Software Design Principles and Guidelines

Douglas C. Schmidt

d.schmidt@vanderbilt.edu
Vanderbilt University, St. Louis
www.cs.wustl.edu/~schmidt/

May 25, 2003

Design Principles

Design Principles and Guidelines Overview

(SECURITY, EVENT
FAULT TOLERANCE, AV SCHEDULING,

MIDDLEWARE SERVICES

LOAD BALANCING,

} e Design Principles

NAMING, TRADING, LOGGING, ETC...)

tion() _,
operation
CLIENT -0 COMPONENT |
EXECUTOR | CALL
BACKS
O— (ele) O
MESSAGE-PASSING
MIDDLEWARE
0S KERNEL 0S KERNEL

o [o — Important design concepts
— Useful design principles

e Development Methodologies

CONTAINER

— Traditional approaches

il — ! _
———gEr) — Agile programming

e Design Guidelines

— Motivation

REToRK o — Common Design Mistakes
NETWORK

— Design Rules

Design Principles

Motivation: Goals of the Design Phase (1/2)

e Decompose system into
components

— I.e., identify the software
o architecture

Event Fiter e Determine relationships
between components

Event Analyzer
Module

— e.g., identify component
dependencies

Switch Adapter
RUN-TIME Module

TELECOM e Determine intercomponent
SWITCHES . . .
communication mechanisms

— e.g., globals, function calls,
shared memory, IPC/RPC

Design Principles

DOWNSTREAM

Motivation: Goals of the Design Phase (2/2)

e Specify component interfaces

— Interfaces should be well-defined
x Facilitates component testing
and team communication

NVHLLSdN

e Describe component functionality

— e.g., informally or formally

e |dentify opportunities for systematic

reuse
STREAM

Tail — Both top-down and bottom-up

Design Principles

Macro Steps in the Design Process

¢ In the design process the orientation moves from

— Customer to developer
— Whatto how

e Macro steps include:

1. Preliminary Design
— External design describes the real-world model

— Architectural design decomposes the requirement specification

into software subsystems
2. Detailed Design
— Specify each subsystem
— Further decomposed subsystems, if necessary

decisions and decisions likely to change
— Design the uses hierarchy as you do this

(include reuse decisions)
3. Treat each higher-level component as a

family first
— Modularize most likely changes first

— Then modularize remaining difficult

each such decision
— Make decisions that apply to whole program

change
2. Design a component specification to hide

Micro Steps in the Design Process
1. List the hard decisions and decisions likely to

iterative decision process with the following

e Given a requirements spec, design is an
general steps:

Design Principles

specification and apply above process to each
implementation assignments

4. Continue refining until all design decisions

are:
— hidden in a component

— contain easily comprehensible components
— provide individual, independent, low-level

Design Principles

Example: Designing a Web Server
T 1:GET~schmia | o Web server design

HTTP/1.0
— decisions

2: mdex html

ERoTOCoT Portability issues
=1 /O demuxing and
PARSER E E E E I g
eul DSTATCHER concurrency
REQU'ESTER

ooooooo *i. »2. 42. HTTP prOtOCO'
0000 processing

e access
ADAPTER (E.G., HTTP)
e Web server

components

OS KERNEL OS KERNEL

0S 1/0 SUBSYSTEM 0S 1/0 SUBSYSTEM

— Event dispatcher
RN ORN — Protocol handler

www.cs.wustl.edu/ jxh/ — Cached virtual
research/ filesystem

Design Principles

Key Design Concepts and Pri

Key design concepts and design
principles include:

. to:
. Decomposition

. Abstraction and information hiding °
. Component modularity
. Extensibility
Virtual machine architectures
. Hierarchical relationships

. Program families and subsets

nciples

Main goal of these
concepts and principles is

Manage software
system complexity

Improve software quality
factors

Facilitate systematic
reuse

Resolve common design
challenges

Design Principles

Challenge 1: Determining the Web Server Architecture

e Context: A large and complex production web server
e Problems:

— Designing the web server as a large monolithic entity is tedious
and error-prone

— Web server developers must work concurrently to improve
productivity

— Portability and resuability are important quality factors

Design Principles

Solution: Decomposition

e Decomposition handles complexity by splitting large problems into
smaller problems

e This “divide and conquer” concept is common to all life-cycle
processes and design techniques

e Basic methodology:

1. Select a piece of the problem (initially, the whole problem)

2. Determine the components in this piece using a design paradigm,
e.g., functional, structured, object-oriented, generic, etc.

