
Creating Self-healing Service
Compositions with Feature
Models and Microrebooting
Abstract:

Service-oriented architectures (SOAs) provide loose coupling and software reuse in enterprise
applications. SOAs expose individual reusable software applications or components as remotely
accessible services that communicate using standardized message-oriented protocols, such as the
Simple Object Access Protocol (SOAP). SOAs enable applications to heal themselves by failing
over to alternate services when a critical application component or service reference fails. The
numerous intricate details of identifying errors, releasing resources used to access services, and
planning a recovery strategy, however, makes it hard to develop applications that can heal by
swapping services.

Model-driven engineering (MDE) offers a potential solution to handling the complexity of
building applications that can heal by swapping services. Existing MDE solutions for building
adaptive applications require developers to explicitly model each potential error state and recov-
ery action, which can be extremely complex. Moreover, developers must then implement the
complex recovery actions modeled, which adds significant development complexity. This paper
presents an MDE technique called Refresh that is based on microrebooting and uses (1) feature
models to derive a new and correct service composition when afailure occurs, (2) an application’s
component container to shutdown the reference to the failedservice, and (3) the application con-
tainer to reboot the subsystem with the new service composition. We also present the results from
a case study that shows Refresh significantly reduces both modeling and healing implementation
effort.

1 Introduction

Organizations are rapidly deploying service-oriented architec-
tures (SOAs) that create loosely coupled and highly reusable ap-
plication components through the use of standardized message-
oriented protocols, such as the Simple Object Access Protocol
(SOAP). Often, within a single organization or group of collab-
orating organizations, multiple services are available that can
accomplish a particular task. The redundancy in services pro-
vides the potential to create applications that can heal them-
selves by failing over to leverage similar services when a service
in their service composition (i.e., the services used by the appli-
cation) fails. Failing over to another equivalent—but not neces-
sarily identical—service can create robust applications that can
adapt to service failures and remain functional.

Designing and implementing a mechanism to build self-
healing service compositions is complex. Since software de-
velopment projects already have low success rates and high
costs, building a service capable of healing is hard [4]. More-
over, building adaptive mechanisms greatly increases applica-
tion complexity and can be hard to decouple from application
code if the development of the adaptive mechanism is not suc-
cessful.

Model-driven engineering (MDE) provides a potential solu-
tion to managing the complexity of developing adaptive ser-
vices. In an MDE approach, high-level adaptive models are
used to generate the complex adaptive code required to heal the
application when services fail. This approach allows MDE tools
to generate much of the complex healing code, and in many
cases, remove the healing code if it does not function properly.

Although numerous approaches [8, 16, 12, 7] have been devised
to build MDE models and platforms for enterprise applications,
these approaches tend to suffer from one or more of the follow-
ing problems:

1. They require significant development effort to explicitly
model the numerous potential error states and recovery
paths from an error state to a correct state and

2. They require extensive effort to develop the adaptation ac-
tion implementations for a realistic application.

This paper presents an MDE approach and toolset calledRe-
fresh, for designing and implementing self-healing service com-
positions that addresses the limitations outlined above. Refresh
is specifically designed for healing a service composition when
(1) the application is implemented with a component-based
technology, such as Enterprise Java Beans or the CORBA Com-
ponent Model, (2) catastrophic failure is imminent, (3) theap-
plication and any redundant instances in an application cluster
cannot continue functioning correctly in their current configura-
tion, and (4) the application has alternate composable services
that could potentially be exploited to avoid failure.

For each potential error state that an application’s service
composition could enter, conventional MDE adaptation tech-
niques [8, 16, 12, 7] require explicitly modeling both the er-
ror state and the numerous actions to transition from the error
state to a correct state. For large enterprise applications, more-
over, there are usually a significant number of potential error

Copyright c© 200x Inderscience Enterprises Ltd.

1



AccountDAO OrderDAO ProductDAO ItemDAO

DAOs

Single

JTAPresentRef

Multiple

Datasources

JTAPresent JTANotPresent

JTA

PetStore

PetStoreServiceComposition

Figure 1: Pet Store Service Composition Feature Model

states and complex nuanced considerations, such as availabil-
ity of other services, database locks held, and transactionstates.
These considerations make it hard to create a model for ser-
vice composition healing. Rather than explicitly modelingerror
states and recovery actions, Refresh usesFeature Models[17]
to capture the rules for determining what is or is not a correct
configuration/error state.

Feature models describe an application in terms of points of
variability and their affect on each other. For example, in an e-
commerce application, a feature might be a service for access-
ing an order database. The order feature can have different sub-
features, such as different potential services that can serve as the
order database access service. If one particular order database
access service is chosen, it excludes the other potential order
services from being used (it constrains the other features). If
the chosen service fails, a new feature selection can be derived
that does not include the failed service’s feature.

