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Motivation: Goals of the Design Phase (1/2)

e Decompose system into
components

— I.e., identify the software
o architecture

Event Fiter e Determine relationships
between components

Event Analyzer
Module

— e.g., identify component
dependencies

Switch Adapter
RUN-TIME Module

TELECOM e Determine intercomponent
SWITCHES . . .
communication mechanisms

— e.g., globals, function calls,
shared memory, IPC/RPC

Design Principles

DOWNSTREAM

Motivation: Goals of the Design Phase (2/2)

e Specify component interfaces

— Interfaces should be well-defined
x Facilitates component testing
and team communication

NVHLLSdN

e Describe component functionality

— e.g., informally or formally

e |dentify opportunities for systematic

reuse
STREAM

Tail — Both top-down and bottom-up
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Macro Steps in the Design Process

¢ In the design process the orientation moves from

— Customer to developer
— Whatto how

e Macro steps include:

1. Preliminary Design
— External design describes the real-world model

— Architectural design decomposes the requirement specification

into software subsystems
2. Detailed Design
— Specify each subsystem
— Further decomposed subsystems, if necessary

decisions and decisions likely to change
— Design the uses hierarchy as you do this

(include reuse decisions)
3. Treat each higher-level component as a

family first
— Modularize most likely changes first

— Then modularize remaining difficult

each such decision
— Make decisions that apply to whole program

change
2. Design a component specification to hide

Micro Steps in the Design Process
1. List the hard decisions and decisions likely to

iterative decision process with the following

e Given a requirements spec, design is an
general steps:

Design Principles

specification and apply above process to each
implementation assignments

4. Continue refining until all design decisions

are:
— hidden in a component

— contain easily comprehensible components
— provide individual, independent, low-level

Design Principles

Example: Designing a Web Server
T  1:GET~schmia | o Web server design

HTTP/1.0
— decisions

2: mdex html

ERoTOCoT Portability issues
=1 /O demuxing and
PARSER E E E E I g
eul DSTATCHER concurrency
REQU'ESTER

ooooooo *i. »2. 42. HTTP prOtOCO'
0000 processing

e access
ADAPTER (E.G., HTTP)
e Web server

components

OS KERNEL OS KERNEL

0S 1/0 SUBSYSTEM 0S 1/0 SUBSYSTEM

— Event dispatcher
RN ORN — Protocol handler

www.cs.wustl.edu/ jxh/ — Cached virtual
research/ filesystem
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Key Design Concepts and Pri

Key design concepts and design
principles include:

. to:
. Decomposition

. Abstraction and information hiding °
. Component modularity
. Extensibility
Virtual machine architectures
. Hierarchical relationships

. Program families and subsets

nciples

Main goal of these
concepts and principles is

Manage software
system complexity

Improve software quality
factors

Facilitate systematic
reuse

Resolve common design
challenges
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Challenge 1: Determining the Web Server Architecture

e Context: A large and complex production web server
e Problems:

— Designing the web server as a large monolithic entity is tedious
and error-prone

— Web server developers must work concurrently to improve
productivity

— Portability and resuability are important quality factors

Design Principles

Solution: Decomposition

e Decomposition handles complexity by splitting large problems into
smaller problems

e This “divide and conquer” concept is common to all life-cycle
processes and design techniques

e Basic methodology:

1. Select a piece of the problem (initially, the whole problem)

2. Determine the components in this piece using a design paradigm,
e.g., functional, structured, object-oriented, generic, etc.

3. Describe the components interactions

4. Repeat steps 1 through 3 until some termination criteria is met
— e.g., customer is satisfied, run out of time/money, etc. ;-)

Design Principles

Decomposition Example: Web Server Framework

eactor/Proactor Strate Si n
o sy m o Features

[l framework

— High-performance

— Flexible concurrency,
demuxing, and caching
mechanisms

— Uses frameworks based
on ACE

ent configurator

Compone

framework

Component configurator

www.cs.wustl.edu/~schmidt/PDF/JAWS. pdf
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Object-Oriented Decomposition Principles

