, etc.
- Supported commercially
 - ACE → www.riverace.com
 - TAO → www.theaceorb.com

D.O.C

Nashington Un GIOP/RIOP OS I/O SUBSYSTE PROPERTY LOGGING TRADING OBJECT Its CORBA Object Services The ACE ORB (TAO) and STREAMING CONCURRENCY SCHEDULING COMPONENTS LIFECYCLE NETWORK IDL COMPILER ORB QoS INTERFACE NOTIFICATION EVENT/ OS I/O SUBSYSTEM NAMING TIME KERNE DOC Center COKBY SEKVICES

DOC Center

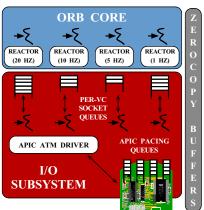

Washington University, St. Louis

15

New TAO Features and Optimizations

New Features

- Real-time CORBA
- Minimum CORBA
- CORBA Messaging
- Fault Tolerance


URL

− ~schmidt/TAOstatus.html

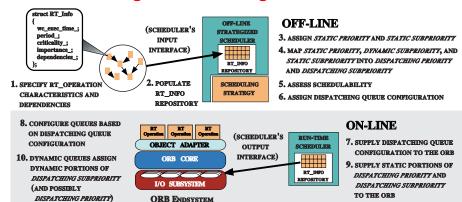
16

Integrating TAO with ATM I/O Subsystem

~schmidt/RIO.ps.gz

Features

- Vertical integration of QoS through ORB, OS, and ATM network
- Real-time I/O enhancements to Solaris kernel
- Provides rate-based QoS end-to-end
- Leverages APIC features for cell pacing and zero-copy buffering



17

DOC Center

Washington University, St. Louis

Strategized Scheduling Framework

D.O.C

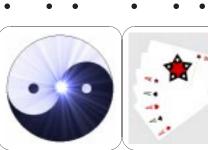
Use-cases for ACE and TAO

DOC Center

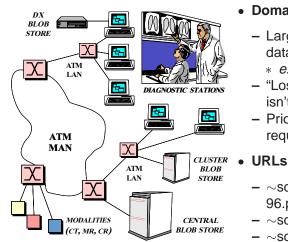
Domains

Washington

Electronic medical maging


Network management Wireless personal communication

Real-time avionics mission comuting systems (PCS)

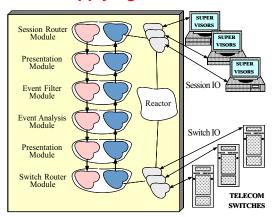

Multimedia services Distributed

interactive

simulation

Applying ACE and TAO to Medical Imaging

• Domain Challenges


- Large volume of "Blob" data
 - * e.g., 10 to 40 Mbps
- "Lossy compression" isn't viable
- Prioritization of requests

- − ~schmidt/COOTS-96.ps.gz
- − ~schmidt/av.ps.gz
- − ~schmidt/NMVC.html

20

Applying ACE to Network Management

- Domain Challenges
- Low latency
- Multi-platform
- Family of related services

URLs

- − ~schmidt/DSEJ-94.ps.gz
- − ~schmidt/ECOOP-95.ps.gz

21

DOC Center

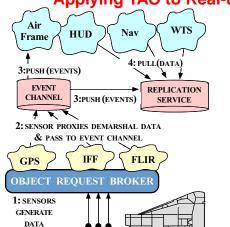
Washington University, St. Louis

Applying ACE to Global PCS

• Domain Challenges

- Long latency satellite links
- High reliability
- Prioritization

URL


− ~schmidt/TAPOS-95.ps.gz

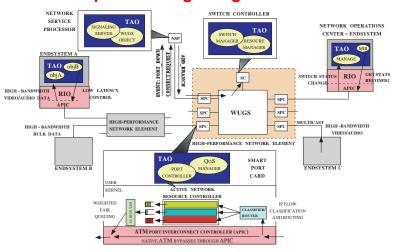
DOC Center

DOC Center

Washington University, St. Louis

Applying TAO to Real-time Avionics

- Domain Challenges
 - Real-time periodic processing
 - Complex dependencies
 - Very low latency

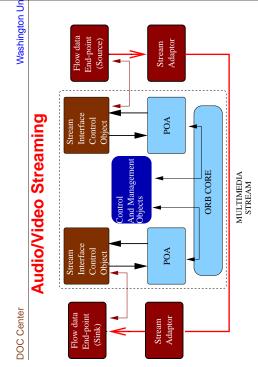

• URL

~levine/research/JSAC-98.ps.gz

Open ATM Signaling & Control

D.O.C

24


DOC Center

Washington University, St. Louis

Concluding Remarks

- Researchers and developers of distributed, real-time applications confront many common challenges
 - e.g., service initialization and distribution, error handling, flow control, scheduling, event demultiplexing, concurrency control, persistence, fault tolerance
- Successful researchers and developers apply patterns, frameworks, and components to resolve these challenges
- Careful application of patterns can yield efficient, predictable, scalable, and flexible middleware
 - i.e., middleware performance is largely an "implementation detail"
- Next-generation ORBs will be highly QoS-enabled, though many research challenges remain

Efficiency

Flexibility Sockets for data transfer to get high performance

Uses CORBA for control messages and