This paper provides the following contributions to the study
and development of self-healing service compositions:

• It shows how when a failure occurs (such as the inability
to communicate with a dependent service) Refresh uses the
application’s feature models to derive a new and valid ser-
vice composition from the currently available services and
components, which eliminates the need to model every po-
tential error state and recovery action.

• It describes Refresh’s use of an approach based onmi-
crorebooting [9], which is a technique for rebooting a
small set of failed components rather than an entire appli-
cation server, to shutdown the failed service composition
and launch the newly derived composition, eliminating the
need for developers to implement recovery actions.

• It presents empirical results from a case study applying
Refresh to an e-commerce application that shows Refresh
provides a∼55% decrease in modeling complexity and
∼60% decrease in implementation cost versus other MDE
approaches for building self-healing service compositions.

The remainder of this paper is organized as follows: Section2
presents the e-commerce application that we will use as a case
study throughout the paper; Section 3 enumerates current chal-
lenges in applying existing MDE techniques for building adap-
tive applications to our case study; Section 4 describes Refresh’s
approach to using feature models and microrebooting to reduce
the complexity of modeling and implementing an application
that can heal; Section 5 analyzes empirical results obtained from

applying Refresh to our case study; Section 6 compares Refresh
with related work; and Section 7 presents concluding remarks.

2 Case Study: The Java Pet Store

To show the complexity of applying conventional MDE tech-
niques to creating healing applications, we present a case study
based on Sun’s Java Pet Store e-commerce application [20]. The
Pet Store provides a web-based storefront for selling pets.The
store includes multiple categories of pets, products (e.g., Bull-
dog and Iguana), and individual product items (e.g., Female
Bulldog Puppy). Customers browse for pets and purchase dif-
ferent items.

Sun and other parties use the Pet Store as a reference appli-
cation to showcase various enterprise Java technologies. Since
the Pet Store application is widely known and can serve as a
reference for comparing different technologies, the Pet Store
has been re-implemented in different programming languages
and with different frameworks. For example, the Java Spring
Framework [15] has created the Spring Pet Store. The Spring
Framework’s version of the Pet Store includes support for inte-
grating web services and is the implementation we have chosen
for the case study.

Figure 1, presents a high-level feature model of the features
related to the Pet Store’s data tier. Features are denoted bythe
various boxes in the diagram. The levels of hierarchy represent
subfeatures. For example, all PetStore instances haveDAOs,
Datasources, andJTA as subfeatures (the filled circles at the
top of the child features denote required features). The Pet
Store Java Transaction API (JTA) feature can either be present,
denoted when the childJTAPresentfeature is selected, or not
present.

A Feature can also specify rules restricting the selection of
other features if the feature is selected. For example, the selec-
tion of theDatasources/Multiple features requires thatJTAPre-
sentalso be selected. This requirement is denoted by theJTAP-
resentRefrequired feature reference underMultiple.

HessianOrderServiceSOAPOrderService LocalOrderDAO BurlapOrderService

OrderDAO

Figure 2: Feature Model of the J2EE Pet Store’s OrderDAO

The SpringFramework allows the swapping of individual
components in the Pet Store with proxies to remote services.

2



Figure 1 lists the various DAOs that are available in the Pet-
Store. Each DAO can potentially be swapped for a remote ser-
vice. Figure 2 shows the various options for the OrderDAO.
Either the OrderDAO can be implemented by a local compo-
nent or it can be implemented as a dynamically created Java
proxy to a SOAP, Burlap, Hessian, or RMI order service. The
case study focuses on failing over from the middle-tier DAOs
to different remote services to demonstrate the complexities of
applying existing MDE techniques.

3 Challenges of Creating Self-healing Service Compositions

A common approach [8, 16, 12, 7, 3, 18, 13] to modeling appli-
cation healing is to model the individual error states that the ap-
plication can enter and a recovery path (a sequence of recovery
actions) to return the application to a correct state. For exam-
ple multiple MDE approaches [3, 18, 13] useState Charts[14]
to capture the various error states of an application and these-
quences of recovery actions to return to a correct state. Enu-
merating each potential error state and each recovery path can
require significant modeling complexity. This section shows
how even when an MDE tool can generate the majority of the
self-healing code for a service composition, the requirement to
model and implement recovery actions places a heavy burden
on developers.

3.1 Challenge 1: Significant Modeling Complexity to
Specify a Recovery Path from an Arbitrary Error
State to a Correct State

A healing model must use different error states for each im-
plementation of a service type or component type. The fail-
ure of the OrderDAO seems like a fairly simple error condition
to model and specify a recovery path for, but it is not. The
problem with modeling each potential error state and recovery
path is that the series of recovery actions that must be invoked
is different for the local OrderDAO and remote service imple-
mentation.

