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Abstract. Aspect-Oriented Modeling (AOM) is a promising technique for un-
tangling the concerns of complex enterprise software systems. AOM decomposes
the cross-cutting concerns of a model into separate models that can be woven to-
gether to form a composite solution model. In many domains, such as multi-tiered
e-commerce web applications, separating concerns is much easier than deducing
the proper way to weave the concerns back together into a solution model. For
example, modeling the types and sizes of caches that can be leveraged by a web
application is much easier than deducing the optimal way to weave the caches
back into the solution architecture to achieve high system throughput.
This paper presents a technique called constraint-based weaving that maps model
weaving to a constraint satisfaction problem (CSP) and uses a constraint-solver
to deduce the appropriate weaving strategy. By mapping model weaving to a
CSP and leveraging a constraint solver, our technique (1) generates solutions that
are correct with respect to the weaving constraints, (2) can incorporate complex
global weaving constraints, (3) can provide weaving solutions that are optimal
with respect to a weaving cost function, and (4) can eliminate manual effort that
would normally be required to specify pointcuts and maintain them as target mod-
els change. The paper also presents the results of a case study that applies our CSP
weaving technique to a representative enterprise Java application. Our evaluation
of this case study showed a reduction in manual effort and the improved solution
correctness/optimality that our technique provides.

1 Introduction

Developers of complex enterprise applications are faced with the daunting task of man-
aging not only numerous functional concerns, such as that the application properly ex-
ecuting key business logic, but also meeting challenging non-functional requirements,
such as end-to-end response time and security. Enterprise domain solutions have tradi-
tionally been developed using large monolithic models that either provide a single view
of the system or a limited set of views [20]. The result of using a limited set of views to
build the system is that certain concerns are not cleanly separated by the dominant lines
of decomposition and are scattered throughout the system’s models.

Aspect-Oriented Modeling (AOM) [6, 16, 39] has emerged as a powerful method of
untangling and managing scattered concerns in large enterprise application models [21,



19]. With AOM, any scattered concern can be extracted into its own view. For example,
caching considerations of an application can be extracted into an aspect. Once caching is
separated into its own aspect, the cache sizes and types can be adjusted independently
of the application components where the caches are applied. When a final composite
solution model for the application is produced, the various aspects are woven back into
the solution model and the numerous affected modeling elements are updated to reflect
the independently modeled concerns.

Although concerns can often be separated easily into their own aspects or views, it is
hard to correctly or optimally merge these concerns back into the solution model. Merg-
ing the models is hard because there are typically numerous competing non-functional
and functional constraints, such as balancing encryption levels for security against end-
to-end performance, that must be balanced against each other without violating domain
constraints (such as maximum available bandwidth). Manual approaches for deriving
solutions to these types of constraints do not scale well.

Most current model weavers [39, 8, 47, 21, 15] rely on techniques, such as specify-
ing queries or patterns to match against joinpoints, that are ideal for matching advice
against methods and constructors in application code, but are not necessarily ideal for
model weaving. Model weaving pointcuts are typically specified as queries or regular
expressions that match the desired properties of the target model elements (joinpoints).
As discussed in Section 3.2, these techniques cannot capture global constraints, such
as resource constraints (e.g., total RAM consumed < available RAM), that are common
in enterprise applications. Because global constraints are not honored by the model
weaver, developers are forced to expend significant effort manually deriving weaving
solutions that honor them.

When weavers cannot handle global constraints, optimization, or dependency-based
constraints, traditional model weaving becomes a manual three stage process, as shown
in Figure 1. First, the advice and joinpoint elements (e.g., caches and components) avail-
able in the solution model are identified in step 1. Second, as shown in steps 2 and 3,
because a weaver cannot handle global constraints or optimization, developers manually
determine which advice elements should be matched to which model elements (e.g., the
cache types, cache sizes, and the components to apply the caches to). This second step
requires substantial effort because it involves deriving a solution to a complex set of
global constraints.

In terms of deriving cache placements in an enterprise application, the second step
involves determining cache architectures that fit within the required memory budget
and respect the numerous dependency and exclusion constraints between caches. After
viable cache architectures are identified, a developer must use the expected request
distribution patterns and queueing theory to predict the optimal cache architecture. As
the examples in Section 3 show, even for a small set of caches and potential cache
locations, the cache placement process requires significant work.

In the third step, developers take this manually-derived solution and translate it
into pointcut definitions that match against model elements using regular expressions
or queries (e.g., a specification of how to insert the caching model elements into the
models to implement the caching architecture). In some cases, the manually derived
solution needs to be translated into the pointcut specification languages of multiple



Fig. 1: The Model Weaving Process

model weavers so that the architecture can be implemented in a set of heterogeneous
models spanning multiple modeling tools. The model weavers then take these final
specifications and merge the models. Each time the underlying solution models change
(e.g., the available memory for caching changes), the global constraints can cause the
entire solution to change (e.g., the previously used caches no longer fit in the budgeted
memory) and the entire three steps must be repeated from scratch.

This paper shows that the manual steps of deriving a weaving solution that meets
the global application requirements (steps 2 and 3) can be automated in many cases
by creating a weaver capable of handling global constraints and optimization. Creating
a weaver that can honor these constraints and optimize weaving allows developers to
translate the high-level application requirements into pointcut specifications and opti-
mization goals that can be used by the weaver when producing a weaving solution. Fi-
nally, because the weaver is responsible for deducing a weaving solution that meets the
overall application requirements, as the individual solution models change, the weaver
can automatically update the global weaving solution and re-implement it on behalf of
the developer for multiple specific model weaving platforms.

This paper shows how model weaving can be mapped to a constraint satisfaction
problem (CSP) [46, 12, 34]. With a CSP formulation of a model weaving problem, a
constraint solver can be used to derive a correct—and in some cases optimal—weaving
solution. Using a constraint solver to derive a correct weaving solution provides the
following key benefits to model weaving:

– It ensures that the solution is correct with respect to the various modeled functional
and non-functional weaving constraints



– A constraint solver can honor global constraints when producing a solution and not
just local regular expression or query-based constraints

– A constraint solver automates the deduction of the correct weaving and saves con-
siderable manual solution derivation effort

– The weaving solution can automatically be updated by the solver when the core
solution models (and hence joinpoints) change

– The solver can produce a platform-independent weaving solution where model
transformations [7, 14] are applied to create a weaving solution for each required
weaving platform and

– The solver can derive an optimal weaving solution (with respect to a cost function)
in many cases.

The remainder of this paper is organized as follows: Section 2 presents the multi-
tiered web application used as a case study throughout the paper; Section 3 shows
current challenges in applying existing model weaving techniques to our case study;
Section 4 describes how constraint solving can be used to derive a correct weaving
solution and how it addresses the gaps in existing solutions; Section 5 presents a map-
ping from model weaving to a constraint satisfaction problem; Section 6 summarizes
empirical results obtained from applying constraint-based weaving to our case study;
Section 7 compares constraint-based weaving with related work; and Section 8 presents
concluding remarks and lessons learned.

2 Case Study: The Java Pet Store

This paper uses a case study based on Sun’s Java Pet Store [35] multi-tiered e-commerce
application. The Pet Store is a canonical e-commerce application for selling pets. Cus-
tomers can create accounts, browse the Pet Store’s product categories, products, and
individual product items (e.g., male adult Bulldog vs. female adult Bulldog).

The Pet Store application was implemented by Sun to showcase the capabilities of
the various Java 2 Enterprise Edition frameworks [45]. The Pet Store has since been
re-implemented or modified by multiple parties, including Microsoft (the .NET Pet
Store) [4] and the Java Spring Framework [5]. The Spring Framework’s version of the
Pet Store includes support for aspects via AspectJ [1] and Spring Interceptors and is
hence the implementation that we base our study.

