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1 Introduction

Applications that effectively utilize multi-processingand net-
work services are able to deliver increased system through-
put, reliability, scalability, and cost effectiveness. Designing
and implementing such applications is a challenging task,
however. This article is part of a continuing series that de-
scribes object-oriented techniques that may be used to sim-
plify the development of reliable, robust, and extensible dis-
tributed applications. Previous articles in this series have
examined C++ wrappers that encapsulate the socket interpro-
cess communication (IPC) interface [1] and the event demul-
tiplexing mechanisms provided by the select and poll
system calls [2, 3]. This article presents an object-oriented
domain analysis of key design dimensions for network server
daemons. Subsequent articles will describe a framework
called the ADAPTIVE Service eXecutive (ASX) [4] that pro-
vides flexibility across the design dimensions identified in this
article. The ASX framework combines C++ features (such
as parameterized types, inheritance, and dynamic binding)
and advanced OS mechanisms (such as multi-threading and
dynamic linking) to provide a highly extensible environment
for developing and configuring a wide variety of network
daemons.

A daemon is an operating system (OS) process that exe-
cutes services on a host machine in the “background” (i.e.,
disassociated from any controlling terminal) [5]. A service
is a portion of a daemon that offers a single processing ca-
pability to communicating entities. Server daemons com-
monly available in the UNIX environment provide clients
with communication-related services that resolve distributed
name binding queries (named and rpcbind), access net-
work file systems (nfsd), manage routing tables (gated
and routed), perform local system services such as log-
ging (syslogd) and printing (lpd), and integrate multi-
ple remote services such as terminal access (rlogin and
telnet) and file transfer (ftp) together into a single “su-
perserver” framework (inetd). In this series of articles,par-
ticular emphasis is given to network server daemons that sup-
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Figure 1: Stand-alone vs. Distributed Application Architec-
tures

port multiple services via one or more processes or threads.

2 Background Material

In contrast to stand-alone applications, the components in a
distributed application reside in a number of loosely coupled
host machines connected together by a network. Figure 1 de-
picts the basic differences between the two approaches. The
stand-alone application architecture illustrated Figure 1 (1)
consolidates the interactive graphical user interface (GUI),
instruction processing, and persistent data resources within
a single machine and the peripherals directly attached to it.
The flow of control in a stand-alone application is localized
to the individual machine where it began executing.

The distributed application architecture portrayed by Fig-
ure 1 (2) partitions the interactive GUI, instruction process-
ing, and persistent data resources among a number of other-
wise independent machines in a network. The flow of control
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in a distributed application migrates between different ma-
chines during run-time. This allows certain application ser-
vices (e.g., database access, high-resolution graphics) to be
delegated to run on hosts that possess specialized processing
attributes such as high-speed disk controllers, large amounts
of memory, or enhanced floating point performance. This
delegation of responsibilities is beneficial since it permits the
sharing of expensive peripherals (such as high-capacity file
servers and high-volume printers) by a number of users and
applications.

A network of diskless X-terminals is a relatively common
example of a distributed architecture. In this environment
a number of decentralized components collaborate to pro-
vide GUI-based computing services to end-users. The in-
teractive GUI is typically managed by the X server on
each X-terminal; the instruction processing capabilities are
provided by the client host(s) where all or part of an ap-
plication’s services run; and access to persistent resources
(such as databases and object managers) is mediated by one
or more file servers. Interoperability is possible as long as
the protocols used to inter-communicate between these sep-
arate components are compatible. Therefore, the networks,
operating systems, hardware platforms, and programming
languages in an X-terminal environment may be completely
heterogeneous.

Although distributing services among machines in a net-
work offers many potential advantages, distributed applica-
tions are often significantly more difficult to design, imple-
ment, debug, optimize, and monitor than their stand-alone
counterparts. To handle the requirements of distributed ap-
plications, developers must address many topics (such as
service partitioning and load balancing across process and
host boundaries) that are either irrelevant or are less prob-
lematic for stand-alone applications. Object-oriented design
and implementation techniques offer a variety of principles,
methods, and tools that may help to alleviate much of the
complexity related to developing and configuring distributed
applications, in particular accidental complexity [6].

Accidental complexity is an artifact of limitations with
tools and techniques used to develop software systems within
an application domain. One common example of accidental
complexity is the lack of type-safe, portable, and extensible
system call interfaces and reusable component libraries. De-
buggers are another source of accidental complexity. Many
debuggers do not function properly when used on multi-
threaded programs containing IPC calls. Yet another source
of accidentally complexity arises from the widespread use of
algorithmic decomposition. Many distributed applications
are developed using algorithmic decomposition techniques
that frequently result in non-extensible system architectures.