For example, if the local OrderDAO fails, it may be swapped
for another implementation. If a remote service fails, it may be
necessary to free resources, such as memory used by caches or
network ports, that were used by a connection to it. Services
connected through different protocols also need separate error
states to associate their unique recovery actions with.

If the Pet Store’s service composition healing is modeled us-
ing State Charts, as shown in Figure 3, there are 4 different
states for each DAO. To increase readability, Figure 3 does not
include events and guards on transitions, which further compli-
cate the model. There are 20 different states needed to represent
the potential services and components that can serve as the Pet
Store’s DAOs.

For every error state that the system needs to recover from,
the model must explicitly specify a recovery path. For ex-
ample not only should the failure of a Hessian and SOAP-based
order service be modeled separately, but the series of recov-
ery actions attached to each also should be modeled separately.

Figure 3: Pet Store Service Composition State Chart

As with error states, the number of recovery path specifications
produced for healing each component of an enterprise applica-
tion can be large.

The Pet Store requires a number of recovery actions to take
place to swap the service used for a DAO. The various ac-
tions for swapping the OrderDAO to one of the remote ser-
vices is modeled in Figure 4. First, to swap a DAO, a Spring
HotSwappableTargetSource (an object capable of swapping
an active component in the application) must be obtained. Next,
any resources held by the old DAO implementation or DAO
proxy to a remote service must be released. After releasing re-
sources, a new proxy to another remote service can be created.
Finally, the newly created proxy can be swapped into the appli-
cation using theHotSwappableTargetSource. Including the
recovery paths in the model ups the total number of states per
DAO from 4 to 25.

Healing a local error may require evaluating the global
application state. For example, if the Java Transaction API
(JTA) is being used to manage transactions, the Pet Store can
fail over to any remote service and still provide proper transac-
tion behavior. If JTA is not being used to manage transactions,
however, the system can only provide transactions across a sin-
gle datasource, meaning that all the DAOs must be accessing the
same database instance. Requiring the use of a single database
instance prevents an arbitrary service from being chosen. In the
non-JTA situation, the service may only fail over to a remote
service if the service is accessing the same database instance as
all other referenced remote services.

An extension of the OrderDAO recovery State Chart to in-
clude the JTA consideration is show in Figure 5. Each transition
to the swap states now includes a guard to ensure that swapping
is allowed. A newGlobalSwapControllerhas been added to the
model to only allow swapping when either JTA is present or a
single data source is being referenced by the application’sser-
vice composition. Section 4.2 shows how Refresh uses feature
modeling and other techniques to eliminate the need to model
every potential error state and recovery action.

3



Figure 4: OrderDAO Recovery Paths State Chart

3.2 Challenge 2: Significant Complexity to Write Re-
configuration Code that Can Bring the System from
an Arbitrary Error State to a Correct State.

Regardless of the MDE approach used to build the applica-
tion healing mechanism, developers must always implement
the application-specific recovery actions. This requirement par-
allels the development of enterprise applications and services,
where despite the frameworks used, developers are always re-
quired to implement the core business logic. Some specialized
MDE tools may provide pre-built recovery actions for specific
domains, but in general, nearly every MDE approach requires
developers to write the recovery actions.

For each path from an error state to a recovery state, com-
plex recovery logic must be written. The more error states
that are possible in the application, the more recovery actions
must be written by developers. These numerous recovery ac-
tions can be both expensive to develop and hard to test, which
can become problematic when projects are already prone to fail-
ure and cost overruns.

Figure 5: OrderDAO Recovery Paths State Chart when Ac-
counting for JTA

In the Pet Store application, there are four separate DAOs that
can each be swapped to one of four remote services to avoid
failures. To implement a simple swapping mechanism in the
Pet Store, the Spring framework provides numerous complex
utility classes for hotswapping components and connectingto
remote services, such as Apache Axis web services. Despite
these numerous utility classes (as shown in Section 5), to create
an action to swap just the OrderDAO to one of the four remote
services requires 77 lines of Java code to implement the swap-
ping logic and 11 lines of XML code to enable and configure the
swapping action in the Pet Store. Although some level of refac-
toring and object-oriented design can be used to share common
logic across actions, implementing each action still requires sig-
nificant effort. Section 4.3 shows how microrebooting can sig-
nificantly reduce this substantial development burden by load-
ing a new service composition derived by a constraint solver.

3.3 Challenge 3: Executing Arbitrary Recovery Actions
in Arbitrary Error States can have Numerous Unfore-
seen Side-effects.

