Using Design Patterns and
Frameworks to Develop
Object-Oriented Communication

Systems

Douglas C. Schmidt
www.cs.wustl.edu/~schmidt/
schmidt@cs.wustl.edu

Washington University, St. Louis

Observations

e Developers of communication software con-
front recurring challenges that are largely
application-independent

— e.g., service initialization and distribution, error
handling, flow control, event demultiplexing,
concurrency control

e Successful developers resolve these chal-
lenges by applying appropriate design pat-
terns

e However, these patterns have traditionally
been either:

1. Locked inside heads of expert developers

2. Buried in source code

Motivation

e Developing efficient, robust, extensible, portable,
and reusable communication software is
hard

e It is essential to understand successful tech-
niques that have proven effective to solve
common development challenges

e Design patterns and frameworks help to
capture, articulate, and instantiate these
successful techniques

Design Patterns

e Design patterns represent solutions to prob-
lems that arise when developing software
within a particular context

— i.e., “Patterns == problem/solution pairs in a
context”

e Patterns capture the static and dynamic
structure and collaboration among key par-
ticipants in software designs

— They are particularly useful for articulating how
and why to resolve non-functional forces

e Patterns facilitate reuse of successful soft-
ware architectures and designs

Proxy Pattern

3: RESPONSE

e Intent: provide a surrogate for another
object that controls access to it

More Observations

e Reuse of patterns alone is not sufficient

— Patterns enable reuse of architecture and de-
sign knowledge, but not code (directly)

e To be productive, developers must also
reuse detailed designs, algorithms, inter-
faces, implementations, etc.

e Application frameworks are an effective
way to achieve broad reuse of software

Graphical Notation

—>
OBJECT
PROCESS . CLASS
THREAD
— —— T~ ___| N
T Y m—— JI | ¢
N VA ——>— \ CLASS
[CLASS D) N TEMPLATE ; uTiLity
N _———7 {_ crAss___~
—_— ., ——
CLASS -
CATEGORY INHERITS INSTANTIATES
ABSTRACT
CLASS —e —0
W CONTAINS USES
6

Frameworks

e A framework is:

— "An integrated collection of components that
collaborate to produce a reusable architecture
for a family of related applications”

e Frameworks differ from conventional class
libraries:

1. Frameworks are “semi-complete” applications

2. Frameworks address particular application do-
mains

3. Frameworks provide “inversion of control”

e Typically, applications are developed by in-
heriting from and instantiating framework
components

Differences Between Class Tutorial Outline

Libraries and Frameworks
e Outline key challenges for developing com-

APPLICATION / NETWORKIN(munication software

SPECIFIC |
LOGIC INVOKES | MATH ADTSs _
> e Present the key reusable design patterns
EVENT USER and framework components in high-performance
LOOP | INTERFACE DATA Web clients and servers
BASE
— Both single-threaded and various multi-threaded

solutions are presented

(A) CLASS LIBRARY

CHITECTURE — The patterns and frameworks covered general-
ize to other communication software systems

NETWORKING USER

\ INTERFACE

" APPLICATIONA
CALL

INVOKES SPECIFIC
./\ LOGIC
e Discuss lessons learned from using pat-

ADTs DATABASE terns and frameworks on production soft-
ware systems

* e.d., ORBs, video-on-demand, medical imag-
ing

MATH

(B) APPLICATION FRAMEWORK
ARCHITECTURE — e.g., telecom, avionics, medical systems

Stand-alone vs. Distributed Concurrency vs. Parallelism

Application Architectures

COMPUTER

........ read_fds

WORK

o WORK
| REQUEST

REQUEST
\

FILE SYSTEM

(2) DISTRIBUTED APPLICATION ARCHITECTURE

PARALLEL SERVER

11 12

Sources of Complexity

e Distributed application development exhibits Sources of Complexity (Cont d)
both inherent and accidental complexity
e Accidental complexity results from limita-
tions with tools and techniques, e.g.,
e Inherent complexity results from funda-

mental challenges, e.g., — Low-level tools
— Distributed systems % e.g., Lack of type-secure, portable, re-entrant,
and extensible system call interfaces and com-
* Latency ponent libraries

* Error handling

Inadequate debugging support

* Service partitioning and load balancing

Widespread use of algorithmic decomposition
— Concurrent systems * Fine for explaining network programming con-
cepts and algorithms but inadequate for de-

* Race conditions veloping large-scale distributed applications

Deadlock avoidance

*

Continuous rediscovery and reinvention of core

. . concepts and components
* Fair scheduling

* Performance optimization and tuning

13 14

OO Contributions Concurrent Web Client/Server

e Communication software has traditionally Example
been performed using low-level OS mech-
anisms, e.qg.,

fork/exec e The following example illustrates a con-
current OO architecture for a high-performance

— Shared memory .
Web client/server

— Signals
— Sockets and select e Key system requirements are:
— POSIX pthreads, Solaris threads, Win32 threads 1. Robust implementation of HTTP protocol