Inherent complexity, on the other hand, is a consequence of
fundamental properties of a domain that complicate applica-
tion development. For example, inherently complex aspects
of developing reliable and efficient distributed application
services involve detecting and recovering from transient net-
work and host failures and minimizing the impact of com-
munication latency on application performance. Likewise,

determining how to partition an application into separate ser-
vices and where to distribute these services throughout a
network are also inherently complex development issues.

In recent years, a number of approaches have been devel-
oped to alleviate the dual problems of accidental and inher-
ent complexity mentioned above. Two generally successful
techniques that have been widely employed to reduce the
complexity of network daemon implementation, configura-
tion, and use are (1) the development of reusable component
libraries and (2) the development of automated daemon con-
figuration tools.

RPC-based toolkits and daemon control frameworks are
notable examples of reusable component libraries and au-
tomated daemon configuration tools, respectively. RPC-
based toolkits include the OSF Distributed Computing En-
vironment (DCE), the Open Network Computing (ONC+)
transport-independent RPC facility, and the Common Ob-
ject Request Broker Architecture (CORBA). Daemon con-
trol frameworks include the inetd superserver that origi-
nated with BSD UNIX, the listen port monitoring facil-
ity available with System V Release 4 (SVR4) UNIX, and
theService Control Manager from the Windows NT
operating system.

RPC-based toolkits and daemon control frameworks au-
tomate many tedious and error-prone activities associated
with developing distributed applications. These activities
include defining service interfaces, performing presentation
layer conversions, registering services with endpoint port
mappers, locating and selecting remote services, authenticat-
ing and authorizing clients, ensuring data security, demul-
tiplexing packets, and dispatching client requests to service
providers.1

Although they have proven to be quite useful in practice,
many RPC-based toolkits and daemon control frameworks
were developed without adequate consideration of object-
oriented techniques and advanced OS mechanisms. This
fact complicates component reuse and limits functionality.
For example, the standard version of inetd is written in
C and its implementation is characterized by a proliferation
of global variables, a lack of information hiding, and an
algorithmic decomposition that deters fine-grained reuse of
its internal components. Likewise, inetd, listen, and
the Service Control Manager do not provide fully
automated support for (1) dynamically linking services into
the daemon controller’s process address space at run-time
and (2) executing these services concurrently via one or
more threads. Therefore, developers who want to benefit
from these advanced OS mechanisms must manually pro-
gram them into their applications.

3 Network Daemon Design Dimensions

The increased availability of advanced OS mechanisms
(such as multi-threading and explicit dynamic linking), cou-

1A thorough discussion of these topics is beyond the scope of this paper;
see [5] for additional details.
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Figure 2: Network Daemon Design Dimensions

pled with the growing adoption of C++ and object-oriented
methods, provides an opportunity to re-examine and revise
conventional techniques for developing network daemons.
To reap significant benefits from object-oriented methods
and advanced OS mechanisms, it is important to gain a gen-
eral understanding of the basic architectural choices that are
repeatedly faced by network daemon developers. This paper
provides a domain analysis of key dimensions that character-
ize the design of network daemons. This analysis has been
used to guide the object-oriented design and implementation
of components in the ASX framework.

A domain analysis is an incremental, feedback-driven pro-
cess that examines an application domain to identify its key
abstractions. Common application domains include window
systems, databases, network server daemons, distributed ap-
plications, and operating system kernels. The key abstrac-
tions that are identified via analysis constitute the “vocab-
ulary” of the application domain [7]. For example, tasks,
threads, memory objects, and communication ports are sev-
eral key abstractions in the domain of micro-kernel operating
systems [8].

A thorough domain analysis yields several significant ben-
efits. First, identifying and concisely defining the vocabu-
lary of key abstractions within a domain enables developers
to communicate more effectively with one another. Second,
domain analysis separates development concerns into two
general categories: (1) those that are common to the domain
and (2) those that are specific to a particular application. By
focusing on the common concerns, developers may recog-
nize opportunities for adapting or building reusable software
components. These components may be integrated to form
a stable application framework that helps to reduce subse-
quent development effort. Ideally, the application-specific
concerns also may be handled by extending well-defined por-

tionsof a framework using language features like inheritance,
dynamic binding, and parameterized types.

Within the domain of network daemons, developers must
carefully consider the (1) protocol and service dimensions,
(2) cooperation and communication dimensions, (3) daemon
architecture dimensions, (4) concurrency dimensions, and
(5) configuration dimensions listed in Figure 2. These five
dimensions were identified by generalizing from practical
design and implementation experience with a number of dis-
tributed applications ranging from on-line transaction pro-
cessing systems [3], PBX switch performance monitoring
systems [9], and multi-processor-based communication sub-
systems [4].