Error states are often specified in such a way that the system
as a whole can be in numerous different states that all fall un-
der the definition of the same error state. For example, when
the OrderDAO fails, the Pet Store can have orders in progress,
category listings in progress, and numerous other nuanced con-
ditions. Building a robust and correct recovery action requires
taking into account the side effects of the recovery action on the
complex overall state of the application.

For example, what will happen if the local OrderDAO is

4



swapped with a remote service during the submission of one or
more customer orders? Does the safety of the swap depend on
whether or not a local or JTA-based transaction mechanism is
used? These complex nuanced questions are not easy to answer
and must be considered for each recovery action implementa-
tion. These intricacies make developing a recovery action that
will not lead to unforeseen problems hard. Section 4.3 how us-
ing microrebooting as the basis for recovery eliminates many of
these hard to predict recovery side-effects and also provides a
more well understood state transition mechanism.

4 Modeling and Building Healing Adaptations with Refresh

The challenges in Sections 3.1-3.3 stem from two causes: (1)
the requirement that every error state and recovery path must be
modeled explicitly and (2) that developers must implement ev-
ery complex recovery action. This section describes our MDE
toolset, calledRefresh, that eliminates these two sources of sub-
stantial complexity.

4.1 Overview of Refresh

Refresh is based on the concept of microrebooting [9]. When
an error is observed in the application, Refresh uses the applica-
tion’s component container to shutdown and reboot the applica-
tion’s components. Using the application container to shutdown
the failed subsystem takes milliseconds as opposed to the sec-
onds required for a full application server reboot. Since itis
likely that rebooting in the same configuration (e.g.referencing
the same failed remote service) will not fix the error, Refresh
derives a new application configuration and service composi-
tion from the application’s feature models that does not contain
the failed features (e.g., remote services).

The service composition dictates the remote services used
by the application. The application configuration determines
any local component implementations, such a SOAP messaging
classes, needed to communicate and interact properly with the
remote services. After deriving the new application configura-
tion and service composition, Refresh uses the applicationcon-
tainer to reboot the application into the desired configuration.
The overall structure of Refresh is shown in Figure 6.

Refresh interacts directly with the application container, as
shown in Figure 6. During the initial and subsequent con-
tainer booting processes, Refresh transparently insertsappli-
cation probesinto the application to observe the application
components. Observations from the application componentsare
sent back to anevent stream processorthat runs queries against
the application event data, such as exception events, to identify
errors. Whenever an application’s service composition needs
to be healed,environment probesare used to determine avail-
able remote services and global application constraints, such as
whether or not JTA is present.

Refresh uses event stream processing [19] to run queries
against the application’s event data and identify feature fail-
ures. The initial implementation of Refresh, based on the Spring
Framework’s IoC container, uses the Esper event stream pro-
cessor [2] for Java. Esper is a high-performance event stream

Figure 6: Refresh Structure

Figure 7: Error Propogation to Refresh

5



processor that is capable of handling 100,000 events a second
with 2,000 queries on a single dual-core CPU [1].

Each feature in the feature model that could potentially fail
is associated with a group of event stream queries. At runtime,
when a query associated with a feature returns a result, Refresh
is notified that the associated feature has failed, as shown in Fig-
ure 7. The data and objects observed and analyzed by Refresh
are determined by the query specifications.

Once Refresh is notified of a feature failure, its three main
tasks are to use (1) the container to shutdown the application’s
components, (2) the application’s feature model to derive anew
application configuration and service composition, and (3)the
container to reboot the application in the new configuration.
The sequence of events from a feature failure notification tothe
rebooting of the container are shown in Figure 8.

Figure 8: Refresh Reconfiguration, Shutdown, and Launch Re-
covery Sequence

To derive a new configuration of the application that does not
include the failed feature, Refresh transforms the featureselec-
tion problem into a constraint satisfaction problem (CSP) using
techniques that have been developed by us an others in prior
work [22, 6, 23]. Once the feature selection problem is trans-
formed into a CSP, a high-performance general purpose con-
straint solver, such as the Java Choco [5] solver, is used to derive
a new set of features/configuration for the application.

After the new application configuration and service composi-
tion is derived, Refresh invokes the container’s shutdown se-
quence to properly release resources, abort transactions,and
perform other critical activities. The new configuration isin-
jected into the container through programmatic calls or by re-
generating the application’s configuration files [22]. After the
configuration is injected into the container, the application is
launched in the new configuration without the failed service, as
shown in Figure 9.