3. Describe the components interactions

4. Repeat steps 1 through 3 until some termination criteria is met
— e.g., customer is satisfied, run out of time/money, etc. ;-)

Design Principles

Decomposition Example: Web Server Framework

eactor/Proactor Strate Si n
o sy m o Features

[l framework

— High-performance

— Flexible concurrency,
demuxing, and caching
mechanisms

— Uses frameworks based
on ACE

ent configurator

Compone

framework

Component configurator

www.cs.wustl.edu/~schmidt/PDF/JAWS. pdf

Design Principles

Object-Oriented Decomposition Principles

1. Don’t design components to correspond to execution steps
e Since design decisions usually transcend execution time

. Decompose so as to limit the effect of any one design decision on
the rest of the system

e Anything that permeates the system will be expensive to change

. Components should be specified by all information needed to use
the component

e and nothing more!

Design Principles

Challenge 2: Implementing a Flexible Web Server

e Context: The requirements that a production web server must meet
will change over time, e.g.:

New platforms

New compilers

New functionality

New performance goals

Problems:

— If the web server is “hard coded” using low-level system calls it will
be hard to port

— If web server developers write software that’s tightly coupled with
internal implementation details the software will be hard to evolve

Design Principles

Solution: Abstraction

e Abstraction manages complexity
ESSENTIAL .. .
INTERFACE \ craracrerisics DY €@mphasizing essential

characteristics and suppressing

UNESSENTIAL implementation details
DETAILS

Allows postponement of certain
design decisions that occur at
various levels of analysis, e.g.,

— Representational and
algorithmic considerations

— Architectural and structural
considerations

— External environment and
platform considerations

IMPLEMENTATION

ACE
Streams

CALL
BACKS|

CALLBACKS
FUNCTIONALITY

CALLBACst—\
EVENT
ACE Reactor @

APPLICATION-
SPECIFIC EVENT HANDLER

LOCAL

Common Types of Abstraction
INVOCATIONS

e e.g., loops, iterators, frameworks, and multitasking

e e.g., ADT classes and component models

e e.g., closed subroutines

CLASSES <—L
IPC J
CLASSES <—L

1. Procedural abstraction
2. Data abstraction
3. Control abstraction

Design Principles

Design Principles

Information Hiding

e Information hiding is an important means of achieving abstraction

— Ie., design decisions that are subject to change should be hidden
behind abstract interfaces

e Application software should communicate only through well-defined
interfaces

e Each interface should be specified by as little information as possible
e [f internal details change, clients should be minimally affected

— May not even require recompilation and relinking...

ge_Blocks

arbitrarily-large message

payloads
allocators, and reference

counting can be added

— e.g., synchronization, memory
transparently

— Efficiently handles
parameterizes various aspects

e A Message Queue is a list of
ACE_Messa

e Design encapsulates and

Data_Block

Data_Block

\

1

SYNCH

| STRATEGY

Information Hiding Example: Message Queueing

ipazibarens

87 ued 109dse uonezIuoIyduAs ay) Moy 310N e

sse|D

sonsualoeIRYd SSB|D

ur: () arers +

it : () erennovep

1w : () 8sop

1792Is : (pIoA) yrew 1a1em moj

PIOA : (178ZIS . Wm|~Mau) y.ew 1ayem” moj

17921 : (pion) yrew 1arem ybiy

PIOA : (378zIS : WMy~ mau) yrew 1ayem” ybiy
Jur: (0 = x BNfeABWIL FDV : Inodwn

Py §00|gabeSSaN OV : Waj) [rer ananbap
Jur 2 (0 = x BNfBABWIL FDV : Jnoawn

By %00|g~abesSaN IOV | Wajy) peayananbap
U1 2 (0 = x BNfeA”BWIL FOV : Jnodwi

‘x %00]g~abessa 30V : way) oud ananbua
Jur 2 (0 = x 8NfeABWIL FDV : Inodwn

'y %00/g~abessaN 30V : wejl) peay”enanbua
1 (0 = x dNfA"BWIL IOV : Jnoswi

'«)o0|g " abessa 3OV : way) [1er-enanbua

i : () Hdwa™st
pioA : (x ABarens uoneoynoN 30V : s) Abarens uoneaynou
i () ysny
w1 : (0 = « ABarens ~uoneaynoN 3oV : Anou
WMT LINV43d =17 92Is : rew 1ajem mo|
‘WMH ™ LINY43a =1~ azIs : yuew 1erem” ybiy) uado
(0 = « ABayENS UONEOYNON OV : Ajiou
‘INMT LINVH3A = 1 82IS : ylew 1ajem” mo|
INMH™LINY43a =1 8zis : yrew Jarem ybiy) anand ebesssy 30V +