Each of the five dimensions discussed below offer a set of
relatively orthogonal design alternatives. These alternatives
are examined to define the vocabulary of the network daemon
domain, illustratekey abstractions, and clarify the boundaries
of the domain. Although this discussion focuses primarily
upon server-related dimensions, most topics presented below
are directly applicable to the design of client applications, as
well.

3.1 Protocol and Service Dimensions

A protocol is a set of rules that dictate how data and control
information is exchanged between communicating entities.
These entities may include one or more clients, servers, or
peers interacting within a networked operating environment.
A service is generally defined as either: (1) a single capa-
bility offered by a server daemon (such as the echo service
provided by the inetd superserver), (2) a collection of ca-
pabilities offered by a server daemon (such as the inetd
superserver itself), or (3) a collection of server daemons that
cooperate to achieve a common task (such as a collection
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of rwho daemons in a LAN subnet that periodically broad-
cast and receive status information reporting user activities
to other hosts). Unless otherwise indicated, this article uses
the first definition of service, i.e., a portion of a daemon that
offers a single capability to communicating entities.

Services are implemented by protocols that shield applica-
tions from many low-level details of the underlying commu-
nication subsystem. For instance, the telnet application
provides a remote login service implemented via thetelnet
protocol. The telnet protocol [10] precisely defines the
format of messages exchanged to indicate terminal character-
istics, negotiate options, and control the flow of data for users
that access resources on remote hosts connected via a TCP/IP
network. As shown in Figure 3 (1), a single protocol (such
as TCP) may be used to implement a number of network
services (such telnet, DNS, ftp, and the X server from
the standard MIT X windows system). Likewise, a service
(such as “reliable, in-sequence, non-duplicated data deliv-
ery”) may be implemented by multiple protocols (such as
TCP, TP4, SPX, VMTP, and XTP), as shown in Figure 3 (2).

When creating distributedapplications, developers implic-
itly or explicitly select from among the following protocol
and service dimensions:

� Connectionless vs. Connection-Oriented vs. Request-
Response Protocols: Connectionless protocols (such as
CLNP, IP, and UDP) provide an unreliable, message-oriented
service where each message may be routed independently.
Since “best-effort” delivery semantics are used, there is no
guarantee that a particular message will arrive at its destina-
tion. Connectionless protocols are used by applications (such
as rwho daemons) that tolerate some degree of loss. They
also form the foundation for higher-layer reliable protocols.

Connection-oriented protocols (such as TCP, TP4, SPX,
and XTP) provide a reliable, sequenced, non-duplicated
data delivery service for applications. These protocols are
typically used for long-duration applications that are not
loss tolerant. To enhance performance and ensure relia-
bility, connection-oriented protocols exchange and maintain
state information at the sender and/or receiver. In addi-
tion, connection-oriented protocols offer different types of
data framing semantics. For example, TCP is a bytestream-
oriented protocol that does not preserve application message
boundaries. Therefore, if an application makes four send
calls to transmit four distinct messages only a single TCP
segment may be transmitted to a receiver. If the applica-
tion requires message-oriented delivery, the receiver must
perform extra processing to extract and re-frame the four
messages from the single segment it received. This is a
relatively simple operation if messages always possess equal
lengths and network errors do not occur; otherwise, it may be
a non-trivial problem. Message-oriented delivery semantics
are offered by protocols such as TP4 and XTP.

Request-response protocols (such as the RPC protocols
used by ONC+ or DCE) provide a reliable, transaction-
oriented service that is commonly used for short-duration
exchanges of messages between clients and server(s) located
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Figure 4: Internal vs. External Services

in a LAN environment. Request-response protocols may be
implemented as a separate layer on top of connectionless or
connection-oriented protocols. They also may be directly
implemented via a reliable message-passing protocol such as
VMTP [11].

� Short-Duration vs. Long-Duration Services: Services
offered by network daemons may be classified loosely as
short-duration or long-duration. Short-duration services ex-
ecute in brief, typically fixed amounts of time. Computing
the current time-of-day, resolving the Ethernet number of
an IP address, and retrieving a disk block from a network
file server are examples of relatively short-duration services.
These services are often implemented using request-response
RPC protocols and/or connectionless protocols such as UDP.

Long-duration services typically execute for extended, of-
ten variable lengths of time. Transferring a large file viaftp
or ftam, accessing host resources remotely via telnet,
or performing remote computer account backups over a net-
work are examples of long-duration services. To improve
efficiency and reliability, these services are usually imple-
mented with connection-oriented protocols.

