
Software Design Principles and Guidelines

Douglas C. Schmidt

d.schmidt@vanderbilt.edu
Vanderbilt University, St. Louis
www.cs.wustl.edu/�schmidt/

May 25, 2003

Design Principles

Design Principles and Guidelines Overview

NETWORK

STUBS

OS KERNEL

NETWORK
INTERFACE

MESSAGE-PASSING
MIDDLEWARE

 HOME

MIDDLEWARE SERVICES
(SECURITY, EVENT NOTIFICATION, TRANSACTIONS, PERSISTENCE, LOAD BALANCING,

FAULT TOLERANCE, A/V STREAMING, DYNAMIC RESOURCE MANAGEMENT, SCHEDULING,
NAMING, TRADING, LOGGING, ETC...)

CALL
BACKS

CONTAINER

operation()

MIDDLEWARE
INTERFACE

OBJECT
 ADAPTER

CLIENT

OS KERNEL

NETWORK
INTERFACE

COMPONENT

EXECUTOR

SKELETONS

NETWORK
PROTOCOLS

NETWORK
PROTOCOLS

� Design Principles

– Important design concepts
– Useful design principles

� Development Methodologies

– Traditional approaches
– Agile programming

� Design Guidelines

– Motivation
– Common Design Mistakes
– Design Rules

1

Design Principles

Motivation: Goals of the Design Phase (1/2)

EVENT
SERVER

SUPER
VISOR

CCM
Stream

ACE
RUN-TIME

TELECOM
SWITCHES

Session Router
Module

Event Filter
Module

Switch Adapter
Module

Event Analyzer
Module

SUPER
VISOR SUPER

VISOR

MIB

� Decompose system into
components

– i.e., identify the software
architecture

� Determine relationships
between components

– e.g., identify component
dependencies

� Determine intercomponent
communication mechanisms

– e.g., globals, function calls,
shared memory, IPC/RPC

2

Design Principles

Motivation: Goals of the Design Phase (2/2)

U
P

S
T

R
E

A
M

D
O

W
N

S
T

R
E

A
M

open()=0
close()=0
put()=0
svc()=0

STREAM
Head

STREAM
Tail

� Specify component interfaces

– Interfaces should be well-defined

� Facilitates component testing
and team communication

� Describe component functionality

– e.g., informally or formally

� Identify opportunities for systematic
reuse

– Both top-down and bottom-up

3

Design Principles

Macro Steps in the Design Process

� In the design process the orientation moves from

– Customer to developer
– What to how

� Macro steps include:

1. Preliminary Design
– External design describes the real-world model
– Architectural design decomposes the requirement specification

into software subsystems
2. Detailed Design

– Specify each subsystem
– Further decomposed subsystems, if necessary

4 D
es

ig
n

P
rin

ci
pl

es

M
ic

ro
S

te
ps

in
th

e
D

es
ig

n
P

ro
ce

ss

�

G
iv

en
a

re
qu

ire
m

en
ts

sp
ec

,d
es

ig
n

is
an

ite
ra

tiv
e

de
ci

si
on

pr
oc

es
s

w
ith

th
e

fo
llo

w
in

g
ge

ne
ra

ls
te

ps
:

1.
Li

st
th

e
ha

rd
de

ci
si

on
s

an
d

de
ci

si
on

s
lik

el
y

to
ch

an
ge

2.
D

es
ig

n
a

co
m

po
ne

nt
sp

ec
ifi

ca
tio

n
to

hi
de

ea
ch

su
ch

de
ci

si
on

–
M

ak
e

de
ci

si
on

s
th

at
ap

pl
y

to
w

ho
le

pr
og

ra
m

fa
m

ily
fir

st
–

M
od

ul
ar

iz
e

m
os

tl
ik

el
y

ch
an

ge
s

fir
st

–
T

he
n

m
od

ul
ar

iz
e

re
m

ai
ni

ng
di

ffi
cu

lt
de

ci
si

on
s

an
d

de
ci

si
on

s
lik

el
y

to
ch

an
ge

–
D

es
ig

n
th

e
us

es
hi

er
ar

ch
y

as
yo

u
do

th
is

(in
cl

ud
e

re
us

e
de

ci
si

on
s)

3.
Tr

ea
te

ac
h

hi
gh

er
-le

ve
lc

om
po

ne
nt

as
a

sp
ec

ifi
ca

tio
n

an
d

ap
pl

y
ab

ov
e

pr
oc

es
s

to
ea

ch
4.

C
on

tin
ue

re
fin

in
g

un
til

al
ld

es
ig

n
de

ci
si

on
s

ar
e:

–
hi

dd
en

in
a

co
m

po
ne

nt
–

co
nt

ai
n

ea
si

ly
co

m
pr

eh
en

si
bl

e
co

m
po

ne
nt

s
–

pr
ov

id
e

in
di

vi
du

al
,i

nd
ep

en
de

nt
,l

ow
-le

ve
l

im
pl

em
en

ta
tio

n
as

si
gn

m
en

ts

5

Design Principles

Example: Designing a Web Server
WWWWWW

SERVERSERVER
2: index.html2: index.html

1: GET ~schmidt1: GET ~schmidt

HTTP/1.0HTTP/1.0

COMMUNICATION PROTOCOLCOMMUNICATION PROTOCOL

((EE..GG.,., HTTP HTTP))

GUIGUI

HTMLHTML
PARSERPARSER

REQUESTERREQUESTER

GRAPHICSGRAPHICS
ADAPTERADAPTER

NETWORK

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

DISPATCHER

PROTOCOL

HANDLERS

WWW

CLIENTCLIENT

www.cs.wustl.edu/˜jxh/
research/

� Web server design
decisions

– Portability issues
– I/O demuxing and

concurrency
– HTTP protocol

processing
– File access

� Web server
components

– Event dispatcher
– Protocol handler
– Cached virtual

filesystem

6

Design Principles

Key Design Concepts and Principles

Key design concepts and design
principles include:

1. Decomposition

2. Abstraction and information hiding

3. Component modularity

4. Extensibility

5. Virtual machine architectures

6. Hierarchical relationships

7. Program families and subsets

Main goal of these
concepts and principles is
to:

� Manage software
system complexity

� Improve software quality
factors

� Facilitate systematic
reuse

� Resolve common design
challenges

7

Design Principles

Challenge 1: Determining the Web Server Architecture

� Context: A large and complex production web server

� Problems:

– Designing the web server as a large monolithic entity is tedious
and error-prone

– Web server developers must work concurrently to improve
productivity

– Portability and resuability are important quality factors

8

Design Principles

Solution: Decomposition

� Decomposition handles complexity by splitting large problems into
smaller problems

� This “divide and conquer” concept is common to all life-cycle
processes and design techniques