1792ZIS : jJew Ialem Mo #

1 oz1s : jrew uarem ybiy #
+{00|g” abessaN FOV 1 e #
+400|g”abesSON IOV | T peay #

anand abessaN 30V

m:m30|mmmmmm_>_lm_o< ayl

0
@
2
3]
c
=
o
c
k=g
)
o)
o

sa|diould ubisag

service can be provided by multiple

protocols

memory paging
— Same policy can be implemented by

x e.g., OS scheduling and virtual
x e.g., reliable communication

i.e., process sequence
by same mechanisms

— e.g., ordering of low-level operations,
multiple mechanisms

e Separating policy and mechanism
— Multiple policies can be implemented

e Lower-level interfaces

0201q_eaep

FUNLONYLS 39VSSAW 3LISOINOD () JNLONULS IOVSSIH ITAHIS (T)
Z = ()3uUn0>™adUdJId4ad avoiAvd
)20 g '3ed 3OV

()43d7pua ()43d7pa
()uadam (Q43d=um
(3201 q e3P (Aol qelep

()1u0d Q3u0d
JooLg—)ooLa—
abessaW 3DV abessaW 3DV

S1UaIj0 wod) suoneluawa|dwi buibessaw apiH e

sonsiarIeYd Sse|d

1 ezis @ () aziIs +
1ezis @ () yibua| |e101 +

1 azIs

« leyo

(1ez1s

» Jeyo

(1ez1s
w1 : (¥ 8zis @ u'y Jeys 1Isuod ing) Adoo +
Buo|™n : (Buo|n : sBejy) sBe|) a0 +
Buo|™n : (Buo| n : sbe|}) sbe|j 185 +
«)00 |g abessay IOV : () osea a1 +
x 00 |g ebessan 30V ¢ () @reo1dnp +

« 200 |9~ abessaN IV

wi o
» leyo

Buo|™ : () A
(Buo™n :oud) A 1
adA1 ebessan 30y © () adA1y bau +

300 187 € Teq 30V

(adA1 ebessaN 3ov : adA)) adA1 Bau +
w1 o: (1ezis :ezis) 1l +

Typical Information to be Hidden

searching techniques

dependencies, e.g.,
byte-ordering,
character codes

— I.e., using abstract
data types

— e.g., sorting or

— Machine

e Data representations
Formats

e Input and Output

e Algorithms

» 320 @ @eQ FOV 90 |q elep #
« 00 |g abessaN PV : Aeud #

« 00 |g abessaN IOV : IXau #

« 00 |g abessagN IOV 0D #
1Tezis @ andm g

1ezis @ T udpio#

300 |9~ ebessaN IOV

sse|D Yo0|g abessaiN 3DV 9yl

Design Principles

sa|diould ubisag

Design Principles

Design Principles

Challenge 3: Determining the Units of Web Server
Decomposition

Context: A production web server that uses abstraction and
information hiding

Problems:

— Need to determine the appropriate units of decomposition, which

should

x Possess well-specified abstract interfaces and
*x Have high cohesion and low coupling

Solution: Component Modularity

NAMING

TRADING

wmaamor- | ® A modular system is one that's structured
O amoons into identifiable abstractions called
:
— A software entity that represents an
o abstraction
A “work” assignment for developers

A unit of code that
*

has one or more names

components

has identifiable boundaries

can be (re-)used by other components
encapsulates data

hides unnecessary details

can be separately compiled

Design Principles

Designing Component Interfaces

e A component interface consists of RECEPTACLES

FACETS

several types of ports:
yp p o

COMPONENT

— Exports EXECUTOR

x Services provided to other o
components, e.g., facets and ? ?