2.1 Middle-tier Caching in the Pet Store

Our case study focuses on implementing caching in the middle-tier (i.e., the persistent
data access layer) of the Pet Store through caching aspects. The business logic and
views in the Pet Store are relatively simple and thus the retrieval and storage of persis-
tent data is the major performance bottleneck. In performance tests that we ran on the
Pet Store using Apache JMeter [18], the average response time across 3,000 requests
for viewing the product categories was 3 times greater for a remotely hosted database
versus a remotely hosted database with a local data cache (25% hit rate). The same tests
also showed that caching reduced the worst case response time for viewing product
categories by a factor of two.



Our experiments tested only a single middle-tier and back-end configuration of the
Pet Store. Many different configurations are possible. The Spring Pet Store can use a
single database for product and order data or separate databases. Data access objects
(DAOs) are provided for four different database vendors. Choosing the correct way of
weaving caches into the middle-tier of the Pet Store requires considering the following
factors:

– The workload characteristics or distributions of request types, which determine
what data is most beneficial to cache [32]. For example, keeping the product in-
formation in the cache that is most frequently requested will be most beneficial.

– The architecture of the back-end database servers providing product, account, and
order data to the application determines the cost of a query [31]. For example, in
a simple Pet Store deployment where the back-end database is co-located with the
Pet Store’s application server, queries will be less expensive than in an arrangement
where queries must be sent across a network to the database server.

– The hardware hosting the cache and the applications co-located with it will deter-
mine the amount of memory available for caching product data. If the Pet Store is
deployed on small commodity servers with limited memory, large caches may be
undesirable.

– The number of possible cache keys and sizes of the data associated with each cache
item will influence the expected cache hit rate and the penalty for having to transfer
a data set across the network from the database to the application server [36]. For
example, product categories with large numbers of products will be more expensive
to serialize and transfer from the database than the information on a single product
item.

– The frequency that the data associated with the various middle-tier DAOs is up-
dated and the importance of up-to-date information will affect which items can be
cached and any required cache coherence schemes [36]. For example, product item
availability is likely to change frequently, making product items less suitable to
cache than product categories that are unlikely to change.

2.2 Modeling and Integrating Caches into the Pet Store

Aspect modeling can be used effectively to weave caches into the Pet Store to adapt
it for changing request distribution patterns and back-end database configurations. We
used this scenario for our case study to show that although caches can be woven into
code and models to adapt the Pet Store for a new environment, creating and maintaining
a cache weaving solution that satisfies the Pet Store’s global application requirements
takes significant manual effort due to the inability of model weavers to encode and
automate weaving with the global application constraints. Each time the global appli-
cation requirements change, the manually deduced global cache weaving solution must
be updated. Updating the global cache weaving solution involves a number of mod-
els and tools. Figure 2 shows the various models, code artifacts, and tools involved in
implementing caching in the Pet Store.



Fig. 2: Models and Tools Involved in the Pet Store

1. Modeling platforms. We have implemented models of different parts of the Pet Store
in two different modeling tools: the Generic Eclipse Modeling System (GEMS) [50]
and the Generic Modeling Environment (GME) [?]. GME was chosen due to its exten-
sive support for different views, while GEMS was selected for its strengths in model
intelligence, which was used for automating parts of the deployment modeling process.
Using different tools simplifies the derivation of the deployment plan and the under-
standing of the system architecture but also requires some level of integration between
the tools. In Section 4.4, we discuss how our CSP-based weaving approach sits above
the various tools and helps facilitate this integration.

GEMS is a graphical modeling tool built on top of Eclipse [42] and the Eclipse
Modeling Framework (EMF) [11]. GEMS allows developers to use a Visio-like graph-
ical interface to specify metamodels and generate domain-specific modeling language
(DSML) tools for Eclipse. In GEMS, a deployment modeling tool has been imple-
mented to capture the various deployment artifacts, such as required Java Archive Re-
sources (JAR) files, and their placement on application servers. Another Neat Tool
(ANT) [24] build, configuration, and deployment scripts can be generated from the
GEMS deployment model. The GEMS deployment model is shown in Figure 3.

GME is another graphical modeling tool similar to GEMS that allows developers
to graphically specify a metamodel and generate a DSML editor. A modeling tool for
specifying the overall component architecture of the Pet Store has been implemented in
GME. The GME architecture model is used to capture the component types, the various
client types, back-end database architecture, and expected distribution of client requests
to the Pet Store. The GME architecture model is shown in Figure 4.



Fig. 3: GEMS Pet Store Deployment Model

2. Model weaving tools. The caching aspect of the Pet Store is modeled separately from
the GEMS deployment model and GME architecture model. Each time the caching
model is updated, model weaving tools must be used to apply the new caching archi-
tecture to the GEMS and GME models. For the GME models, the C-SAW [43] model
weaver is used to merge the caching architecture into the architecture model. C-SAW re-
lies on a series of weaving definition files to perform the merger. Each manually derived
global cache weaving solution is implemented in C-SAW’s weaving definition files to
apply to the GME architecture models. Again, because we need two separate modeling
tools to produce the best possible deployment and architecture models, we must also
utilize and integrate two separate model weavers into the development process.

The deployment models in GEMS need to be updated via a model weaver, such as
the Atlas Model Weaver (AMW) [15], which can interoperate with models based on
the Eclipse Modeling Framework. With AMW, developers specify two EMF models
and a series of merger directives (i.e., a weaving specification). AMW produces a third
merged EMF model from the two source models. Each global cache weaving solution
must also be implemented as a weaving specification for AMW. Once the AMW spec-
ification is implemented, the cache weaving solution can be merged into the GEMS
EMF-based deployment model to include any required JAR files and cache configura-
tion steps.

3. Aspect weaving tools. Finally, to apply the cache weaving solution to the legacy Pet
Store code, the Java cache advice implementations must be woven into the Pet Store’s
middle-tier objects using AspectJ [1], which is a runtime framework for weaving ad-
vice into Java applications. Although the Spring framework allows the application of



Fig. 4: GME Pet Store Architecture Model

AspectJ advice definitions to the Pet Store, it requires that the Spring bean definition
files for the Pet Store be updated to include the new AspectJ pointcuts and advice spec-
ifications. A final third implementation of the global cache weaving solution must be
created and specified in terms of Spring bean definitions and AspectJ pointcuts.

Overall, there are three separate tool chains that the Pet Store cache weaving solu-
tion must be implemented in. First, C-SAW weaving specifications must be created to
update the GME architectural models. Second, AMW weaving specifications must be
produced to update the GEMS deployment models. Finally, the weaving solution must
be turned into AspectJ advice/pointcut definitions for weaving the caches into the Pet
Store at runtime. Section 4.4 presents our approach of using a platform-independent
weaving solution and model transformation to generate platform-specific solutions for
each of these tool chains.

3 Model Weaving Challenges

One of the primary limitations of applying existing model weavers to the Pet Store case
study described in Section 2 is that existing model weaver pointcut specifications cannot
encode global application constraints, such as memory consumption constraints, and
also cannot leverage global constraints or dependency-based weaving rules to produce
an overall global weaving solution. Developers must instead document and derive a
solution for the overall global application constraints and implement the solution for
each of the numerous modeling and weaving platforms for the Pet Store. Moreover, each
time the underlying global application constraints change (e.g., the memory available
for caches is adjusted) the overall global weaving solution must be recalculated and
implemented in the numerous modeling tools and platforms.



3.1 Differences Between Aspect Weavers and Model Weavers

To understand why model weavers do not currently support global constraints and how
this can be rectified, we first must evaluate aspect weavers at the coding level, which has
influenced model weavers. Aspect weavers, such as AspectJ and HyperJ [3], face an in-
determinate number of potential joinpoints (also referred to as joinpoint shadows [23])
that will be passed through during application execution. For example, late-binding can
be used in a Java application to dynamically load and link in multiple libraries for dif-
ferent parts of the application.

Each library may have hundreds or thousands of classes and numerous methods
per class (each a potential joinpoint). An aspect weaver cannot know which classes
and methods the execution path of the application will pass through before the process
exits. The weaver can therefore never ascertain the exact set of potential joinpoints
that will be used ahead of time. Although the weaver may have knowledge of every
joinpoint shadow, it will not have knowledge of which are actually used at runtime.
Model weaving, however, faces a different situation than a runtime aspect weaver. The
key differences are:

– Model weaving merges two models of finite and known size.
– Because models have no thread of execution, the weaver can ascertain exactly what

joinpoints are used by each model.
– Model weaving speed is less critical than aspect weaving speed at runtime and

adding additional seconds to the total weaving time is not unreasonable.