1. Don’t design components to correspond to execution steps
e Since design decisions usually transcend execution time

. Decompose so as to limit the effect of any one design decision on
the rest of the system

e Anything that permeates the system will be expensive to change

. Components should be specified by all information needed to use
the component

e and nothing more!
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Challenge 2: Implementing a Flexible Web Server

e Context: The requirements that a production web server must meet
will change over time, e.g.:

New platforms

New compilers

New functionality

New performance goals

Problems:

— If the web server is “hard coded” using low-level system calls it will
be hard to port

— If web server developers write software that’s tightly coupled with
internal implementation details the software will be hard to evolve

Design Principles

Solution: Abstraction

e Abstraction manages complexity
ESSENTIAL .. .
INTERFACE \ craracrerisics DY €@mphasizing essential

characteristics and suppressing

UNESSENTIAL implementation details
DETAILS

Allows postponement of certain
design decisions that occur at
various levels of analysis, e.g.,

— Representational and
algorithmic considerations

— Architectural and structural
considerations

— External environment and
platform considerations

IMPLEMENTATION

ACE
Streams

CALL
BACKS|

CALLBACKS
FUNCTIONALITY

CALLBACst—\
EVENT
ACE Reactor @

APPLICATION-
SPECIFIC EVENT HANDLER

LOCAL

Common Types of Abstraction
INVOCATIONS

e e.g., loops, iterators, frameworks, and multitasking

e e.g., ADT classes and component models

e e.g., closed subroutines

CLASSES <—L
IPC J
CLASSES <—L

1. Procedural abstraction
2. Data abstraction
3. Control abstraction

Design Principles

Design Principles

Information Hiding

e Information hiding is an important means of achieving abstraction

— Ie., design decisions that are subject to change should be hidden
behind abstract interfaces

e Application software should communicate only through well-defined
interfaces

e Each interface should be specified by as little information as possible
e [f internal details change, clients should be minimally affected

— May not even require recompilation and relinking...




ge_Blocks

arbitrarily-large message

payloads
allocators, and reference

counting can be added

— e.g., synchronization, memory
transparently

— Efficiently handles
parameterizes various aspects

e A Message Queue is a list of
ACE_Messa

e Design encapsulates and

Data_Block

Data_Block

\

1

SYNCH

| STRATEGY

Information Hiding Example: Message Queueing

ipazibarens

87 ued 109dse uonezIuoIyduAs ay) Moy 310N e

sse|D

sonsualoeIRYd SSB|D

ur: () arers +

it : () erennovep

1w : () 8sop

1792Is : (pIoA) yrew  1a1em moj

PIOA : (178ZIS . Wm|~Mau) y.ew 1ayem” moj

17921 : (pion) yrew 1arem ybiy

PIOA : (378zIS : WMy~ mau) yrew 1ayem” ybiy
Jur: (0 = x BNfeABWIL FDV : Inodwn

Py §00|gabeSSaN OV : Waj) [rer ananbap
Jur 2 (0 = x BNfBABWIL  FDV : Jnoawn

By %00|g~abesSaN IOV | Wajy) peayananbap
U1 2 (0 = x BNfeA”BWIL FOV : Jnodwi

‘x %00]g~abessa 30V : way) oud ananbua
Jur 2 (0 = x 8NfeABWIL FDV : Inodwn

'y %00/g~abessaN 30V : wejl) peay”enanbua
1 (0 = x dNfA"BWIL IOV : Jnoswi

'« )o0|g " abessa 3OV : way) [1er-enanbua

i : () Hdwa™st
pioA : (x ABarens uoneoynoN 30V : s) Abarens uoneaynou
i () ysny
w1 : (0 = « ABarens ~uoneaynoN 3oV : Anou
WMT LINV43d =17 92Is : rew 1ajem mo|
‘WMH ™ LINY43a =1~ azIs : yuew 1erem” ybiy) uado
(0 = « ABayENS UONEOYNON OV : Ajiou
‘INMT LINVH3A = 1 82IS : ylew 1ajem” mo|
INMH™LINY43a =1 8zis : yrew Jarem ybiy) anand ebesssy 30V +