event sources ‘_ CONTAINER

_c

D

— Imports
* Services requested from

other components, e.g., e Define components that

EVENT SINK EVENT SOURCE

receptacles and event sinks provide multiple interfaces

— Access Control and implementations
+ Not all clients are equal, e.g.,

protected/private/public * Anticipate change

Design Principles

DOWNSTREAM

Component Modularity Example: Stream Processing

APPLICATION
Stream

[}

STREAM
Head

WY3IHLSdN

A Stream allows flexible
configuration of layered
processing modules

A Stream component contains
a stack of Module components

Each Module contains two
Task components

— j.e., read and write Task s

Each Task contains a
Message _Queue component
and a Thread _Manager
component

Design Principles Design Principles

Benefits of Component Modularity Criteria for Evaluating Modular Designs

Modularity facilitates software Modularity is important for Component decomposability ~ Component continuity

uality factors, e.g.,: ood designs since it:
g y g 9 9 e Are larger components e Do small changes to the

e Extensibility — well-defined, e Enhances for separation of decomposed into smaller specification affect a
abstract interfaces concerns components? localized and limited number

- . ?
Reusability — low-coupling, e Enables developers to Component composability of components

high-cohesion reduce overall system Component protection

— : complexity via decentralized e Are larger components _
Compatibility — design software architectures composed from existing o Are the effects of run-time

bridging” interfaces smaller components? abnormalities confined to a

" : - Increases scalability by
Portability — hide machine * o . small number of related
dependencies supporting independent and Component understandability components?

concurrent development by

_ e Are components separately
multiple personnel

understandable?

Design Principles Design Principles

Principles for Ensuring Modular Designs Challenge 4: “Future Proofing” the Web Server

Language support for components Explicit Interfaces . . .
Context: A production web server whose requirements will change

e Components should correspond to e Whenever two over time
syntactic units in the language components A and B
communicate, this must
be obvious from the text — Certain design aspects seem constant until they are examined in

e Every component should of A or B or both the overall structure of an application
communicate with as few others as Information Hiding — Developers must be able to ea_sily refactor the web server to
possible account for new sources of variation
e All information about a
component should be
e If any two components communicate private unless it's
at all, they should exchange as little specifically declared
information as possible public

Problems:
Few interfaces

Small interfaces (weak coupling)

Design Principles Design Principles

Solution: Extensibility Extensibility Example: Active Object Tasks

e Features

e Extensible software is important to support successions of quick [S™NGH_STRATEGY |

1
| CH |

updates and additions to address new requirements and take i&b Task |smarecy | — Tasks can register with a
advantage of emerging opportunities/markets andler open(=0 . Reactor

close()=0

) i
AP;I;IECSIT:'II::)M g\lljé(()FOW — They can be dynam|ca”y

e Extensible components must be both open and closed, i.e., the oEPENDENT 1 linked
“open/closed” principle: Service same; — They can queue data

LT

_ , , Event Object LD — They can run as “active
— Open component — s_tlll available for extension - Handler suspend(-0 objects”

* This is necessary since the requirements and specifications are handle_input(e) _

< : handle_outpui) v Shared| o JAWS uses inheritance and

rarely completely understood from the system’s inception handle_exception() Object

handle_signal() = . . .
— Closed component — available for use by other components EroEtec Ly o dynamic binding to produce

. . . = info()=0
+ This is necessary since code sharing becomes unmanageable ge%a""'e‘) 0 '”ﬂ" task components that are
both open and closed

when reopening a component triggers many changes

Design Principles

Challenge 5: Separating Concerns for Layered
Systems

APPLICATION
PRESENTATION
SESSION
NETWORK
DATA LINK
PHYSICAL

Context: A production web server whose requirements will change
over time

||

Problems:

GATEWAY B
NETWORK
DATA LINK

— To enhance reuse and flexibility, it is often necessary to
decompose a web server into smaller, more manageable units
that are layered in order to
x Enhance reuse, e.g., multiple higher-layer services can share

lower-layer services
x Transparently and incrementally enhancement functionality
x Improve performance by allowing the selective omission of

unnecessary service functionality
* Improve implementations, testing, and maintenance

>
>

[
[

GATEWAY A
NETWORK
DATA LINK

—]
—]

[
[

DATA LINK

primitives that work on a limited set of data

associated “software instructions”
— Modeled after hardware instruction set

| >
PHYSICAL PHYSICAL PHYSICAL

APPLICATION
PRESENTATION

— Extensions provide additional data types and
operations that are useful in developing a family