Because a model weaver has knowledge of the entire set of joinpoints used by the
models at its disposal it can peform a number of activities that are not possible with
runtime weaving where the entire used set of target joinpoints is not known. For ex-
ample, a model weaver can incorporate global constraints into the weaving process. A
runtime weaver cannot honor global constraints because it cannot see the entire used
joinpoint set at once and cannot undo a decision (i.e., applying and executing advice to
a joinpoint) once it is made (i.e., the application state changed by an advice execution
cannot be rolled back). To honor a global constraint, the weaver must be able to see the
entire target joinpoint set to avoid violating a global constraint.

Runtime aspect weaving involves a large number of potential joinpoints or joinpoint
shadows and is not well-suited for capturing and solving global application constraints
as part of the weaving process. When weaving must be performed on an extremely large
set of target joinpoints, the weaver must use a high-efficiency technique for matching
advice to joinpoints (every millisecond counts). The most common technique is to use
a query or regular expression that can be used to determine if a pointcut matches a
joinpoint. The queries and regular expressions are independent of each other, which
allows the weaver to quickly compare each pointcut to the potential joinpoints and
determine matches.

If dependencies were introduced between the queries or expressions (e.g., only
match pointcut A if pointcut B or C do not match), the weaver would be forced to
perform far less efficient matching algorithms. Moreover, since the weaver could not
know the entire joinpoint set passed through the application’s execution thread ahead
of time, it could not honor a dependency, such as match pointcut A only if pointcuts B



and C are never matched, because it cannot predict whether or not B and C will match
in the future. Finally, when dependencies are introduced, there is no longer necessarily
a single correct solution. Situations can arise where the weaver must either choose to
apply A or to apply B and C.

3.2 Challenge 1: Existing Model Weaving Poinctut Specifications Can Not
Encode Global Application Constraints

Most model weavers, such as C-SAW, AMW, and the Motorola WEAVR [13], have
adopted the approach of runtime weavers and do not allow dependencies between point-
cuts or global constraints. Because the model weaver does not incorporate these types of
constraints, developers cannot encode the global application constraints into the weav-
ing specification. Section 4.1 discusses how mapping model weaving to a CSP can be
used to address this limitation. The left side of Figure 5 shows the manual steps (the

Fig. 5: Solution Model Changes Cause Weaving Solution Updates

first four steps) required to derive and implement a weaving solution that satisfies a set
of global constraints. The right side of Figure 5 presents the manual refactoring steps
(the first six steps) that must be performed when the modeled distribution of request
types to the Pet Store changes.

In the Pet Store case study, there are a number of dependencies and global con-
straints that must be honored to find a correct weaving. We created caching advice
implementations that capture all product queries and implementations that are biased
towards specific data items, such as the FishCache. The biased cache is used when the



majority of requests are for a particular product type. The FishCache and the generic
product cache should be mutually exclusive. The use of the FishCache is excluded if the
percentage of requests for fish drops below 50%. Moreover, the generic product cache
will then become applicable and must be applied.

A small change in the solution model can cause numerous significant ripple ef-
fects in the global application constraints and hence weaving solution. This problem of
changes to the solution models of an applicaiton causing substantial refactoring of the
weaving solution is well-known [22]. The problem becomes even more complex, how-
ever, with the global weaving solution where significant refactoring causes multiple
implementations of the weaving specification to change.

The problem with managing this ripple effect with existing model weavers is that
both the FishCache and the generic product cache have a pointcut that matches the same
model element, the ProductDAO. With existing pointcut languages based on regular
expressions or queries, there is no way to specify that only one of the two pointcut
definitions should be matched to the ProductDAO. The pointcut definitions only allow
the developer to specify matching conditions based on joinpoint properties and not on
the matching success of other pointcuts.

Developers often need to restrict the overall cache selection to use less than a spec-
ified amount of memory. For example, rather than having the FishCache and Generic-
Cache be mutually exclusive, the two caches could be allowed to be applied if there is
sufficient memory available to support both. Requiring that the woven caches fit within
a memory budget is a resource constraint on the total memory consumed by the weaving
solution and relies on specifying a property over the entire weaving solution. Existing
regular expression and query-based pointcut languages usually do not capture these
types of rules.

Another challenge of producing this weaving constraint on the memory consumed
by the caches is that it relies on properties of both the advice objects (e.g., the mem-
ory consumed by the cache) and the joinpoint objects (e.g., the memory available to
the hosting object’s application server). Most model weaving pointcut languages allow
specifying conditions only against the properties of the target joinpoints and not over
the advice elements associated with the pointcut. To circumvent this limitation, devel-
opers must manually add up the memory consumed by the advice associated with the
pointcut and encode it into the pointcut specification’s query (e.g., find all elements
hosted by an application server with at least 30 MB of memory).

3.3 Challenge 2: Changes to the Solution Model Can Require Significant
Refactoring of the Weaving Solution

As the solution models of the application that determine the set of joinpoints change,
each manual step in Figure 5 may need to be repeated. The caching solution relies on
multiple solution models, as shown in Figure 6, such as the server request distribution
model, that can all trigger a recalculation of the global weaving solution. Section 4.2
shows how a constraint solver can be used to derive a solution to a model weaving CSP
to automate weaving solution updates and address this challenge. Each recalculation
of the global weaving solution involves multiple complex caculations to determine the
new targets for caches. After the new cache targets are identified, the implementation



Fig. 6: Solution Model Change Sources in Pet Store Cache Weaving

of the solution for each weaving platform, such as the C-SAW weaving definition files,
must be udpated to reflect the new caching architecture.

For example, the correct weaving of caches into the Pet Store requires considering
the back-end organization of the product database. If the database is hosted on a sep-
arate server from the Pet Store’s application server, caching product information can
significantly improve performance, as described in Section 2. The cache weaving so-
lution is no longer correct, however, if biased caches are applied to various product
types that are being retrieved from a remote database and the database is co-hosted with
the Pet Store’s application server. Developer must then update the weaving solution to
produce a new and correct solution for the updated solution model.

As seen in Figure 7, not only are numerous manual steps required to update the
weaving solution when solution model changes occur, but each manual step can be
complex. For example, re-caculating the optimal placement of caches using a queueing
model is non-trivial. Moreover, each manual step in the process is a potential source of
errors that can produce incorrect solutions and require repeating the process. The large
numbers of solution model changes that occur in enterprise development and the com-
plexity of updating the weaving solution to respect global constraints, make manually
updating a global weaving solution hard.

3.4 Challenge 3: Existing Model Weavers Cannot Leverage a Weaving Goal to
Find an Optimal Concern Merging Solution

Another challenge of encoding global application constraints into a weaving specifica-
tion is that global constraints create situations where there are multiple correct solu-



Fig. 7: Challenges of Updating a Weaving Solution

tions. Existing model weavers do not allow situations where there are multiple possible
weaving solutions. In Section 4.3, a method for describing a weaving goal in terms of a
weaving CSP’s variables is presented. This goal definition can then be used to derive an
optimal weaving (for problems up to a certain complexity) with a constraint solver and
address this challenge. Because the weaver cannot choose between weaving solutions,
developers must manually deduce the correct and optimal solution to use.

Optimizing a solution bound by a set of global constraints is a computationally
intensive search process. Searching for an optimal solution involves exploring the so-
lution space (the set of solutions that adhere to the global constraints) to determine the
optimal solution. This type of optimization search can sometimes be performed man-
ually with numerical methods, such as the Simplex [38] method, but is typically hard.
In particular, each time the solution models change, developers must manually derive a
new optimal solution from scratch.

For example, to optimize the allocation of caches to DAOs in the Pet Store, devel-
opers must:

– Evaluate the back-end database configuration to determine if product, account, or
other data must be cached to reduce query latency.