1792ZIS : jJew Ialem Mo #

1 oz1s : jrew uarem ybiy #
+{00|g” abessaN FOV 1 e #
+400|g”abesSON IOV | T peay #

anand abessaN 30V

m:m30|mmmmmm_>_lm_o< ayl

0
@
2
3]
c
=
o
c
k=g
)
o)
o

sa|diould ubisag

service can be provided by multiple

protocols

memory paging
— Same policy can be implemented by

x e.g., OS scheduling and virtual
x e.g., reliable communication

i.e., process sequence
by same mechanisms

— e.g., ordering of low-level operations,
multiple mechanisms

e Separating policy and mechanism
— Multiple policies can be implemented

e Lower-level interfaces
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Typical Information to be Hidden

searching techniques

dependencies, e.g.,
byte-ordering,
character codes

— I.e., using abstract
data types

— e.g., sorting or

— Machine

e Data representations
Formats

e Input and Output

e Algorithms
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Design Principles

Challenge 3: Determining the Units of Web Server
Decomposition

Context: A production web server that uses abstraction and
information hiding

Problems:

— Need to determine the appropriate units of decomposition, which

should

x Possess well-specified abstract interfaces and
*x Have high cohesion and low coupling

Solution: Component Modularity

NAMING

TRADING

wmaamor- | ® A modular system is one that's structured
O amoons into identifiable abstractions called
:
— A software entity that represents an
o abstraction
A “work” assignment for developers

A unit of code that
*

has one or more names

components

has identifiable boundaries

can be (re-)used by other components
encapsulates data

hides unnecessary details

can be separately compiled

Design Principles

Designing Component Interfaces

e A component interface consists of RECEPTACLES

FACETS

several types of ports:
yp p o

COMPONENT

— Exports EXECUTOR

x Services provided to other o
components, e.g., facets and ? ?

event sources ‘_ CONTAINER

_c

D

— Imports
* Services requested from

other components, e.g., e Define components that

EVENT SINK EVENT SOURCE

receptacles and event sinks provide multiple interfaces

— Access Control and implementations
+ Not all clients are equal, e.g.,

protected/private/public * Anticipate change

Design Principles

DOWNSTREAM

Component Modularity Example: Stream Processing

APPLICATION
Stream

[}

STREAM
Head

WY3IHLSdN

A Stream allows flexible
configuration of layered
processing modules

A Stream component contains
a stack of Module components

Each Module contains two
Task components

— j.e., read and write Task s

Each Task contains a
Message _Queue component
and a Thread _Manager
component
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Benefits of Component Modularity Criteria for Evaluating Modular Designs

Modularity facilitates software  Modularity is important for Component decomposability ~ Component continuity

uality factors, e.g.,: ood designs since it:
g y g 9 9 e Are larger components e Do small changes to the

e Extensibility — well-defined, e Enhances for separation of decomposed into smaller specification affect a
abstract interfaces concerns components? localized and limited number

- . ?
Reusability — low-coupling, e Enables developers to Component composability of components

high-cohesion reduce overall system Component protection

— : complexity via decentralized e Are larger components _
Compatibility — design software architectures composed from existing o Are the effects of run-time

bridging” interfaces smaller components? abnormalities confined to a

" : - Increases scalability by
Portability — hide machine * o . small number of related
dependencies supporting independent and Component understandability components?

concurrent development by

_ e Are components separately
multiple personnel

understandable?

Design Principles Design Principles

Principles for Ensuring Modular Designs Challenge 4: “Future Proofing” the Web Server

Language support for components Explicit Interfaces . . .
Context: A production web server whose requirements will change

e Components should correspond to e Whenever two over time
syntactic units in the language components A and B
communicate, this must
be obvious from the text — Certain design aspects seem constant until they are examined in

e Every component should of A or B or both the overall structure of an application
communicate with as few others as Information Hiding — Developers must be able to ea_sily refactor the web server to
possible account for new sources of variation
e All information about a
component should be
e If any two components communicate  private unless it's
at all, they should exchange as little  specifically declared
information as possible public

Problems:
Few interfaces

Small interfaces (weak coupling)
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Solution: Extensibility Extensibility Example: Active Object Tasks

e Features

e Extensible software is important to support successions of quick [S™NGH_STRATEGY |