— i.e., resilient to incorrect or malicious Web

. clients/servers
e OO design patterns and frameworks ele- /

vate focus to application concerns, e.g.,
2. Extensible for use with other protocols
— Service functionality and policies

— e.g., DICOM, HTTP 1.1, SFP

Service configuration

3. Leverage multi-processor hardware and OS soft-
ware

Concurrent event demultiplexing and event han-
dler dispatching

— e.g., Support various concurrency models

Service concurrency and synchronization

15 16

General Web Client/Server

HTML
PARSER
GUI

REQUESTER
0000000
GRAPHICS
ADAPTER

OS KERNEL

0S 1/0 SUBSYSTEM

NETWORK ADAPTERS

Interactions

1: GET ~schmidt
HTTP/1.0
E—

2: index.html
-——

NETWORK

COMMUNICATION PROTOCOL
(E.G., HTTP)

DISPATCHER

$2. —'20 *20

OS KERNEL

0S 1/0 SUBSYSTEM

NETWORK ADAPTERS

17

Design Patterns in the Web

Server Implementation

Acceptor
Connector
Service
Configurator
0
Asynchronous B
Completion Reactor/
Token Proactor
STRATEGIC PATTERNS
TACTICAL PATTERNS
Abstract .
State Strategy Py Adapter || Singleton

19

Web Server Software Architecture

HTTP
Handler

Sock
Stream

HTTP
Handler

HTTP
Handler

Sock
Stream

e Event Dispatcher

— Encapsulates Web server concurrency and dis-
patching strategies

e HTTP Handlers

— Parses HT TP headers and processes requests

e HTTP Acceptor

— Accepts connections and creates HT TP Han-
dlers

18

Tactical Patterns

e Proxy

— "Provide a surrogate or placeholder for another
object to control access to it"”

e Strategy

— "Define a family of algorithms, encapsulate each
one, and make them interchangeable”

e Adapter

— "Convert the interface of a class into another
interface client expects”

e Singleton

— "“Ensure a class only has one instance and pro-
vide a global point of access to it"”

e State

— "“Allow an object to alter its behavior when its
internal state changes”

20

Event Handling Patterns

e Reactor

“Decouples synchronous event demultiplexing
and event handler initiation dispatching from
service(s) performed in response to events”

e Proactor

“Decouples asynchronous event demultiplexing
and event handler completion dispatching from
service(s) performed in response to events”

e Asynchronous Completion Token

"Efficiently associates state with the comple-
tion of asynchronous operations”

21

Concurrency Architecture
Patterns

e T hread-per-Request

“Allows each client request to run concurrently
in a separate thread”

e Thread Pool

“Allows up to N requests to execute concur-
rently within a pool of threads "

e Thread-per-Connection

“Allows each client connection to run concur-
rently”

% Suited for HTTP 1.1, but not HTTP 1.0

23

Concurrency Patterns

e Active Object

— “Decouples method execution from method in-
vocation and simplifies synchronized access to
shared resources by concurrent threads”

e Half-Sync/Half-Async

— “Decouples synchronous I/O from asynchronous
I/O in a system to simplify concurrent pro-
gramming effort without degrading execution
efficiency”

e Double-Checked Locking Optimization Pat-
tern

— "Ensures atomic initialization of objects and
eliminates unnecessary locking overhead on each
access”

22

Service Initialization Patterns

e Connector

— “Decouples active connection establishment from
the service performed once the connection is
established”

e Acceptor

— "“Decouples passive connection establishment
from the service performed once the connec-
tion is established”

e Service Configurator

— "“Decouples the behavior of network services
from point in time at which services are con-
figured into an application”

24

Selecting the Server’s Alternative Web Server

Concurrency Architecture Concurrency Patterns

e Problem e The following example illustrates the de-

— A very strategic design decision for high-performance sign patterns (and framework Components)

Web servers is selecting an efficient concur- in an OO implementation of a concurrent
rency architecture
Web Server

e Forces e The following are the key concurrency pat-
tern alternatives:
— No single concurrency architecture is optimal
1. Reactive

— Key factors include OS/hardware platform and
workload 2. Thread-per-request

3. Thread-per-connection
e Solution
4. Synchronous Thread Pool

— Understand key alternative concurrency pat-

terns 5. Asynchronous Thread Pool

25 26

Thread-per-Request Web Server

Reactive Web Server

2: HANDLE INPUT
3: CREATE HANDLER —»2
4: ACCEPT CONNECTION

5: SPAWN THREAD

2: HANDLE INPUT

3: CREATE HANDLER

4: ACCEPT CONNECTION
5: ACTIVATE HANDLER

HTTP
Acceptor

Handler

f
|
|
!

|

6: PROCESS HTTP REQUEST

27 28

Handle-based Synchronous
Thread Pool Web Server

Thread-per-Connection Web

Server

Event

3: SPAWN THREAD 2: CREATE, ACCEPT,
Dispatcher

PER CONNECTION AND ACTIVATE

2: ACCEPT CONNECTION
3: MORPH INTO HANDLER

29 30

Queue-based Synchronous Asynchronous Thread Pool Web

Thread Pool Web Server Server

2: HANDLE INPUT

3: ENQUEUE REQUEST 1: INITIATE ASYNC ACCEPT

2: RUN EVENT LOOP
4: ACCEPT COMPLETES
5: QUEUE COMPLETION

6: DEQUEUE COMPLETION
& PROCESS

31 32

The ADAPTIVE Communication
Environment (ACE)