� Basic methodology:

1. Select a piece of the problem (initially, the whole problem)
2. Determine the components in this piece using a design paradigm,

e.g., functional, structured, object-oriented, generic, etc.
3. Describe the components interactions
4. Repeat steps 1 through 3 until some termination criteria is met

– e.g., customer is satisfied, run out of time/money, etc. ;-)

9

Design Principles

Decomposition Example: Web Server Framework

Pipes and filters

Component confi gu rator

C
om

p
o

ne
nt

co

nf
ig

u
ra

to
r

~

/home/...
Protocol
handler

Protocol
filter

Protocol pipeline
framework

Concurrency
strategy
framework

Tilde
expander

Cached virtual
filesystem

I/O strategy
framework

A
dapter

Active object Strate gy

S
ta

te

A
cc

epto
r

Asynchronous com pleti on token

M
em

ento

Reactor/Proactor Strate gy Singleton

S
ta

te

Event dispatcher

� Features

– High-performance
– Flexible concurrency,

demuxing, and caching
mechanisms

– Uses frameworks based
on ACE

www.cs.wustl.edu/�schmidt/PDF/JAWS.pdf

10

Design Principles

Object-Oriented Decomposition Principles

1. Don’t design components to correspond to execution steps

� Since design decisions usually transcend execution time

2. Decompose so as to limit the effect of any one design decision on
the rest of the system

� Anything that permeates the system will be expensive to change

3. Components should be specified by all information needed to use
the component

� and nothing more!

11

Design Principles

Challenge 2: Implementing a Flexible Web Server

� Context: The requirements that a production web server must meet
will change over time, e.g.:

– New platforms
– New compilers
– New functionality
– New performance goals

� Problems:

– If the web server is “hard coded” using low-level system calls it will
be hard to port

– If web server developers write software that’s tightly coupled with
internal implementation details the software will be hard to evolve

12

Design Principles

Solution: Abstraction

IMPLEMENTATIONIMPLEMENTATION

ESSENTIAL

CHARACTERISTICS

UNESSENTIAL

DETAILS

INTERFACEINTERFACE

� Abstraction manages complexity
by emphasizing essential
characteristics and suppressing
implementation details

� Allows postponement of certain
design decisions that occur at
various levels of analysis, e.g.,

– Representational and
algorithmic considerations

– Architectural and structural
considerations

– External environment and
platform considerations

13

D
es

ig
n

P
rin

ci
pl

es

C
om

m
on

Ty
pe

s
of

A
bs

tr
ac

tio
n

1.
P

ro
ce

du
ra

la
bs

tr
ac

tio
n

�

e.
g.

,c
lo

se
d

su
br

ou
tin

es

2.
D

at
a

ab
st

ra
ct

io
n

�

e.
g.

,A
D

T
cl

as
se

s
an

d
co

m
po

ne
nt

m
od

el
s

3.
C

on
tr

ol
ab

st
ra

ct
io

n

�

e.
g.

,l
oo

ps
,i

te
ra

to
rs

,f
ra

m
ew

or
ks

,a
nd

m
ul

tit
as

ki
ng

ACE
Streams

A
C

E
 R

ea
ct

o
r

E
V

E
N

T

L
O

O
P

E
V

E
N

T

L
O

O
P

A
P
P
L
IC

A
T
IO

N
-

S
P
E

C
IF

IC
 E

V
E

N
T
 H

A
N

D
L
E

R

F
U

N
C

T
IO

N
A

L
IT

Y

C
A

L
L

B
A

C
K

S
L
O

C
A

L

IN
V

O
C

A
T

IO
N

S

IP
C

C
L
A

S
S

E
S

A
D

T
C

L
A

S
S

E
S

A
C

E
 T

a
sk

E
V

E
N

T

L
O

O
P

C
A

L
L
B

A
C

K
S

C
A

L
L
B

A
C

K
S

14
Design Principles

Information Hiding
� Information hiding is an important means of achieving abstraction

– i.e., design decisions that are subject to change should be hidden
behind abstract interfaces

� Application software should communicate only through well-defined
interfaces

� Each interface should be specified by as little information as possible

� If internal details change, clients should be minimally affected

– May not even require recompilation and relinking...

15

Design Principles

Typical Information to be Hidden

� Data representations

– i.e., using abstract
data types

� Algorithms

– e.g., sorting or
searching techniques

� Input and Output
Formats

– Machine
dependencies, e.g.,
byte-ordering,
character codes

� Lower-level interfaces

– e.g., ordering of low-level operations,
i.e., process sequence

� Separating policy and mechanism

– Multiple policies can be implemented
by same mechanisms

� e.g., OS scheduling and virtual
memory paging

– Same policy can be implemented by
multiple mechanisms

� e.g., reliable communication
service can be provided by multiple
protocols

16

Design Principles

Information Hiding Example: Message Queueing

Message
Block

Message
Queue

head_
tail_

SYNCH
STRATEGY

Message
Block

next()
prev()
cont()Message

Block
next()
prev()
cont() Message

Block
next()
prev()
cont()

Data_Block

Data_Block

Data_Block

Data_Block

next()
prev()
cont()

� A Message_Queue is a list of
ACE_Message_Blocks

– Efficiently handles
arbitrarily-large message
payloads

� Design encapsulates and
parameterizes various aspects

– e.g., synchronization, memory
allocators, and reference
counting can be added
transparently

17

D
es

ig
n

P
rin

ci
pl

es

T
he

A
C

E
_
M

e
ss

a
g
e
_
B

lo
ck

C
la

ss

#

b
a
s
e
_

:

c
h
a
r

*

#

r
e
f
c
n
t
_

:

i
n
t

A
C
E
_
D
a
t
a
_
B
l
o
c
k

A
C
E
_
M
e
s
s
a
g
e
_
B
l
o
c
k

+

i
n
i
t

(
s
i
z
e

:

s
i
z
e
_
t
)

:

i
n
t

+

m
s
g
_
t
y
p
e

(
t
y
p
e

:

A
C
E
_
M
e
s
s
a
g
e
_
T
y
p
e
)

+

m
s
g
_
t
y
p
e

(
)

:

A
C
E
_
M
e
s
s
a
g
e
_
T
y
p
e

+

m
s
g
_
p
r
i
o
r
i
t
y

(
p
r
i
o

:

u
_
l
o
n
g
)

+

m
s
g
_
p
r
i
o
r
i
t
y

(
)

:

u
_
l
o
n
g

+

c
l
o
n
e

(
)

:

A
C
E
_
M
e
s
s
a
g
e
_
B
l
o
c
k

*

+

d
u
p
l
i
c
a
t
e

(
)

:

A
C
E
_
M
e
s
s
a
g
e
_
B
l
o
c
k

*

+

r
e
l
e
a
s
e

(
)

:

A
C
E
_
M
e
s
s
a
g
e
_
B
l
o
c
k

*

+

s
e
t
_
f
l
a
g
s

(
f
l
a
g
s

:

u
_
l
o
n
g
)

:

u
_
l
o
n
g

+

c
l
r
_
f
l
a
g
s

(
f
l
a
g
s

:

u
_
l
o
n
g
)

:

u
_
l
o
n
g

+

c
o
p
y

(
b
u
f

:

c
o
n
s
t

c
h
a
r

*
,
n

:

s
i
z
e
_
t
)

:

i
n
t

+

r
d
_
p
t
r

(
n

:

s
i
z
e
_
t
)

+

r
d
_
p
t
r

(
)

:

c
h
a
r

*

+

w
r
_
p
t
r

(
n

:

s
i
z
e
_
t
)

+

w
r
_
p
t
r

(
)

:

c
h
a
r

*

+

l
e
n
g
t
h

(
)

:

s
i
z
e
_
t

+

t
o
t
a
l
_
l
e
n
g
t
h

(
)

:

s
i
z
e
_
t

+

s
i
z
e

(
)

:

s
i
z
e
_
t

#

r
d
_
p
t
r
_

:

s
i
z
e
_
t

#

w
r
_
p
t
r
_

:

s
i
z
e
_
t

#

c
o
n
t
_

:

A
C
E
_
M
e
s
s
a
g
e
_
B
l
o
c
k

*

#

n
e
x
t
_

:

A
C
E
_
M
e
s
s
a
g
e
_
B
l
o
c
k

*

#

p
r
e
v
_

:

A
C
E
_
M
e
s
s
a
g
e
_
B
l
o
c
k

*

#

d
a
t
a
_
b
l
o
c
k
_

:

A
C
E
_
D
a
t
a
_
B
l
o
c
k

*

*

1

C
la

ss
ch

ar
ac

te
ris

tic
s

�

H
id

e
m

es
sa

gi
ng

im
pl

em
en

ta
tio

ns
fr

om
cl

ie
nt

s

A
C
E
_
M
e
s
s
a
g
e

_
B
l
o
c
k

c
o
n
t
(
)

d
a
t
a
_
b
l
o
c
k
(
)

w
r
_
p
t
r
(
)

r
d
_
p
t
r
(
)

P
A
Y
L
O
A
D

A
C
E
_
D
a
t
a

_
B
l
o
c
k

A
C
E
_
M
e
s
s
a
g
e

_
B
l
o
c
k

c
o
n
t
(
)

d
a
t
a
_
b
l
o
c
k
(
)

w
r
_
p
t
r
(
)

r
d
_
p
t
r
(
) A
C
E
_
D
a
t
a
_
B
l
o
c
k

A
C
E
_
M
e
s
s
a
g
e

_
B
l
o
c
k

c
o
n
t
(
)

d
a
t
a
_
b
l
o
c
k
(
)

r
d
_
p
t
r
(
)

w
r
_
p
t
r
(
)

r
e
f
e
r
e
n
c
e
_
c
o
u
n
t
(
)

=

2

((
11
))

SS
II
MM
PP
LL
EE

MM
EE
SS
SS
AA
GG
EE

SS
TT
RR
UU
CC
TT
UU
RR
EE

((
22
))

CC
OO
MM
PP
OO
SS
II
TT
EE

MM
EE
SS
SS
AA
GG
EE

SS
TT
RR
UU
CC
TT
UU
RR
EE

18 D
es

ig
n

P
rin

ci
pl

es

T
he

A
C

E
_
M

e
ss

a
g
e
_
Q

u
e
u
e

C
la

ss

+
 A

C
E

_
M

e
ss

a
g

e
_

Q
u

e
u

e
 (

h
ig

h
_

w
a

te
r_

m
a

rk
 :
 s

iz
e

_
t
=

 D
E

F
A

U
L

T
_

H
W

M
,

 lo

w
_

w
a

te
r_

m
a

rk
 :
 s

iz
e

_
t
=

 D
E

F
A

U
L

T
_

L
W

M
,

 n

o
tif

y
:
A

C
E

_
N

o
tif

ic
a

tio
n

_
S

tr
a

te
g

y
*

=
 0

)
+

o

p
e

n
 (

h
ig

h
_

w
a

te
r_

m
a

rk
 :
 s

iz
e

_
t
=

 D
E

F
A

U
L

T
_

H
W

M
,

lo

w
_

w
a

te
r_

m
a

rk
 :
 s

iz
e

_
t
=

 D
E

F
A

U
L

T
_

L
W

M
,

n

o
tif

y
:
A

C
E

_
N

o
tif

ic
a

tio
n

_
S

tr
a

te
g

y
*

=
 0

)
:
in

t
+

flu

sh
 (

)
:
in

t
+

n

o
tif

ic
a

tio
n

_
st

ra
te

g
y

(s
 :
 A

C
E

_
N

o
tif

ic
a

tio
n

_
S

tr
a

te
g

y
*)

 :
 v

o
id

+

is
_

e
m

p
ty

 (
)

:
in

t
+

is

_
fu

ll
()

 :
 in

t
+

e

n
q

u
e

u
e

_
ta

il
(i
te

m
 :
 A

C
E

_
M

e
ss

a
g

e
_

B
lo

ck
 *

,

tim

e
o

u
t
:
A

C
E

_
T

im
e

_
V

a
lu

e
 *

 =
 0

)
:
in

t
+

e

n
q

u
e

u
e

_
h

e
a

d
 (

ite
m

 :
 A

C
E

_
M

e
ss

a
g

e
_

B
lo

ck
 *

,

tim

e
o

u
t
:
A

C
E

_
T

im
e

_
V

a
lu

e
 *

 =
 0

)
:
in

t
+

e

n
q

u
e

u
e

_
p

ri
o

 (
ite

m
 :
 A

C
E

_
M

e
ss

a
g

e
_

B
lo

ck
 *

,

tim

e
o

u
t
:
A

C
E

_
T

im
e

_
V

a
lu

e
 *

 =
 0

)
:
in

t
+

d

e
q

u
e

u
e

_
h

e
a

d
 (

ite
m

 :
 A

C
E

_
M

e
ss

a
g

e
_

B
lo

ck
 *

&
,

tim

e
o

u
t
:
A

C
E

_
T

im
e

_
V

a
lu

e
 *

 =
 0

)
:
in

t
+

d

e
q

u
e

u
e

_
ta

il
(i
te

m
 :
 A

C
E

_
M

e
ss

a
g

e
_

B
lo

ck
 *

&
,

tim

e
o

u
t
:
A

C
E

_
T

im
e

_
V

a
lu

e
 *

 =
 0

)
:
in

t
+

h

ig
h

_
w

a
te

r_
m

a
rk

 (
n

e
w

_
h

w
m

 :
 s

iz
e

_
t)

