Creating Self-healing Service
Compositions with Feature
Models and Microrebooting

Abstract:

Service-oriented architectures (SOAS) provide loose lbogijand software reuse in enterprise
applications. SOAs expose individual reusable softwaptiegtions or components as remotely
accessible services that communicate using standardiessiage-oriented protocols, such as the
Simple Object Access Protocol (SOAP). SOAs enable appicato heal themselves by failing
over to alternate services when a critical application coment or service reference fails. The
numerous intricate details of identifying errors, relegsiesources used to access services, and
planning a recovery strategy, however, makes it hard toldpvapplications that can heal by
swapping services.

Model-driven engineering (MDE) offers a potential solatito handling the complexity of
building applications that can heal by swapping servicedstiig MDE solutions for building
adaptive applications require developers to explicitlydeleach potential error state and recov-
ery action, which can be extremely complex. Moreover, dgvels must then implement the
complex recovery actions modeled, which adds significantldpment complexity. This paper
presents an MDE technique called Refresh that is based aonelmoting and uses (1) feature
models to derive a new and correct service composition wii@ifuae occurs, (2) an application’s
component container to shutdown the reference to the fadedce, and (3) the application con-
tainer to reboot the subsystem with the new service conipnsiVe also present the results from
a case study that shows Refresh significantly reduces batleling and healing implementation
effort.

1 Introduction Although numerous approaches [8, 16, 12, 7] have been dkvise
to build MDE models and platforms for enterprise applicasio
Organizations are rapidly deploying service-orientediec- these approaches tend to suffer from one or more of the fellow
tures (SOAs) that create loosely coupled and highly reessid ing problems:
plication components through the use of standardized rgessa
oriented protocols, such as the Simple Object Access Ribtocl. They require significant development effort to explicitl
(SOAP). Often, within a single organization or group of abH model the numerous potential error states and recovery
orating organizations, multiple services are availabk ttan paths from an error state to a correct state and
accomplish a particular task. The redundancy in services pr
vides the potential to create applications that can heahthe 2. They require extensive effort to develop the adaptaton a
selves by failing over to leverage similar services whemeise tion implementations for a realistic application.
in their service composition.¢., the services used by the appli-
cation) fails. Failing over to another equivalent—but netes- 1his paper presents an MDE approach and toolset cRied
sarily identical—service can create robust applicatitias ¢an fresh for designing and implementing self-healing service com-
adapt to service failures and remain functional. positions that addresses the limitations outlined aboedrelh
Designing and implementing a mechanism to build selg specifically designed for healing a service compositibem
healing service compositions is complex. Since software d&) the application is implemented with a component-based
velopment projects already have low success rates and Kff{inology, such as Enterprise Java Beans or the CORBA Com-
costs, building a service capable of healing is hard [4]. édoPonent Model, (2) catastrophic failure is imminent, (3) &pe
over, building adaptive mechanisms greatly increases’capplp”cation and any redundant instances in an applicatiostetu
tion complexity and can be hard to decouple from appncaﬂgﬁnnot continue functioning correctly in their current igara-
code if the development of the adaptive mechanism is not sfien, and (4) the application has alternate composablécesv
cessful. that could potentially be exploited to avoid failure.
Model-driven engineering (MDE) provides a potential solu- For each potential error state that an application’s servic
tion to managing the complexity of developing adaptive s&omposition could enter, conventional MDE adaptation tech
vices. In an MDE approach, high-level adaptive models dtélues [8, 16, 12, 7] require explicitly modeling both the er
used to generate the complex adaptive code required tolteeal @ State and the numerous actions to transition from thar err
application when services fail. This approach allows MD&go State to a correct state. For large enterprise applicationse-
to generate much of the complex healing code, and in m&¥%e: there are usually a significant number of potentiabrerr

cases, remove the healing code if it does not function pmp€&opyright© 200x Inderscience Enterprises Ltd

‘ PetStoreServiceCompositibn

AccountDAO‘ ‘OrderDAO‘ ‘ProductDAq ItemDAO ‘Single| |Multiple‘ ‘JTAPresen’[‘JTANotPreser*t

JTAPresentRef

Figure 1: Pet Store Service Composition Feature Model

states and complex nuanced considerations, such as availapplying Refresh to our case study; Section 6 compares &efre
ity of other services, database locks held, and transastédas. with related work; and Section 7 presents concluding remark
These considerations make it hard to create a model for ser-

vice composition healing. Rather than explicitly modelangor

states and recovery actions, R_efresh mure Models{l?] 2 Case Study: The Java Pet Store

to capture the rules for determining what is or is not a cdrrec

colr;flguratlon/(ejrrlorjtate._b lication i f o To_show the complexity of applying conventional MDE tech-
_ea_tl_Jre MOCEIS describe an app Ication in terms o po'msn(?&ues to creating healing applications, we present a ¢adg s
variability and their affect on each other. For example,nrea |, <oq on Sun’s Java Pet Store e-commerce application [26]. T

commerce application, a feature might be a service .for 8ECESet Store provides a web-based storefront for selling ddts.
ing an order database. The order feature can have diffarbat ;o incjudes multiple categories of pets, produets.(Bull-

features, such as different potential services that cae serthe dog and Iguana), and individual product itenesg(Female

order databqse access service. If one particular ordeloaMaBu"dog Puppy). Customers browse for pets and purchase dif-
access service is chosen, it excludes the other potental o erent items

services from being used (it constrains the other featurks) Sun and other parties use the Pet Store as a reference appli-

the chosen sgrwce fails, a T‘eW featF”e, selection can bV’Beuﬂer'cation to showcase various enterprise Java technologiese S
that does not include the failed service’s feature.