4.2 Use Feature Modeling to Capture the Rules for Deriv-
ing what is Considered a Correct State

As discussed in Section 3.1, modeling each individual error
state and recovery path is complex. Refresh uses feature model-
ing to avoid requiring developers to model each individual error
state and recovery path. Feature modeling captures the rules–
rather than individual error states and recovery paths–forde-
riving what constitutes a correct application configuration and

Figure 9: Refresh Launches the Application in the New Config-
uration

service composition. In terms of healing, feature modelingde-
scribes:

• The component or service types that are needed to com-
pose the application

• The sets of components or services that can serve as the
implementation of a service type in the application’s com-
position

• The rules dictating the requirements, such as dependent li-
braries, required by each component or service implemen-
tation and

• The rules constraining how the choice of one service im-
plementation restricts the choices of other component or
service implementations in the same application composi-
tion.

When the failure of a feature is observed, Refresh uses the
feature model of the application to derive an alternate set of
features for the application that does not include the failed fea-
ture. For example, in the Pet Store, when theLocalOrderDAO
feature fails, Refresh uses the feature model to derive an alter-
nate feature selection for the Pet Store. In the example shown in
Figure 10, Refresh chooses a new feature selection that usesthe
BurlapOrderServicerather than the failedSOAPOrderService.

Automated Feature Selection Using a Constraint Solver:
The key to Refresh’s healing capabilities is its ability to use a
constraint solver [10] to derive a new feature selection forthe

6



Figure 10: Deriving a new Service Composition from the Pet
Store Feature Model

application automatically. Prior work [22, 5, 6] provides ex-
tensive details on the process for transforming a feature selec-
tion problem into a constraint satisfaction problem (CSP) [10],
which is the input format of a constraint solver, and deriving a
feature selection. We briefly cover this mapping below.

A constraint satisfaction problem is a series of variables and
a set of constraints over the variables. For example, "A+B<C"
is a constraint satisfaction problem over the integer variablesA,
B, andC. A constraint solver automatically derives a correct
labeling (values for the variables). The labeling "A = 1,B =

2,C = 4" is a correct labeling of the example CSP.

A selection of features from a feature model can be repre-
sented by a set of integer variables with domain 0 or 1. Each
variable represents a unique feature from the feature model.
If the variable representing theHessianOrderServiceis repre-
sented by the variableV1, thenV1 = 1 in a labeling of a feature
selection CSP means that the feature is selected in the solution.
If the labeling containsV1 = 0, it implies that the feature is not
selected in the solution. The configuration of an application and
its service composition is represented as a set of these variables
that denote which services and application components are en-
abled in a configuration.

Rules dictating the proper composition of the services are
specified as constraints over theVi variables. For example,
since only one ofHessianOrderServiceandSOAPOrderService
can be used at a time by the Pet Store, a constraint can be
used to capture this rule. Let,V2 be the variable representing
theSOAPOrderService. This rule is specified as the constraint
V1 = 1→V2 = 0. As described in [22], complex rules, such as
memory constraints, can be described using a CSP.

When a feature is flagged as failed, Refresh adds a new con-
straint to the feature selection process preventing the failed fea-
ture from being selected (e.g., Vi = 0). Refresh then uses a the
constraint solver to derive a new feature selection that canbe
used by the application based on the environmental constraints
(e.g. JTA vs. No JTA) and feature model composition con-
straints (e.g., only one of the order services may be selected at
a time).

4.3 Reusing the Component Container’s Shut-
down/Configuration/Launch Mechanisms for State
Transitions

Sections 3.2-3.3 show the complexity and large development
burden of writing recovery actions to heal an application byfail-
ing over to alternate services. Refresh attacks the problemwith
a combination of code reuse and automation. In particular, it
reuses an application container’s ability to shutdown an applica-
tion’s components, reconfigure the components (i.e. create the
newly desired service composition), and launch the application
in the new state (i.e. transition the application into the new ser-
vice composition state). By reusing existing mechanisms that
are well-tested and trusted by developers, the need to writecus-
tom recovery actions is eliminated.

Moreover, since rebooting in the same application configura-
tion with the same service composition is unlikely to fix a failed
reference to a service, Refresh automatically derives a newand
valid application configuration and service composition. This
automated approach to deriving a new service composition from
an application’s feature model allows microrebooting to beap-
plied to service composition healing. Normally, with a man-
ual recovery action implementation process, developers would
deduce the correct states to transition the application into and
implement the transition logic. Refresh’s automated derivation
process eliminates the need for developers to: (1) determine
where to transition to, (2) decide how to accomplish the transi-
tion, and (3) implement the transition.

Container Rebooting-based Healing Reduces Potential Un-
intended Side-effects: A key benefit of using the container’s
built in component management mechanisms for state transi-
tions is that they are guaranteed to bring the non-persistent ap-
plication state to the desired correct state. This guarantee helps
to resolve the problems outlined in Section 3.3 of dealing with
the potential of unintended side-effects from recovery actions.