– Derive from the cache deployment constraints what caches can be applied to the
system and in what combinations.

– Determine how much memory is available to the caches and how memory con-
straints restrict potential cache configurations.



– Exhaustively compare feasible caching architectures using queuing analysis to de-
rive the optimal allocation of caches to DAOs based on DAO service rates with/-
without caching and with various cache hit rates.

It is hard to manually perform these complex calculations each time the solution
models change or caching constraints are modified.

3.5 Challenge 4: Maintaining Pointcut Specifications for Multiple Model
Weaving Platforms Takes Significant Manual Effort

Often in model weaving scenarios, changes to a specific view of the system that has
been separated into an aspect require weaving the results back into multiple solution
models. The models may be built on top of multiple heterogenous modeling platforms,
ranging from the EMF models to GME models. Some models may also be legacy code
bases that must be adapted through aspects to meet new performance demands. Each
modeling platform and code base typically use a separate weaving tool and hence point-
cut specification. Section 4.4 shows that a weaver can produce a platform-independent
weaving solution and automatically use model transformation to convert it into multiple
platform-specific pointcut specifications to address this challenge.

Each time the weaving solution changes, the pointcut specifications for each of the
target models will require updating. Each model that depends on the weaving solution
multiplies the number of pointcut specifications that must be aligned with the change.
In large enterprise development projects with a mix of modeling languages, tools, and
legacy code bases, implementing a change to a weaving solution can require consider-
able effort [27, 44].

In the Pet Store example, there are multiple models that must be updated when the
caching solution changes. First, a deployment model in GEMS that relies on EMF must
be updated so that new ANT build and deployment scripts can be generated for the Pet
Store. Next, a GME model must be updated to incorporate the changes into a model
of the overall component architecture of the system. Finally, the new caching solution
must be implemented in the Pet Store by adapting the legacy Pet Store code base by
applying new AspectJ caching advice objects.

Each model must be updated using a separate weaver and pointcut language. For ex-
ample, the GME model is updated with the C-SAW model weaver and the legacy code
base requires rewriting AspectJ pointcut definitions. Synchronizing the weaving spec-
ifications for each model across numerous weaving solution refactorings can require
considerable effort.

4 Constraint-based Weaving

To address the challenges describe in Section 3, we have developed AspectScatter,
which is a model weaver that can

1. Transform a model weaving problem into a CSP and incorporate global constraints
and dependencies between pointcuts to address Challenge 1 from Section 3.2.



2. Automatically derive a weaving solution using a constraint solver that is correct
with respect to a set of global constraints, eliminating the need to manually update
the weaving solution when solution models change, as described in Challenge 2
from Section 3.3

3. Select an optimal weaving solution (when multiple solutions exist) with regard to a
function over the properties of the advice and joinpoints, allowing the weaver rather
than the developer to perform optimization, thereby addressing Challenge 3 from
Section 3.4.

4. Produce a platform-independentweaving model and transform it into multiple platform-
specific weaving solutions for AspectJ, C-SAW, and AMW through model trans-
formations, thus addressing Challenge 4 from Section 3.5.

Figure 8 shows an overview of AspectScatter’s weaving approach. In Step 1, devel-

Fig. 8: Constraint-based Weaving Overview

opers describe the advice, joinpoints, and weaving constraints to AspectScatter using
its domain-specific language (DSL) for specifying aspect weaving problems with global
constraints. In Step 2, AspectScatter transforms the DSL instance into a CSP and uses
a constraint solver to derive a guaranteed correct and, if needed, optimal weaving so-
lution. In Step 3, AspectScatter transforms the solution into a platform-independent
weaving model. Finally, in Step 4, model transformations are used to transform the
platform-independent weaving model into specific implementations, such as C-SAW
weaving definition files, for each target weaving platform.

4.1 Solution 1: Map Model Weaving to a Constraint Satisfaction Problem (CSP)
to Incorporate Global Constraints

To accomodate dependency and global constraints into pointcut specifications, we have
created a mapping from aspect weaving to a CSP. This mapping is possible because of
the greatly reduced number of potential joinpoints in a model compared to source code.
It thus becomes feasible to enumerate and model the joinpoints as variables in a CSP.



Mapping aspect weaving to a CSP and using a constraint solver to derive a weaving
solution addresses Challenge 1 from Section 3.2. CSPs can naturally accomodate both
dependency constraints and complex global constraints, such as resource or schedul-
ing constraints. With existing model weaving approaches developers manually identify
and document solutions to the global weaving constraints. With a CSP formulation of
weaving, conversely, a constraint solver can perform this task automatically as part of
the weaving process.

Manual approaches to creating a weaving solution for a set of constraints have nu-
merous points where errors can be introduced. When AspectScatter is used to derive a
weaving solution, the correctness of the resulting solution is assured with respect to the
weaving constraints. Moreover, in cases where there is no viable solution, AspectScatter
will indicate that weaving is not possible.

A benefit of mapping aspect weaving to a CSP is that extensive prior research on
CSPs can be applied to deriving aspect weaving solutions. Existing research includes
different approaches to finding solutions [28], incorporating soft constraints [41], se-
lecting optimal solutions or approximations in polynomial time [17, 40, 10], and han-
dling conflicting constraints. Conflict resolution has been singled out in model weaving
research as a major challenge. Numerous existing techniques for over-constrainted sys-
tems [25, 48, 9, 26] (i.e., CSPs with conflicting constraints), such as using higher-order
constraints, can be applied by mapping model weaving to a CSP.

4.2 Solution 2: Leverage a Constraint-solver to Automatically Produce a
Correct Weaving Solution from a CSP

With existing weaving approaches, each time the global properties, such as request
distributions change, developers must manually derive a new weaving solution. When
the properties of the solution models change, however, AspectScatter can automatically
solve for new weaving solutions, thereby addressing Challenge 2 from Section 3.3.
The CSP formulation of a weaving problem is based on the weaving constraints and
not specific solution model properties. As long as the constraint relationships do not
change, AspectScatter can automatically re-calculate the weaving solution, using the
Java Choco solver [2], for arbitrary new solution model properties.

For example, if new request distributions are obtained, AspectScatter can re-calculate
the weaving solution to accomodate the new information. Automatically updating the
weaving solution as the solution model properties change can save substantial devel-
opment effort across multiple solution model refactorings. As shown in Solution 4 in
Section 4.4, code generation can be used to update the weaving platform implementa-
tions of the weaving solution automatically.

4.3 Solution 3: Allow Developers to Specify Weaving Goals as Functions of
Advice, Joinpoint, and Weaving Properties and Use a Constraint Solver to
Find an Optimal Weaving Solution

When global and dependency constraints are incorporated into a weaving problem, mul-
tiple valid solutions may exist. AspectScatter allows developers to define properties
of both advice elements and jointpoints and to create constraints on these properties.



Moreover, developers can specify a function over the advice and joinpoint properties
to optimize during the derivation of the weaving solution, thus addressing Challenge 3
from Section 3.4.

Allowing developers to specify optimization goals for the weaver enables different
weaving solutions to be obtained that prioritize application concerns differently. For ex-
ample, the same Pet Store solution models can be used to derive caching solutions that
minimize response time at the expense of memory, balance response time and memory
consumption, or minimize the response time of particular user actions, such as adding
items to the shopping cart. To explore these various solution possibilities, developers
update the optimization function provided to AspectScatter and not the entire weaving
solution calculation process. With the manual optimization approaches required by ex-
isting model weavers, it is typically too time-consuming to evaluate multiple solution
alternatives.

4.4 Solution 4: Use a Platform-independent Weaving Model and Transform it
into a Platform-specific Weaving Model

AspectScatter produces a platform-independent weaving representation of the weav-
ing solution. From this platform-independent weaving solution, AspectScatter’s model
transformation language can be used to create AspectJ, C-SAW, or AMW specific weav-
ing specifications. AspectScatter can also leverage other model transformation tools,
such as ATL [29].