� Internal vs. External Services: An internal service is
executed within the same address space as the daemon that
receives the request (shown in Figure 4 (1)). An external
service, on the other hand, is executed in a different address
space (shown in Figure 4 (2)). In the latter case, a master
service dispatcher process may be used to monitor a set of
communication ports, accept connection requests and receive
data indications, and then spawn a new process to perform
the requested service(s) externally. Some daemon control
frameworks (such as inetd [5] and theASX framework [4])
support both internal and external services. Inetd executes
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short-duration services (such as echo and daytime) inter-
nally via function-calls, whereas it executes longer-duration
services (such as ftp and telnet) externally by spawning
a separate process via fork and exec.

� Stateful vs. Stateless Services: A stateful service caches
certain information (such as authentication keys, identifi-
cation numbers, and file handles) in the daemon to reduce
communication and computation overhead. For instance,
the Remote File Sharing (RFS) file system [12] is a stateful
service that allows the selective sharing of resources across
a network. A stateless service, on the other hand, retains
no volatile per-connection state information in a daemon.
For example, the Network File System (NFS) [13] provides
distributed data storage and retrieval services that do not
maintain volatile state information within a server daemon.

These two approaches tradeoff efficiency and reliability,
with a suitable choice depending on factors such as the prob-
ability and impact of host and network failures. Stateless
services are generally simpler to configure and reconfigure
reliably, and are usually implemented via connectionless pro-
tocols. Many common network applications (such as ftp
and telnet) do not require retention of persistent state in-
formation between consecutive service invocations.

� Layered Services vs. Monolithic Services: Certain net-
work daemon services decompose naturally into a series
hierarchically-related tasks. For instance, standard layered
protocol suites (such as the Internet and the ISO OSI reference
models) may be designed and/or implemented via layered
services (illustrated in Figure 5 (1)). These inter-connected
services communicate by exchanging control and data mes-
sages. Several communication subsystem frameworks have
been developed to simplify and automate the development
and configuration of layered services [14, 15, 16, 4]. In
general, these frameworks decouple the protocol and service
functionality from (1) the time and/or order in which ser-
vices are composed together and (2) the processing agent(s)
(e.g., processes and/or threads) used to execute services at
run-time.

Monolithic services, on the other hand, are typically im-
plemented via clusters of functionality that are neither related
hierarchically nor directly inter-connected. One example of

DEVICE

DRIVER

WQ

WQ

WQ

RQ

RQ

RQ

IP

MODULE

TCP

MODULE

(1)  LAYERED  SERVICES

(2)  MONOLITHIC  SERVICE

DGRAM

BROADCAST

DGRAM

RECV

FILE

I/O
RWHOD

APPLICATION  INTERFACE

Figure 5: Layered Services vs. Monolithic Services

5



a monolithic service is the standard UNIX implementation
of the rwho daemon [5]. As illustrated in Figure 5 (2), the
datagram broadcast and receiver functions in an rwho dae-
mon operate in relative isolation from each other to report
and store user activities within hosts on a LAN subnet.

Developers typically have the opportunity to select either
layered or monolithic service architectures for structuring
their network daemons. This choice involves tradeoffs be-
tween modularity, extensibility, and efficiency. There are
several advantages to designing server daemons in a layered
manner. First, layering enhances reuse since a number of
upper-layer application components may share lower-layer
services. Second, representing applications as a series of
inter-connected services enables transparent, incremental en-
hancement of daemon functionality. Third, a modular, lay-
ered approach facilitates macro-level performance improve-
ments by allowing the selective omission of unnecessary ser-
vice functionality. In general, modular designs improve the
implementation, testing, and maintenance of network dae-
mons.

There are also several disadvantages associated with us-
ing a layered approach for developing server daemons. A
common criticism of layered implementations is that their
modularity introduces too much overhead. For instance, lay-
ering may cause inefficiencies if buffer sizes are not matched
appropriately in adjacent layers, thereby causing additional
segmentation/reassembly and transmission delays [17].

3.2 Cooperation and Communication Dimen-
sions

Separate components in a stand-alone application generally
cooperate within a single address space by passing parameters
via function calls and/or accessing global variables. In con-
trast, separate components in a distributed application must
interact via more complex cooperation and communication
mechanisms like the following:

� Message Passing vs. Distributed Shared Memory:
Two widely studied cooperation models are based on message
passing and distributed shared memory. Both models enable
applications to interact with resources residing in separate
processes executing on the same or different machines. IPC
mechanisms based on message passing explicitly exchange
different types of bytestream-oriented and record-oriented
data. Distributed shared memory is a higher-level program-
ming abstraction that attempts to provide applications with
“network virtual memory.” This article focuses on message
passing communication mechanisms since distributed shared
memory is primarily a research topic.