“software instruction set”
of similar systems

Solution: Virtual Machine Architectures

e A virtual machine provides an extended
e A virtual machine layer provides a set of

Design Principles

Design Principles

Virtual Machine Layers for the ACE Toolkit

NETWORKED JAWS ADAPTIVE ~ STANDARDS-BASED MIDDLEWARE
WEB SERVER

SERVICE THE ACE ORB
TOKEN GATEWAY | — — (TAO)
COMPONENTS SERVER SERVER]

LAYER D [jﬁ]
LOGGING NAME TIME : (]
SERVER SERVER SERVER _

FRAMEWORK
LAYER

PROCESS/

C++ THREAD R SHARED
WRAPPER |\ANAGERS)) MALLOC

FACADE Tt TSI RATOR et
LAYER | SYNCH SPIPE | PROACTOR | FLE
WRAPPERS [{ SAP |/ /) sap

OS ADAPTATION LAYER
PROCESSES/ W'N32N‘MEDUSOCKETS/ u UNIX u SELECT/ | | DYNAMIC u SHARED [[FILE SYS
RY l

C
APIs | THREADS || SResiowx TLI FIFOS 10 COMP || LINKING |{ MEMO APIS

PROCESS/THREAD COMMUNICATION VIRTUAL MEMORY & FILE
SUBSYSTEM SUBSYSTEM SUBSYSTEM

GENERAL OPERATING SYSTEM SERVICES
www.cs.wustl.edu/~schmidt/ACE.html

Software Virtual Machine
set of system calls
restartable system calls
signal handlers

masking signals

signal stack

Other Examples of Virtual Machines
microcode — gates, transistors, signals, etc.

interrupt/trap handlers
blocking interrupts

restartable instructions
interrupt stack

Hardware Machine
instruction set
interrupts/traps

e e.g., compiler — assembler — obj code —
e Abstracts away from details of the underlying OS

Computer architectures
Java Virtual Machine (JVM)

Operating systems
e e.g., Linux

0
QL
2
3]
c
=
[a B
c
=2
7]
o]
[a)]

Design Principles

Challenge 6: Separating Concerns for Hierarchical
Systems

Context: A production web server whose requirements will change
over time

Problems:

— Developers need to program components at different levels of

abstraction independently
— Changes to one set of components should be isolated as much

as possible from other components
— Need to be able to “visualize” the structure of the web server

design

Design Principles

Solution: Hierarchical Relationships

e Hierarchies reduce component interactions by restricting the
topology of relationships

e A relation defines a hierarchy if it partitions units into levels (note
connection to virtual machine architectures)

— Level 0 is the set of all units that use no other units
— Level ;i is the set of all units that use at least one unit at level < 4

and no unit at level > i.
e Hierarchies form the basis of architectures and designs

— Facilitates independent development
— Isolates ramifications of change
— Allows rapid prototyping

A SSe|D

("'s919A2 ploAe) Ayorelaly

e p|aIk Aj11essa0au 10U S80P UOIR|9I Sasn Y e

ssadoe Alowaw

paJteys ‘sidnusiul ‘Buissed abessaw 6o *
Buibbo| 10118 “H6a *

S9SN 10U aJe SUOolled0AUl sW0oS —

SUOIBI0AUI BAJOAUI ,UOP S8SN BWOS —

A
|
|
|
|
|
X sse|9

sa|diound ubisaq

(€/T) uoirel@y sasn ayL

A Jo uonejuswajdwi 1081109 € Jo Aljige|rene ay)

:S8)0AUI Se aWes ay] A|lIesSadau 10U SI Sasn ‘10N e
uo spuadap x Jo Buluonouny 1281100 YL JI A SBSN X ®

Design Principles

Hierarchy Example: JAWS Architecture

REQUEST PROCESSING LAYER

svc_run

SVC run
svc_run = —>2 sve_run
%2 _,2

LAYER Processor

7

A4

HTTP [[| HTTP || HTTP
Handler Handler Handler

\

1/0 DEMUXING |

LAYER Reactor _»2 Acceptor

Design Principles

The Uses Relation (2/3)

e Allow Xto use Y when:

— Xis simpler because it uses Y

x e.g., Standard C++ library classes
— Yis not substantially more complex because

it is not allowed to use X

— There is a useful subset containing Y and not

X

x I.e., allows sharing and reuse of Y
— There is no conceivably useful subset

containing X but not Y
x I.e., Yis necessary for X to function

correctly

e Uses relationships can exist between classes,
frameworks, subsystems, etc.