: . . e he Pet Store application is widely known and can serve as a
This paper provides the fol_lowmg c_ontr|but|on§_to the stu eference for comparing different technologies, the PeteSt
and development of self-healing service compositions: has been re-implemented in different programming langsiage
o It shows how when a failure occurs (such as the inabilignd With different frameworks. For example, the Java Spring

to communicate with a dependent service) Refresh usesff@mework [15] has created the Spring Pet Store. The Spring

application’s feature models to derive a new and valid s&-@mework’s version of the Pet Store includes support fegrin
vice composition from the currently available services afiidting web services and is the implementation we have chose

components, which eliminates the need to model every gt the case study. .
tential error state and recovery action. Figure 1, presents a high-level feature model of the feature

related to the Pet Store’s data tier. Features are denotdteby

e It describes Refresh’s use of an approach basethibn various boxes in the diagram. The levels of hierarchy regmes
crorebooting[9], which is a technique for rebooting asubfeatures. For example, all PetStore instances Da&@s
small set of failed components rather than an entire apfdatasourcesand JTA as subfeatures (the filled circles at the
cation server, to shutdown the failed service composititop of the child features denote required features). The Pet
and launch the newly derived composition, eliminating tt&tore Java Transaction API (JTA) feature can either be ptese
need for developers to implement recovery actions. denoted when the childTAPresentfeature is selected, or not

. _present.

e It presents empirical results from a case study applyinga Feature can also specify rules restricting the selection o
Refresh to an e-commerce application that shows Refrgzhler features if the feature is selected. For example dlees
provides a~55% decrease in modeling complexity angon, of the DatasourceMultiple features requires thaTAPre-
~60% decrease in implementation cost versus other MREna|so be selected. This requirement is denoted byl TheP-
approaches for building self-healing service ComPOSiiiO’FesentRefequired feature reference undéultiple.

The remainder of this paper is organized as follows: Se&ion Tordeond)
presents the e-commerce application that we will use asea cas
StUdy thrOUghOUt the paper; SeCtion 3 enumerates Currah't Ch ‘HessianOrderServiz#SOAPOrderServicH LocaIOrderDAq ‘ BurlapOrderServicF
lenges in applying existing MDE techniques for building pda
tive applications to our case study; Section 4 describeeBles Figure 2: Feature Model of the J2EE Pet Store’s OrderDAO
approach to using feature models and microrebooting toceedu
the complexity of modeling and implementing an application The SpringFramework allows the swapping of individual
that can heal; Section 5 analyzes empirical results obddinen components in the Pet Store with proxies to remote services.

Figure 1 lists the various DAOs that are available in the Pet- [Petstore Service Compositon

Store. Each DAO can potentially be swapped for a remote ser- | OrderDAo'“ (Accoumng"\ lemDAO "_ ~ ProductDAO

vice. Figure 2 shows the various options for the OrderDAO. R L Ll o

Either the OrderDAO can be implemented by a local compo- % L°°§}%"er ,{L"Ca:'ﬁcéwﬂ { “oao | il L°°‘”’[',’j{gd“°‘J
< J AR

nent or it can be implemented as a dynamically created Java

X) [SOAP (‘ 7
proxy to a SOAP, Burlap, Hessian, or RMI order service. The sonporaer | | [ooy | I\[soaptem] soap
pAo i, \\‘ BED i ProductDAO \

- . . DAO

case study focuses on failing over from the middle-tier DAOs) / ’ \ |
. . . Hessian Hessi] . (" Hessi S

to different remote services to demonstrate the compéexaf { Orer F ACCSSEIE"AO / /{ (o L I e }/

applying existing MDE techniques. k{ ¢ DAO

Burlapltem | (" Burlap }

\ DAO \ | ‘s{ Product [\

X J \ DAO]

4 il -~ N |
RMIItemDAO}’ i| | RMIProduct]"
i ok

i

7
[

\ BurIapOrder Burlap
DAO \ AccountDAO

(RMIAccount }/

DAO

DAO

3 Challenges of Creating Self-healing Service Compositien {R“”D‘gg’e' 1/

\-

%

A common approach [8, 16, 12, 7, 3, 18, 13] to modeling appli-
cation healing is to model the individual error states thatap-
plication can enter and a recovery path (a sequence of rgcove
actions) to return the application to a correct state. Fanex
ple multiple MDE approaches [3, 18, 13] uState Chart§14]

to capture the various error states of an application andghe”S With error states, the number of recovery path specifioati
quences of recovery actions to return to a correct state- ER{pduced for healing each component of an enterprise @pplic

merating each potential error state and each recovery path $0Nn can be large.

require significant modeling complexity. This section skow The Pet Store requires a number of recovery actions to take

how even when an MDE tool can generate the majority of theace to swap the service used for a DAO. The various ac-

self-healing code for a service composition, the requirgrt® tions for swapping the OrderDAO to one of the remote ser-

model and implement recovery actions places a heavy burst@es is modeled in Figure 4. First, to swap a DAO, a Spring

on developers. Hot Swappabl eTar get Sour ce (an object capable of swapping
an active componentin the application) must be obtainedt Ne

Specify a Recovery Path from an Arbitrary Error Proxy to a remote service must be released. After releasing r
State to a Correct State sources, a new proxy to another remote service can be created