SELF-CONTAINED MIDDLEWARE
DISTRIBUTED JAWS ADAPTIVE APPLICATIONS
SERVICE
WEB SERVER THE ACE ORB

COMPONENTS TOKEN GATEWAY :ﬂ =3
SERVER SERVER f— E\(‘MO) é
LOGGING NAME TIME
SERVER SERVER SERVER
SERVICE

FRAMEWORKS ACCEPTOR CONNECTOR HANDLER . HANDLER ,‘

ADAPTIVE SERVICE EXECUTIVE (ASX)

CONFIG-
URATOR

MEM SV
MAP wmrms
OS ADAPTATION LAYER

| SOCKETS/[| NAMED [SELECT/ [|DYNAMIC || MEMORY ;| SYSTEM
TLI }{ PIPES []I10 COMP LINKING [/| MAPPING || V IPC

PROCESS/THREAD COMMUNICATION VIRTUAL MEMORY

SUBSYSTEM SUBSYSTEM SUBSYSTEM

GENERAL POSIX AND WIN32 SERVICES

e A set of C++ wrappers and frameworks
based on common communication soft-
ware design patterns

33

Demultiplexing and Dispatching

Events

e Problem

— Web servers must process several different types
of events simultaneously

e [orces

— Multi-threading is not always available
— Multi-threading is not always efficient

— Tightly coupling general event processing with
server-specific logic is inflexible

e Solution
— Use the Reactor pattern to decouple generic
event processing from server-specific process-

ing

35

Architecture of Our WWW Server

WWW SERVER

: HTTP Msg
Processor

: HTTP chlkE N
Handler Handler

: Reactor

34

The Reactor Pattern

e Intent

— "Decouples synchronous event demultiplexing
and event handler initiation dispatching from
service(s) performed in response to events”

e This pattern resolves the following forces
for synchronous event-driven software:

— How to demultiplex multiple types of events
from multiple sources of events synchronously
and efficiently within a single thread of control

— How to extend application behavior without re-
quiring changes to the event dispatching frame-
work

36

Structure of the Reactor Pattern

APPLICATION- APPLICATION-

ST — o~
select (handles). INDEPENDENT DEPENDENT
foreach h in handles { HTTP \,
if (h is output handler) /
table[h]->handle_output () ; H i“ldl,er 4
if (h is input handler) _ R
table[h|->handle_input (); // T T~ ——— N S~ —
if (h is signal handler) % - N
table[h]->handle_signal 0; | { Event_Handler / ¢ HTTP
\ - 4/\/
timer_queue->expire_timers ()] | handle_input() l\ k\A/cSe\p t'()_l—‘/l

T I handle_output() \
{ handle signal()
| handle_timeout() \

n|! get | handle()
~_—"
1
/T - B

|
|
|
|
|
|
v
/‘ Inltlatlon \ ’Tlmer Queue \I
Dispatcher

)
_— I schedule timer(h) ,’
\' handle_events() L: Handles, \ cancel_timer(h)

/ register_handler(h) / \ expire_timers(h) !
‘ remove_handler(h) i@ AN ___ .y
\‘/,—-_/"_“1 1 -7 O\

e Participants in the Reactor pattern

37

A Single-threaded Reactive Web

Server

REGISTERED

OBJECTS 5: recv(request)
6: process(request)

2: accept()
3: make_handler()

HTTP
Acceptor

HTTP HTTP

Handler Handler

{ Event Event
Handler Handler

4: handle_input()

Event
Handler

Event
Handler

APPLICATION
LEVEL

1: handle_input()

t Initiation
Dispatcher

Reactor

FRAMEWORK
LEVEL

| OS EVENT DEMULTIPLEXING INTERFACE |

KERNEL
LEVEL

39

Collaboration in the Reactor

Pattern
callback :
main Concrete Initiation
2 program Event_Handler Dlspatcher
€ INmALIZE L Reactor() . |
T
S R : register | handler(callback)L
§ Q REGISTER HANDLER]
S I get handle()
= EXTRACT HANDLE 2 T
§ START EVENT LOOP , __handle_events() >l
| |
FOREACH EVENT DO | | select()
% DATA ARRIVES : Ij: handle_input()
|
~ OK TO SEND : D= handle_output()
S | .
§ % SIGNAL ARRIVES : Ij - handle signal()
5 = I __handle_timeout()
z TIMER EXPIRES | D‘
§ REMOVE H ANDLER: Ijremove handler(callback
=
CLEANUP : D handle_close()
|

38

An Integrated Reactive/Active
Web Server

REGISTERED
OBJECTS 4: getq(msg) > "L
5:sve(msg)
z.
e
== 2
= 8 .
Shl= q HTTP HTTP
2= Handler Processor
S 3