Acceptor-

Reactor

Connector

Proactor

Service

Streams

Configurator

Design Principles

Defining Hierarchies

e Relations that define hierarchies include:

Uses

Is-Composed-Of

Is-A

Has-A
The first two are general to all design methods,
the latter two are more particular to OO design
and programming

| ACE_I PC_SAP | | ACE_Addr |

T

e | Acgfw I

| ACE_SOCK_Accept of |>|

ACE_SOCK_St r eam ACE_SOCK_Connect or

sa|diound ubisaq

AyaJelaly sasn e Jo S|ang| [elanss Ul Jeadde
(yiun apo2 ©) weiboidgns e —
(,s12108S, @low 10 auo saply 1eyl Ainus ue) Jusuodwod —
(suiyoew [enuIA) A9 —
:Juseninba 10u are BuImo||0) BY) ‘I9ABMOH e

Aew jusuodwod e se ‘[eanuspl 8 10U Pasu S|aAs| pue suauodwo) e
anbiuyoa) Buunonis piodal Jo Juauodwod [9As)-1aybiy awos eia
uonejal Jo-pasodwoa-si ay) 1oddns sabenbue| Buiwwelboid Aue e

uone|oy JO-pasodwo)D-s| ayl

sdiysuone|ai sasn 1ou are eyl (.s|ea, “a)

SUOITRI0AUI 8SOU) a1eUIWI[® pue AYdJelaly UoIedoAUl Ue YlIM Lels —

quiny} Jo ainy e
salouapuadap

[ea1yoselaly-uou asay) |01U0d 0) Aem auo ale sjeadn —

'018 ‘Bulpuey reubis ‘syiomawel)

ul syoeq|ed OO ‘S|020104d UOIEIIUNWWOD SNOUOIYDUASE “69 —

Ayoueialy sasn

© JO UOIR|OIA P3||01u0D a1iNbaJ SWB)SAS 81eM)OS UelIad ‘JISASMOH e

SwalsAs 9JeM)os

a|gesnal Bulubisap Joj [enuassa Si uone|al Sasn ayl ul Ayatelaly y e
(g/€) uonrelay sasn ayL

sa|diound ubisaq

Design Principles

Design Principles

The Is-A Relation

e This “ancestor/descendant” relationship is
associated with object-oriented design and
programming languages that possess
inheritance and dynamic binding

e class X possesses /s-A relationship with class Y
if instances of class X are specialization of class
Y.

— e.g.,anHTTP_1 0 Handler Is-A
ACE_Event_Handler that is specialized for
processing HTTP 1.0 requests

ACE_Event_Handler

handle_input()
get_handle()

I
| |

HTTP_1_0
Handler

HTTP_1_1
Handler

The Is-Composed-Of Relation

e The is-composed-of relationship shows how the
system is broken down in components

e X is-composed-of {z;} if X is a group of
components z; that share some common

purpose

e The following diagram illustrates some of the
is-composed-of relationships in JAWS

HTTP
Handler

Sock
Stream

HTTP
Handler

Sock
Stream

™~

HTTP
Handler

Sock

Stream

Reactor

HTTP
Acceptor

Sock
IAcceptor|

ytem
HTTP
Acceptor

ystem

, and CV Files

ptor

— CV Files

The Has-A Relation

HTTP Acce
Web
Server

- e.g., the JAWS web server Has-A Reactor
JAWS

object-oriented design and programming
languages that possess classes and objects
class Y if instances of class X contain an

instance(s) of class V.

e This “client” relationship is associated with
e class X possesses a Has-A relationship with

Design Principles

Design Principles

Challenge 7: Enabling Expansion and Contraction of
Software

e Context: A production web server whose requirements will change
over time

Problems:

— It may be necessary to reduce the overall functionality of the
server to run in resource-constrained environments
— To meet externally imposed schedules, it may be necessary to

release the server without all the features enabled

Design Principles

Solution: Program Families and Subsets

e This principle should be applied to facilitate extension and
contraction of large-scale software systems, particularly reusable
middleware infrastructure