Finally, the newly created proxy can be swapped into theiappl
A healing model must use different error states for each im- cation using theHot Swappabl eTar get Sour ce. Including the

plementation of a service type or componenttype. The fail- recovery paths in the model ups the total number of states per
ure of the OrderDAO seems like a fairly simple error conditioha0 from 4 to 25.

to model and specify a recovery path for, but it is not. The

problem with modeling each potential error state and regove

path is that the series of recovery actions that must be ewok

is different for the local OrderDAO and remote service implélealing a local error may require evaluating the global

mentation. application state. For example, if the Java Transaction API
For example, if the local OrderDAO fails, it may be swappddTA) is being used to manage transactions, the Pet Store can

for another implementation. If a remote service fails, ityba fail over to any remote service and still provide proper saat

necessary to free resources, such as memory used by cachésrobehavior. If JTA is not being used to manage transastion

network ports, that were used by a connection to it. Servidewever, the system can only provide transactions acrass a s

connected through different protocols also need separaie egle datasource, meaning that all the DAOs must be acces$ring t

states to associate their unique recovery actions with. same database instance. Requiring the use of a single databa
If the Pet Store’s service composition healing is modeled usstance prevents an arbitrary service from being chosetel

ing State Charts, as shown in Figure 3, there are 4 differ@on-JTA situation, the service may only fail over to a remote

states for each DAO. To increase readability, Figure 3 dogés service if the service is accessing the same databasedesian

include events and guards on transitions, which furtherdom all other referenced remote services.

cate the model. There are 20 different states needed tose=fire an extension of the OrderDAO recovery State Chart to in-
the potential services and components that can serve agthelgde the JTA consideration is show in Figure 5. Each tramsit
Store’s DAOs. to the swap states now includes a guard to ensure that svgappin

is allowed. A newGlobalSwapControllehas been added to the
For every error state that the system needs to recover from, model to only allow swapping when either JTA is present or a
the model must explicitly specify a recovery path. For ex- single data source is being referenced by the applicatgmr's
ample not only should the failure of a Hessian and SOAP-bastgte composition. Section 4.2 shows how Refresh uses featur
order service be modeled separately, but the series of reqoedeling and other techniques to eliminate the need to model
ery actions attached to each also should be modeled sdparatgery potential error state and recovery action.

Figure 3: Pet Store Service Composition State Chart

OrderDAO [OrderDAOLocalRecovery

“PetStoreServiceComposition

T ™
i
|
i
(OrderDAO ™ 4 DAOLocal \i GlobalSwapController |
,’. /. Recovery } 7 -~
/ y
S b e | T
LocalOrderDAO [CreateSOAPOrderSer [\ \ (Greatesonpordersar) | | f) "
ocalOrder iceP! N LocalorderpAO | b " i JTAPresent 1|
g vicerroxy | " viceProxy | m
On(Exception) L o PniExesptian] | | I | =————0n(TAFound)
— - — " /LookupOrderService |) [JTANotPresent W
LookupOrderService ‘ SOAPOrderDAO \ HotSwaSF;pil;IeeTarget F i)
SOAPOrderDAO HotSwappableTarget N) " canswa
Source P ~ L T {smplnso_APomerSe}/ ! \
‘ HessianOrderpao « On(Exception) |\ ice | [L)
Swapln \ A TSN J 1| A CanSwap j
) . ¢ ; N - O T | Dvwesnl I PR
HessianOrderDAO On(Exception) SOAPOrderService 7 OrderDAOSOAP o [J"("TANQ'P'E\SE“"O&'"(M“"”"e)]
\\ BurlapOrderDAO @ Recovery i1 cannotswap |/
e 3 — .,)
- .)\ & \\\[/ CreateHessian 1 H eee—e— ————
/OrderDAOSOAPRecovery (V1) || | OrderServiceProxy [N i DataSources
| RMIOrderDAO ‘ R AN)
BurlapOrderDAO y, ‘J Vo ‘,Rexeaseso_APOrders J i)
5 ervice 4 .
\" (EXC\EPI'O"‘) L Resources } &/ \ X
CreateHessian OrderDAOBurlapRecovery | | || (TLookupOrderService \ | | onl [more than onaservice host]
) \ JIf]\ n '
OrderServiceProxy Vo [“°‘Swaslﬁg‘:ﬁfgel }‘~\ i ‘ Multple 1/
Vo \ J Y
RMIOrderDAO \ \ T [in(canSwap)}-
Release / ° N \\ \ \\(’Swap nSHeerjyscwerOraeh) i
N i - \ \
On(Exception) SOARPOrderrSerwce 5’ ~ - \\ \\ . J 3
esources \ﬁ’ CreateHessian \ o m—
o0KupOTderservice ‘ | OrderServiceProxy \ | " OrderDAOHessian | !
= \ Recovery |
HotSwappableTarget \ ‘/ R(;::rsseeswwice \](, \ \ ~ N !
Source I\ JA\ \ (" CreateHessian [
| I s c— \ | | orderServiceProxy N |
- || CockupOrderService) \ P———— !
OrderDAOBurlapRecove H HotSwappableTarget K \ / ReleaseSOAP I
¢ & SwaplnHesganOrder 3 | e Source ,) \ \‘\ | Orderservice Kl |
Service “\ _ | || _Resources) !
\ \ | SwapinHessianOrder |/ ||/ CookupOrderservice™ || |!
. \ Service / ‘\ HotSwappableTarget F !
CreateHessian i e | I " soures AR
OrderServiceProxy ¥~ OrderDAOHessian . | lin(GanSwap)]
D — .
Recovery \{ SwaplnHessianOrder){/’ |
Release 5 & Service Y, } i
SOAPOrderService B L\ __
Resources CreateHessian
OrderServiceProxy i
LookupOrderService Figure 5: OrderDAO Recovery Paths State Chart when Ac-
HotSwappableTarget elease .
Sourcs SOAPOrderService counting for JTA
Resources
SwaplnHessianOrder i
P Service K LookupOrderService
HotSwappableTarget

