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Abstract 
Software is increasingly important to the development of effective network-centric DoD combat systems. Next-
generation combat systems, such as total ship computing environments, coordinated unmanned air vehicle systems, 
and national missile defense, will use many geographically dispersed sensors, provide on-demand situational 
awareness and actuation capabilities for human operators, and respond flexibly to unanticipated run-time 
conditions. These combat systems will also increasingly run unobtrusively and autonomously, shielding operators 
from unnecessary details, while communicating and responding to mission-critical information at an accelerated 
operational tempo. In such environments, it’s hard to predict system configurations or workloads in advance. This 
article describes how adaptive and reflective middleware systems (ARMS) are being developed to bridge the gap 
between military application programs and the underlying operating systems and communication software in order 
to provide reusable services whose qualities are critical to network-centric combat systems. ARMS software can 
adapt in response to dynamically changing conditions for the purpose of utilizing the available computer and 
communication resources to the highest degree possible in support of mission needs.  

 

Motivation 
New and planned DoD combat systems are inherently 
network-centric distributed real-time and embedded 
(DRE) “systems of systems.” Combat systems have 
historically been developed via multiple technology bases, 
where each system brings its own networks, computers, 
displays, software, and people to maintain and operate it. 
Unfortunately, not only are these “stove-pipe” 
architectures proprietary, but by tightly coupling many 
functional and quality of service (QoS) aspects they 
impede DRE system   
1. Assurability, which is needed to guarantee efficient, 

predictable, scalable, and dependable QoS from 
sensors to shooters  

2. Adaptability, which is needed to (re)configure 
combat systems dynamically to support varying 
workloads or missions over their lifecycles and 

3. Affordability, which is needed to reduce initial non-
recurring combat system acquisition costs and 
recurring upgrade and evolution costs. 

In recognition of the importance of enhancing 
affordability, recent DoD programs, such as the Aegis 
destroyer program [Holzer00], the New Attack Submarine 
program [NAS94], the Weapons Systems Open 
Architecture program [Loy01], and the Unmanned 

Combat Air Vehicle (UCAV) program [Sha98] have 
adopted strong open systems approaches to system design 
and commercial-off-the-shelf (COTS) refresh strategies. 
Ultimately, open systems approaches are more likely to be 
robust with respect to change over the long life-cycles 
typical of military systems. For example, the affordability 
of certain types of DoD systems, such as logistics and 
mission planning, has been improved by using COTS 
technologies.  

However, many of today’s procurement efforts aimed at 
integrating COTS into mission-critical DRE combat 
systems have largely failed to support life-cycle 
affordability and assurability and adaptability effectively 
since they focus mainly on initial non-recurring 
acquisition costs and do not reduce recurring software 
lifecycle costs, such as COTS refresh and subsetting 
combat systems for foreign military sales [COTS98].  
Likewise, many COTS products lack support for 
controlling key QoS properties, such as predictable 
latency, jitter, and throughput; scalability; dependability; 
and security. The inability to control these QoS properties 
with sufficient confidence compromises combat system 
adaptability and assurability, e.g., a perturbation in the 
behavior of a COTS product that would be acceptable in 
commercial applications could lead to loss of life and 
property in  military applications.  



Historically, conventional COTS software has been 
unsuitable for use in mission-critical DRE combat 
systems due to its either being:  
1. Flexible and standard, but incapable of guaranteeing 

stringent QoS demands, which restricts assurability 
or  

2. Partially QoS-enabled, but inflexible and non-
standard, which restricts adaptability and 
affordability. 

As a result, the rapid progress in COTS software for 
mainstream business information technology (IT) has not 
yet become as broadly applicable for mission-critical 
DRE combat systems. Until this problem is resolved 
effectively, DRE system integrators and warfighters will 
be unable to take advantage of future advances in COTS 
software in a dependable, timely, and cost effective 
manner. Developing the new generation of assurable, 
adaptable, and affordable COTS software technologies is 
therefore essential for US national security.   

Although the near-term use of COTS software in DRE 
systems will be limited in scope and domain, the 
prospects for the longer term are much brighter. Given the 
proper advanced R&D context and an effective process 
for transitioning R&D results, the COTS market can 
adapt, adopt, and implement the types of robust hardware 
and software capabilities needed for military applications. 
This process takes a good deal of time to get right and be 
accepted by user communities, and a good deal of 
patience to stay the course. When successful, however, 
this process results in standards that codify the best-of-
breed practices and technologies, and the  patterns and 
frameworks that reify the knowledge of how to apply 
these practices and technologies. 