 :
 v

o
id

+

h
ig

h
_

w
a

te
r_

m
a

rk
 (

vo
id

)
:
si

ze
_

t
+

lo

w
_

w
a

te
r_

m
a

rk
 (

n
e

w
_

lw
m

 :
 s

iz
e

_
t)

 :
 v

o
id

+

lo
w

_
w

a
te

r_
m

a
rk

 (
vo

id
)

:
si

ze
_

t
+

cl

o
se

 (
)

:
in

t
+

d

e
a

ct
iv

a
te

 (
)

:
in

t
+

a

ct
iv

a
te

 (
)

:
in

t
+

p

u
ls

e
 (

)
:
in

t
+

st

a
te

 (
)

:
in

t

#
 h

e
a

d
_

 :
 A

C
E

_
M

e
ss

a
g

e
_

B
lo

ck
 *

#
 t
a

il_
 :
 A

C
E

_
M

e
ss

a
g

e
_

B
lo

ck
 *

#
 h

ig
h

_
w

a
te

r_
m

a
rk

_
 :
 s

iz
e

_
t

#
 lo

w
_

w
a

te
r_

m
a

rk
_

 :
 s

iz
e

_
t

A
C

E
_

M
e

ss
a

g
e

_
Q

u
e

u
e

S
Y

N
C

H
_

S
T

R
A

T
E

G
Y

C
la

ss
ch

ar
ac

te
ris

tic
s

�

N
ot

e
ho

w
th

e
sy

nc
hr

on
iz

at
io

n
as

pe
ct

ca
n

be
st

ra
te

gi
ze

d!

19

Design Principles

Challenge 3: Determining the Units of Web Server
Decomposition

� Context: A production web server that uses abstraction and
information hiding

� Problems:

– Need to determine the appropriate units of decomposition, which
should

� Possess well-specified abstract interfaces and

� Have high cohesion and low coupling

20

Design Principles

Solution: Component Modularity

NAMING

TRADING

LOCKING

EVENT

LOOP

APPLICATION-
SPECIFIC

GLUE CODE

LOGGING

TIME

� A modular system is one that’s structured
into identifiable abstractions called
components

– A software entity that represents an
abstraction

– A “work” assignment for developers
– A unit of code that

� has one or more names

� has identifiable boundaries

� can be (re-)used by other components

� encapsulates data

� hides unnecessary details
� can be separately compiled

21

Design Principles

Designing Component Interfaces

� A component interface consists of
several types of ports:

– Exports

� Services provided to other
components, e.g., facets and
event sources

– Imports

� Services requested from
other components, e.g.,
receptacles and event sinks

– Access Control

� Not all clients are equal, e.g.,
protected/private/public

CALL
BACKS

CONTAINER

COMPONENT

EXECUTOR

 HOME

FACETS

RECEPTACLES

EVENT SINK EVENT SOURCE

� Define components that
provide multiple interfaces
and implementations

� Anticipate change

22

Design Principles

Component Modularity Example: Stream Processing

NETWORK INTERFACE

OR PSEUDO-DEVICES

STREAM
Tail

Multiplexor

APPLICATION

Stream

STREAM
Head

APPLICATION

Stream

U
P

S
T

R
E

A
MD

O
W

N
S

T
R

E
A

M

MESSAGE WRITE
TASK

READ
TASK

MODULE

open()=0
close()=0
put()=0
svc()=0

� A Stream allows flexible
configuration of layered
processing modules

� A Stream component contains
a stack of Module components

� Each Module contains two
Task components

– i.e., read and write Task s

� Each Task contains a
Message Queue component
and a Thread Manager
component

23

Design Principles

Benefits of Component Modularity

Modularity facilitates software
quality factors, e.g.,:

� Extensibility ! well-defined,
abstract interfaces

� Reusability ! low-coupling,
high-cohesion

� Compatibility ! design
“bridging” interfaces

� Portability ! hide machine
dependencies

Modularity is important for
good designs since it:

� Enhances for separation of
concerns

� Enables developers to
reduce overall system
complexity via decentralized
software architectures

� Increases scalability by
supporting independent and
concurrent development by
multiple personnel

24

Design Principles

Criteria for Evaluating Modular Designs

Component decomposability

� Are larger components
decomposed into smaller
components?

Component composability

� Are larger components
composed from existing
smaller components?

Component understandability

� Are components separately
understandable?

Component continuity

� Do small changes to the
specification affect a
localized and limited number
of components?

Component protection

� Are the effects of run-time
abnormalities confined to a
small number of related
components?

25

Design Principles

Principles for Ensuring Modular Designs

Language support for components

� Components should correspond to
syntactic units in the language

Few interfaces

� Every component should
communicate with as few others as
possible

Small interfaces (weak coupling)

� If any two components communicate
at all, they should exchange as little
information as possible

Explicit Interfaces

� Whenever two
components A and B
communicate, this must
be obvious from the text
of A or B or both

Information Hiding

� All information about a
component should be
private unless it’s
specifically declared
public

26

Design Principles

Challenge 4: “Future Proofing” the Web Server
� Context: A production web server whose requirements will change

over time

� Problems:

– Certain design aspects seem constant until they are examined in
the overall structure of an application

– Developers must be able to easily refactor the web server to
account for new sources of variation

27

Design Principles

Solution: Extensibility

� Extensible software is important to support successions of quick
updates and additions to address new requirements and take
advantage of emerging opportunities/markets

� Extensible components must be both open and closed, i.e., the
“open/closed” principle:

– Open component ! still available for extension

� This is necessary since the requirements and specifications are
rarely completely understood from the system’s inception

– Closed component ! available for use by other components

� This is necessary since code sharing becomes unmanageable
when reopening a component triggers many changes

28

Design Principles

Extensibility Example: Active Object Tasks

Event
Handler

handle_input()
handle_output()
handle_exception()
handle_signal()
handle_timeout ()
handle_close()
get_handle()=0

Shared
Object

init()=0
fini ()=0
info()=0

Svc
Handler

Service
Object

A

APPLICATION-
SPECIFIC

APPLICATION-
INDEPENDENT

Message
Queue

SYNCH_STRATEGY
PEER_STREAM

suspend()=0
resume()=0

SYNCH
STRATEGY

AA

Task
open()=0
close()=0
put()=0
svc()=0

SYNCH
STRATEGY

A

� Features

– Tasks can register with a
Reactor

– They can be dynamically
linked

– They can queue data
– They can run as “active

objects”

� JAWS uses inheritance and
dynamic binding to produce
task components that are
both open and closed