1
| CH |

updates and additions to address new requirements and take i&b Task |smarecy | — Tasks can register with a
advantage of emerging opportunities/markets andler open(=0 . Reactor

close()=0

) i
AP;I;IECSIT:'II::)M g\lljé(()FOW — They can be dynam|ca”y

e Extensible components must be both open and closed, i.e., the oEPENDENT 1 linked
“open/closed” principle: Service same; — They can queue data

LT

_ , , Event Object LD — They can run as “active
— Open component — s_tlll available for extension - Handler suspend(-0 objects”

* This is necessary since the requirements and specifications are handle_input( e ) _

< : handle_outpui) v Shared| o JAWS uses inheritance and

rarely completely understood from the system’s inception handle_exception() Object

handle_signal() = . . .
— Closed component — available for use by other components EroEtec Ly o dynamic binding to produce

. . . = info()=0
+ This is necessary since code sharing becomes unmanageable ge%a""'e‘) 0 '”ﬂ" task components that are
both open and closed

when reopening a component triggers many changes

Design Principles

Challenge 5: Separating Concerns for Layered
Systems

APPLICATION
PRESENTATION
SESSION
NETWORK
DATA LINK
PHYSICAL

Context: A production web server whose requirements will change
over time

||

Problems:

GATEWAY B
NETWORK
DATA LINK

— To enhance reuse and flexibility, it is often necessary to
decompose a web server into smaller, more manageable units
that are layered in order to
x Enhance reuse, e.g., multiple higher-layer services can share

lower-layer services
x Transparently and incrementally enhancement functionality
x Improve performance by allowing the selective omission of

unnecessary service functionality
* Improve implementations, testing, and maintenance

>
>

[
[

GATEWAY A
NETWORK
DATA LINK

—]
—]

[
[

DATA LINK

primitives that work on a limited set of data

associated “software instructions”
— Modeled after hardware instruction set

| >
PHYSICAL PHYSICAL PHYSICAL

APPLICATION
PRESENTATION

— Extensions provide additional data types and
operations that are useful in developing a family

“software instruction set”
of similar systems

Solution: Virtual Machine Architectures

e A virtual machine provides an extended
e A virtual machine layer provides a set of

Design Principles
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Virtual Machine Layers for the ACE Toolkit

NETWORKED JAWS ADAPTIVE ~ STANDARDS-BASED MIDDLEWARE
WEB SERVER

SERVICE THE ACE ORB
TOKEN GATEWAY | — — (TAO)
COMPONENTS SERVER SERVER ]

LAYER D [jﬁ]
LOGGING NAME TIME : (]
SERVER SERVER SERVER _

FRAMEWORK
LAYER

PROCESS/

C++ THREAD R SHARED
WRAPPER  |\ANAGERS ) ) MALLOC

FACADE Tt TSI RATOR et
LAYER | SYNCH SPIPE | PROACTOR | FLE
WRAPPERS [{ SAP |/ / ) sap

OS ADAPTATION LAYER
PROCESSES/ W'N32N‘MEDUSOCKETS/ u UNIX u SELECT/ | | DYNAMIC u SHARED [ [FILE SYS
RY l

C
APIs | THREADS || SResiowx TLI FIFOS 10 COMP || LINKING |{ MEMO APIS

PROCESS/THREAD COMMUNICATION VIRTUAL MEMORY & FILE
SUBSYSTEM SUBSYSTEM SUBSYSTEM

GENERAL OPERATING SYSTEM SERVICES
www.cs.wustl.edu/~schmidt/ACE.html

Software Virtual Machine
set of system calls
restartable system calls
signal handlers

masking signals

signal stack

Other Examples of Virtual Machines
microcode — gates, transistors, signals, etc.

interrupt/trap handlers
blocking interrupts

restartable instructions
interrupt stack

Hardware Machine
instruction set
interrupts/traps

e e.g., compiler — assembler — obj code —
e Abstracts away from details of the underlying OS

Computer architectures
Java Virtual Machine (JVM)

Operating systems
e e.g., Linux

0
QL
2
3]
c
=
[a B
c
=2
7]
o]
[a)]
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Challenge 6: Separating Concerns for Hierarchical
Systems