Key Technical Challenges and Solutions 

Today’s economic and organizational constraints—along 
with increasingly complex requirements and competitive 
pressures—make it infeasible to build complex distributed 
real-time system software entirely from scratch. It has 
long been accepted that the use of commercial operating 
systems and communication support software is cost-
effective for all but the most resource-constrained DRE 
systems. Increasingly, this same logic is being applied to 
middleware, which is reusable service/protocol 
component and framework software that services end-to-
end and aggregate combat systems needs [Sch01a].  
Middleware bridges the gap between  
1. Application-level requirements and mission doctrine 

and  
2. The lower-level underlying localized viewpoints of 

the operating systems and communications support 
mechanisms.  

From the application perspective, when middleware and 
the services it constitutes are combined with traditional 
network and operating system components, it forms the 
new infrastructure for developing modern network-centric 
combat systems.  In both commercial and military 
systems, middleware performs functions that are essential 

to meet application-level requirements. In military 
systems, moreover, the qualities of the services provided 
by the middleware are critical to the qualities of service 
that are presented to the end users – the warfighters. 

Thus, there is a pressing need to develop, validate, and 
ultimately standardize a new generation of adaptive and 
reflective middleware systems (ARMS) technologies that 
will be readily available and able to support stringent 
combat system functionality and QoS requirements. Some 
of the most challenging computing and communication 
requirements for new and planned DoD combat systems 
can be characterized as follows: 
• Multiple QoS properties must be satisfied in real-time 
• Different levels of service are appropriate under 

different configurations, environmental conditions, 
and costs 

• The levels of service in one dimension must be 
coordinated with and/or traded off against the levels of 
service in other dimensions to meet mission needs, 
e.g., the security and dependability of message 
transmission must be traded off against latency and 
predictability, and  

• The need for autonomous and time-critical application 
behavior necessitates a flexible distributed system 
substrate that can adapt robustly to dynamic changes 
in mission requirements and environmental conditions. 

Adaptive middleware [Loy01] is software whose 
functional and QoS-related properties can be modified 
either 
• Statically, e.g., to reduce footprint, leverage 

capabilities that exist in specific platforms, enable 
functional subsetting, and minimize hardware and 
software infrastructure dependencies or 

• Dynamically, e.g., to optimize system responses to 
changing environments or requirements, such as 
changing component interconnections, power-levels, 
CPU/network bandwidth, latency/jitter, and 
dependability needs. 

In DRE combat systems, adaptive middleware must make 
these modifications dependably, i.e., while meeting 
stringent end-to-end QoS requirements.  

Reflective middleware [Bla99] goes a step further in 
providing the means for examining the capabilities it 
offers while the system is running, thereby enabling 
automated adjustment for optimizing those capabilities. 
Thus, reflective middleware supports more advanced 
adaptive behavior, i.e., the necessary adaptations can be 
performed autonomously based on conditions within the 
system, in the system's environment, or in combat system 
doctrine defined by operators and administrators.  

The Structure and Functionality of 
Middleware 
Networking protocol stacks can be decomposed into 
multiple layers, such as the physical, data-link, network, 
transport, session, presentation, and application layers. 



Similarly, middleware can be decomposed into multiple 
layers, such as those shown in Figure 1.  

 
Figure 1. Middleware Layers and Their 

Surrounding Context 

We describe each of these middleware layers below and 
outline some of the COTS technologies in each layer that 
are suitable (or are becoming suitable) to meet the 
stringent QoS demands of DRE combat systems. 

Host infrastructure middleware encapsulates and 
enhances native operating system communication and 
concurrency mechanisms to create portable and reusable 
network programming components, such as reactors, 
acceptor-connectors, monitor objects, active objects, and 
component configurators [Sch00b]. These components 
abstract away the accidental incompatibilities of 
individual operating systems, and help eliminate many 
tedious, error-prone, and non-portable aspects of 
developing and maintaining networked applications via 
low-level operating system programming application 
program interfaces (APIs), such as Sockets or POSIX 
Pthreads. Examples of COTS host infrastructure 
middleware that are relevant for DRE combat systems 
include: 
• The ADAPTIVE Communication Environment (ACE) 

[Sch01], which is a portable and efficient toolkit that 
encapsulates native operating system network 
programming capabilities, such as interprocess 
communication, static and dynamic configuration of 
application components, and synchronization. ACE 
has been used in a wide range of DoD DRE systems, 
including missile control, avionics mission computing, 
software defined radios, and radar systems. 