Event 2: recv_request(msg)
Handler3: putq(msg)

Initiation
Dispatcher

1: handle_input()

FRAMEWORK
LEVEL

Reactor

| 0OS EVENT DEMULTIPLEXING INTERFACE |

KERNEL
LEVEL

40

The HT TP _Handler Public

Interface

The HT TP _Handler Protected
Interface

e The HTTP_Handler is the Proxy for commu-
nicating with clients . .
e The following methods are invoked by call-
— Along with Reactor, this class implements the backs from the Reactor
asynchronous task part of Half-Sync/Half-Async

// Reusable base class. protected: N . .
template <class PEER_ACCEPTOR> // Reactor notifies when client’s timeout.

class HTTP Handler : virtual int handle_timeout (const Time_Value &,

public Svc_Handler<PEER_ACCEPTOR::PEER_STREAM, const void *)

NULL_SYNCH> { t
// Remove from the Reactor.

Reactor::instance ()->remove_handler
(this, READ_MASK);

public:
// Entry point into HTTP_Handler, called by
// HTTP_Acceptor.
virtual int open (void *) {
// Register with Reactor to handle client input.

Reactor::instance ()->register_handler (this, READ_M // Reactor notifies when HTTP requests arrive.

virtual int handle_input (HANDLE);

// Register timeout in case client doesn’t
// send any HTTP requests.
Reactor::instance ()->schedule_timer
(this, 0, ACE_Time_Value (HTTP_CLIENT_TIMEOUT)); i

// Receive/frame client HTTP requests (e.g., GET).
int recv_request (Message_Block &*) ;

41 42

Integrating Multi-threading The Active Object Pattern

e Problem
e Intent
— Multi-threaded Web servers are needed since
Reactive Web servers are often inefficient, non- — "“Decouples method execution from method in-
scalable, and non-robust vocation and simplifies synchronized access to

shared resources by concurrent threads”

e Forces i .
e This pattern resolves the following forces
— Multi-threading can be very hard to program for concurrent communication software:

. . .) — How to allow blocking read and write opera-
— No single multi-threading model is always op- tions on one endpoint that do not detract from

timal the quality of service of other endpoints
— How to simplify concurrent access to shared
e Solution state
— Use the Active Object pattern to allow multi- — How to simplify composition of independent
ple concurrent server operations using an OO services

programming style

43 a4

Structure of the Active Object

Pattern
/e -
I . N —>g loop {
/) Client 4 4’3 m = actQueue.remove()
¢~ Interface dispatch (m)
\/ get_reqﬁt() I N: get_request() } —
{ set_request() | N N -
head_request() ST\ 3:dispatch()
\ - -
N (Scheduler , _ - -
- e ’ o 7.
7 dispatch() © 1 _/Activation)
VISIBLE \ get_request() . Queue /
TO <(set_request'() / P M \

i |
CLIENTS head_request(), 4 1 remove() |

1 T 2: insert(getirequest')\ - 1
1) o~
INVISIBLE N

J > /

TO -~ Resource (\ ¢~ Method {
CLIENTS (_Representation _ Objects |
~_ -~ =)
- N

- ~

- ~
-

e The Scheduler determines the sequence
that Method Objects are executed

45

Using the Active Object Pattern
in the Web Server

REGISTERED
OBJECTS

sve_run
4: getq(msg) __
5:sve(msg)

HTTP
Handler

APPLICATION
LEVEL

2: recv_request(msg)

Event
putq(msg)

Handler ~°

M
§ § 1: handle_input() _—
RN
SR
% ~
Reactor
e | 0S EVENT DEMULTIPLEXING INTERFACE |
RN
z 8
S
g€ =

a7

SCHEDULING/ METHOD OBJECT
CONSTRUCTION

EXECUTION

COMPLETION

Collaboration in the Active
Object Pattern

. : Client : Activation : Represent-
client : Scheduler pr
Interface Queue ation
I I A I I
INVOKE mlQ !
I I
CREATE METHOD jcons(ml') |
OBJECT |
. future() |
RETURN RESULT
HANDLE < }
I
INSERT IN ; I I
PRIORITY QUEUE %

DEQUEUE NEXT

I
|
|
I
I
|
I
I remove(ml') !

METHOD OBJECT } ™

I

I

I

EXECUTE dispatch(m1')

I
reply_to_future()

|
- | T

RETURN RESULT

46

The HT TP _Processor Class

e Processes HT TP requests using the “Thread
Pool” concurrency model

— Implement the synchronous task portion of the
Half-Sync/Half-Async pattern

class HTTP_Processor : public Task {
public:
// Singleton access point.
static HTTP_Processor *instance (void);

// Pass a request to the thread pool.
virtual int put (Message_Block *);

// Event loop for the pool thread
virtual int svc (int) {
Message_Block *mb = 0; // Message buffer.

// Wait for messages to arrive.

for (5;) {
getq (mb); // Inherited from class Task;
// Identify and perform WWW Server
// request processing here...