Context: A production web server whose requirements will change
over time

Problems:

— Developers need to program components at different levels of

abstraction independently
— Changes to one set of components should be isolated as much

as possible from other components
— Need to be able to “visualize” the structure of the web server

design

Design Principles

Solution: Hierarchical Relationships

e Hierarchies reduce component interactions by restricting the
topology of relationships

e A relation defines a hierarchy if it partitions units into levels (note
connection to virtual machine architectures)

— Level 0 is the set of all units that use no other units
— Level ;i is the set of all units that use at least one unit at level < 4

and no unit at level > i.
e Hierarchies form the basis of architectures and designs

— Facilitates independent development
— Isolates ramifications of change
— Allows rapid prototyping
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Design Principles

Hierarchy Example: JAWS Architecture

REQUEST PROCESSING LAYER

svc_run

SVC run
svc_run = —>2 sve_run
%2 _,2

LAYER Processor

7

A4

HTTP [[| HTTP || HTTP
Handler Handler Handler

\

1/0 DEMUXING |

LAYER Reactor _»2 Acceptor

Design Principles

The Uses Relation (2/3)

e Allow Xto use Y when:

— Xis simpler because it uses Y

x e.g., Standard C++ library classes
— Yis not substantially more complex because

it is not allowed to use X

— There is a useful subset containing Y and not

X

x I.e., allows sharing and reuse of Y
— There is no conceivably useful subset

containing X but not Y
x I.e., Yis necessary for X to function

correctly

e Uses relationships can exist between classes,
frameworks, subsystems, etc.

Acceptor-

Reactor

Connector

Proactor

Service

Streams

Configurator

Design Principles

Defining Hierarchies

e Relations that define hierarchies include:

Uses

Is-Composed-Of

Is-A

Has-A
The first two are general to all design methods,
the latter two are more particular to OO design
and programming

| ACE_I PC_SAP | | ACE_Addr |

T

e | Acgfw I

| ACE_SOCK_Accept of |>|

ACE_SOCK_St r eam ACE_SOCK_Connect or
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Design Principles

The Is-A Relation

e This “ancestor/descendant” relationship is
associated with object-oriented design and
programming languages that possess
inheritance and dynamic binding

e class X possesses /s-A relationship with class Y
if instances of class X are specialization of class
Y.

— e.g.,anHTTP_1 0 Handler Is-A
ACE_Event_Handler that is specialized for
processing HTTP 1.0 requests

ACE_Event_Handler

handle_input()
get_handle()

I
| |

HTTP_1_0
Handler

HTTP_1_1
Handler

The Is-Composed-Of Relation

e The is-composed-of relationship shows how the
system is broken down in components

e X is-composed-of {z;} if X is a group of
components z; that share some common

purpose

e The following diagram illustrates some of the
is-composed-of relationships in JAWS

HTTP
Handler

Sock
Stream

HTTP
Handler

Sock
Stream

™~

HTTP
Handler

Sock

Stream

Reactor

HTTP
Acceptor

Sock
IAcceptor|




ytem
HTTP
Acceptor

ystem

, and CV Files

ptor

— CV Files

The Has-A Relation

HTTP Acce
Web
Server

- e.g., the JAWS web server Has-A Reactor
JAWS

object-oriented design and programming
languages that possess classes and objects
class Y if instances of class X contain an

instance(s) of class V.

e This “client” relationship is associated with
e class X possesses a Has-A relationship with

Design Principles

Design Principles

Challenge 7: Enabling Expansion and Contraction of
Software

e Context: A production web server whose requirements will change
over time

Problems:

— It may be necessary to reduce the overall functionality of the
server to run in resource-constrained environments
— To meet externally imposed schedules, it may be necessary to

release the server without all the features enabled

Design Principles

Solution: Program Families and Subsets

e This principle should be applied to facilitate extension and
contraction of large-scale software systems, particularly reusable
middleware infrastructure

- e.g., JAWS, ACE, etc.

e Program families are natural way to detect and implement subsets

— Minimize footprints for embedded systems
— Promotes system reusability
— Anticipates potential changes

e Heuristics for identifying subsets:

— Analyze requirements to identify minimally useful subsets
— Also identify minimal increments to subsets

and TAO
(2) The JAWS Web Server Framework

REAL-TIME ORB CORE
(1) THE ACE ORB (TAO)

implementation of the CORBA specification
server that implements the HTTP specification

e JAWS and TAO were developed using the
wrapper facades and frameworks provided by

Example of Program Families: JAWS
the ACE toolkit

e JAWS is a high-performance, adaptive Web

e TAO is a high-performance, real-time

Design Principles
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Conventional Development Processes

o Waterfall Model

— Specify, analyze, implement, test (in sequence)
— Assumes that requirements can be specified up front

e Spiral Model

— Supports iterative development
— Attempts to assess risks of changes

e Rapid Application Development

and Subsets

— Build a prototype
— Shipiit :-)

applications, different I/O formats

routines
— e.g., sometimes it is important to retain bugs!

— e.g., different alphabets, different vertical
— e.g., compilers or OSs

— e.g., speed vs space

— e.g., shared data structures and library
— e.g., UNIX I/O device interface

Other Examples of Program Families
e Different services for different markets
e Different hardware or software platforms

e Different resource trade-offs
e Different internal resources
e Different external events

e Backward compatibility

0
QL
2
3]
c
=
[a B
c
=2
7]
o]
[a)]
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Agile Processes eXtreme Programming: Planning
e Start with user stories

. . , — Written by customers, to
Change in Requirements, Risk, specify system

— Provide what the customer wants, as quickly as possible or Developement Environment :
— Provide only what the customer wants » requirements _
. — Minimal detalil, typically

Encourages changes in requirements just a few sentences on a

card
— Expected development

time: 1 to 3 weeks each,
— Planning, designing, coding, testin ol Ecti roughly

J ning d J Risk Estimates Planning game creates
commitment schedule for
entire project
Each iteration should take
2-3 weeks

Stresses customer satisfaction, and therefore, involvement

. . ina | Commitment -
Relies on testing Planning S O teration

For example, eXtreme Programming practices Game

based on http:/www.extremeprogramming.org/rules/planninggame.html
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eXtreme Programming: Designing
e Defer design decisions as long as possible

e Advantages:

— Simplifies current task (just build what is needed)
— You don’t need to maintain what you haven't built
— Time is on your side: you're likely to learn something useful by the

time you need to decide
— Tomorrow may never come: if a feature isn't needed now, it might

never be needed
e Disadvantages:

— Future design decisions may require rework of existing

implementation
— Ramp-up time will probably be longer later

x Therefore, always try to keep designs as simple as possible

Design Principles

eXtreme Programming: Coding
Pair programming

— Always code with a partner
— Always test as you code

Pair programming pays off by supporting good implementation,
reducing mistakes, and exposing more than one programmer to the
design/implementation

If any deficiencies in existing implementation are noticed, either fix
them or note that they need to be fixed

Design Principles

eXtreme Programming: Testing

e Unit tests are written before code

e Code must pass both its unit test and all regression tests before
committing

e In effect, the test suite defines the system requirements

— Significant difference from other development approaches
— If a bug is found, a test for it must be added
— If a feature isn't tested, it can be removed

Design Principles

Agile Processes: Information Sources

Kent Beck, Extreme Programming Explained: Embrace Change,
Addison-Wesley, ISBN 0201616416, 1999

Kent Beck, “Extreme Programming”, C++ Report 11:5, May 1999,
pp. 26—29+

John Vlissides, “XP”, interview with Kent Beck in the Pattern
Hatching Column, C++ Report 11:6, June 1999, pp. 44-52+

Kent Beck, “Embracing Change with Extreme Programming”, IEEE
Computer 32:10, October 1999, pp. 70-77

http://www.extremeprogramming.org/
http://www.xprogramming.com/
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
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Design Guidelines: Motivation

e Design is the process of organizing structured solutions to tasks
from a problem domain

e This process is carried out in many disciplines, in many ways

— There are many similarities and commonalities among design

processes
— There are also many common design mistakes . . .

e The following pages provide a number of “design rules.”