• Real-time Java Virtual Machines, which implement 
the Real-time Specification for Java (RTSJ) [Bol00]. 
The RTSJ is a set of extensions to Java that provide a 
largely platform-independent way of executing code 
by encapsulating the differences between real-time 
operating systems and CPU architectures. The key 
features of RTSJ deal with memory management and 
concurrency. Although RTSJ implementations are still 

in their infancy, they have generated tremendous 
interest in the DoD R&D and integrator communities 
due to their potential for reducing software 
development and evolution costs significantly.  

Distribution middleware defines a higher-level 
distributed programming model whose reusable 
application program interfaces and mechanisms automate 
and extend the native operating system network 
programming capabilities encapsulated by host 
infrastructure middleware. Distribution middleware 
enables developers to program distributed applications 
much like stand-alone applications, i.e., by invoking 
operations on target objects or distributed components.  
At the heart of distribution middleware are QoS-enabled 
object request brokers, such as the Object Management 
Group’s (OMG) Common Object Request Broker 
Architecture (CORBA) [Omg00, Sch98].  CORBA is 
distribution middleware that allows objects to interoperate 
across networks without hard-coding dependencies on 
their location, programming language, operating system 
platform, communication protocols and interconnects, and 
hardware characteristics. In 1998 the OMG adopted the 
Real-time CORBA specification [Sch00a], which extends 
CORBA with features that allow DRE applications to 
reserve and manage CPU, memory, and networking 
resources. Real-time CORBA implementations have been 
used in dozens of DoD combat systems, including 
avionics mission computing [Sha98], submarine combat 
control systems [DiPalma99], signal intelligence and 
C4ISR systems, software defined radios, and radar 
systems. 
Common middleware services augment distribution 
middleware by defining higher-level, domain-
independent, reusable services that have proven necessary 
in most distributed application contexts to deal with 
multi-computer environments effectively.  In addition, 
these services provide components that allow application 
developers to concentrate on programming application 
logic, without the need to write the “plumbing” code 
needed to develop distributed applications using lower 
level middleware features directly. For example, whereas 
distribution middleware focuses largely on managing end-
system resources in support of an object-oriented 
distributed programming model, common middleware 
services focus on allocating, scheduling, and coordinating 
various end-to-end resources throughout a distributed 
system using a component programming and scripting 
model. Developers can reuse these services to manage 
global resources and perform recurring distribution tasks 
that would otherwise be reimplemented by each 
application or integrator.  
Examples of common middleware services include the 
OMG’s CORBAServices [Omg98b] and the CORBA 
Component Model (CCM) [Omg99], which provide 
domain-independent interfaces and distribution 
capabilities that can be used by many distributed 
applications.  The OMG CORBAServices and CCM 
specifications define a wide variety of these services, 



including event notification, naming, security, and fault 
tolerance. Not all of these standard services are 
sufficiently refined today to be usable off-the-shelf for 
DRE combat systems. However, the form and content of 
these common middleware services will continue to 
mature and evolve to meet the expanding requirements of 
DRE.   
Domain-specific middleware services are tailored to the 
requirements of particular combat system domains, such 
as avionics mission computing, radar processing, weapons 
targeting, or command and decision systems. Unlike the 
previous three middleware layers—which provide broadly 
reusable “horizontal” mechanisms and services—domain-
specific middleware services are targeted at vertical 
market segments. From a COTS perspective, domain-
specific services are the least mature of the middleware 
layers today. This immaturity is due in part to the 
historical lack of distribution middleware and common 
middleware service standards, which are needed to 
provide a stable base upon which to create domain-
specific middleware services. Since they embody 
knowledge of a domain, however, domain-specific 
middleware services have the most potential to increase 
the quality and decrease the cycle-time and effort that 
DoD integrators require to develop particular classes of 
DRE combat systems.  
A mature example of domain-specific middleware 
services appears in the Boeing Bold Stroke architecture 
[Sha98]. Bold Stroke uses COTS hardware and 
middleware to produce a non-proprietary, standards-based 
component architecture for military avionics mission 
computing capabilities, such as navigation, data link 
management, and weapons control. A driving objective of 
Bold Stroke was to support reusable product-line 
applications, leading to a highly configurable application 
component model and supporting middleware services. 
The domain-specific middleware services in Bold Stroke 
are layered upon common middleware services (the 
CORBA Event Service), distribution middleware (Real-
time CORBA and the TAO ORB [Sch98]), and 
infrastructure middleware (ACE), and have been 
demonstrated to be highly portable for different COTS 
operating systems (e.g., VxWorks), interconnects (e.g., 
VME), and processors (e.g., PowerPC). 