- e.g., JAWS, ACE, etc.

e Program families are natural way to detect and implement subsets

— Minimize footprints for embedded systems
— Promotes system reusability
— Anticipates potential changes

e Heuristics for identifying subsets:

— Analyze requirements to identify minimally useful subsets
— Also identify minimal increments to subsets

and TAO
(2) The JAWS Web Server Framework

REAL-TIME ORB CORE
(1) THE ACE ORB (TAO)

implementation of the CORBA specification
server that implements the HTTP specification

e JAWS and TAO were developed using the
wrapper facades and frameworks provided by

Example of Program Families: JAWS
the ACE toolkit

e JAWS is a high-performance, adaptive Web

e TAO is a high-performance, real-time

Design Principles

Design Principles

Conventional Development Processes

o Waterfall Model

— Specify, analyze, implement, test (in sequence)
— Assumes that requirements can be specified up front

e Spiral Model

— Supports iterative development
— Attempts to assess risks of changes

e Rapid Application Development

and Subsets

— Build a prototype
— Shipiit :-)

applications, different I/O formats

routines
— e.g., sometimes it is important to retain bugs!

— e.g., different alphabets, different vertical
— e.g., compilers or OSs

— e.g., speed vs space

— e.g., shared data structures and library
— e.g., UNIX I/O device interface

Other Examples of Program Families
e Different services for different markets
e Different hardware or software platforms

e Different resource trade-offs
e Different internal resources
e Different external events

e Backward compatibility

0
QL
2
3]
c
=
[a B
c
=2
7]
o]
[a)]

Design Principles Design Principles

Agile Processes eXtreme Programming: Planning
e Start with user stories

. . , — Written by customers, to
Change in Requirements, Risk, specify system

— Provide what the customer wants, as quickly as possible or Developement Environment :
— Provide only what the customer wants » requirements _
. — Minimal detalil, typically

Encourages changes in requirements just a few sentences on a

card
— Expected development

time: 1 to 3 weeks each,
— Planning, designing, coding, testin ol Ecti roughly

J ning d J Risk Estimates Planning game creates
commitment schedule for
entire project
Each iteration should take
2-3 weeks

Stresses customer satisfaction, and therefore, involvement

. . ina | Commitment -
Relies on testing Planning S O teration

For example, eXtreme Programming practices Game

based on http:/www.extremeprogramming.org/rules/planninggame.html

Design Principles

eXtreme Programming: Designing
e Defer design decisions as long as possible

e Advantages:

— Simplifies current task (just build what is needed)
— You don’t need to maintain what you haven't built
— Time is on your side: you're likely to learn something useful by the

time you need to decide
— Tomorrow may never come: if a feature isn't needed now, it might

never be needed
e Disadvantages:

— Future design decisions may require rework of existing

implementation
— Ramp-up time will probably be longer later

x Therefore, always try to keep designs as simple as possible

Design Principles

eXtreme Programming: Coding
Pair programming

— Always code with a partner
— Always test as you code

Pair programming pays off by supporting good implementation,
reducing mistakes, and exposing more than one programmer to the
design/implementation

If any deficiencies in existing implementation are noticed, either fix
them or note that they need to be fixed

Design Principles

eXtreme Programming: Testing

e Unit tests are written before code

e Code must pass both its unit test and all regression tests before
committing

e In effect, the test suite defines the system requirements

— Significant difference from other development approaches
— If a bug is found, a test for it must be added
— If a feature isn't tested, it can be removed

Design Principles

Agile Processes: Information Sources

Kent Beck, Extreme Programming Explained: Embrace Change,
Addison-Wesley, ISBN 0201616416, 1999

Kent Beck, “Extreme Programming”, C++ Report 11:5, May 1999,
pp. 26—29+

John Vlissides, “XP”, interview with Kent Beck in the Pattern
Hatching Column, C++ Report 11:6, June 1999, pp. 44-52+

Kent Beck, “Embracing Change with Extreme Programming”, IEEE
Computer 32:10, October 1999, pp. 70-77

http://www.extremeprogramming.org/
http://www.xprogramming.com/
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap

Design Principles

Design Guidelines: Motivation

e Design is the process of organizing structured solutions to tasks
from a problem domain

e This process is carried out in many disciplines, in many ways

— There are many similarities and commonalities among design

processes
— There are also many common design mistakes . . .

e The following pages provide a number of “design rules.”