Source

In the Pet Store application, there are four separate DA&Is th
can each be swapped to one of four remote services to avoid
failures. To implement a simple swapping mechanism in the
Pet Store, the Spring framework provides numerous complex
utility classes for hotswapping components and connedting
remote services, such as Apache Axis web services. Despite
these numerous utility classes (as shown in Section 5) giter

an action to swap just the OrderDAQO to one of the four remote
3.2 Challenge 2: Significant Complexity to Write Re- services requires 77 lines of Java code to implement the-swap
configuration Code that Can Bring the System from

ping logic and 11 lines of XML code to enable and configure the
an Arbitrary Error State to a Correct State. swapping action in the Pet Store. Although some level oftrefa

toring and object-oriented design can be used to share commo
Regardless of the MDE approach used to build the appli¢@gic across actions, implementing each action still rezpisig-

tion healing mechanism, developers must always implem@ificant effort. Section 4.3 shows how microrebooting ca si
the application-specific recovery actions. This requinerpar- Nificantly reduce this substantial development burden lagi{o

allels the development of enterprise applications andisesy iNg a new service composition derived by a constraint solver
where despite the frameworks used, developers are always re

SwaplnHessianOrder

Service

Figure 4: OrderDAO Recovery Paths State Chart

quired to implement the core business logic. Some speelid.3 Challenge 3: Executing Arbitrary Recovery Actions
MDE tools may provide pre-built recovery actions for specifi

in Arbitrary Error States can have Numerous Unfore-
domains, but in general, nearly every MDE approach requires seen Side-effects.
developers to write the recovery actions.

Error states are often specified in such a way that the system

as a whole can be in numerous different states that all fall un
For each path from an error state to a recovery state, com- der the definition of the same error state. For example, when

plex recovery logic must be written. The more error statesthe OrderDAO fails, the Pet Store can have orders in progress
that are possible in the application, the more recoveryasti category listings in progress, and numerous other nuaraed ¢
must be written by developers. These numerous recovery @itions. Building a robust and correct recovery action ieggi
tions can be both expensive to develop and hard to test, whigking into account the side effects of the recovery actiothe

can become problematic when projects are already pron#é-to feomplex overall state of the application.
ure and cost overruns.

For example, what will happen if the local OrderDAO is

swapped with a remote service during the submission of one or
more customer orders? Does the safety of the swap depend
whether or not a local or JTA-based transaction mechanism
used? These complex nuanced questions are not easy to an
and must be considered for each recovery action implemen

tion. These intricacies make developing a recovery actian t SOAPOrderService

will not lead to unforeseen problems hard. Section 4.3 how u
ing microrebooting as the basis for recovery eliminatesynwn
these hard to predict recovery side-effects and also pesvéd
more well understood state transition mechanism.

4 Modeling and Building Healing Adaptations with Refresh

The challenges in Sections 3.1-3.3 stem from two causes: |
the requirement that every error state and recovery pathieus
modeled explicitly and (2) that developers must implement e
ery complex recovery action. This section describes our MD
toolset, calledRefreshthat eliminates these two sources of sub
stantial complexity.

HessianOrderService

Application
Probes

Refresh
4.1 Overview of Refresh Application | Environment |+ Event Stream
Feature Probes Processor
Refresh is based on the concept of microrebooting [9]. Whe Model
an error is observed in the application, Refresh uses theapp
tion’s component container to shutdown and reboot the eapli Figure 6: Refresh Structure
tion’s components. Using the application container todbwh
the failed subsystem takes milliseconds as opposed to the se
onds required for a full application server reboot. Sinces it
likely that rebooting in the same configuratiend. referencing
the same failed remote service) will not fix the error, Reﬁre:1 PR @ -/(‘
derives a new application configuration and service compc \ -2

tion from the application’s feature models that does notaion

the failed featuress(g, remote services). SOAPOrderSenvice

The service composition dictates the remote services u
by the application. The application configuration detemsin
any local componentimplementations, such a SOAP messag
classes, needed to communicate and interact properly gth
remote services. After deriving the new application configu
tion and service composition, Refresh uses the application
tainer to reboot the application into the desired configanat
The overall structure of Refresh is shown in Figure 6.

Refresh interacts directly with the application contajreer
shown in Figure 6. During the initial and subsequent co
tainer booting processes, Refresh transparently insgidi-
cation probesinto the application to observe the applicatio
components. Observations from the application comporaeats

Refresh

Application
Probes

HessianOrderService

sent back to amvent stream processtrat runs queries agains! [Application
the application event data, such as exception events, nbifige Fﬁzt’“;
errors. Whenever an application’s service compositiordgaet ~——
to be healedenvironment probeare used to determine avail-
able remote services and global application constraintd) as
whether or not JTA is present.