Producing a platform-independent weaving model of the solution and transforming
it into implementations for specific tools allows AspectScatter to eliminate much of the
significant manual effort required to synchronize multiple weaving specifications across
a diverse set of models, modeling languages, and modeling tools. Eliminating this man-
ual effort addresses Challenge 4 from Section 3.5. For example, when the modeled
request distribution changes for the Pet Store, the C-SAW, AspectJ, and GEMS weav-
ing specifications can automatically be re-generated by AspectScatter, as shown in Step
4 of Figure 8.

4.5 The AspectScatter DSL

Manually translating an aspect weaving problem into a CSP using the mapping pre-
sented in Section 5 is not ideal. A CSP model can accomodate global constraints and
dependencies but requires a complex mapping that must be performed correctly to pro-
duce a valid solution. Working directly with the CSP variables to specify a weaving
problem is akin to writing assembly code as opposed to Java or C++ code.

AspectScatter provides a textual DSL for specifying weaving problems and can
automatically transform instances of the DSL into the equivalent CSP model for a con-
straint solver. AspectScatter’s DSL allows developers to work at the advice/joinpoint
level of abstraction and still leverage a CSP and constraint solver for deriving a weav-
ing solution. The basic format for an AspectScatter DSL instance is shown below:



ADVICE
{
(DIRECTIVE;)*

}
JOINPOINT
{
(VARIABLENAME=EXPRESSION;)*

}

The JOINPOINT declaration specifies a joinpoint that ADVICE elements can be
matched against. Each JOINPOINT element contains one or more property declarations
in the form of VARIABLENAME=EXPRESSION. The EXPRESSION can be a constant ex-
pression or a function of other properties. Constraints on the final weaving solution can
specify conditions over the properties of the joinpoints.

Each ADVICE declaration specifies an advice element that can be matched against
the set of JOINPOINT elements. The DIRECTIVES within the advice element specify
the constraints that must be upheld by the weaving solution produced by AspectScat-
ter, properties of the ADVICE element, and properties of the ADVICE element that As-
pectScatter must derive values (e.g., optimal cache size). The directives available in
AspectScatter are shown in Table 1.

As an example, the AspectScatter code:

GenericCache
{
Excludes:FishCache;
DefineVar:CacheSize;

}

defines an advice element called GenericCache. Moreover, the GenericCache ex-
cludes the advice element FishCache from being applied to the same joinpoint as the
GenericCache. The declaration also specifies a variable, called CacheSize, that the
weaver must determine a value.

The values for variables provided by the weaver are determined by labeling the CSP
for the weaving problem. For example, the global constraints for the Pet Store weaving
problem define the goal as the minimization of the response time of the ItemDAO and
ProductDAO, as can be seen below:

Globals {
Define:TotalFish = 100;
Define:TotalBirds = 75;
Define:TotalOtherAnimals = 19;
Constraint:Sources.CacheSize.Sum < 1024;
Goal:minimize, ProductDAO.RequestPercentage * ProductDAO.ResponseTime +

ItemDAO.RequestPercentage * ItemDAO.ResponseTime;
}

Because the response times of these DAOs are dependent on the size of each cache,
the CacheSize variables will be set by the weaver to minimize response time. The global
constraints also define a requirement that the sum of the memory used by the caches
(Sources.CacheSize.Sum) be less than 1,024. Developers can use the AspectScatter
DSL to produce complex aspect weaving problems with both global constraints and
goals.

AspectScatter’s DSL also includes support for filtering the potential joinpoints that
an advice element can be mapped to by requiring that an Object Constraint Language



DIRECTIVE Applied To Description
Requires : ADVICE+ one or more other ADVICE elements Ensures that all of the

specified ADVICE elements are
applied to a JOINPOINT
if the enclosing ADVICE element is

Required : (true| f alse) an ADVICE element The enclosing ADVICE element
must be applied to at least
one JOINPOINT (if true).

Excludes : ADVICE+ one or more other ADVICE elements Ensures that none of the
specified ADVICE are
applied to the same JOINPOINT
as the enclosing ADVICE

Select : [MIN..MAX ],ADVICE+ a cardinality expression and
one or more other ADVICE Ensures that at least MIN

and at most MAX of the
specified ADVICE are
mapped to the same
JOINPOINT as the enclosing ADVICE

Target : CONSTRAINT an ADVICE element Requires that CONSTRAINT
hold true for the
ADVICE and JOINPOINT’s
properties if the
ADVICE is mapped
to the JOINPOINT

Evaluate :
(ocl|groovy),
FILT ER_EXPRESSION an ADVICE element Requires that FILTER_EXPRESSION

defined in OCL or Groovy
hold true for the
ADVICE and JOINPOINT’s
properties if the
ADVICE is mapped
to the JOINPOINT

De f ineVar : VARIABLENAME
(= EXPRESSION)? a weaving problem Defines a variable.

The final value for
the variable is bound
by the weaver and
must cause the optional
EXPRESSION to evaluate
to true

De f ine : VARIABLENAME
= EXPRESSION a weaving problem Defines a variable

and sets a constant
value for it

Goal : (maximize|minimize),
VARIABLE_EXPRESSION a weaving problem Defines an expression over the

properties of ADVICE and
JOINPOINTS that should be
maximized or minimized by
the weaving

Table 1: AspectScatter DSL Directives

(OCL) [49] or Groovy [?] expression hold true for the advice/joinpoint mapping (i.e.,



EXPRESSION (CONSTANT |VARIABLE_EXPRESSION) An expression
(+|− |×)
(CONSTANT |VARIABLE_EXPRESSION)

CONSTRAINT (VARIABLE_EXPRESSION|CONSTANT) Defines a constraint that must hold
(< | > | = |! = | =< | >=) true in the final weaving solution.
(VARIABLE_EXPRESSION|CONSTANT)

VARIABLE_EXPRESSION (VARIABLE_V_EXPRESSION|CONSTANT) An expression over a set of variables
(+|− |×)
(VARIABLE_V_EXPRESSION|CONSTANT)

VARIABLE_V_EXPRESSION (Target|Source).VARIABLENAME The value of the specified defined
variable (VARIABLENAME)
on a ADVICE or JOINPOINT element.
Target specifies that the variable should
be resolved against the JOINPOINT
matched by the enclosing ADVICE.
Source specifies that the variable
should be resolved
against the enclosing
ADVICE element.

Table 2: AspectScatter DSL Expressions

the choice of expression language is up to the user). Filters are defined via the Evaluate
directive. For example, a Groovy constraint can be used to restrict the FishCache from
being applied to any order related DAOs via a regular expression constraint:

FishCache {
...
Evaluate:groovy,{!target.name.contains("Order")};

}

An OCL constraint could be used to further restrict the FishCache to only be applied
to DAOs that receive requests from a category listing page:

FishCache {
...
Evaluate:ocl,{target.requestsFrom->collect(x | x.name = ’ViewCategories.jsp’)->size() > 0};

}

As described in Section 5.4, the filter expressions defined via Evaluate are used to
preprocess the weaving CSP and eliminate unwanted advice/joinpoint combinations.

4.6 AspectScatter Model Transformation Language

AspectScatter’s platform-independentweaving model can be transformed into a platform-
specific model with a number of Java-based model transformation tools, such as ATL.
AspectScatter also includes a simple model transformation tool based on pointcut gen-
eration templates that can be used to create the platform-specific weaving model. Below
we show the use of the built-in transformation language in the context of the C-SAW
weaving definition files needed for the GME model.

C-SAW weaves the caching specification into the GME architecture according to
a set of weaving directives specified in a weaving definition file. An overview of how



Fig. 9: Model Weaving with C-SAW

C-SAW is used for model weaving in the Pet Store is shown in Figure 9. The imple-
mentation of the C-SAW weaving definition file that is used to merge caches into the
architecture model is produced from the platform-independent weaving solution model.