}

protected:
HTTP_Processor (void); // Constructor.

48

Using the Singleton Pattern

e The HTTP_Processor iS implemented as a
Singleton that is created “on demand”

HTTP_Processor *
HTTP_Processor::instance (void)
{
// Beware of race conditions!
if (instance_ == 0)
instance_ = new HTTP_Processor;

return instance_;

}

e Constructor creates the thread pool

HTTP_Processor: :HTTP_Processor (void)
{
// Inherited from class Task.
activate (THR_NEW_LWP, num_threads);
}

49

The Double-Checked Locking

Optimization Pattern

e Intent

— "Ensures atomic initialization of objects and
eliminates unnecessary locking overhead on each
access”

e This pattern resolves the following forces:

1. Ensures atomic initialization or access to ob-
Jjects, regardless of thread scheduling order

2. Keeps locking overhead to a minimum

— e.g., only lock on creation

e Note, this pattern assumes atomic mem-
ory access...

51

Subtle Concurrency Woes with

the Singleton Pattern

e Problem

— The canonical Singleton implementation has
subtle “bugs” in multi-threaded applications

e forces

— Too much locking makes Singleton too slow. ..

— Too little locking makes Singleton unsafe...

e Solution

— Use the Double-Checked Locking optimization
pattern to minimize locking and ensure atomic
initialization

50

Using the Double-Checked

Locking Optimization Pattern for

the Web Server

if (instance =NULL) {
mutex_.acquire ();
if (instance_ =NULL)
instance_=new HTTP_Processor;
mutex_.release ();

}

return instance ;

/ ~
(/ HTTP N 4
\/ Processor i
\
| static instance()o/\\\
| static instance_ g

52

Integrating Reactive and
Multi-threaded Layers

e Problem

— Justifying the hybrid design of our Web server

can be tricky

e [orces

— Engineers are never satisfied with the status

quo ;-)

— Substantial amount of time is spent re-discovering
the intent of complex concurrent software de-

sign

e Solution

— Use the Half-Sync/Half-Async pattern to ex-
plain and justify our Web server concurrency

architecture

53

Structure of the
Half-Sync/Half-Async Pattern

1,4: read(da>‘ ! 1

TASK LAYER

LAYER

| MESSAGE QUEUES |

EXTERNAL
EVENT SOURCES

ASYNCHRONOUS QUEUEING SYNCHRONOUS
TASK LAYER

55

SYNC QUEUEING ASYNC

Half-Sync/Half-Async Pattern

e Intent

— "Decouples synchronous I/O from asynchronous
I/O in a system to simplify programming effort
without degrading execution efficiency”

e This pattern resolves the following forces
for concurrent communication systems:

— How to simplify programming for higher-level

communication tasks

* These are performed synchronously

— How to ensure efficient lower-level I/O com-

munication tasks

* These are performed asynchronously

Collaborations in the

54

Half-Sync/Half-Async Pattern

External Async Message Sync

Event Source Task Queue Task
I notification() | i i
EXTERNAL EVENT | I +
p | read(msg) | |
E RECV MSG |« Lcadimse !
[: work() |
PROCESS MSG | [:
&y : enqueue(msF)
“ ENQUEUE MSG | |
E | | | read(msg)
% DEQUEUE MsG : : [E—
K : : : work()
EXECUTE TASK
2 | i Eana
LY | | | |

e This illustrates input processing
processing is similar)

(output

56

Using the Half-Sync/Half-Async Joining Async and Sync Tasks in
Pattern in the Web Server the Web Server

e The following methods form the boundary
between the Async and Sync layers

4: getq(msg) / int

S:sve(msg) HTTP_Handler::handle_input (void)

SYNC TASK
LEVEL

{
QO Message_Block *mb = 0;
Z o HTTP
§ § Processor // Try to receive and frame message.
R E if (recv_request (mb) == HTTP_REQUEST_COMPLETE) {
8 Reactor::instance ()->remove_handler
HTTP (this, READ_MASK);
Handler Reactor::instance ()->cancel_timer (this);
2: recv_request(msg) // Insert message into the Queue.
HTTP_Processor<PA>::instance ()->put (mb);
e }
v — }
$ g
& : 1: handle_input() // Task entry point.
E ~ Reactor HTTP_Processor: :put (Message_Block *msg) {
% // Insert the message on the Message_Queue
// (inherited from class Task).
putq (msg);
57 58
Optimizing Our Web Server for
Asynchronous Operating Systems
The Proactor Pattern
e Problem
e Intent

— Synchronous multi-threaded solutions are not

always the most efficient . .
— "“Decouples asynchronous event demultiplexing

and event handler completion dispatching from
service(s) performed in response to events”

e forces

— Purely asynchronous I/O is quite powerful on

some OS platforms e This pattern resolves the following forces

for asynchronous event-driven software:

* €.g., Windows nt 4.x — How to demultiplex multiple types of events
from multiple sources of events asynchronously

— Good designs should be adaptable to new con- and efficiently within a minimal number of threads
texts