� RPC vs. Lower-level IPC Mechanisms: Modern op-
erating systems provide applications with a variety of local
and remote IPC mechanisms that access a wide-range of
underlying communication protocol stacks such as TCP/IP,
Novell IPX, SNA, and ISO OSI. RPC mechanisms avail-
able in toolkits such as DCE and ONC+ are an attractive
level of abstraction for developing distributed applications.
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They provide developers with a programming paradigm that
closely resembles the familiar procedure calling conventions
used in stand-alone applications.

To meet stringent performance, functionality, and porta-
bility requirements, however, certain applications may need
to directly access lower-level IPC mechanisms such as sock-
ets or TLI. Often these applications require long-duration,
bi-directional,uninterpreted byte-stream communication ser-
vices that are not well-suited to the RPC “request-response”
paradigm. Lower-level IPC mechanisms are often more effi-
cient than RPC since they allow applications to omit function-
ality that may not be necessary (e.g., presentation layer con-
versions for ASCII data) and enable finer-grain control over
communication behavior (e.g., permitting multicast transmis-
sion and signal-driven asynchronous I/O).

3.3 Daemon Architecture Dimensions

Protocols and services do not typically operate in isolation,
but instead are accessed by applications within the context
of a daemon architecture. These daemon architectures are
generally structured according to the following alternatives:

� Single-Service vs. Multi-Service Daemons: Single-
service daemons offer only one service. The rwho daemon
(rwhod [5]) is an example of a single-service daemon. Early
versions of UNIX ran standard network services (such asftp
and telnet) as distinct single-service daemons that were
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initiated at OS boot-time [5]. Each instance of a service was
executed externally in a separate process.

As the number of system daemons increased, however, this
statically configured, single-service per-process approach re-
vealed several limitations that are addressed by multi-service
daemons such as inetd and listen. Multi-service dae-
mons offer more than one service by integrating a collec-
tion of single-service daemons into one administrative unit.
This approach helps to (1) reduce the consumption of OS
resources (such as process table slots) by spawning daemons
“on-demand,” (2) simplify daemon development and reuse
common code by automatically performing daemonization2

operations, transport endpoint initialization, port monitor-
ing, and service dispatching, (3) allow external services to
be updated without modifying source code or terminating
an executing service dispatcher process, and (4) consolidate
the administration of network services via a standard set of
configuration management utilities. For example, inetd
is a multi-service daemon that coordinates and/or performs a
wide variety of external (e.g., ftp and telnet) and internal
(e.g., daytime and echo) services.

� One-shot vs. Standing Daemons: A one-shot daemon is
spawned interactively by a master service dispatcher daemon
such as inetd or listen to perform a service request in a
separate thread or process (shown in Figure 7 (1)). One-shot
daemons typically terminate once the request that triggered
their creation completes. This approach may be less con-

2Daemonization typically involves (1) dynamically spawning a new pro-
cess, (2) closing all unnecessary file descriptors, (3) changing the current
working directory to the root directory, (4) resetting the file access cre-
ation mask, (5) disassociating from the controlling process group and the
controlling terminal, and (6) ignoring terminal I/O-related signals [5].

sumptive of system resources (such as memory and process
table slots) since a one-shot daemon does not remain in sys-
tem memory when it becomes idle.

A standing daemon, on the other hand, continues to run
beyond the lifetime of the service request(s) it performs.
Standing-daemons are often initiated at boot-time and receive
connection and/or service requests via local interprocess
communication (IPC) channels (such as named pipes)
that are attached to a master service dispatcher daemon
(shown in Figure 7 (2)). Standing-daemons improve service
response time by amortizing the cost of spawning a daemon
over a series of client requests. In addition, they also en-
able applications to reuse endpoint initialization, connection
establishment, port demultiplexing, and service dispatching
code.

3.4 Concurrency Dimensions

Daemons may associate one or more OS processes or threads
with one or more services offered by a distributed application,
leading to the following concurrency alternatives:

� Iterative vs. Concurrent Daemons: An iterative dae-
mon handles each client request in its entirety before servicing
subsequent requests. Moreover, while processing the current
request, an iterative daemon either queues or ignores addi-
tional requests. This iterative structure is most suitable for
(1) short-duration services that exhibit minimal variation in
their execution time (such as the standard Internet echo and
daytime services) and (2) infrequently run services (such
as a remote file system backup service that runs nightly when
systems are lightly loaded).

Iterative daemons are relatively straight-forward to design
and implement since they often execute their service requests
internally within a single process address space, as shown by
the following pseudo-code:

void iterative_daemon (void)
{

initialize listener endpoint(s)
for (each new client request)
{

retrieve request from input queue
perform requested service
if (response required)

send response to client
}

}

As a consequence of this iterative structure, the processing
of each request is serialized at a relatively coarse-grained
level (e.g., at the interface between the application and the
transport layer). However, this coarse-grained level of con-
currency potentially underutilizes the processing resources
(such as multiple CPUs) and OS features (such as support
for parallel DMA transfer to/from I/O devices) available on
a host platform. In addition, iterative daemons may also
prevent clients from making progress while they are blocked
awaiting their turn. Client-side blocking tends to complicate
retransmission timeout calculations. This, in turn, triggers
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excessive network traffic and may result in duplicate requests
being received by a server.