To transform the platform-indenpendent solution into a C-SAW weaving definition
file, an AspectScatter model transformation is applied to the solution to create C-SAW
strategies to update model elements with caches and C-SAW aspects to deduce the el-
ements to which the strategies should be applied. For each cache inserted into the GME
architecture model, two components must be added to the C-SAW weaving definition
file. First, the Strategy for updating the GME model to include the cache and connect it
to the correct component must be created, as shown below:

strategy ProductDAOAddGenericCache( ) {
declare parentModel : model;
declare component, cache : atom;
parentModel := parent();
component := self;
cache := parentModel.addAtom("Cache", "GenericCacheForProductDAO");
parentModel.addConnection("CacheInstallation",cache,component);

}

A root Aspect and Strategy must also be created that matches the root element
of the GME model and invokes the weaving of the individual DAO caches. The root
definitions are shown below:

aspect RootAspect()
{
rootFolder().models()->AddCaches();

}
strategy AddCaches()
{

declare parentModel : model;
parentModel := self;
parentModel.atoms("Component")->select(m|m.name() == "ProductDAO")->ProductDAOAddGenericCache ( );
....

}

For each advice/joinpoint combination, the Strategy to weave in the cache must be
created. Moreover, for each advice/joinpoint combination, a weaving instruction must



be added to the root AddCaches strategy to invoke the advice/joinpoint specific weaving
strategy.

To create the advice/joinpoint specific cache weaving strategy, an AspectScatter
template can be created, as follows:

#advice[*](for-each[list=targets]){#
strategy ${value}Add${advice}Cache( ) {

declare parentModel : model;
declare component, cache : atom;
parentModel := parent();
component := self;
cache := parentModel.addAtom("Cache", "${advice}CacheFor${target}");
parentModel.addConnection("CacheInstallation",cache,component);

}
#}#

The template defines for all advice elements matched against joinpoints "advice[∗]",
create a copy of the template code between "{#" and "#}" for each target joinpoint.
Moreover, each copy of the template has the name of the advice element and target
element inserted into the placeholders "${advice}" and "${value}", respectively.

After deriving a weaving solution, AspectScatter uses the templates defined for C-
SAW to produce the final weaving solution for the GME model. Invoking the generated
C-SAW file inserts the caches into the appropriate points in the architecture diagram. A
final woven Pet Store architecture diagram in GME can be seen in Figure 10.

Fig. 10: The GME Architecture Model with Caches Woven in by C-SAW



5 Mapping Model Weaving to a CSP

This section presents a mapping from model weaving to a CSP. By producing a CSP
for model weaving, a constraint solver can be used to deduce a correct and in many
cases optimal solution to a weaving problem. As described in Section 4, using a solver
to derive a correct or optimal weaving solution from a CSP addresses Challenges 1 and
4 from Section 3.

A CSP is a set of variables and a set of constraints over those variables. For example,
A < B < 100 is a CSP over the integer variables A and B. A constraint solver derives
a correct labeling (set of values) for the variables in the CSP that adheres to the set of
constraints. For example, A = 10,B = 50 is a valid labeling of the example CSP.

A constraint solver can also be used to derive a labeling of a CSP that maximizes
or minimizes a specific goal function (i.e., a function over the variables). For example,
the solver could be asked to maximize the goal function A + B in our example CSP.
A maximal labeling of the variables with respect to this goal function would be A =
98,B = 99.

5.1 Weaving Table

We define a solution to a model weaving problem as a mapping of elements from an
advice set α to a joinpoint set β that adheres to a set of constraints γ. To represent this
mapping as a CSP, we create a table—called the weaving table—where for each advice
Ai in α and joinpoint B j in β, we define a cell (i.e., a variable in the CSP) Mi j. If the
advice Ai should be applied to the joinpoint B j, then Mi j = 1 (meaning the table cell
<i,j> has value 1). If Ai should not be applied to B j, then Mi j = 0. The rules for building
a weaving solution are described to the constraint solver as constraints over the M i j

variables.
Some weaving constraints are described purely in terms of the weaving table. For

example, Challenge 1 from Section 3.2 introduced the constraint that the FishCache
should only be used if the ProductsCache is not applied to any component. This con-
straint can be defined in terms of a constraint over the weaving table. If the FishCache is
A0 and the ProductsCache is A1, then we can encode this constraint as for all joinpoints,
j, ∑M0 j = 1 → ∑M1 j = 0.

5.2 Advice and Joinpoint Properties Tables

Other weaving constraints must take into account the properties of the advice and join-
point elements and cannot be defined purely in terms of the weaving table. To incor-
porate constraints involving the properties of the advice and joinpoints, we create two
additional tables: the advice properties table and joinpoint properties table. Each row
Pi in the advice properties table represents the properties of the advice element A i. The
columns of the advice table represent the different property types. Thus, the cell <i,j>,
represented by the variable PAi j, contains Ai’s value for the property associated with the
jth column. The joinpoint properties table is constructed in the same fashion with the
rows being the joinpoints (i.e., each cell is denoted by the variable PTi j).



Challenge 1 from Section 3.2 introduced the constraint that the FishCache should
only be applied to the ProductDAO if more than 50% (the majority) of the requests to
the ProductDAO are for fish. We can use the advice and joinpoint properties tables to
encode this request distribution constraint. Let the the joinpoint properties table column
at index 4 be associated with the property for the percentage of requests that are for
Fish. Moreover, let A0 be the FishCache and B1 be the ProductDAO. The example
request distribution constraint can be encoded as M01 → PT14 > 50.

5.3 Global Constraints

In enterprise systems, global constraints are often needed to limit the amount of mem-
ory, bandwidth, or CPU consumed by a weaving solution. Global constraints can nat-
urally be incorporated into the CSP model as constraints involving the entire set of
variables in the weaving table. For example, the memory constraint on the total amount
of RAM consumed by the caches, described in Challenge 1 from Section 3.2, can be
specified as a constraint on the weaving and properties tables.

Let the joinpoint property table column at index 5 represent the amount of free
memory available on the hosting application server of each joinpoint. Moreover, let the
advice property table column at index 3 contain the amount of memory consumed by
each cache. The memory consumption constraint can be specified as: for all advice,
i, and joinpoints, j, ∑PAi4 ∗Mi j < ∑PTj5. If an advice element is matched against a
joinpoint, the corresponding Mi j variable is set to 1 and the advice element’s memory
consumption value, PAi4, is added to the total consumed memory on the target applica-
tion server. The constraint that the consumed memory be less than the available memory
is captured by the stipulation that this sum be < ∑PTj5, which is the total amount of
free memory available on the joinpoint’s application server.

5.4 Joinpoint Feasibility Filtering with Regular Expressions and Queries

Some types of constraints, such as constraints that require matching strings against
regular expressions, are more naturally represented using existing query and regular
expression techniques. The CSP approach to model weaving can also incorporate these
types of constraint expressions. Regular expressions, queries, and other pointcut expres-
sions that do not have dependenices can be used as an initial filtering step to explicitly
set zero values from some Mi j variables. The filtering step reduces the set of feasible
joinpoints that the solver must consider when producing a weaving solution.

For example, the FishCache should only be applied to DAOs with the naming con-
vention "Product*". This rule can be captured with an existing pointcut language and
then checked against all possible joinpoints. For each joinpoint, j, that the pointcut does
not match, the CSP variable, Mi j, for each advice element, i, associated with the point-
cut is set to 0. Layering existing dependency-free pointcut languages as filters on top of
the CSP based weaver can help to increase the number of labeled variables provided to
the solver and thus reduce solving time.



5.5 Weaving Optimization

Challenge 3 from Section 3.4 showed the need for the ability to incorporate a weaving
goal to produce an optimal weaving. Using a CSP model of a weaving problem, a
weaving goal can be specified as a function over the Mi j, PAi j, and PTi j variables. Once
the goal is defined in terms of these variables, the solver can be used to derive a weaving
solution that maximizes the weaving goal. Moreover, the solver can set optimal values
for attributes of the advice elements, such as cache size.

6 Applying Constraint-based Weaving to the Java Pet Store

This section demonstrates the reduction in manual effort and complexity achieved by
applying AspectScatter to the Spring Java Pet Store to handle global constraints and
generate platform-specific weaving implementations. For comparison, we also applied
the existing weaving platforms C-SAW and AspectJ to the same code base using a
manual weaving solution derivation process. The results document the manual effort
required to derive and implement a caching solution for the Pet Store’s ItemDAO and
ProductDAO.