Refresh uses event stream processing [19] to run que
against the application’s event data and identify feataik f
ures. The initial implementation of Refresh, based on the§p
Framework’s loC container, uses the Esper event stream pro-
cessor [2] for Java. Esper is a high-performance eventrstrea

Environment |} Event Stream

Probes

Processor

_@_smpomerSemice Feature Failed

5. Event Stream

Processor
Determines

Failed Feature

and Notifies
Refresh

4. Observation
Sent to
Event Stream
Processor

Figure 7: Error Propogation to Refresh

processor that is capable of handling 100,000 events a dect
with 2,000 queries on a single dual-core CPU [1].

Each feature in the feature model that could potentially fa
is associated with a group of event stream queries. At rtinm
when a query associated with a feature returns a resultegtefr
is notified that the associated feature has failed, as shoWwig#

SOAPOrderService HessianOrderService

ure 7. The data and objects observed and analyzed by Refr Network
are determined by the query specifications.
Once Refresh is notified of a feature failure, its three mai h
tasks are to use (1) the container to shutdown the applicatio
components, (2) the application’s feature model to derimeva Pet Order ge"‘;,':eatt‘,"e
application configuration and service composition, anct@) ~— |7 Store System | - e
container to reboot the application in th.e new ggnflguratlm SOAPOrderService
The sequence of events from a feature failure notificatidghdo
rebooting of the container are shown in Figure 8. ,
R, 7 Application
Event Stream Environment Constraint Component . Probes
Processor ’ Refresh ‘ Probes Solver Container - ;
SOAPdrderService Feature Sisabled ‘ CompenentiContalner
] - |
Check Available Servipes Refresh
; Application [}{ Environment |}/ Event Stream
Derive.New Gonfiguration Feature Probes Processor
ShutdownlAppIication Components Model

N

Load New Application Confiéuration

Figure 9: Refresh Launches the Application in the New Config-

Launch Application Component i
aunc :pplcalon ompc})nens uration

Figure 8: Refresh Reconfiguration, Shutdown, and Launch REIVice composition. In terms of healing, feature modedieg
covery Sequence scribes:
. . . L e The component or service types that are needed to com-
To derive a new configuration of the application that does not pose the application
include the failed feature, Refresh transforms the feagakec-
tion problem into a constraint satisfaction problem (CS$)@ o The sets of components or services that can serve as the

techniques that have been developed by us an others in prior implementation of a service type in the application’s com-
work [22, 6, 23]. Once the feature selection problem is #ans position

formed into a CSP, a high-performance general purpose con-

straint solver, such as the Java Choco [5] solver, is useeifead o The rules dictating the requirements, such as dependent li-

a new set of features/configuration for the application. braries, required by each component or service implemen-
After the new application configuration and service comyposi tation and

tion is derived, Refresh invokes the container’s shutdoem s

quence to proper'y release resources, abort transacm, e The rules Constraining how the choice of one service im-

perform other critical activities. The new configuratiorinis plementation restricts the choices of other component or
jected into the container through programmatic calls ordsy r ~ S€rvice implementations in the same application composi-
generating the application’s configuration files [22]. Aftee tion.

configuration is injected into the container, the applmatis
launched in the new configuration without the failed service
shown in Figure 9.

When the failure of a feature is observed, Refresh uses the
feature model of the application to derive an alternate §et o
features for the application that does not include the defiéa-
ture. For example, in the Pet Store, when tloealOrderDAO
4.2 Use Feature Modeling to Capture the Rules for Deriv- feature fails, Refresh uses the feature model to derivetan al

ing what is Considered a Correct State nate feature selection for the Pet Store. In the examplesirow

ilgure 10, Refresh chooses a new feature selection thatheses

As discussed in Section 3.1, modeling each individual erlF : : .
state and recovery path is complex. Refresh uses featurelmo@urIapOrderSerwceather than the faile8OAPOrderService

ing to avoid requiring developers to model each individuede

state and recovery path. Feature modeling captures the—vrulsutomated Feature Selection Using a Constraint Solver:
rather than individual error states and recovery pathsdér The key to Refresh’s healing capabilities is its ability wew
riving what constitutes a correct application configunatemd constraint solver [10] to derive a new feature selectiontlier

4.3 Reusing the Component Container's Shut-
down/Configuration/Launch Mechanisms for State
Transitions

[Accomnmao]

Sections 3.2-3.3 show the complexity and large development
] burden of writing recovery actions to heal an applicatioffiily
ing over to alternate services. Refresh attacks the probfig¢im
a combination of code reuse and automation. In particular, i
reuses an application container’s ability to shutdown aiiea-
tion’s components, reconfigure the components ¢reate the
newly desired service composition), and launch the apjpica
in the new stateife. transition the application into the new ser-
vice composition state). By reusing existing mechanismas th
are well-tested and trusted by developers, the need to guse
2. New Feature Selection Derived tom recovery actions is eliminated.
Moreover, since rebooting in the same application configura
Figure 10: Deriving a new Service Composition from the Pggn with the same service composition is unlikely to fix defdi
Store Feature Model reference to a service, Refresh automatically derives aamelv
valid application configuration and service compositiornisT
o) .) automated approach to deriving a new service compositin fr
application automatically. Prior work [22, 5, 6] provides-e 4, application’s feature model allows microrebooting tcape
tensive details on the process for transforming a featdm:sep”ed to service composition healing. Normally, with a man-
tion problem into a constraint satisfaction problem (CSR),[| recovery action implementation process, developergdvo
which is the input format of a constraint solver, and dedvin geduce the correct states to transition the application ant
feature selection. We briefly cover this mapping below. implement the transition logic. Refresh’s automated deion
A constraint satisfaction problem is a series of variabtes aprocess eliminates the need for developers to: (1) determin
a set of constraints over the variables. For example;B <C" where to transition to, (2) decide how to accomplish thesiran
is a constraint satisfaction problem over the integer e&A, tion, and (3) implement the transition.
B, andC. A constraint solver automatically derives a correct