— How to extend application behavior without re-
quiring changes to the event dispatching frame-

. ork
e Solution w

— Use the Proactor pattern to maximize perfor-
mance on Asynchronous OS platforms

59 60

Structure of the Proactor Pattern

APPLICATION-

APPLICATION-

[T —— = Sm—~

_ N\
¢ HTTP \ ({Async)

overlapped_result = .
G etQueuedCompleteStatus(); /' H andler/: l' Write }‘
overlapped_result->complete() -l —r

\

\f’ Event_Handler |

|
handle_accept() /

Acceptor

———~_

[
[
[
| L
! | handle read file() ,, ,/ As ll; \ TN
| ! handle write file() | ¢ ASYRE { Async
| ll handle_timeout) | Oop ,‘ 'Accept |
| n { get_handle() / \ open() (/\ =~
= 4 ! 10/
| _ - cance
|] = \W/ \\ AN \'/ e
\/’ s ! S
e (?mp:etl:on \ 1 p Timer_Queue !
z OM (’3 I m— " A { schedule_timer(h) /
/ handle_events()) H andles/, \ cancel timer(h) |

! register_handle() /

N —_ s —_— =

N\ — — . .
- T~ \ \explreﬁtlmer(h) /’
—— —

1

e Particip

g N

1

ants in the Proactor pattern

61

Client Connects to a Proactive

4: connec]

Web
Browser

Web Server

t Web Server

1: accept
connections

2: accept
(Acceptor,

Completion Operating
Dispatcher L | System
i 3: handle 5: accept

events complete)

63

Collaboration in the Proactor

Pattern

Asynchronous

Proactive Operation Asynchronous Completion Completion

Initiator Processor

o

Asynchronous
operation initiated

Operation performed
asynchronously

Operation completes

Completion Handler

—

notified

Operation Dispatcher Handler

| |
register (operation, handler, dispatcher
AL

execute
—

dispatch

handle event

62

Client Sends Request to a

Proactive Web Server

1: GET

letc/passwq

Web |— |

Browser

d
5: read (File)

File
System

~
J

Web Server

HTTP . 4: parse request
Handler [J

) 6: write (File, Conn.,
8:write ' Handler, Dispatcher)
complete

7: write
Completion C0: Yl [Operating
Dispatcher System

2: read complete

64

Structuring Service Initialization

e Problem

— The communication protocol used between clients
and the Web server is often orthogonal to the
initialization protocol

e [orces

— Low-level connection establishment APIs are
tedious, error-prone, and non-portable

— Separating initialization from use can increase

software reuse substantially

e Solution

— Use the Acceptor pattern to decouple passive
service initialization from run-time protocol

65

Structure of the Acceptor Pattern

—_———— o — —

/\: HTTP Handler

|
< s |

ST~ ——
-~ HTTP) S HTTP
 _Handler / (, _Acceptor |
,' peer_stream_ / [peer_acceptor_ //\
\ open() 7 creatE & :\\handleiinput()_ §

- —_—— —

~—= ACTIVATE ~-

—_—
— ——
vz —_—

(Event
'Dispatcher ',
L\ v

~——

e Acceptor is a factory that creates, con-
nects, and activates a Svc_Handler

67

ENDPOINT
PHASE

SERVICE
PHASE

PHASE

SERVICE
PROCESSING INITIALIZATION INITIALIZATION

The Acceptor Pattern

Intent

— “Decouples passive initialization of a service
from the tasks performed once the service is
initialized”

This pattern resolves the following forces
for network servers using interfaces like
sockets or TLI:

1. How to reuse passive connection establishment
code for each new service

2. How to make the connection establishment code
portable across platforms that may contain sock-

ets but not TLI, or vice versa

3. How to ensure that a passive-mode descriptor
is not accidentally used to read or write data

4. How to enable flexible policies for creation,
connection establishment, and concurrency

66

Collaboration in the Acceptor

Pattern
peer_acceptor_ sh: . Initiation
Server Acceptor A/;csc(:;:tl()(r Sve_Handler Dispatcher
INITIALIZE PASSIVE {open() i i i |
open() | !
ENDPOINT E— |

REGISTER HANDLER

|

|

|

register_handler(acc) |
T T

|

EXTRACT HANDLE get_harvldle()

! ! handle_input()

|

handle_events() l
|
|

|

|

|

START EVENT LOOP |
|

FOREACH EVENT DO |
|

select()j'

[l
|
|
|
CONNECTION EVENT | sh=make_sve_handler()

CREATE, ACCEPT, accept_svc_handler (sh)
AND ACTIVATE OBJECT activate_svc_handler (sh)
R —

REGISTER HANDLER

FOR CLIENT I/O get_handle()

EXTRACT HANDLE

PROCESS MSG

|

|

|

|

|

|

|

DATA EVENT |
|

|

| |

|
CLIENT SHUTDOWN |
|

|

I
SERVER SHUTDOWN , handle close()

register_handler(sh)

|
|-

|

|

|

1 ‘

| handle_input()
|

1 Emo
I

|

|

I

1

I handle_close()