We evaluated both the manual effort required to use the existing weaving solutions
to implement a potentially non-optimal caching solution and the effort required to derive
and implement a guaranteed optimal caching solution. By comparing the two different
processes using existing weavers, we determined how much of the manual effort results
from supporting multiple weaving platforms and how much results from the solution
derivation process. Both processes with existing tools were then compared to a process
using AspectScatter to evaluate the reduction in solution derivation complexity and
solution implementation effort provided by AspectScatter.

6.1 Deriving and Implementing a Non-Optimal Caching Solution with Existing
Weaving Techniques

The results for applying existing weavers to derive and implement a non-optimal caching
solution are shown in Figure 11. Each individual manual set of steps is associated with
an activity that corresponds to the process diagram shown in Figure 5. The results tables
contain minimum and maximum values for the number of steps and lines of code. The
implementation of each step is dependent on the solution chosen. The minimum value
assumes that only a single cache is woven into the Pet Store, whereas the maximum
value assumes every possible cache is used.

The top table in Figure 11 shows the effort required to produce the initial caching
solution and implementation for the Pet Store. In the first two steps, developers identify
and catalog the advice and joinpoint elements. Developers then pick a caching architec-
ture (which may or may not be good or optimal) that will be used to produce a weaving
solution. In the next three steps, developers must implement the weaving solution as a
C-SAW weaving definition file. Finally, developers must update the Spring bean defini-
tion file with various directives to use AspectJ to weave the caches into the legacy Pet
Store code base.



Fig. 11: Manual Effort Required for Using Existing Model Weaving Techniques Without Caching
Optimization

The bottom table in Figure 11 documents the steps required to update the caching
architecture and weaving implementation to incorporate a change in the distribution of
request types to the Pet Store. In the first step, the developer derives a new caching
architecture. In the next six steps, developers remove any caches from the original C-
SAW and AspectJ implementations that are no longer used by the new solution. Finally,
in the last six steps, the new caching solution is implemented using C-SAW and AspectJ.

6.2 Deriving and Implementing an Optimal Caching Solution with Existing
Weaving Techniques

Figure 12 presents the manual effort to derive and implement an optimal caching so-
lution for the Pet Store using existing weavers. The change in this experiment is that
it measures the manual effort required to derive an optimal solution for the Pet Store
by calculating the Pet Store’s response time using each potential caching architecture
and choosing the optimal one. The steps for implementing the weaving solution are
identical to those from the results presented in Figure 11.

The steps labeled Derive Optimal Caching Strategy in Figure 12 presents the man-
ual optimal solution derivation effort incorporated into this result set. First, developers
must enumerate and check the correctness according to the domain constraints, or each
potential caching architecture for both the ProductDAO and ItemDAO. Developers must
then enumerate and check the correctness of the overall caching architectures produced
from each unique combination of ProductDAO and ItemDAO caching architectures.
After determining the set of valid caching architectures, developers must use the Pet



Fig. 12: Manual Effort Required for Using Existing Model Weaving Techniques With Caching
Optimization



Store’s modeled request distribution, memory constraints, and response time goals to
derive the optimal cache sizes and best possible response time of each caching architec-
ture. Finally, developers select the optimal overall architecture and implements it using
C-SAW and AspectJ.

As shown in Figure 13, refactoring the weaving solution to accomodate the solution
model change in request type distributions forces developers to repeat the entire process.
First, they must go back and perform the optimal solution derivation process again.
After a new result is obtained, the existing solution implementations in C-SAW and
AspectJ must be refactored to mirror the new caching structure.

Fig. 13: Manual Effort Required for Using Existing Model Weaving Techniques to Refactor Op-
timal Caching Architecture



6.3 Deriving and Implementing an Optimal Caching Solution using
AspectScatter

Figure 14 contains the steps required to accomplish both the initial implementation of
the Pet Store caching solution and the refactoring cost when the request distribution
changes. In steps 1 and 2, developers use AspectScatter’s DSL to specify the caches,

Fig. 14: Manual Effort Required for Using AspectScatter With Caching Optimization

joinpoints, and constraints for the weaving problem. Developers then define the weav-
ing goal, the response time of the application in terms of the properties of the joinpoints
and advice elements woven into a solution. The goal is later used by AspectScatter to
ensure that the derived weaving solution is optimal.

The next two steps (3 and 4) require the developer to create a model transformation,
using AspectScatter’s transformation templates, as described in Section 4.6, to spec-
ify how to transform the platform-independent weaving solution into a C-SAW imple-
mentation. The approach thus represents a higher-order transformation where C-SAW
transformations are generated from more abstract transformation rules. The subsequent
three steps define a model transformation to produce the AspectJ implementation. Fi-
nally, AspectScatter is invoked to deduce the optimal solution and generate the C-SAW
and AspectJ implementations.

The bottom table in 14 presents the steps required to refactor the solution to acco-
modate the change in request distributions. Once the aspect weaving problem is defined
using AspectScatter’s DSL, the change in request distributions requires updating one or
both of the request distribution properties of the two joinpoints (i.e., the ProductDAO
and ItemDAO) in the AspectScater DSL instance. After the properties are updated, As-
pectScatter is invoked to recalculate the optimal caching architecture and regenerate the



C-SAW and AspectJ implementations using the previously defined model transforma-
tions.

6.4 Results Analysis and Comparison of Techniques

By comparing the initial number of lines of code (shown in Figures 11-14) required to
implement the caching solution using each of the three techniques, the initial cost of
defining an AspectScatter problem and solution model transformations can be derived.
AspectScatter initially requires 81 lines of code versus between 24 and 100 for the
approach based on existing techniques. A solution involving all caches requires 100
lines of code. In the worst case where only a single cache is involved in the initial
architecture, AspectScatter requires an additional 57 lines of code. If all caches are
involved, AspectScatter saves approximately 19 lines of code.

The benefit of AspectScatter’s use of model transformations becomes most appar-
ent by comparing the refactoring results. AspectScatter only requires the developer to
change between 1-2 lines of code before invoking AspectScatter to regenerate the C-
SAW and AspectJ implementations. Using the existing weaving approaches, the devel-
oper must change between 24-200 lines of code. Moreover, this manual effort required
by the existing approaches is incurred per solution model change.

This evaluation also considered only one aspect: considering multiple aspects would
further emphasize the advantage of an automated approach. In the best case for the ex-
isting approaches, the initial cost of implementing the weaving solution and refactoring
for three solution model changes is 96 lines of code. AspectScatter, in comparison only
requires 84. In the worst case, using the existing solutions requires roughly 700 lines of
code versus AspectScatter’s maximum of 87.

Next, by comparing the total number of manual steps in Figures 11-14 for deriving
and implementing the caching architecture, the initial process overhead of AspectScat-
ter can be evaluated. In the simplest case where only a single cache is applied, us-
ing existing approaches requires roughly 8 steps versus AspectScatter’s 21. If multiple
caches are used, the existing approaches can require up to 24 or 138 steps depending on
whether or not an optimal solution is sought. AspectScatter, in contrast, requires only
21 steps regardless of the number of caches used.

When the solution needs to be refactored for the request distribution change, the
manual effort savings of AspectScatter become much more apparent. AspectScatter
requires at most 3 steps to recalculate and implement the optimal solution. Existing
approaches, however, require a minimum of 21-26 steps and a maximum of 43-157
depending on whether or not an optimal solution is needed. Again, the manual effort
savings that AspectScatter provides is per solution model change. The more times key
information in the solution model changes, the greater benefit provided by AspectScat-
ter over manual efforts of model evolution.

6.5 Weaving Performance

There is no definitive rule to predict the time required to solve an arbitrary CSP. The
solution time is dependent on the types of constraints, the number of variables, the
degree of optimality required, and the initial variable values provided to the solver.



Furthermore, internally, the algorithms used by the solver and solver’s implementation
language can also significantly affect performance.