I;\kéelzmgl gzllucisrrfeocrt tlzge\ll;rgljact))ﬁr?()e. el—:g:)?:?:lg}g: 1,B= _Container Rebooting—based Healing Redgces Potentia_l Un-

’) ' intended Side-effects: A key benefit of using the container’s

A selection of features from a feature model can be repggiit in component management mechanisms for state transi-
sented by a set of integer variables with domain 0 or 1. Eagls is that they are guaranteed to bring the non-persiaten
variable represents a unique feature from the feature mo‘ﬂ)‘ﬁlzation state to the desired correct state. This guaeaméps
If the variable representing thgessianOrderServics repre- g resolve the problems outlined in Section 3.3 of dealingpwi
sented by the variabl, thenVy = 1 in a labeling of a feature {hg potential of unintended side-effects from recoverjoast
selection CSP means that the feature is selected in thessolut \yit Refresh, the application container shuts down compo-

If the labeling contain¥y, = 0, it implies that the feature is nothenis, which releases resources and resets in-memoryastdte
selected in the solution. The configuration of an applicediod hen re-launches the application with a clean memory state.

its service composition is represented as a set of thes#esi \yjth recovery actions, there is the potential that one oranor
that denote which services and application componentsiere & the affects on the application will have unforeseen con-
abled in a configuration. sequences to the non-persistent in-memory applicatide. sta
Rules dictating the proper composition of the services arRese unforseen side-effects are not possible with a cuntai
specified as constraints over thg variables. For example,rebooting approach that resets non-persistent state.
since only one oHessianOrderServicendSOAPOrderService A container rebooting approach does not eliminate the pos-
can be used at a time by the Pet Store, a constraint cansipgity that persistent application state, such as databaws,
used to capture this rule. Le¥; be the variable representingyill not be placed into an inconsistent state. The approaeisd
the SOAPOrderServiceThis rule is specified as the constrairfiowever, have a number of properties that make this scenario
V1 =1—V,=0. As described in [22], complex rules, such &ar |ess likely than a recovery action approach. First, @thpo-
memory constraints, can be described using a CSP. nents typicallymustmplement lifecycle methods that are called
When a feature is flagged as failed, Refresh adds a new dayithe container to manage the component. If a component does
straint to the feature selection process preventing thedféa- not properly handle persistent state on shutdown, it is aiftaw
ture from being selected(g, Vi = 0). Refresh then uses a théhe implementation of the component that could emerge—even
constraint solver to derive a new feature selection thatbeanif the application never uses healing mechanisms.
used by the application based on the environmental contgrai Second, most enterprise applications maintain the consis-
(e.g. JTA vs. No JTA) and feature model composition corency of persistent application state through transastibore-
straints €.g, only one of the order services may be selectedater, most enterprise applications use container-manpged
atime). sistence APIs, such as JTA. Even the Non-JTA examples pro-

ice] [LocalOrderDAO] [BurtapOrderserviee | [maPresen

/
1. Failing Feature Identified

HessianOrderService | [50APOrderService | [Local OrderDAO | [BurlapOrderService | / [mapresentiet]
¢

vided for the Pet Store still use an alternate containeragad MDE Error State / Recovery Path Implementation. The
persistence API that works across only a single datasoumealysis for the MDE error state/recovery path approach was
When the container is used as the healing transition mesmanibased on a generic model of the minimum effort that would be
any transactions that are in process will be properly rdil@ck required for any MDE adaptation modeling tool and framework
or committed by the container during the healing of the appihat did not provide Spring-specific recovery action impdem
cation’s service composition. tations. The models were built using State Charts, since it i
arguably the most widely used and mature state modeling lan-
guage. State Charts also have a number of powerful concepts,
such as parallel states, which reduce the total modeling com
5 Applying Refresh to the Java Pet Store plexity.
For the MDE implementation effort analysis, we measured
To compare the development effort of including recovery aeonly the lines of code required to implement the ServiceSwap
tions into the Pet Store, we implemented the following thr@er and to integrate the needed ServiceSwappers into the con
versions of the Spring Pet Store with self-healing servam®-c figuration files of the Pet Store. We assumed that all of thiglog
positions. for choosing the correct ServiceSwapper to execute, théeeimp
mentation of the MethodInterceptor, and all configuratiode
e The first implementation was produced using a puralgquired to integrate the method interceptors and theiedep
manual approach that used Spring’s proxying and aspeent proxies into the configuration file would be generated by
infrastructure to implement the monitoring of the DAOthe tool. Our experiments thus only measured the cost of mod-
and SpringHotSwappableTargetSourcés swap remote eling error states and recovery actions and implementiaignth
services on-the-fly. The MDE error state/recovery action approach used the State
Charts presented in Section 3.1. The full State Chart hgalin
e The second implementation was produced assumingspecification requires 111 states and 102 transitions legtwe
MDE tool was provided that could model the error statetates. As seen in Figure 11, the MDE approach still requires
and recovery actions for the Pet Store and generate thefrélines of code to implement the ServiceSwapper recovery ac
quired monitoring code and recovery path logic but not titien but eliminates the 31 lines of code needed to implerent t
implementations of the recovery actions. We refer to thigcovery path execution logic and the 20 lines of code reqluir
MDE approach as th®IDE error state/recovery patap- for the monitoring implementation.
proach.