— Remember, these rules are simply suggestions on how to better
organize your design process, not a recipe for success!

Design Principles

Common Design Mistakes (1/2)

Depth-first design

— only partially satisfy the requirements
— experience is best cure for this problem . . .

Directly refining requirements specification

— leads to overly constrained, inefficient designs
Failure to consider potential changes

— always design for extension and contraction
Making the design too detailed

— this overconstrains the implementation

Design Principles

Common Design Mistakes (2/2)

e Ambiguously stated design

— misinterpreted at implementation
e Undocumented design decisions

— designers become essential to implementation
e Inconsistent design

— results in a non-integratable system, because separately
developed modules don't fit together

Design Principles

Rules of Design (1/8)

e Make sure that the problem is well-defined

— All design criteria, requirements, and constraints, should be

enumerated before a design is started
— This may require a “spiral model” approach

e What comes before how

— I.e., define the service to be performed at every level of
abstraction before deciding which structures should be used to
realize the services

e Separate orthogonal concerns

— Do not connect what is independent
— Important at many levels and phases . . .
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Rules of Design (2/8)
e Design external functionality before internal functionality.

— First consider the solution as a black-box and decide how it

should interact with its environment
— Then decide how the black-box can be internally organized. Likely

it consists of smaller black-boxes that can be refined in a similar
fashion

e Keep it simple.

— Fancy designs are buggier than simple ones; they are harder to

implement, harder to verify, and often less efficient
— Problems that appear complex are often just simple problems

huddled together
— Our job as designers is to identify the simpler problems, separate

them, and then solve them individually

Design Principles

Rules of Design (3/8)
e Work at multiple levels of abstraction

— Good designers must be able to move between various levels of
abstraction quickly and easily

e Design for extensibility

— A good design is “open-ended,” i.e., easily extendible
— A good design solves a class of problems rather than a single

instance
— Do not introduce what is immaterial
— Do not restrict what is irrelevant

e Use rapid prototyping when applicable

— Before implementing a design, build a high-level prototype and
verify that the design criteria are met

Design Principles

Rules of Design (4/8)

e Details should depend upon abstractions

— Abstractions should not depend upon details
— Principle of Dependency Inversion

e The granule of reuse is the same as the granule of release

— Only components that are released through a tracking system can
be effectively reused

e Classes within a released component should share common closure

— That is, if one needs to be changed, they all are likely to need to

be changed
— I.e., what affects one, affects all

Design Principles

Rules of Design (5/8)
e Classes within a released component should be reused together

— That s, it is impossible to separate the components from each
other in order to reuse less than the total

e The dependency structure for released components must be a DAG

— There can be no cycles

e Dependencies between released components must run in the
direction of stability

— The dependee must be more stable than the depender

e The more stable a released component is, the more it must consist
of abstract classes

— A completely stable component should consist of nothing but
abstract classes
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Rules of Design (6/8)

e Where possible, use proven patterns to solve design problems

e When crossing between two different paradigms, build an interface
layer that separates the two

— Don't pollute one side with the paradigm of the other

Design Principles

Rules of Design (7/8)

e Software entities (classes, modules, etc) should be open for
extension, but closed for modification

— The Open/Closed principle — Bertrand Meyer

e Derived classes must usable through the base class interface
without the need for the user to know the difference

— The Liskov Substitution Principle

Design Principles

Rules of Design (8/8)

e Make it work correctly, then make it work fast

— Implement the design, measure its performance, and if
necessary, optimize it

e Maintain consistency between representations

— e.g., check that the final optimized implementation is equivalent to

the high-level design that was verified
— Also important for documentation . . .

e Don't skip the preceding rules!

— Clearly, this is the most frequently violated rule!!! ;-)

Design Principles

Concluding Remarks

e Good designs can generally be distilled into a few key principles:

— Separate interface from implementation
— Determine what is common and what is variable with an interface

and an implementation
— Allow substitution of variable implementations via a common

interface

x I.e., the “open/closed” principle
— Dividing commonality from variability should be goal-oriented

rather than exhaustive

e Design is not simply the act of drawing a picture using a CASE tool
or using graphical UML notation!!!

— Design is a fundamentally creative activity