Recent Progress 
Significant progress has occurred during the last five 
years in DRE middleware research, development, and 
deployment within the DoD, stemming in large part from 
the following trends: 
• The maturation of standards – Over the past decade, 

middleware standards have been established and have 
matured considerably with respect to DRE 
requirements. For example, the OMG has adopted the 
following DRE-related specifications recently: 
o Minimum CORBA, which removes non-essential 

features from the full OMG CORBA specification to 

reduce footprint so that CORBA can be used in 
memory-constrained embedded systems.   

o Real-time CORBA, which includes features that 
allow applications to reserve and manage network, 
CPU, and memory resources predictably end-to-end.   

o CORBA Messaging, which exports additional QoS 
policies, such as timeouts, request priorities, and 
queueing disciplines, to applications.  

o Fault-tolerant CORBA, which uses entity 
redundancy of objects to support replication, fault 
detection, and failure recovery. 

 Robust and interoperable implementations of these 
CORBA capabilities and services are now available 
from multiple vendors. Moreover, emerging standards 
such as Dynamic Scheduling Real-Time CORBA, 
Real-time CORBA publish-subscribe services, the 
Real-Time Specification for Java, and the Distributed 
Real-Time Specification for Java are extending the 
scope of open standards for a wider range of DoD 
applications. 

• The dissemination of patterns and frameworks – A 
substantial amount of R&D effort during the past 
decade has also focused on the following means of 
promoting the development and reuse of high quality 
middleware technology:   
o Patterns codify design expertise that provides time-

proven solutions to commonly occurring software 
problems that arise in particular contexts [Gam95].  
Patterns can simplify the design, construction, and 
performance tuning of DRE applications by 
codifying the accumulated expertise of developers, 
architects, and systems engineers who have already 
confronted similar problems successfully.   

o Frameworks are concrete realizations of related 
patterns [John97] that provide an integrated set of 
components that collaborate to provide a reusable 
architecture for a family of related applications.  
Middleware frameworks include strategized 
selection and optimization patterns so that multiple 
independently-developed capabilities can be 
integrated and configured automatically to meet the 
functional and QoS requirements of particular DRE 
applications. 

 
Historically, the knowledge required to develop 
predictable, scalable, efficient, and dependable 
mission-critical DoD DRE combat systems has existed 
largely in programming folklore, the heads of 
experienced researchers and developers, or buried 
deep within millions of lines of complex source code. 
Moreover, documenting complex systems with today’s 
popular software modeling methods and tools, such as 
the Unified Modeling Language (UML), only capture 
how a system is designed, but do not necessarily 
articulate why a system is designed in a particular way, 
which complicates subsequent software evolution and 
optimization.  



Middleware patterns and frameworks help address 
these problems by systematically capturing combat 
system design expertise in a readily accessible and 
reusable format, thereby raising the level at which 
systems engineers and application developers 
approach the decision making and implementation of 
their systems. Two efforts to provide suitable guidance 
for the development of military systems are the New 
Attack Submarine (NAS) [NAS94] and the Aegis 
Shipbuilding Program.  NAS developed a guidance 
document detailing allowable standards for the NAS 
C3I system, and the Aegis program developed a 
guidance document for Baseline 7 phase I [Aegis7].  
These documents were instrumental in guiding the 
design of these systems. 

 
Much of the pioneering R&D on middleware patterns,  
frameworks, and standards for DRE combat systems has 
been conducted in the DARPA Information Technology 
Office (ITO) Quorum program [DARPA99], which played 
a leading role in:  
• Demonstrating the viability of host infrastructure 

middleware and distribution middleware for DoD 
combat systems by providing the foundation for 
managing key QoS attributes, such as real time 
behavior, dependability and system survivability, from 
a network-centric middleware perspective  

• Transitioning a number of new middleware 
perspectives and capabilities into DoD acquisition 
programs [Sha98, AegisOA] and commercially 
supported products and   

• Establishing the technical viability of collections of 
systems that can dynamically adapt [Loy01] their 
collective behavior to varying operating conditions, in 
service of delivering the appropriate application level 
response under these different conditions.   