68

The Acceptor Class
Using the Acceptor Pattern in the
Web Server e The Acceptor class implements the Accep-

tor pattern
HTTP HTIIP HTTP
Handler Handler Handler
1: handle_input()
2: sh =make_svc_handler() ACTIVE HTTP
Handler

// Reusable Factor
template <class SVC_HANDLER>
class Acceptor :
public Service_Object // Subclass of Event_Handler.
{
public:
// Notified by Reactor when clients connect.
virtual int handle_input (void)
{
// The strategy for initializing a SVC_HANDLER.
SVC_HANDLER *sh = new SVC_HANDLER;
peer_acceptor_.accept (sh->peer ());

HTTP
Acceptor

Acceptor

3: accept_svc_handler(sh) CONNECTIONS
4: activate_svc_handler(sh)

\ sh->open ();
PASSIVE LISTENER :
Reactor /...
protected:

// IPC connection factory.
SOCK_Acceptor peer_acceptor_;

}

69 70

Putting the Pieces Together at
The HTTP_Acceptor Class Run-time

Interface
e Problem

— Prematurely committing ourselves to a partic-
e The HTTP Acceptor class accepts connec- ular Web server configuration is inflexible and

tions and initializes HTTP Handlers inefficient

class HTTP_Acceptor

: public Acceptor<HTTP_Handler> e Forces

// Inherits handle_input() strategy from Acceptor.
{ bli — Certain server configuration decisions can't be
public:

. made efficiently until run-time
// Hook called automatically when HTTP_Acceptor

// is dynamically linked.

virtual int init (int argc, char *argv[]); — Forcing users to pay for components they don't
use is undesirable

// Hook called automatically when HTTP_Acceptor is

// dynamically unlinked.
virtual int fini (void);

e Solution

/! ...

} — Use the Service Configurator pattern to assem-

ble the desired Web server components dynam-
ically

71 72

CONFIGURATION

EVENT HANDLING

The Service Configurator Pattern

e Intent

— “Decouples the behavior of communication ser-
vices from the point in time at which these
services are configured into an application or
system”

e This pattern resolves the following forces
for highly flexible communication software:

— How to defer the selection of a particular type,
or a particular implementation, of a service un-
til very late in the design cycle

* i.e., at installation-time or run-time

— How to build complete applications by compos-
ing multiple independently developed services

— How to optimize, reconfigure, and control the
behavior of the service at run-time

73

Collaboration in the Service

Configurator Pattern

main() sve: . Reactor : Service : Service
Service_Object

CONFIGURE Service_Config() ‘ \

FOREACH SVC ENTRY DO

process_ dlrectlves() =

\ link_service()
init(argc, argv)
register_handler(svc

‘ ==
T
|
| get_handle() D
|
|
|
|
i

DYNAMICALLY LINK
SERVICE

INITIALIZE SERVICE

MODE

REGISTER SERVICE

EXTRACT HANDLE -—= |

insert()
STORE IN REPOSITORY

run_event_loop()
START EVENT LOOP — —

|

|

|

; handle_events() :
FOREACH EVENT DO | e
D handle_input() |

INCOMING EVENT -

|

1

SHUTDOWN EVENT handle_close() :
I

I

MODE

|

remove_handler(svc)

| junlink_service(),
} fini() 1 = || remove()
|

CLOSE SERVICE

UNLINK SERVICE

75

CONFIGURATOR

Conﬁg Repository

Structure of the Service

Configurator Pattern

- N
{ Concrete
| Service Object
A

APPLICATION
LAYER

/Service
(Object

\ suspend()
| resume() \

| init()

' fini() W

| mfo() 2 B A)
S~ " Service |

(Repos1t0ry)

S~

CONFIGURATION
LAYER

[T ——~

7 - \\ _
(Event N
IHandler //’IQ Reactor)

REACTIVE
LAYER

74

Using the Service Configurator
Pattern in the Web Server

Reactive

SERVICE

RUNTIME

Service
Repository

Service

Object

e EXisting Web server is based on Half-Sync/Half-
Async pattern

e Other versions could be single-threaded,
could use other concurrency strategies, and
other protocols

76

The HTTP_Acceptor Class

Implementation

// Initialize service when dynamically linked.
int HTTP_Acceptor::init (int argc, char xargv[])
{

Options::instance ()->parse_args (argc, argv);

// Set the endpoint into listener mode.
Acceptor::open (local_addr);

// Initialize the communication endpoint.