A concurrent daemon, on the other hand, handles multiple
requests from clients simultaneously. Depending on the OS
and hardware platform, a concurrent daemon either executes
its services on multiple CPUs or time-slices its attention be-
tween separate services on a single CPU. If the server is a
single-service daemon, multiple copies of the same service
may run simultaneously. Moreover, if the server is a multi-
service daemon, multiple copies of different services may
also run simultaneously.

Concurrent daemons are well-suited for I/O-bound and/or
long-duration services that require a variable amount of time
to execute. Unlike iterative daemons, concurrent daemons
allow more fine-grained synchronization techniques that seri-
alize requests at an application-defined level (such as record-
level locking in a database). This requires concurrency con-
trol mechanisms (such as semaphores or mutex locks [18])
that ensure robust cooperation and sharing of data between
simultaneously active processes and threads.

Multi-threading mechanisms are rapidly becoming avail-
able on most OS platforms [18]. A thread is an independent
series of instructionsexecuted withina single process address
space. This address space may be shared with other indepen-
dently executing threads. Threads are often characterized
as “lightweight processes” since they maintain minimal state
information, require less overhead to spawn and synchro-
nize, and inter-communicate via shared memory rather than
message passing [19]. Under certain circumstances, it is ad-
vantageous to implement concurrent daemons that perform
multiple service requests in separate threads rather than sep-
arate processes. For example, cooperating services that fre-
quently reference common memory-resident data structures
are often simpler and more efficient to implement via threads.

Executing all services via threads within the same address
space potentially reduces daemon robustness, however. This
problem occurs since separate threads within a single process
are generally not protected from one another in order to min-
imize time and space overhead. Therefore, one faulty service
may corrupt global data shared by services running in other
threads in the process. This may produce incorrect results,
crash an entire process, or cause a daemon to hang indefi-
nitely. To increase robustness, many traditional concurrent
daemons are implemented as external services. For exam-
ple, services that base their security mechanisms on process
ownership (such as the Internet ftp and telnet) are typi-
cally implemented as external services to prevent accidental
or intentional access to unauthorized resources.

Concurrent daemons are often structured with a master
service dispatcher that spawns a separate slave process or
thread to perform each request asynchronously. Typically,
the master dispatcher process continues to listen for new
requests, as follows:

void concurrent_daemon_master (void)
{

initialize listener endpoint(s)
for (each new client request)

{
retrieve request from input queue
if (one-shot daemon)

spawn new slave process or thread
pass request to the slave process

or thread that performs the
requested service

}
}

The slave portion of a concurrent daemon generally executes
within a separate process or thread using the following algo-
rithm:

void concurrent_daemon_slave (void)
{

for (each request from master daemon)
{

perform requested service
if (response required)

send response to client
if (slave is a one-shot daemon)

terminate
}

}

In most modern operating systems, concurrent processing
of multiple service requests is supported directly by the OS.
The OS handles all process and thread management activities
required to schedule, suspend, and resume. Moreover, if
multiple CPUs are available, daemon services may execute
in parallel [18].

A concurrent daemon may also be designed to handle
multiple requests simultaneously within a single-threaded
process. For instance, the standard X server from the
MIT X windows system operates as a single-threaded con-
current daemon. Single-threaded concurrent daemons may
be implemented by explicitly time-slicing their attention to
each request via techniques such as port demultiplexing (e.g.,
select or poll), non-blocking I/O, or signal-based user-
level coroutines. The following pseudo-code illustrates the
typical style of programming used for a single-threaded con-
current daemon based on select or poll:3

void single_threaded_concurrent_daemon (void)
{

initialize listener endpoint(s)
for (;;)
{

wait for client requests on
multiple endpoints simultaneously

for (each active client request)
{

perform request
if (response is necessary)

send response to client
}

}
}

3It is tempting to decompose a network daemon’s internal architecture
by refining these algorithmic pseudo-codeexamples directly. As subsequent
articles demonstrate, however, structuring daemonsvia object-oriented tech-
niques results in significantly more modular, extensible, and reusable server
designs and implementations.
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Compared with full-fledged OS support for multi-
threading, single-threaded concurrency techniques possess
several limitations. They are generally complicated to pro-
gram since developers must manually perform process pre-
emption by explicitly yielding the thread of control periodi-
cally and manually saving and restoring context information
during service suspension and resumption. Moreover, each
request must be executed for a sufficiently short duration
so it appears to clients that requests are being handled con-
currently rather than sequentially. Another limitation with
single-threaded concurrent daemons is that their performance
may be greatly reduced if an OS blocks all services in an entire
process whenever one service makes a system call or incurs
a page fault. Multi-threading mechanisms in many modern
operating systems [18, 20] overcome these performance lim-
itations by allowing preemptive, fully parallel execution of
independent services running in separate threads.