29

Design Principles

Challenge 5: Separating Concerns for Layered
Systems

� Context: A production web server whose requirements will change
over time

� Problems:

– To enhance reuse and flexibility, it is often necessary to
decompose a web server into smaller, more manageable units
that are layered in order to

� Enhance reuse, e.g., multiple higher-layer services can share
lower-layer services

� Transparently and incrementally enhancement functionality

� Improve performance by allowing the selective omission of
unnecessary service functionality

� Improve implementations, testing, and maintenance

30 D
es

ig
n

P
rin

ci
pl

es

S
ol

ut
io

n:
V

irt
ua

lM
ac

hi
ne

A
rc

hi
te

ct
ur

es

�

A
vi

rt
ua

lm
ac

hi
ne

pr
ov

id
es

an
ex

te
nd

ed
“s

of
tw

ar
e

in
st

ru
ct

io
n

se
t”

–
E

xt
en

si
on

s
pr

ov
id

e
ad

di
tio

na
ld

at
a

ty
pe

s
an

d
as

so
ci

at
ed

“s
of

tw
ar

e
in

st
ru

ct
io

ns
”

–
M

od
el

ed
af

te
r

ha
rd

w
ar

e
in

st
ru

ct
io

n
se

t
pr

im
iti

ve
s

th
at

w
or

k
on

a
lim

ite
d

se
to

fd
at

a
ty

pe
s

�

A
vi

rt
ua

lm
ac

hi
ne

la
ye

r
pr

ov
id

es
a

se
to

f
op

er
at

io
ns

th
at

ar
e

us
ef

ul
in

de
ve

lo
pi

ng
a

fa
m

ily
of

si
m

ila
r

sy
st

em
s

A
P

P
L

IC
A

T
IO

N

P
R

E
S

E
N

T
A

T
IO

N

S
E

S
S

IO
N

T
R

A
N

S
P

O
R

T

N
E

T
W

O
R

K

D
A

T
A

L

IN
K

P
H

Y
S

IC
A

L

A
P

P
L

IC
A

T
IO

N

P
R

E
S

E
N

T
A

T
IO

N

S
E

S
S

IO
N

T
R

A
N

S
P

O
R

T

N
E

T
W

O
R

K

D
A

T
A

L

IN
K

P
H

Y
S

IC
A

L

A
P

P
L

IC
A

T
IO

N

P
R

E
S

E
N

T
A

T
IO

N

S
E

S
S

IO
N

T
R

A
N

S
P

O
R

T

N
E

T
W

O
R

K

D
A

T
A

L

IN
K

P
H

Y
S

IC
A

L

A
P

P
L

IC
A

T
IO

N

P
R

E
S

E
N

T
A

T
IO

N

S
E

S
S

IO
N

T
R

A
N

S
P

O
R

T

N
E

T
W

O
R

K

D
A

T
A

L

IN
K

P
H

Y
S

IC
A

L

N
E

T
W

O
R

K

D
A

T
A

L

IN
K

P
H

Y
S

IC
A

L

N
E

T
W

O
R

K

D
A

T
A

L

IN
K

P
H

Y
S

IC
A

L

N
E

T
W

O
R

K

D
A

T
A

L

IN
K

P
H

Y
S

IC
A

L

N
E

T
W

O
R

K

D
A

T
A

L

IN
K

P
H

Y
S

IC
A

L

HH
O

S
T

O

S
T

AA

HH
O

S
T

O

S
T

BB

GG
A

T
E

W
A

Y

A
T

E
W

A
Y

AA

GG
A

T
E

W
A

Y

A
T

E
W

A
Y

BB

V
IR

T
U

A
L

L
IN

K

P
H

Y
S

IC
A

L

L
IN

K

31

Design Principles

Virtual Machine Layers for the ACE Toolkit

PROCESSES/
THREADS

DYNAMIC

LINKING

SHARED

MEMORY
SELECT/
IO COMP

FILE SYS

APIS

WIN32 NAMED
PIPES & UNIX

STREAM PIPES

UNIX

FIFOS

C
APIS

SOCKETS/
TLI

COMMUNICATION

SUBSYSTEM

VIRTUAL MEMORY & FILE

SUBSYSTEM

GENERAL OPERATING SYSTEM SERVICES

PROCESS/THREAD

SUBSYSTEM

FRAMEWORK

LAYER

ACCEPTOR CONNECTOR

NETWORKED

SERVICE

COMPONENTS

LAYER

NAME

SERVER

TOKEN

SERVER

LOGGING

SERVER

GATEWAY

SERVER

SOCK SAP/
TLI SAP

FIFO

SAP

LOG

MSG

SERVICE

HANDLER

TIME

SERVER

C++
WRAPPER

FACADE

LAYER SPIPE

SAP

CORBA

HANDLER

FILE

SAP

SHARED

MALLOC

THE ACE ORB

(TAO)

JAWS ADAPTIVE

WEB SERVER
STANDARDS-BASED MIDDLEWARE

REACTOR/
PROACTOR

PROCESS/
THREAD

MANAGERS

STREAMS

SERVICE

CONFIG-
URATOR

SYNCH

WRAPPERS

MEM

MAP

OS ADAPTATION LAYER

www.cs.wustl.edu/�schmidt/ACE.html

32 D
es

ig
n

P
rin

ci
pl

es

O
th

er
E

xa
m

pl
es

of
V

irt
ua

lM
ac

hi
ne

s

C
om

pu
te

r
ar

ch
ite

ct
ur

es

�

e.
g.

,c
om

pi
le

r

!

as
se

m
bl

er

!

ob
jc

od
e

!

m
ic

ro
co

de

!

ga
te

s,
tr

an
si

st
or

s,
si

gn
al

s,
et

c.

O
pe

ra
tin

g
sy

st
em

s

�

e.
g.

,L
in

ux

H
ar

dw
ar

e
M

ac
hi

ne
S

of
tw

ar
e

V
irt

ua
lM

ac
hi

ne
in

st
ru

ct
io

n
se

t
se

to
fs

ys
te

m
ca

lls
re

st
ar

ta
bl

e
in

st
ru

ct
io

ns
re

st
ar

ta
bl

e
sy

st
em

ca
lls

in
te

rr
up

ts
/tr

ap
s

si
gn

al
s

in
te

rr
up

t/t
ra

p
ha

nd
le

rs
si

gn
al

ha
nd

le
rs

bl
oc

ki
ng

in
te

rr
up

ts
m

as
ki

ng
si

gn
al

s
in

te
rr

up
ts

ta
ck

si
gn

al
st

ac
k

Ja
va

V
ir

tu
al

M
ac

hi
ne

(J
V

M
)

�

A
bs

tr
ac

ts
aw

ay
fr

om
de

ta
ils

of
th

e
un

de
rly

in
g

O
S

33

Design Principles

Challenge 6: Separating Concerns for Hierarchical
Systems

� Context: A production web server whose requirements will change
over time

� Problems:

– Developers need to program components at different levels of
abstraction independently

– Changes to one set of components should be isolated as much
as possible from other components

– Need to be able to “visualize” the structure of the web server
design

34

Design Principles

Solution: Hierarchical Relationships
� Hierarchies reduce component interactions by restricting the

topology of relationships

� A relation defines a hierarchy if it partitions units into levels (note
connection to virtual machine architectures)

– Level 0 is the set of all units that use no other units
– Level i is the set of all units that use at least one unit at level < i

and no unit at level � i.