With Refresh, the application container shuts down compo-
nents, which releases resources and resets in-memory state, and
then re-launches the application with a clean memory state.
With recovery actions, there is the potential that one or more
of the affects on the application will have unforeseen con-
sequences to the non-persistent in-memory application state.
These unforseen side-effects are not possible with a container
rebooting approach that resets non-persistent state.

A container rebooting approach does not eliminate the pos-
sibility that persistent application state, such as database rows,
will not be placed into an inconsistent state. The approach does,
however, have a number of properties that make this scenario
far less likely than a recovery action approach. First, all compo-
nents typicallymustimplement lifecycle methods that are called
by the container to manage the component. If a component does
not properly handle persistent state on shutdown, it is a flawin
the implementation of the component that could emerge–even
if the application never uses healing mechanisms.

Second, most enterprise applications maintain the consis-
tency of persistent application state through transactions. More-
over, most enterprise applications use container-managedper-
sistence APIs, such as JTA. Even the Non-JTA examples pro-

7



vided for the Pet Store still use an alternate container-managed
persistence API that works across only a single datasource.
When the container is used as the healing transition mechanism,
any transactions that are in process will be properly rolledback
or committed by the container during the healing of the appli-
cation’s service composition.

5 Applying Refresh to the Java Pet Store

To compare the development effort of including recovery ac-
tions into the Pet Store, we implemented the following three
versions of the Spring Pet Store with self-healing service com-
positions.

• The first implementation was produced using a purely
manual approach that used Spring’s proxying and aspect
infrastructure to implement the monitoring of the DAOs
and SpringHotSwappableTargetSourcesto swap remote
services on-the-fly.

• The second implementation was produced assuming an
MDE tool was provided that could model the error states
and recovery actions for the Pet Store and generate the re-
quired monitoring code and recovery path logic but not the
implementations of the recovery actions. We refer to this
MDE approach as theMDE error state/recovery pathap-
proach.

• The third implementation was produced using Refresh,
which captures the rules for configuring the application
and its service composition in feature models and uses mi-
crorebooting to eliminate the need to implement recovery
actions.

The self-healing for all three implementations was built around
the ability to swap failed DAOs with remote services and to
swap from failed remote services to other remote services.
The modifications for the three implementations are available
from [21].

Manual implementation. The top table in Figure 11 shows
the results of the initial implementation efforts. The manual ap-
proach required implementing two key classes aServiceSwap-
per capable of (1) looking up the Spring HotSwappableTarget-
Source for a DAO, (2) connecting to a Hessian, Burlap, SOAP,
or RMI remote service, and (3) swapping in the new service for
the failed component/service. As shown in Figure 11, the class
required 77 lines of code. The second class implemented was a
SpringMethodInterceptorthat was used to monitor each invo-
cation on a DAO or remote service for Exceptions and call the
appropriate ServiceSwapper when an Exception occurred. This
class required 20 lines of code. Finally, the components were
included in the Pet Store by adding them to the XML configu-
ration files for the Pet Store, which required adding 96 linesof
XML code.

MDE Error State / Recovery Path Implementation. The
analysis for the MDE error state/recovery path approach was
based on a generic model of the minimum effort that would be
required for any MDE adaptation modeling tool and framework
that did not provide Spring-specific recovery action implemen-
tations. The models were built using State Charts, since it is
arguably the most widely used and mature state modeling lan-
guage. State Charts also have a number of powerful concepts,
such as parallel states, which reduce the total modeling com-
plexity.

For the MDE implementation effort analysis, we measured
only the lines of code required to implement the ServiceSwap-
per and to integrate the needed ServiceSwappers into the con-
figuration files of the Pet Store. We assumed that all of the logic
for choosing the correct ServiceSwapper to execute, the imple-
mentation of the MethodInterceptor, and all configuration code
required to integrate the method interceptors and their depen-
dent proxies into the configuration file would be generated by
the tool. Our experiments thus only measured the cost of mod-
eling error states and recovery actions and implementing them.

The MDE error state/recovery action approach used the State
Charts presented in Section 3.1. The full State Chart healing
specification requires 111 states and 102 transitions between
states. As seen in Figure 11, the MDE approach still requires
77 lines of code to implement the ServiceSwapper recovery ac-
tion but eliminates the 31 lines of code needed to implement the
recovery path execution logic and the 20 lines of code required
for the monitoring implementation.