Both iterative and concurrent daemons may offer multiple
services or simply a single service. For example, inetd is a
concurrent multi-service daemon with respect to its external
services, whereas it is an iterative, multi-service daemon
with respect to its internal services. Other daemon control
frameworks (such as the ASX framework [4]) offer more
flexible support for concurrent execution of both internal and
external services.

� Eager vs. On-demand vs. Lazy Process/Thread Invoca-
tion: Several process- and thread-based invocation mech-
anisms help developers optimize concurrent daemon perfor-
mance. The alternatives discussed below enable developers
to adaptively tune daemon concurrency levels to match client
demands and available OS processing resources. In general,
the different approaches tradeoff decreased startup overhead
for increased resource consumption.

Eager invocation pre-spawns one or more OS processes
or threads at daemon creation time. These “warm-started”
execution resources form a pool that helps improve response
time by reducing service startup overhead. Depending on
factors such as number of available CPUs, current machine
load, or the length of a client request queue, this pool may be
expanded or contracted dynamically. On-demand invocation
spawns a new slave process or thread in response to the ar-
rival of client requests. This eliminates unnecessary resource
consumption at the expense of higher costs for starting ser-
vices. Lazy invocation does not immediately spawn a process
when a client request is received. Instead, a timer is set and
the request is handled iteratively by the daemon. If the timer
expires a new slave process is automatically spawned to con-
tinue processing the service independently from the master
service dispatcher process [21].

� Task-based vs. Message-based Process Architectures:
A process architecture represents a binding between vari-
ous units of application services processing (such as layers,
functions, connections, and messages) and various structural
configurations of logical and/or physical CPUs [22]. The
process architecture is one of several factors (along with pro-
tocol, bus, memory, and network interface characteristics)

that significantly impact network daemon performance.
The three basic elements that form the foundation of a

process architecture are (1) the processing elements (CPUs),
which are the underlying execution agents for daemon code,
(2) data and control messages, which are typically sent and
received from one or more applications and network devices,
and (3) service processing tasks, which perform services upon
messages as they arrive and depart. Based upon this classi-
fication, two basic types of process architectures may be
distinguished: task-based and message-based.

In general, task-based process architectures structure mul-
tiple CPUs according to units of daemon service functional-
ity. Conversely, message-based process architectures struc-
ture the CPUs according to the control and data messages re-
ceived from applications and network interfaces. The choice
of process architecture affects key sources of application per-
formance overhead (such as context switching, synchroniza-
tion, scheduling, and data movements costs), as well as influ-
encing demultiplexing strategies and protocol programming
techniques [15]. An in-depth survey of alternative process
architectures appears in [23].

3.5 Configuration Dimensions

A complete network server daemon is typically created by
configuring together its constituent services at static link-time
or during daemon execution. The steps required to configure
a network daemon involve (1) naming and locating a set
of relevant services and (2) linking these services into the
address space of one or more daemons. These configuration
steps may be performed statically and/or dynamically, as
discussed below:

� Statically Named vs. Dynamically Named Services:
Statically named services bind the name of a service onto
object code that exists at compile-time and/or static link-time.
For example, the internal services offered by inetd (such
as echo and daytime) are statically named via “built-in”
functions stored internally within inetd.

Dynamically named services, on the other hand, defer the
binding of a service name onto the object code that imple-
ments the service. Therefore, the code need not be identified,
nor even exist, until a daemon begins executing the corre-
sponding service at run-time. A common example of dy-
namic naming is demonstrated by inetd’s external services
(e.g., rlogin and ftp). These services may be updated
by modifying theinetd.conf configuration file and send-
ing the SIGHUP signal to theinetd process. When inetd
receives this signal, it re-reads its configuration file and reini-
tializes the services it offers.