� Hierarchies form the basis of architectures and designs

– Facilitates independent development
– Isolates ramifications of change
– Allows rapid prototyping

35

Design Principles

Hierarchy Example: JAWS Architecture

svc_run

REQUEST PROCESSING LAYER

 Options
s

 HTTP
Handler

 HTTP
Handler

 HTTP
Handler

 HTTP
Acceptor Reactor

 HTTP
Processor

 Msg
Queue

s

svc_runsvc_run
svc_run

 QUEUEING
 LAYER

 I/O DEMUXING
 LAYER

36

Design Principles

Defining Hierarchies

� Relations that define hierarchies include:

– Uses
– Is-Composed-Of
– Is-A
– Has-A

� The first two are general to all design methods,
the latter two are more particular to OO design
and programming

ACE_IPC_SAP ACE_Addr

ACE_SOCK_IO ACE_SOCK

ACE_SOCK_Acceptor ACE_INET_Addr

ACE_SOCK_Stream ACE_SOCK_Connector

37

D
esign

P
rinciples

T
he

U
ses

R
elation

(1/3)

C
la

s
s

 X

C
la

s
s

 Y

�

X
U

ses
Y

ifthe
correctfunctioning

ofX
depends

on
the

availability
ofa

correctim
plem

entation
of Y

�

N
ote,uses

is
notnecessarily

the
sam

e
as

invokes:

–
S

om
e

invocations
are

notuses

�

e.g.,error
logging

–
S

om
e

uses
don’tinvolve

invocations

�

e.g.,m
essage

passing,interrupts,shared
m

em
ory

access

�

A
uses

relation
does

notnecessarily
yield

a
hierarchy

(avoid
cycles...)

38

Design Principles

The Uses Relation (2/3)

� Allow X to use Y when:

– X is simpler because it uses Y

� e.g., Standard C++ library classes
– Y is not substantially more complex because

it is not allowed to use X
– There is a useful subset containing Y and not

X

� i.e., allows sharing and reuse of Y
– There is no conceivably useful subset

containing X but not Y

� i.e., Y is necessary for X to function
correctly

� Uses relationships can exist between classes,
frameworks, subsystems, etc.

Acceptor-
Connector

Reactor Proactor

Service
Configurator

Streams Task

39

D
esign

P
rinciples

T
he

U
ses

R
elation

(3/3)

�

A
hierarchy

in
the

uses
relation

is
essentialfor

designing
reusable

softw
are

system
s

�

H
ow

ever,certain
softw

are
system

s
require

controlled
violation

ofa
uses

hierarchy

–
e.g.,asynchronous

com
m

unication
protocols,O

O
callbacks

in
fram

ew
orks,signalhandling,etc.

–
U

pcalls
are

one
w

ay
to

controlthese
non-hierarchical

dependencies

�

R
ule

ofthum
b:

–
S

tartw
ith

an
invocation

hierarchy
and

elim
inate

those
invocations

(i.e.,“calls”)
thatare

notuses
relationships

40

Design Principles

The Is-Composed-Of Relation

� The is-composed-of relationship shows how the
system is broken down in components

� X is-composed-of fxig if X is a group of
components xi that share some common
purpose

� The following diagram illustrates some of the
is-composed-of relationships in JAWS

HTTP
Handler

Sock
Stream

HTTP
Handler

Sock
Stream

HTTP
Handler

Sock
Stream

HTTP
Acceptor

Sock
Acceptor

Reactor

41

D
esign

P
rinciples

T
he

Is-C
om

posed-O
fR

elation

�

M
any

program
m

ing
languages

supportthe
is-com

posed-ofrelation
via

som
e

higher-levelcom
ponentor

record
structuring

technique

�

H
ow

ever,the
follow

ing
are

notequivalent:

–
level(virtualm

achine)
–

com
ponent(an

entity
thathides

one
or

m
ore

“secrets”)
–

a
subprogram

(a
code

unit)

�

C
om

ponents
and

levels
need

notbe
identical,as

a
com

ponentm
ay

appear
in

severallevels
ofa

uses
hierarchy

42

Design Principles

The Is-A Relation

� This “ancestor/descendant” relationship is
associated with object-oriented design and
programming languages that possess
inheritance and dynamic binding

� class X possesses Is-A relationship with class Y
if instances of class X are specialization of class
Y.

– e.g., an HTTP_1_0_Handler Is-A
ACE_Event_Handler that is specialized for
processing HTTP 1.0 requests

ACE_Event_Handler
handle_input()
get_handle()

HTTP_1_0
Handler

HTTP_1_1
Handler

43

D
es

ig
n

P
rin

ci
pl

es

T
he

H
as

-A
R

el
at

io
n

�

T
hi

s
“c

lie
nt

”
re

la
tio

ns
hi

p
is

as
so

ci
at

ed
w

ith
ob

je
ct

-o
rie

nt
ed

de
si

gn
an

d
pr

og
ra

m
m

in
g

la
ng

ua
ge

s
th

at
po

ss
es

s
cl

as
se

s
an

d
ob

je
ct

s

�

cl
as

s
X

po
ss

es
se

s
a

H
as

-A
re

la
tio

ns
hi

p
w

ith
cl

as
s

Y
if

in
st

an
ce

s
of

cl
as

s
X

co
nt

ai
n

an
in

st
an

ce
(s

)
of

cl
as

s
Y.

–
e.

g.
,t

he
JA

W
S

w
eb

se
rv

er
H

as
-A

R
e
a
ct

o
r

,
H

T
T

P
_
A

cc
e
p
to

r
,

an
d

C
V

_
F

ile
sy

te
m

JA
W

S
W

eb
S

er
ve

r

H
T

T
P

A
cc

ep
to

r

R
ea

ct
o

r

C
V

_F
ile

sy
st

em

44

Design Principles

Challenge 7: Enabling Expansion and Contraction of
Software

� Context: A production web server whose requirements will change
over time

� Problems:

– It may be necessary to reduce the overall functionality of the
server to run in resource-constrained environments

– To meet externally imposed schedules, it may be necessary to
release the server without all the features enabled

45

Design Principles

Solution: Program Families and Subsets

� This principle should be applied to facilitate extension and
contraction of large-scale software systems, particularly reusable
middleware infrastructure

– e.g., JAWS, ACE, etc.