The Quorum program focused heavily on CORBA open 
systems middleware and yielded many results that 
transitioned into standardized service definitions and 
implementations for the Real-time [Sch98] and Fault-
tolerant [Omg98a] CORBA specification and 
productization efforts.   Quorum is an example of how a 
focused government R&D effort can leverage its results 
by exporting them into, and combining them with, other 
on-going public and private activities by using a common 
open middleware substrate.  Prior to the viability of 
standards-based COTS middleware platforms, these same 
R&D results would have been buried within custom or 
proprietary systems, serving only as an existence proof, 
rather than as the basis for realigning the DoD R&D and 
integrator communities.   

Successful DoD technology transition most often results 
from a partnership between technology developers and 
technology users.  One of the most successful examples of 
such partnerships is the joint DARPA/Aegis High 
Performance Distributed Computing program (HiPer-D).  
Through the use of prototyping and system-scale 
experiments, this program has demonstrated the 

effectiveness of a number of DARPA and standards-based 
COTS technologies for building DRE combat systems 
that are efficient, scalable, fault tolerant, and flexible in 
their design and operation. 

Looking Ahead  

Due to advances in COTS technologies outlined earlier, 
host infrastructure middleware and distribution 
middleware have now been demonstrated and deployed in 
a number of mission-critical DRE combat systems. Since 
off-the-shelf middleware technology has not yet matured 
to cover the realm of large-scale, dynamically changing 
systems, however, COTS DRE middleware has been 
applied to relatively small-scale and statically configured 
embedded systems. To satisfy the highly application- and 
mission-specific QoS requirements in network-centric 
“system of system” environments, DRE middleware must 
therefore be enhanced to support common and domain-
specific middleware services that can manage the 
following resources effectively: 

• Communication bandwidth, e.g., network level status 
information and management services, scalability to 
102 subnets and 103 nodes, and dynamic connections 
with reserved bandwidth to enhance real-time 
predictability. 

• Distributed real-time scheduling and allocation of 
DRE system artifacts (such as CPUs, networks, UAVs, 
missiles, torpedoes, radar, illuminators, etc), e.g., fast 
and predictable behavior of widely dispersed 
components using managed communication 
capabilities and bandwidth reservations. 

• Distributed system dependability, e.g., policy-based 
selection of replication options. 

• Distributed system security, e.g., dynamically variable 
object access control policies and effective, combined 
real-time, dependability, and security interactions. 

Ironically, there is little or no scientific underpinning for 
QoS-enabled resource management, despite the demand 
for it in most distributed systems [Narain01]. Today’s 
system designers develop concrete plans for creating 
global, end-to-end functionality. These plans contain 
high-level abstractions and doctrine associated with 
resource management algorithms, relationships between 
these, and operations upon these. There are few 
techniques and tools, however that enable users, i.e., 
commanders, administrators, and operators, developers, 
i.e., systems engineers and application designers, and/or  
applications to express such plans systematically, reason 
about and refine them, and have these plans enforced 
automatically to manage resources at multiple levels in 
network-centric combat systems.  

To address this problem, the R&D community needs to 
discover and set the technical approach that can 
significantly improve the effective utilization of networks 
and endsystems that DRE combat systems depend upon 
by creating middleware and distributed resource 



management technologies and tools that can automatically 
allocate, schedule, control, and optimize customizable—
yet standards-compliant and verifiably correct—software-
intensive systems. To promote a common technology 
base, the interfaces and (where appropriate) the protocols 
used by the middleware should be based on established or 
emerging industry or DoD standards that are relevant for 
DRE combat systems. However, the protocol and service 
implementations should be customizable—statically and 
dynamically—for specific DoD DRE combat system 
requirements. 

To achieve these goals, middleware technologies and 
tools need to be based upon some type of layered 
architecture along with QoS adaptive middleware 
services, such as the one shown in Figure 2 and based on 
empirical investigations of this type of capability [Loy01]. 
The Quality Objects (QuO) [ZBS97] project is an 
example of such a layered architecture designed to 
manage and package adaptive QoS capabilities as 
common middleware services. The QuO architecture 
decouples DRE middleware and applications along the 
following two dimensions: 
• Functional paths, which are flows of information 

between client and remote server applications. In 
distributed systems, middleware ensures that this 
information is exchanged efficiently, predictably, 
scalably, dependably, and securely between remote 
peers. The information itself is largely application-
specific and determined by the functionality being 
provided (hence the term “functional path”).  