Refresh implementation. Finally, we implemented the swap-
ping capabilities in the Pet Store using Refresh. Refresh’suse of
Feature models required a total of 33 model elements (features)
and 29 connections versus the MDE approach’s 111 model ele-
ments (states) and 102 connections (transitions). Refreshalso
required 16 lines of code to specify the Esper queries over
the event stream of the Pet Store to map queries to the fail-
ure of one of the Pet Store features. Refresh’s use of the con-
tainer’s built-in shutdown/configuration/launch mechanisms for
healing, eliminated the need to implement the code for the Ser-
viceSwapper.

Refresh automatically generates the required monitoring
code for the Pet Store (this was assumed for the other MDE
approach as well). Refresh did require 23 more lines of code to
be modified in the configuration file of the Pet Store versus the
other MDE approach. These extra lines of configuration code
are a result of adding the Refresh annotations dictating howto
dynamically modify the application’s configuration based on a
feature selection. Overall, the Refresh approach required55%
less implementation effort than the other MDE approach and
60% less modeling effort.

Refresh performance. We used Apache JMeter to simulate
the concurrent access of 40 different customers to the Pet Store
and the time required to complete 4,000 orders. We simulated
the failure of different DAOs to force Refresh to heal the Pet
Store by swapping remote services for the failed DAOs. After
the DAOs were swapped to remote services, we iteratively shut-

8



Figure 11: Comparing Implementation Effort for the HealingPet Store

down the services used by the Pet Store to force the failover to
alternate remote services.

Over the tests, Refresh averaged 151ms from the time an ex-
ception indicating a failure was observed until the Pet Store
was reconfigured and rebooted with a new service composition.
These times were obtained by running the Pet Store on a 2.0ghz
Intel Core DUO on Windows XP with 2 gigabytes of RAM. The
average time required by the constraint solver to derive a new
feature selection was 12ms. These times indicate that Refresh
can provide high-performance application healing while reduc-
ing modeling and implementation effort.

6 Related Work

Microrebooting [9] is a technique used to restart only the com-
ponent, or collection of components in which the failure oc-
curred. Refresh uses microrebooting to eliminate the need to
model and implement recovery actions, as described in Sec-
tion 4. The problem with applying microrebooting alone to ser-
vice composition healing is that remote services usually can-
not be rebooted and thus failures will persist across reboots.
Refresh, however, dynamically derives a new service compo-
sition and application configuration before rebooting thatelim-
inates the reference to the failed service. Reconfigurationof the
service composition allows Refresh to eliminate references to
failed services and prevent an error from persisting acrossre-
boots.

Lapouchnian et al. [18] propose using goal modeling to
help develop autonomic applications. Moreover, Lapouchnian’s
technique uses feature models to help understand the variabil-
ity in system objectives. Lapouchnian’s techniques are focused
on developing a design for an autonomic system and also rely
on Statecharts. Refresh, in contrast, does not require a specific
application design–only that the application have different po-
tential services or components that it can be composed of. Fur-
thermore, as Section 3, Lapouchnian’s use of Statecharts adds
a substantial development burden. Refresh does not use error
state/recovery action based modeling and implementation and
thus avoids this development burden.

Crawford and Dan developed a framework, known as
eModel [11], to assist in monitoring and adapting a system
based on its environment. One of their primary design goals
was ease of use for model providers and model users interact-
ing with the framework. This framework requires a model, in

the form of an XML file, to specify the states to be identified and
the actions to be taken in such situations. The model provider is
thus required to identify all potentials states of the system and
provide a specific set of actions to take for each state. Section 3
showed the problems associated with specifying error states and
recovery actions. Unlike eModel, Refresh does not require ex-
plicit specification of recovery actions and avoids these difficul-
ties.

There are a large number of other healing or adaptation ap-
proaches [8, 16, 12, 7, 3, 18, 13] that rely on identifying error
states and then planning and executing some number of recov-
ery actions. As shown in Section 3, modeling and implementing
recovery actions is complex and costly. Moreover, as the em-
pirical results from Section 5 showed, by eliminating the need
to model and implement recovery actions, Refresh produced a
55% reduction in implementation effort and a 60% reduction in
modeling effort compared to techniques that require error state
and recovery action modeling.

7 Concluding Remarks

Numerous MDE approaches for building self-healing service
compositions [8, 16, 12, 7, 3, 18, 13] rely on developers model-
ing each potential error state and the recovery paths from each
state. Regardless of the technique used, developers are always
responsible for implementing the complex application-specific
recovery actions. Moreover, since these approaches use recov-
ery actions to transition an application between two arbitrary
states, recovery actions can have unintended side-effectson the
application, such as producing deadlock or data corruption, that
are hard to identify and avoid.