Reactor::instance ()->register_handler (this, ACCEPT_MASK)

}

// Terminate service when dynamically unlinked.

int HTTP_Acceptor::fini (void)

{
// Unblock threads in the pool so they will
// shutdown correctly.
HTTP_Processor::instance ()->close ();

// Wait for all threads to exit.
Thread_Manager: :instance ()->wait ();

7

Main Program for Web Server

e Dynamically configure and execute the Web
Server

— Note that this is totally generic!

int main (int argc, char *argv[])
{
Service_Config daemon;
// Initialize the daemon and dynamically
// configure the service.
daemon.open (argc, argv);

// Loop forever, running services and handling
// reconfigurations.

daemon.run_event_loop ();

/* NOTREACHED */

79

Configuring the Web Server with

the Service Configurator

e The concurrent Web Server is configured
and initialized via a configuration script

% cat ./svc.conf

dynamic TP_WWW_Server Service_Object *
www_server.dll:make_TP_WWW_Server ()
"-p $PORT -t $THREADS"

e Factory function that dynamically allocates
a Half-Sync/Half-Async Thread Pool Web
Server
extern "C" Service_Object *make_TP_WWW_Server (void);
Service_Object *make_TP_WWW_Server (void)
{
return new HTTP_Acceptor;

// ACE dynamically unlinks and deallocates this object.
}

78

The OO Architecture of the
JAWS Framework

Reactor/Proactor State Singleton
1/0O Strategy Cached Virtual

B wI T TR

Asynchronous Completion Token REIGE] ~
Expander AN

/home/...

Protocol
Handler

Event Dispatcher

Strategy

Protocol
Filter

=

Concurrency @
Protocol Pipeline Strategy

Framework Framework
Service Configurator

Active Object

e www.cs.wustl.edu/~jxh/research/

80

Web Server Optimization Applying Patterns to CORBA

Techniques ORBs
Use lightweight concurrency CONFIGURATOR
o — _—.—
Minimize locking FACTORY

ACTIVE
OBJECT

Apply file caching and memory mapping STRATEGY |
|
THREAD-SPECIFIC
Use “gather-write” mechanisms
STORAGE
CONNECTOR ACCEPTOR

Minimize logging REACTOR

WRAPPER FACADES

Pre-compute HT TP responses

OS KERNEL 0OS KERNEL
D D
Avoid excessive time calls

Optimize the transport interface
P b e www.cs.wustl.edu/~schmidt/ORB-patterns.ps.gz

81 82

Drawbacks to Design Patterns
Benefits of Design Patterns

Patterns do not lead to direct code reuse

Design patterns enable large-scale reuse

of software architectures e Patterns are deceptively simple

Patterns explicitly capture expert knowl-
edge and design tradeoffs

e Teams may suffer from pattern overload

e Patterns are validated by experience and

Patterns help improve developer commu- discussion rather than by automated test-
nication ing

Patterns help ease the transition to object- e Integrating patterns into a software devel-

oriented technology opment process is a human-intensive ac-
tivity

83 84

Suggestions for Using Patterns
Lessons Learned using OO

Effectively
Frameworks
e Do not recast everything as a pattern
— Instead, develop strategic domain patterns and e Benefits of frameworks

reuse existing tactical patterns
— Enable direct reuse of code (cf patterns)

. . . . — Facilitate larger amounts of reuse than stand-
e Institutionalize rewards for developing pat- alone functions or individual classes

terns

e Drawbacks of frameworks

Directly involve pattern authors with ap-

. . . — High initial learning curve
plication developers and domain experts g g

* Many classes, many levels of abstraction

Clearly document when patterns apply and — The flow of control for reactive dispatching is
non-intuitive
do not apply

— Verification and validation of generic compo-
nents is hard

Manage expectations carefully

85 86
Patterns and Framework Conferences and Workshops on
Literature Patterns
e Books e Pattern Language of Programs Confer-
ences

— Gamma et al., “Design Patterns: Elements of

Reusable OO Software” AW, 1994
— September, 1998, Monticello, Illinois, USA

— Pattern Languages of Program Design series
by AW, 1995-1997 — st-www.cs.uiuc.edu/users/patterns/patterns.htmi

— Siemens, Pattern-Oriented Software Architec-
ture, Wiley, 1996

e The European Pattern Languages of Pro-

. . ramming conference
e Special Issues in Journals 9 9

— October '96 “Communications of the ACM” — July, 1998, Kloster Irsee, Germany
(eds: Douglas C. Schmidt, Ralph Johnson, and
Mohamed Fayad) — www.cs.wustl.edu/~schmidt/patterns.html

— October '97 “Communications of the ACM"”
(eds: Douglas C. Schmidt and Mohamed Fayad)

e USENIX COOTS

e Magazines — April 27—30, 1998, Santa Fe, New Mexico
— C++4 Report and JOOP, columns by Coplien,
Vlissides, Vinoski, Schmidt, and Martin — www.usenix.org/events/coots98/

87 88

Obtaining ACE and JAWS

e The ADAPTIVE Communication Environ-
ment (ACE) is an OO toolkit designed ac-
cording to key network programming pat-
terns

— JAWS is both a Web server framework and a
high-performance Web server

e All source code for ACE and JAWS is freely
available

— www.cs.wustl.edu/~schmidt/ACE.html

e Mailing lists

* ace-users@cs.wustl.edu

* ace-users-request@cs.wustl.edu

* ace-announce®@cs.wustl.edu

* ace-announce-request@cs.wustl.edu

e Newsgroup
— comp.soft-sys.ace

89