� Program families are natural way to detect and implement subsets

– Minimize footprints for embedded systems
– Promotes system reusability
– Anticipates potential changes

� Heuristics for identifying subsets:

– Analyze requirements to identify minimally useful subsets
– Also identify minimal increments to subsets

46 D
es

ig
n

P
rin

ci
pl

es

E
xa

m
pl

e
of

P
ro

gr
am

Fa
m

ili
es

:
JA

W
S

an
d

TA
O

(1
) T

H
E

 A
C

E
 O

R
B

 (
TA

O
)

N
E

T
W

O
R

K

R
E

A
L

-T
IM

E
 O

R
B

 C
O

R
E

A
C

E
 c

o
m

p
o
n
e
n
ts

IO
P

IO
P

P
L

U
G

G
A

B
L

E
O

R
B

 &
 X

P
O

R
T

P
R

O
T

O
C

O
L

S

P
L

U
G

G
A

B
L

E
O

R
B

 &
 X

P
O

R
T

P
R

O
T

O
C

O
L

S

R
E

A
L
-T

IM
E

 I
/O

S
U

B
S

Y
S

T
E

M

H
IG

H
-S

P
E

E
D

N
E

T
W

O
R

K
 I
N

T
E

R
FA

C
E

O
S

 K
E

R
N

E
L

R
E

A
L
-T

IM
E

 I
/O

S
U

B
S

Y
S

T
E

M

H
IG

H
-S

P
E

E
D

N
E

T
W

O
R

K
 I
N

T
E

R
FA

C
E

O
S

 K
E

R
N

E
L

O
R

B
 R

U
N

-T
IM

E
S

C
H

E
D

U
L

E
R

ID
L

S
K

E
L

E
T

O
N

ID
L

S
T

U
B

S

o
p
e
ra

tio
n
 (

)

o
u

t
a

rg
s

+
 r

e
tu

rn
 v

a
lu

e

O
B

JE
C

T
(S

E
R

V
A

N
T

)

in
 a

rg
s

R
E

A
L
-T

IM
E

O
B

JE
C

T
A

D
A

P
T

E
R

C
L
IE

N
T

O
B

J
R

E
F

(2
) T

he
 J

A
W

S
 W

eb
 S

er
ve

r
Fr

am
ew

or
k

Service Configurator

St
ra

te
gy

St
ra

te
gy

Si
ng

le
to

n

State State

Acceptor

Pi
pe

s
an

d
Fi

lte
rs

Ac
tiv

e
O

bj
ec

t

Adapter

Se
rv

ic
e

Co
nf

ig
ur

at
or

Ev
en

t D
is

pa
tc

he
r

Co
nc

ur
re

nc
y

St
ra

te
gy

Fr
am

ew
or

k

Pr
ot

oc
ol

Ha
nd

le
r

Pr
ot

oc
ol

Fi
lte

r

Ti
ld

e
Ex

pa
nd

er
/h

om
e/

...

~

Re
ac

to
r/P

ro
ac

to
r

Memento

I/O
 S

tra
te

gy
Fr

am
ew

or
k

Ca
ch

ed
 V

irt
ua

l
Fi

le
sy

st
em

Pr
ot

oc
ol

 P
ip

el
in

e
Fr

am
ew

or
kAs

yn
ch

ro
no

us
 C

om
pl

et
on

 To
ke

n

�

TA
O

is
a

hi
gh

-p
er

fo
rm

an
ce

,r
ea

l-t
im

e
im

pl
em

en
ta

tio
n

of
th

e
C

O
R

B
A

sp
ec

ifi
ca

tio
n

�

JA
W

S
is

a
hi

gh
-p

er
fo

rm
an

ce
,a

da
pt

iv
e

W
eb

se
rv

er
th

at
im

pl
em

en
ts

th
e

H
T

T
P

sp
ec

ifi
ca

tio
n

�

JA
W

S
an

d
TA

O
w

er
e

de
ve

lo
pe

d
us

in
g

th
e

w
ra

pp
er

fa
ca

de
s

an
d

fr
am

ew
or

ks
pr

ov
id

ed
by

th
e

A
C

E
to

ol
ki

t

47

D
es

ig
n

P
rin

ci
pl

es

O
th

er
E

xa
m

pl
es

of
P

ro
gr

am
Fa

m
ili

es
an

d
S

ub
se

ts

�

D
iff

er
en

ts
er

vi
ce

s
fo

r
di

ffe
re

nt
m

ar
ke

ts

–
e.

g.
,d

iff
er

en
ta

lp
ha

be
ts

,d
iff

er
en

tv
er

tic
al

ap
pl

ic
at

io
ns

,d
iff

er
en

tI
/O

fo
rm

at
s

�

D
iff

er
en

th
ar

dw
ar

e
or

so
ftw

ar
e

pl
at

fo
rm

s

–
e.

g.
,c

om
pi

le
rs

or
O

S
s

�

D
iff

er
en

tr
es

ou
rc

e
tr

ad
e-

of
fs

–
e.

g.
,s

pe
ed

vs
sp

ac
e

�

D
iff

er
en

ti
nt

er
na

lr
es

ou
rc

es

–
e.

g.
,s

ha
re

d
da

ta
st

ru
ct

ur
es

an
d

lib
ra

ry
ro

ut
in

es

�

D
iff

er
en

te
xt

er
na

le
ve

nt
s

–
e.

g.
,U

N
IX

I/O
de

vi
ce

in
te

rf
ac

e

�

B
ac

kw
ar

d
co

m
pa

tib
ili

ty

–
e.

g.
,s

om
et

im
es

it
is

im
po

rt
an

tt
o

re
ta

in
bu

gs
!