Our experience with AspectScatter indicated that the weaving process usually takes
10ms to a few seconds. For example, to solve a weaving problem involving the optimal
weaving of 6 caches that can be woven into any of 10 different components with fairly
tight memory constraints requires approximately 120ms on an Intel Core 2 Duo pro-
cessor with 2 gigabytes of memory. If a correct—but not necessarily optimal solution
is needed—the solving time is roughly 22ms. Doubling the available cache memory
budget essentially halves the optimal solution derivation time to 64ms. The same prob-
lem expanded to 12 caches and 10 components requires a range from 94ms to 2,302ms
depending on the tightness (ı.e., amount of slack memory) of the resource constraints.

In practice, we found that AspectScatter quickly solves most weaving problems.
It is easy to produce synthetic modeling problems with poor performance, but realis-
tic model weaving examples usually have relatively limited variability in the weaving
process. For example, although a caching aspect could theoretically be applied to any
component in an application, this behavior is rarely desired. Instead, developers nor-
mally have numerous functional and other constraints that bound the solution space
significantly. In the Pet Store, for example, we restrict caching to the four key DAOs
that form the core of the middle-tier.

In cases where developers do encounter a poorly performing problem instance, there
are a number of potential courses of action to remedy the situation. One approach is to
relax the constraints, e.g., allow the caches to use more memory. Developers can also
improve solving speed by accepting less optimal solutions, e.g., solving for a cache
architecture that produces an average response time below a certain threshold rather
than an optimal response time. Finally, developers can try algorithmic changes, such as
using different solution space search algorithms, e.g., simulated annealing [40], greedy
randomized adaptive search [40], and genetic algorithms [40].

7 Related Work

This section compares our research on AspectScatter to related work. Section 7.1 com-
pares and constrasts AspectScatter to other model weavers. Section 7.2 compares the
CSP-based model weaving approach to other aspect-oriented modeling techniques. Fi-
nally, Section 7.3 compares AspectScatter to other approaches for incorporating appli-
cation requirements into aspect-oriented modeling.

7.1 Model Weaving

Reddy et al. [39] propose a technique that uses model element signatures and com-
position directives to perform model weaving. Reddy’s approach focuses on different
challenges of model weaving and is complementary to the constraint-based weaving ap-
proach used by AspectScatter. AspectScatter focuses on incorporating and automating
the solution and optimization of global weaving constraints. Reddy’s approach, how-
ever, is targeted towards the difficulties of identifying joinpoints and correctly modify-
ing the structure of a model to perform a merger. First, model element signatures can



be incorporated as a CSP filtering step, as described in Section 5.4. Second, the com-
position directives developed by Reddy can be used to implement the platform-specific
weaving model produced by AspectScatter, as described in Section 4.4. AspectScat-
ter, in contrast, can derive and optimize the global weaving solution, which Reddy’s
techniques are not designed to do.

Cottenier et al. [13] have developed a model weaver called the Motorola WEAVR.
The WEAVR provides complex weaving and aspect visualization capabilities for mod-
els. Although WEAVR has numerous capabilities, it is designed for a different part
of the model weaving process than AspectScatter. AspectScatter sits above multiple
weaving platforms to manage the overall global weaving solution. Motorola WEAVR,
in contrast, is a specific weaving platform used to merge models and visualize model
weaving results. The two tools are synergistic. Motoroal WEAVR is a weaving platform
that provides numerous analytic and modeling capabilities. AspectScatter is a high-level
weaver that can be used to produce weaving specifications for WEAVR. Furthermore,
WEAVR is not designed to model and solve the complex global constraints that As-
pectScatter is built for.

7.2 Aspect-Oriented Modeling

Lahire et al. [30] motivate the need for and describe a potential solution for incorpo-
rating variability into AOM. Their work motivates some of the challenges addressed in
this paper, namely the challenge of managing variability in how advice can be applied
to joinpoints. AspectScatter offers an implementation of a solver designed to: (1) han-
dle the solution variability presented by Lahire et al., (2) incorporate global constraints
to ensure that individual variable solution weaving decisions produce an overall correct
solution, and (3) optimally choose values for points of variability when multiple solu-
tions are possible. Lahire et al. initially explore and describe a potential solution for
capturing and handling AOM variability. AspectScatter provides a concrete approach
to handling numerous facets described by Lahire et al.

Morin et al. [37] have also developed a generic model of aspect-oriented model-
ing. Their technique generalizes joinpoints to model snippets and pointcuts to model
templates. AspectScatter also adopts a generalized view of pointcuts and joinpoints.
AspectScatter provides global weaving constraints and optimization, whereas the tech-
niques developed by Morin et al. are for situations where there is no ambiguity in
which potential joinpoints a template should be matched against. AspectScatter auto-
mates part of the weaving design process, the derivation of the global weaving solution,
whereas Morin et al. proposes techniques to generically model how a weaving solu-
tion is applied. Each technique is geared towards a different phase of the weaving pro-
cess. AspectScatter solves the weaving solution derivation challenges and Morin et al.’s
techniques address the platform-specific weaving solution implementation, described
in Section 4.4.

7.3 Models and Constraints

Lengyel et al. [33] present a technique for validating the correctness of model trans-
formations by tying constraints to transformation rules. Lengyel’s technique provides



a method for identifying cross-cutting constraints and refactoring them into aspects.
These techniques for capturing transformation constraints as aspects is complemen-
tary to AspectScatter. Whereas Lengyel’s techniques are designed to help maintain the
correctness of model transformations, AspectScatter is designed to automatically main-
tain the correctness of model weaving. Moreover, AspectScatter is designed to derive
solutions to constraints but Lengyel’s techniques are for checking constraints and iden-
tifying aspects. Lengyel’s techniques could be used to help guarantee the correctness of
the transformations that AspectScatter uses to produce the platform-specific weaving
implementations presented in Section 4.4.

Baniassad et al. [6] have developed an approach to help idenfity aspects in designs
and trace the relationship between aspects and requirements. Their approach is related
to AspectScatter’s incorporation of global system requirements and goals into the as-
pect weaving specification. Baniassad et al.’s techniques help to identify and trace the
aspects and their relationship with requirements whereas AspectScatter is designed to
capture and solve requirements guiding the placement of aspects into a system. Thus,
although the approaches are both related to understanding and managing how require-
ments affect aspects, the challenges that Baniassad et al. address (i.e., identification
and tracing of aspects) are different than AspectScatter’s (i.e., capture and solving of
weaving requirements and goals).

8 Concluding Remarks

A significant amount of manual effort is incurred by the inability to encode the global
application requirements into the model weaving specification and honor them dur-
ing the weaving process. This gap in existing model weavers encourages developers to
manually derive and maintain solutions to the global weaving constraints as the under-
lying solution models evolve. Moreover, developers may need to implement the global
weaving solution in the pointcut languages of multiple model weavers.

This paper describes how providing a model weaver with knowledge of the entire
set of joinpoints used during the weaving process ahead of time makes it possible to
map model weaving to a CSP and use a constraint solver to derive a weaving that can
incorporate global, dependency, and expression-based constraints. From our experience
using AspectScatter’s approach of mapping model weaving to a CSP, we have learned
that CSP-based model weaving reduces model weaving effort by:

1. Capturing and allowing the weaver to solve the global application constraints re-
quired to produce a weaving solution

2. Informing the weaver of the overall solution goals so that the weaver can derive the
best overall weaving solution with respect to a cost function and

3. Encoding using model transformations to automatically generate implementations
of the global weaving solution for each required weaving platform.

By capturing and leveraging this critical set of domain knowledge, AspectScatter
can automate the complex process of deriving weaving solutions and maintaining them
as solution models change. By applying Aspect Scatter to the Java Pet Store case study,
we showed that the CSP-based weaving approach required 72% total number of lines of



code to model and implement an optimal cache weaving solution over two refactorings.
Over three refactorings, the CSP-based approach required 81.6% fewer lines of code
than a traditional AOM approach.

AspectScatter is an open-source tool available from http://www.eclipse.org/gmt/gems.
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