• QoS attribute paths, which are responsible for 
determining how well the functional interactions 
behave end-to-end with respect to key DRE system 
QoS properties, such as  
1. How and when resources are committed to 

client/server interactions at multiple levels of 
distributed systems 

2. The proper application and system behavior if 
available resources are less than the expected 
resources and  

3. The failure detection and recovery strategies 
necessary to meet end-to-end dependability 
requirements. 

In next-generation combat systems, the middleware—
rather than operating systems or networks in isolation—
will be responsible for separating DRE system QoS 
attribute properties from the functional application 
properties. Middleware will also coordinate the QoS of 
various DRE system and application resources end-to-
end. The architecture in Figure 2 enables these properties 
and resources to change independently, e.g., over different 
distributed system configurations for the same 
application.  

The architecture in Figure 2 is based on the expectation 
that QoS attribute paths will be developed, configured, 
monitored, managed, and controlled by a different set of 
specialists (such as systems engineers, administrators, 
operators, and perhaps someday automated agents) and 

tools than those customarily responsible for programming 
functional paths in DRE systems.  The middleware is 
therefore responsible for collecting, organizing, and 
disseminating QoS-related meta-information that is 
needed to  
1. Monitor and manage how well the functional 

interactions occur at multiple levels of DRE systems 
and  

2. Enable the adaptive and reflective decision-making 
needed to support QoS attribute properties robustly in 
the face of rapidly changing mission requirements 
and environmental conditions.  

Researching and developing these middleware 
capabilities is crucial to ensure that the aggregate 
behavior of future network-centric combat systems is 
dependable, despite local failures, transient overloads, and 
dynamic functional or QoS reconfigurations. 

 
Figure 2. Decoupling Functional and QoS 

Attribute Paths in QuO 
 
To simultaneously enhance assurability, adaptability, and 
affordability, the middleware techniques and tools 
developed in future R&D programs increasingly need to 
be application-independent, yet customizable within the 
interfaces specified by a range of open standards, such as  
• The OMG Real-time CORBA specifications and The 

Open Group’s QoS Task Force 
• The Java Expert Group Real-time Specification for 

Java (RTSJ) and the emerging Distributed RTSJ and 
• The IEEE Real-time Portable Operating System 

(POSIX) specification. 

Concluding Remarks   
As a result of much previous R&D and transition 
experience, network-centric systems today are constructed 
as a series of layers of intertwined technical capabilities 
and innovations.  The main emphasis at the lower layers is 
in providing the core computing and communication 
resources and services that drive network-centric 
computing: the individual computers, the networks, and 



the operating systems that control the individual host and 
the message level communication. 

At the upper layers, various types of middleware are 
starting to bridge the previously formidable gap between 
the lower-level resources and services and the abstractions 
that are needed to program, organize, and control systems 
composed of coordinated, rather than isolated, 
components. Key capabilities in the upper layers include 
common and domain-specific middleware services that  
• Enforce real-time behavior across computational 

nodes 
• Manage redundancy across elements to support 

dependable computing and 
• Control end-to-end adaptive behavior as responses to 

changes in operating conditions. 
These new middleware services make the coordinated use 
of multiple computing elements  feasible and affordable 
by controlling the hardware, network, and endsystem 
mechanisms that affect mission, system, and application 
QoS delivery and tradeoffs. 

Adaptive and reflective middleware systems (ARMS) are 
a key emerging paradigm that will help to simplify the 
development, optimization, validation, and integration of 
DRE middleware in DoD combat systems. In particular, 
ARMS will allow researchers and system integrators to 
develop and evolve complex combat systems assurably, 
adaptively, and affordably by: 
• Devising optimizers, meta-programming techniques, 

and multi-level distributed dynamic resource 
management protocols and services for ARMS that 
will enable DoD DRE systems to configure standard 
COTS interfaces, without the penalties incurred by 
today’s conventional COTS software product 
implementations. Many network-centric DoD combat 
systems require  these DRE middleware capabilities. 

• Standardizing COTS at the middleware level, rather 
than just at lower hardware/networks/operating system 
levels. The primary economic benefits of middleware 
stem from their extending standardization up several 
levels of abstraction so that DRE middleware 
technology is readily available for COTS acquisition 
and customization.  

As COTS implementations of middleware standards 
mature in their functional quality and quality of service, 
they are helping to lower the total ownership costs of 
combat systems. For example, Real-time and Fault-
tolerant CORBA implementations are creating a common 
base of COTS technology that enables complex DRE 
middleware capabilities to be reconfigured and reused, 
rather than re-invented repeatedly or reworked from 
proprietary “stove-pipe” architectures that are inflexible 
and expensive to evolve and optimize. Additional 
information on middleware for DRE systems is available 
at http://www.ece.uci.edu/~schmidt/TAO.html.  
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