— Remember, these rules are simply suggestions on how to better
organize your design process, not a recipe for success!

Design Principles

Common Design Mistakes (1/2)

Depth-first design

— only partially satisfy the requirements
— experience is best cure for this problem . . .

Directly refining requirements specification

— leads to overly constrained, inefficient designs
Failure to consider potential changes

— always design for extension and contraction
Making the design too detailed

— this overconstrains the implementation

Design Principles

Common Design Mistakes (2/2)

e Ambiguously stated design

— misinterpreted at implementation
e Undocumented design decisions

— designers become essential to implementation
e Inconsistent design

— results in a non-integratable system, because separately
developed modules don't fit together

Design Principles

Rules of Design (1/8)

e Make sure that the problem is well-defined

— All design criteria, requirements, and constraints, should be

enumerated before a design is started
— This may require a “spiral model” approach

e What comes before how

— I.e., define the service to be performed at every level of
abstraction before deciding which structures should be used to
realize the services

e Separate orthogonal concerns

— Do not connect what is independent
— Important at many levels and phases . . .

Design Principles

Rules of Design (2/8)
e Design external functionality before internal functionality.

— First consider the solution as a black-box and decide how it

should interact with its environment
— Then decide how the black-box can be internally organized. Likely

it consists of smaller black-boxes that can be refined in a similar
fashion

e Keep it simple.

— Fancy designs are buggier than simple ones; they are harder to

implement, harder to verify, and often less efficient
— Problems that appear complex are often just simple problems

huddled together
— Our job as designers is to identify the simpler problems, separate

them, and then solve them individually

Design Principles

Rules of Design (3/8)
e Work at multiple levels of abstraction

— Good designers must be able to move between various levels of
abstraction quickly and easily

e Design for extensibility

— A good design is “open-ended,” i.e., easily extendible
— A good design solves a class of problems rather than a single

instance
— Do not introduce what is immaterial
— Do not restrict what is irrelevant

e Use rapid prototyping when applicable

— Before implementing a design, build a high-level prototype and
verify that the design criteria are met

Design Principles

Rules of Design (4/8)

e Details should depend upon abstractions

— Abstractions should not depend upon details
— Principle of Dependency Inversion

e The granule of reuse is the same as the granule of release

— Only components that are released through a tracking system can
be effectively reused

e Classes within a released component should share common closure

— That is, if one needs to be changed, they all are likely to need to

be changed
— I.e., what affects one, affects all

Design Principles

Rules of Design (5/8)
e Classes within a released component should be reused together

— That s, it is impossible to separate the components from each
other in order to reuse less than the total

e The dependency structure for released components must be a DAG

— There can be no cycles

e Dependencies between released components must run in the
direction of stability

— The dependee must be more stable than the depender

e The more stable a released component is, the more it must consist
of abstract classes

— A completely stable component should consist of nothing but
abstract classes

Design Principles

Rules of Design (6/8)

e Where possible, use proven patterns to solve design problems

e When crossing between two different paradigms, build an interface
layer that separates the two

— Don't pollute one side with the paradigm of the other

Design Principles

Rules of Design (7/8)

e Software entities (classes, modules, etc) should be open for
extension, but closed for modification

— The Open/Closed principle — Bertrand Meyer

e Derived classes must usable through the base class interface
without the need for the user to know the difference

— The Liskov Substitution Principle

Design Principles

Rules of Design (8/8)

e Make it work correctly, then make it work fast

— Implement the design, measure its performance, and if
necessary, optimize it

e Maintain consistency between representations

— e.g., check that the final optimized implementation is equivalent to

the high-level design that was verified
— Also important for documentation . . .

e Don't skip the preceding rules!

— Clearly, this is the most frequently violated rule!!! ;-)

Design Principles

Concluding Remarks

e Good designs can generally be distilled into a few key principles:

— Separate interface from implementation
— Determine what is common and what is variable with an interface

and an implementation
— Allow substitution of variable implementations via a common

interface

x I.e., the “open/closed” principle
— Dividing commonality from variability should be goal-oriented

rather than exhaustive

e Design is not simply the act of drawing a picture using a CASE tool
or using graphical UML notation!!!

— Design is a fundamentally creative activity