48

Design Principles

Conventional Development Processes

� Waterfall Model

– Specify, analyze, implement, test (in sequence)
– Assumes that requirements can be specified up front

� Spiral Model

– Supports iterative development
– Attempts to assess risks of changes

� Rapid Application Development

– Build a prototype
– Ship it :-)

49

Design Principles

Agile Processes

� Stresses customer satisfaction, and therefore, involvement

– Provide what the customer wants, as quickly as possible
– Provide only what the customer wants

� Encourages changes in requirements

� Relies on testing

� For example, eXtreme Programming practices

– Planning, designing, coding, testing

50

Design Principles

eXtreme Programming: Planning

Technology
Spike

System
Prototype

User
Story

Planning
Game

IterationCommitment
Schedule

Change in Requirements, Risk,
or Developement Environment

Risk Estimates

Time

Requirements

based on http://www.extremeprogramming.org/rules/planninggame.html

� Start with user stories
– Written by customers, to

specify system
requirements

– Minimal detail, typically
just a few sentences on a
card

– Expected development
time: 1 to 3 weeks each,
roughly

� Planning game creates
commitment schedule for
entire project

� Each iteration should take
2-3 weeks

51

Design Principles

eXtreme Programming: Designing

� Defer design decisions as long as possible

� Advantages:

– Simplifies current task (just build what is needed)
– You don’t need to maintain what you haven’t built
– Time is on your side: you’re likely to learn something useful by the

time you need to decide
– Tomorrow may never come: if a feature isn’t needed now, it might

never be needed

� Disadvantages:

– Future design decisions may require rework of existing
implementation

– Ramp-up time will probably be longer later

� Therefore, always try to keep designs as simple as possible

52

Design Principles

eXtreme Programming: Coding

� Pair programming

– Always code with a partner
– Always test as you code

� Pair programming pays off by supporting good implementation,
reducing mistakes, and exposing more than one programmer to the
design/implementation

� If any deficiencies in existing implementation are noticed, either fix
them or note that they need to be fixed

53

Design Principles

eXtreme Programming: Testing

� Unit tests are written before code

� Code must pass both its unit test and all regression tests before
committing

� In effect, the test suite defines the system requirements

– Significant difference from other development approaches
– If a bug is found, a test for it must be added
– If a feature isn’t tested, it can be removed

54

Design Principles

Agile Processes: Information Sources
� Kent Beck, Extreme Programming Explained: Embrace Change,

Addison-Wesley, ISBN 0201616416, 1999

� Kent Beck, “Extreme Programming”, C++ Report 11:5, May 1999,
pp. 26–29+

� John Vlissides, “XP”, interview with Kent Beck in the Pattern
Hatching Column, C++ Report 11:6, June 1999, pp. 44-52+

� Kent Beck, “Embracing Change with Extreme Programming”, IEEE
Computer 32:10, October 1999, pp. 70-77

� http://www.extremeprogramming.org/

� http://www.xprogramming.com/

� http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap

55

Design Principles

Design Guidelines: Motivation

� Design is the process of organizing structured solutions to tasks
from a problem domain

� This process is carried out in many disciplines, in many ways

– There are many similarities and commonalities among design
processes

– There are also many common design mistakes . . .

� The following pages provide a number of “design rules.”

– Remember, these rules are simply suggestions on how to better
organize your design process, not a recipe for success!

56

Design Principles

Common Design Mistakes (1/2)

� Depth-first design

– only partially satisfy the requirements
– experience is best cure for this problem . . .

� Directly refining requirements specification

– leads to overly constrained, inefficient designs

� Failure to consider potential changes

– always design for extension and contraction

� Making the design too detailed

– this overconstrains the implementation

57

Design Principles

Common Design Mistakes (2/2)

� Ambiguously stated design

– misinterpreted at implementation

� Undocumented design decisions

– designers become essential to implementation

� Inconsistent design

– results in a non-integratable system, because separately
developed modules don’t fit together

58

Design Principles

Rules of Design (1/8)
� Make sure that the problem is well-defined

– All design criteria, requirements, and constraints, should be
enumerated before a design is started

– This may require a “spiral model” approach

� What comes before how

– i.e., define the service to be performed at every level of
abstraction before deciding which structures should be used to
realize the services

� Separate orthogonal concerns

– Do not connect what is independent
– Important at many levels and phases . . .

59

Design Principles

Rules of Design (2/8)

� Design external functionality before internal functionality.

– First consider the solution as a black-box and decide how it
should interact with its environment

– Then decide how the black-box can be internally organized. Likely
it consists of smaller black-boxes that can be refined in a similar
fashion

� Keep it simple.

– Fancy designs are buggier than simple ones; they are harder to
implement, harder to verify, and often less efficient

– Problems that appear complex are often just simple problems
huddled together

– Our job as designers is to identify the simpler problems, separate
them, and then solve them individually

60

Design Principles

Rules of Design (3/8)

� Work at multiple levels of abstraction

– Good designers must be able to move between various levels of
abstraction quickly and easily

� Design for extensibility

– A good design is “open-ended,” i.e., easily extendible
– A good design solves a class of problems rather than a single

instance
– Do not introduce what is immaterial
– Do not restrict what is irrelevant

� Use rapid prototyping when applicable

– Before implementing a design, build a high-level prototype and
verify that the design criteria are met

61

Design Principles

Rules of Design (4/8)

� Details should depend upon abstractions

– Abstractions should not depend upon details
– Principle of Dependency Inversion

� The granule of reuse is the same as the granule of release

– Only components that are released through a tracking system can
be effectively reused

� Classes within a released component should share common closure

– That is, if one needs to be changed, they all are likely to need to
be changed

– i.e., what affects one, affects all

62

Design Principles

Rules of Design (5/8)
� Classes within a released component should be reused together

– That is, it is impossible to separate the components from each
other in order to reuse less than the total

� The dependency structure for released components must be a DAG

– There can be no cycles

� Dependencies between released components must run in the
direction of stability

– The dependee must be more stable than the depender

� The more stable a released component is, the more it must consist
of abstract classes

– A completely stable component should consist of nothing but
abstract classes

63

Design Principles

Rules of Design (6/8)

� Where possible, use proven patterns to solve design problems

� When crossing between two different paradigms, build an interface
layer that separates the two

– Don’t pollute one side with the paradigm of the other

64

Design Principles

Rules of Design (7/8)

� Software entities (classes, modules, etc) should be open for
extension, but closed for modification

– The Open/Closed principle – Bertrand Meyer

� Derived classes must usable through the base class interface
without the need for the user to know the difference

– The Liskov Substitution Principle

65

Design Principles

Rules of Design (8/8)

� Make it work correctly, then make it work fast

– Implement the design, measure its performance, and if
necessary, optimize it

� Maintain consistency between representations

– e.g., check that the final optimized implementation is equivalent to
the high-level design that was verified

– Also important for documentation . . .

� Don’t skip the preceding rules!

– Clearly, this is the most frequently violated rule!!! ;-)

66

Design Principles

Concluding Remarks
� Good designs can generally be distilled into a few key principles:

– Separate interface from implementation
– Determine what is common and what is variable with an interface

and an implementation
– Allow substitution of variable implementations via a common

interface

� i.e., the “open/closed” principle
– Dividing commonality from variability should be goal-oriented

rather than exhaustive

� Design is not simply the act of drawing a picture using a CASE tool
or using graphical UML notation!!!

– Design is a fundamentally creative activity

67