This paper describes how our Refresh technique uses fea-
ture modeling to capture the rules for deriving a correct ser-
vice composition state. Our experience using Refresh showed
that leveraging feature models to automatically derive newser-
vice compositions when a dependent service fails eliminates the
complexity of needing to model each individual error state and
recovery action. Moreover, by using microrebooting to transi-
tion the application from its failed service composition tothe
new service composition, we found that developers need not
implement complex recovery actions. Finally, through results
obtained from applying Refresh to case studies, we observed
that eliminating the modeling and implementation of recovery

9



actions greatly reduced the cost of creating self-healing service
compositions.

Refresh is available in open-source form as part of theGEMS
Model Intelligenceproject atwww.eclipse.org/gmt/gems.

REFERENCES

[1] Esper faq,
http://esper.codehaus.org/tutorials/faq_esper/faq.html#performance.

[2] Event stream intelligence with esper and nesper.
http://esper.codehaus.org.

[3] F. Barbier. MDE-based Design and Implementation of
Autonomic Software Components.Cognitive Informatics, 2006.
ICCI 2006. 5th IEEE International Conference on, 1, 2006.

[4] H. Barki, S. Rivard, and J. Talbot. Toward an assessment of
software development risk.Journal of Management Information
Systems, 10(2):203–225, 1993.

[5] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. Using
Java CSP solvers in the automated analyses of feature models.
Post-Proceedings of The Summer School on Generative and
Transformational Techniques in Software Engineering (GTTSE).

[6] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated
Reasoning on Feature Models.17th Conference on Advanced
Information Systems Engineering (CAiSEŠ05, Proceedings),
LNCS, 3520:491–503, 2005.

[7] V. Bhat, M. Parashar, H. Liu, M. Khandekar, N. Kandasamy,and
S. Abdelwahed. Enabling Self-Managing Applications using
Model-based Online Control Strategies.Proceedings of the 3rd
IEEE International Conference on Autonomic Computing,
Dublin, Ireland, June 2006.

[8] R. Calinescu. Model-Driven Autonomic Architecture.
Proceedings of the 4th IEEE International Conference on
Autonomic Computing, Jacksonville, Florida, USA, June, 2007.

[9] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot-a technique for cheap recovery.Proceedings of the
6th Symposium on Operating Systems Design and
Implementation, pages 31–44, 2004.

[10] J. Cohen.Constraint Logic Programming Languages,
volume 33. ACM Press, New York, NY, USA, 1990.

[11] C. Crawford and A. Dan. eModel: addressing the need for a
flexible modeling framework in autonomic computing.
Modeling, Analysis and Simulation of Computer and
Telecommunications Systems, 2002. MASCOTS 2002.
Proceedings. 10th IEEE International Symposium on, pages
203–208, 2002.

[12] Denaro, Giovanni and Pezze, Mauro and Tosi, Davide.
Designing Self-Adaptive Service-Oriented Applications.2007.

[13] X. Elkorobarrutia, A. Izagirre, and G. Sagardui. A Self-Healing
Mechanism for State Machine Based Components.Proceedings
of the 1st International Conference on Ubiquitous Computing:
Applications, Technology and Social Issues, Alcalá de Henares,
Madrid, Spain, June, 2006.

[14] D. Harel et al. Statecharts: A visual formalism for complex
systems.Science of Computer Programming, 8(3):231–274,
1987.

[15] R. Johnson and J. Hoeller.Expert one-on-one J2EE
development without EJB. Wrox, 2004.

[16] K. Joshi, W. Sanders, M. Hiltunen, and R. Schlichting.
Automatic Model-Driven Recovery in Distributed Systems.At
the 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05), pages 25–38, 2005.

[17] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM:
A feature-; oriented reuse method with domain-; specific
reference architectures.Annals of Software Engineering,
5:143–168, 1998.

[18] A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y. Yu. Towards
Requirements-driven Autonomic Systems Design.Proceedings
of the 2005 workshop on Design and evolution of autonomic
application software, pages 1–7, 2005.

[19] D. Luckham.The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 2001.

[20] S. Microsystems. Java Pet Store Sample Application.

[21] J. White. Healing pet store case study implementation.
http://www.dre.vanderbilt.edu/ jules/petstore-casestudy-
code.zip,
2007.

[22] J. White, K. Czarnecki, D. C. Schmidt, G. Lenz, C. Wienands,
E. Wuchner, and L. Fiege. Automated Model-based
Configuration of Enterprise Java Applications. InEDOC 2007,
October 2007.

[23] J. White, A. Nechypurenko, E. Wuchner, and D. C. Schmidt.
Optimizing and Automating Product-Line Variant Selectionfor
Mobile Devices. In11th International Software Product Line
Conference, September 2007.

10