o)] Refreshimplementation. Finally, we implemented the swap-

e The third implementation was produced using Refresling capabilities in the Pet Store using Refresh. Refrastesof
which captures the rules for configuring the applicatigfpatyre models required a total of 33 model elements (festur
and its service composition in feature models and uses @iy 29 connections versus the MDE approach’s 111 model ele-
crorebooting to eliminate the need to implement recovefyants (states) and 102 connections (transitions). Refrssh
actions. required 16 lines of code to specify the Esper queries over

)))] the event stream of the Pet Store to map queries to the fail-
The self-healing for all three implementations was bulttard e of one of the Pet Store features. Refresh’s use of the con-
the ability to swap failed DAOs with remote services and {giners puilt-in shutdown/configuration/launch mectsans for

swap from failed remote services to other remote ServicRgaling, eliminated the need to implement the code for thie Se
The modifications for the three implementations are avmlab/iceSwapper.

from [21]. Refresh automatically generates the required monitoring
code for the Pet Store (this was assumed for the other MDE
approach as well). Refresh did require 23 more lines of code t
%e modified in the configuration file of the Pet Store versus the
proach required implementing two key classeBaaviceSwap- other MDE approach. These extra lines of configuration code
. . are a result of adding the Refresh annotations dictating toow
per capable of (1) looking up the Spring HotSwappabIeTarg%lynamica"y modify the application’s configuration basedao

Source for a DAO, (2) connecting to a He.55|an, Burlap, TQ’O eature selection. Overall, the Refresh approach req&iséd
or RMI remote service, and (3) swapping in the new service for

the failed component/service. As shown in Figure 11, thescl oy implementa_ltion effort than the other MDE approach and
. . . 0% less modeling effort.

required 77 lines of code. The second class implemented was a

SpringMethodInterceptothat was used to monitor each invo-

cation on a DAO or remote service for Exceptions and call tReefresh performance. We used Apache JMeter to simulate

appropriate ServiceSwapper when an Exception occurrad. Tthe concurrent access of 40 different customers to the Bet St

class required 20 lines of code. Finally, the componentgweand the time required to complete 4,000 orders. We simulated

included in the Pet Store by adding them to the XML configthe failure of different DAOs to force Refresh to heal the Pet

ration files for the Pet Store, which required adding 96 lioies Store by swapping remote services for the failed DAOs. After

XML code. the DAOs were swapped to remote services, we iterativeli shu

Manual implementation. The top table in Figure 11 show
the results of the initial implementation efforts. The malap-

Initial Implementatic
LU d

Modeling

Modeled States or Features 0 111 33
Modeled Connections/Transitions 0 104 29
Model Error Identification 0 0 23
Modeling Totals 0 215 85
Implementation

Implement Recovery Actions 77 77 0
Implement Recovery Path Chooser 31 0 0
Configuration Modifications 96 44 67
Implementation Totals 204 121 67

Figure 11: Comparing Implementation Effort for the HeallPef Store

down the services used by the Pet Store to force the failavettte form of an XML file, to specify the states to be identified an
alternate remote services. the actions to be taken in such situations. The model proigde
Over the tests, Refresh averaged 151ms from the time antbxs required to identify all potentials states of the systand
ception indicating a failure was observed until the Pet &tqurovide a specific set of actions to take for each state. @esti
was reconfigured and rebooted with a new service compositisinowed the problems associated with specifying errorstated
These times were obtained by running the Pet Store on a 2.0gdwovery actions. Unlike eModel, Refresh does not require e
Intel Core DUO on Windows XP with 2 gigabytes of RAM. Thelicit specification of recovery actions and avoids the$igcdi-
average time required by the constraint solver to deriveva nies.
feature selection was 12ms. These times indicate that &efre There are a large number of other healing or adaptation ap-
can provide high-performance application healing whittue proaches [8, 16, 12, 7, 3, 18, 13] that rely on identifyingerr
ing modeling and implementation effort. states and then planning and executing some number of recov-
ery actions. As shown in Section 3, modeling and implementin
recovery actions is complex and costly. Moreover, as the em-
6 Related Work pirical results from Section 5 showed, by eliminating theadhe
to model and implement recovery actions, Refresh produced a
Microrebooting [9] is a technique used to restart only theeo 55% reduction in implementation effort and a 60% reduction i
ponent, or collection of components in which the failure otodeling effort compared to techniques that require etaies
curred. Refresh uses microrebooting to eliminate the needand recovery action modeling.
model and implement recovery actions, as described in Sec-
tion 4. The problem with applying microrebooting alone to se
vice composition healing is that remote services usually ca
not be rebooted and thus failures will persist across rebodt Concluding Remarks
Refresh, however, dynamically derives a new service compo-
sition and application configuration before rebooting #lan- Numerous MDE approaches for building self-healing service
inates the reference to the failed service. Reconfiguratitme compositions [8, 16, 12, 7, 3, 18, 13] rely on developers riode
service composition allows Refresh to eliminate refersrtoe ing each potential error state and the recovery paths frain ea
failed services and prevent an error from persisting acressstate. Regardless of the technique used, developers aagsalw
boots. responsible for implementing the complex applicationesjoe
Lapouchnian et al. [18] propose using goal modeling tecovery actions. Moreover, since these approaches use-rec
help develop autonomic applications. Moreover, Lapouaiigi €ry actions to transition an application between two ambjtr
technique uses feature models to help understand the ilariaitates, recovery actions can have unintended side-etfadtse
ity in system objectives. Lapouchnian’s techniques aresed application, such as producing deadlock or data corrupi
on developing a design for an autonomic system and also r@ig¢ hard to identify and avoid.
on Statecharts. Refresh, in contrast, does not requiredfispe This paper describes how our Refresh technique uses fea-
application design—only that the application have diffiéngo- ture modeling to capture the rules for deriving a correct ser
tential services or components that it can be composed of. Riice composition state. Our experience using Refresh sthowe
thermore, as Section 3, Lapouchnian’s use of Statechadlts atiat leveraging feature models to automatically derive sew
a substantial development burden. Refresh does not use evi@e compositions when a dependent service fails elimaidte
state/recovery action based modeling and implementatidn aomplexity of needing to model each individual error statd a
thus avoids this development burden. recovery action. Moreover, by using microrebooting to $ian
Crawford and Dan developed a framework, known #&sn the application from its failed service compositionthe
eModel [11], to assist in monitoring and adapting a systemw service composition, we found that developers need not
based on its environment. One of their primary design goaigplement complex recovery actions. Finally, through hssu
was ease of use for model providers and model users interabtained from applying Refresh to case studies, we observed
ing with the framework. This framework requires a model, itnat eliminating the modeling and implementation of recgve