� Static vs. Dynamic Linking: Static linking is a tech-
nique for creating a complete executable program by binding
together all its object files at compile-time and/or static link-
time (shown in Figure 8 (1)). Dynamic linking, on the other
hand, inserts and/or removes object files into or from the ad-
dress space of a process when a program is initially invoked
or later during run-time (as shown in Figure 8 (2)). Modern
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Figure 8: Static Linking vs. Dynamic Linking

operating systems generally support both implicit and explicit
dynamic linking:

� Implicit dynamic linking defers most address resolu-
tion and relocation operations until a dynamically linked
function is first referenced. This “lazy evaluation” tech-
nique minimizes link editing overhead during daemon
initialization. Implicit dynamic linking is used to im-
plement shared libraries [24], also known as dynamic-
link libraries (DLLs) [20]. Ideally, only one copy of
shared library code exists, regardless of the number of
processes that are simultaneouslyexecuting the library’s
code. Therefore, in many circumstances shared libraries
reduce the memory consumption of both a process in
memory and the corresponding program image stored
on disk.

� Explicit dynamic linking allows an application to obtain,
utilize, and/or remove the run-time address bindings of
certain symbols defined in shared object files. Widely
available explicit dynamic linking facilities include the
dlopen/dlsym/dlclose routines in SVR4 and the
LoadLibrary/GetProcAddress routines in the
WIN32 subsystem of Windows NT. Developers must
carefully consider the subtle tradeoffs between flexibil-
ity and time/space efficiency when choosing between
dynamic and static linking ([24] enumerates many of
the tradeoffs).

� Static vs. Dynamic Configuration: In the context of
network daemons, staticconfiguration refers to the process of
initializing a daemon that contains statically named internal
and/or external services. In this case, a daemon’s services

are not extensible at run-time, which may be necessary for
secure daemons that contain only “trusted” services.

Dynamic configuration, on the other hand, refers to the pro-
cess of initializing a daemon that offers dynamically named
internal and/or external services. When combined with dy-
namic linking and process/thread creation mechanisms, the
services offered by dynamically configured daemons may be
extended flexibly at invocation-timeor during run-time. This
type of flexibility is appealing since it facilitates the following
configuration-related activities:

� Functional Subsetting – dynamic configuration simpli-
fies the steps necessary to produce subsets of function-
ality for application families developed to run across a
range of platforms. For example, by enabling the fine-
grain addition, removal, or modification of services,
explicit dynamic linking allows the same application
framework to be used for space efficient ROM-based
applications, as well as for larger GUI-based distributed
applications.

� ApplicationWorkload Balancing – It is difficult to deter-
mine the relative processing characteristics of applica-
tion services a priori since workloads often vary at run-
time. Therefore, it may be necessary to experiment with
alternative configurations that locate application ser-
vices on different host machines throughout a network.
For example, developers may have the opportunity to
place certain services (such as image rendering) on ei-
ther side of a client/server application. Bottlenecks may
result if many services are configured into the server-
side of an application and too many active clients simul-
taneously access these services. Conversely, configur-
ing many services into the client-side may also result in
a bottleneck since clients often execute on cheaper, less
powerful host machines.

� Dynamic Service Reconfiguration – Highly available
distributed applications (such as mission-critical sys-
tems that perform on-line transaction processing or real-
time remote process control) may require flexible dy-
namic reconfiguration management capabilities. For
example, it may be necessary to phase new versions of
a service into a daemon without disrupting its currently
executing services. Explicit dynamic linking mecha-
nisms significantly enhance the functionality and flex-
ibility of network daemons since they enable services
to be inserted, deleted, or modified at run-time without
first terminating and restarting the underlying process
or thread(s) [25].

4 Concluding Remarks

Distributedcomputing is a promising technology for improv-
ing collaboration through connectivity and interworking; per-
formance through multi-processing; reliability and availabil-
ity through replication; scalability, extensibility, and porta-
bility through modularity; and cost effectiveness through re-
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source sharing and open systems. Compared with stand-
alone applications, however, implementing distributed appli-
cations is often far more challenging since developers must
address additional topics and consider more design alterna-
tives. This article presents a domain analysis of five design
dimensions that developers of network daemons must ad-
dress.

A domain analysis is frequently more effective when it
evolves along with the design and implementation of an ap-
plication framework. To illustrate how this evolution occurs
in practice, upcoming articles in this series utilize the domain
analysis presented in this article to motivate and characterize
the structure and functionality of the ADAPTIVE Service
eXecutive (ASX) framework.

The ASX framework is an object-oriented infrastructure
that simplifies the development of distributed applications
by improving the modularity, extensibility, reusability, porta-
bility, and correctness of their communication, concurrency,
and configuration mechanisms. The tools and techniques in
the ASX framework leverage off advanced OS mechanisms
(such as dynamic linking, multi-threading, and port demulti-
plexing) to support the development, configuration, and use
of a wide range of network daemons.

The complete source code, documentation, and ex-
ample test drivers for the ASX framework is avail-
able via anonymous ftp from ics.uci.edu in the file
gnu/C++ wrappers.tar.Z. The current release has
been tested extensively on a variety of Sun workstations run-
ning SunOS 4.x and 5.x.
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