actions greatly reduced the cost of creating self-heakmgise [17] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM:
compositions.

Refresh is available in open-source form as part of3EMS
Model Intelligenceproject atwwy. ecl i pse. or g/ gnt / gens.

REFERENCES

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

(14]

(19]

(16]

(19]

http://esper.codehaus.org/tutorials/faq_esper/adperformance.

Esper faq,

Event stream intelligence with esper and nesper.
http://esper.codehaus.org.

F. Barbier. MDE-based Design and Implementation of
Autonomic Software Component€ognitive Informatics, 2006.
ICCI 2006. 5th IEEE International Conference,dn 2006.

H. Barki, S. Rivard, and J. Talbot. Toward an assessmgnt o
software development riskdournal of Management Information
Systemsl10(2):203-225, 1993.

D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortésing

Java CSP solvers in the automated analyses of feature models
(23]

Post-Proceedings of The Summer School on Generative and
Transformational Techniques in Software Engineering (SE)l

D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Autordate
Reasoning on Feature Models7th Conference on Advanced
Information Systems Engineering (CAISES05, Proceedings)
LNCS 3520:491-503, 2005.

V. Bhat, M. Parashar, H. Liu, M. Khandekar, N. Kandasaaryd
S. Abdelwahed. Enabling Self-Managing Applications using
Model-based Online Control Strategié&oceedings of the 3rd
IEEE International Conference on Autonomic Computing,
Dublin, Ireland June 2006.

R. Calinescu. Model-Driven Autonomic Architecture.
Proceedings of the 4th IEEE International Conference on
Autonomic Computing, Jacksonville, Florida, USA, Ju2@07.

G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox
Microreboot-a technique for cheap recoveRroceedings of the
6th Symposium on Operating Systems Design and
Implementationpages 31-44, 2004.

J. CohenConstraint Logic Programming Languages
volume 33. ACM Press, New York, NY, USA, 1990.

C. Crawford and A. Dan. eModel: addressing the need for a
flexible modeling framework in autonomic computing.
Modeling, Analysis and Simulation of Computer and
Telecommunications Systems, 2002. MASCOTS 2002.
Proceedings. 10th IEEE International Symposiummages
203-208, 2002.

Denaro, Giovanni and Pezze, Mauro and Tosi, Davide.
Designing Self-Adaptive Service-Oriented Applicatio@907.

X. Elkorobarrutia, A. I1zagirre, and G. Sagardui. A SEkaling

Mechanism for State Machine Based ComponeRtsceedings
of the 1st International Conference on Ubiquitous Computin
Applications, Technology and Social Issues, Alcala de IfEna
Madrid, Spain, Jung2006.

D. Harel et al. Statecharts: A visual formalism for cdexp

systems Science of Computer Programmirg(3):231-274,
1987.

R. Johnson and J. HoelleExpert one-on-one J2EE
development without EJBNrox, 2004.

K. Joshi, W. Sanders, M. Hiltunen, and R. Schlichting.
Automatic Model-Driven Recovery in Distributed Systems.
the 24th IEEE Symposium on Reliable Distributed Systems
(SRDS'05) pages 25-38, 2005.

10

(20]
(21]

(22]

A feature-; oriented reuse method with domain-; specific
reference architecturegnnals of Software Engineering
5:143-168, 1998.

A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y. Yuwaods
Requirements-driven Autonomic Systems Desigroceedings
of the 2005 workshop on Design and evolution of autonomic
application softwargpages 1-7, 2005.

D. Luckham.The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems
Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 2001.

S. Microsystems. Java Pet Store Sample Application.

J. White. Healing pet store case study implementation.
http://www.dre.vanderbilt.edu/ jules/petstore-casept
code.zip,

2007.

J. White, K. Czarnecki, D. C. Schmidt, G. Lenz, C. Wiedsn
E. Wuchner, and L. Fiege. Automated Model-based
Configuration of Enterprise Java Applications.HBOC 2007
October 2007.

J. White, A. Nechypurenko, E. Wuchner, and D. C. Schmidt
Optimizing and Automating Product-Line Variant Selectfon

Mobile Devices. Inl1th International Software Product Line

ConferenceSeptember 2007.

