
Using Design Patterns and

Frameworks to Develop

Object-Oriented Communication

Systems

Douglas C. Schmidt

www.cs.wustl.edu/�schmidt/

schmidt@cs.wustl.edu

Washington University, St. Louis

1

Motivation

� Developing e�cient, robust, extensible, portable,

and reusable communication software is

hard

� It is essential to understand successful tech-

niques that have proven e�ective to solve

common development challenges

� Design patterns and frameworks help to

capture, articulate, and instantiate these

successful techniques

2

Observations

� Developers of communication software con-
front recurring challenges that are largely
application-independent

{ e.g., service initialization and distribution, error

handling,
ow control, event demultiplexing,
concurrency control

� Successful developers resolve these chal-

lenges by applying appropriate design pat-

terns

� However, these patterns have traditionally
been either:

1. Locked inside heads of expert developers

2. Buried in source code

3

Design Patterns

� Design patterns represent solutions to prob-
lems that arise when developing software
within a particular context

{ i.e., \Patterns == problem/solution pairs in a

context"

� Patterns capture the static and dynamic
structure and collaboration among key par-
ticipants in software designs

{ They are particularly useful for articulating how

and why to resolve non-functional forces

� Patterns facilitate reuse of successful soft-

ware architectures and designs

4

Proxy Pattern

NETWORKNETWORK

CLIENT

SERVER

:: BROKER BROKER

1:1: METHOD METHOD

CALLCALL

4:4: METHOD METHOD

RETURNRETURN

:: QUOTER QUOTER

2:2: FORWARD FORWARD

REQUESTREQUEST

3:3: RESPONSE RESPONSE

:: QUOTER QUOTER

PROXYPROXY

� Intent: provide a surrogate for another

object that controls access to it

5

Graphical Notation

PROCESS

THREAD

OBJECT

: CLASS

CLASS

CLASS

CATEGORY

CLASS

UTILITY

INHERITS

CONTAINS

INSTANTIATES

A

ABSTRACT

CLASS
USES

TEMPLATE

CLASS

6

More Observations

� Reuse of patterns alone is not su�cient

{ Patterns enable reuse of architecture and de-

sign knowledge, but not code (directly)

� To be productive, developers must also

reuse detailed designs, algorithms, inter-

faces, implementations, etc.

� Application frameworks are an e�ective

way to achieve broad reuse of software

7

Frameworks

� A framework is:

{ \An integrated collection of components that

collaborate to produce a reusable architecture

for a family of related applications"

� Frameworks di�er from conventional class
libraries:

1. Frameworks are \semi-complete" applications

2. Frameworks address particular application do-
mains

3. Frameworks provide \inversion of control"

� Typically, applications are developed by in-

heriting from and instantiating framework

components

8

Di�erences Between Class

Libraries and Frameworks

APPLICATIONAPPLICATION

SPECIFICSPECIFIC

LOGICLOGIC

USERUSER

INTERFACEINTERFACE

((AA)) CLASS LIBRARY CLASS LIBRARY

ARCHITECTUREARCHITECTURE

NETWORKINGNETWORKING

MATHMATH ADTADTSS

DATADATA

BASEBASE

APPLICATIONAPPLICATION

SPECIFICSPECIFIC

LOGICLOGIC

MATHMATH

((BB)) APPLICATION FRAMEWORK APPLICATION FRAMEWORK

ARCHITECTUREARCHITECTURE

ADTADTSS

INVOKESINVOKES

CALLCALL

BACKSBACKS

NETWORKINGNETWORKING USERUSER

INTERFACEINTERFACE

DATABASEDATABASE

INVOKESINVOKES

EVENTEVENT

LOOPLOOP

EVENTEVENT

LOOPLOOP

9

Tutorial Outline

� Outline key challenges for developing com-

munication software

� Present the key reusable design patterns
and framework components in high-performance
Web clients and servers

{ Both single-threaded and various multi-threaded
solutions are presented

{ The patterns and frameworks covered general-

ize to other communication software systems

� e.g., ORBs, video-on-demand, medical imag-
ing

� Discuss lessons learned from using pat-
terns and frameworks on production soft-
ware systems

{ e.g., telecom, avionics, medical systems

10

Stand-alone vs. Distributed

Application Architectures

PRINTER

FILE
SYSTEM

PRINTER FILE SYSTEM

COMPUTERCOMPUTER

(1)(1) STAND-ALONESTAND-ALONE APPLICATIONAPPLICATION ARCHITECTUREARCHITECTURE

(2)(2) DISTRIBUTEDDISTRIBUTED APPLICATIONAPPLICATION ARCHITECTUREARCHITECTURE

CD ROM

CD ROM

NETWORK

FI LE

SERVICE

CYCLE

SERVICE

DISPLAY

SERVICE

PRINT

SERVICE

NAME

SERVICE

TIME

SERVICE

11

Concurrency vs. Parallelism

CONCURRENT SERVER

maxfdp1maxfdp1

read_fdsread_fds

WORK

REQUEST

SERVER

CLIENTCLIENT

WORK

REQUEST
WORK

REQUEST

WORK

REQUEST
CLIENTCLIENT

CLIENTCLIENT CLIENTCLIENT

SERVERSERVER

CPU1 CPU2 CPU3 CPU4

WORK

REQUEST

WORK

REQUEST
WORK

REQUEST

WORK

REQUEST

CLIENTCLIENT

CLIENTCLIENT

CLIENTCLIENT CLIENTCLIENT

PARALLEL SERVER

12

Sources of Complexity

� Distributed application development exhibits

both inherent and accidental complexity

� Inherent complexity results from funda-
mental challenges, e.g.,

{ Distributed systems

� Latency

� Error handling

� Service partitioning and load balancing

{ Concurrent systems

� Race conditions

� Deadlock avoidance

� Fair scheduling

� Performance optimization and tuning

13

Sources of Complexity (cont'd)

� Accidental complexity results from limita-
tions with tools and techniques, e.g.,

{ Low-level tools

� e.g., Lack of type-secure, portable, re-entrant,
and extensible system call interfaces and com-

ponent libraries

{ Inadequate debugging support

{ Widespread use of algorithmic decomposition

� Fine for explaining network programming con-

cepts and algorithms but inadequate for de-

veloping large-scale distributed applications

{ Continuous rediscovery and reinvention of core

concepts and components

14

OO Contributions

� Communication software has traditionally
been performed using low-level OS mech-
anisms, e.g.,

{ fork/exec

{ Shared memory

{ Signals

{ Sockets and select

{ POSIX pthreads, Solaris threads, Win32 threads

� OO design patterns and frameworks ele-
vate focus to application concerns, e.g.,

{ Service functionality and policies

{ Service con�guration

{ Concurrent event demultiplexing and event han-

dler dispatching

{ Service concurrency and synchronization

15

Concurrent Web Client/Server

Example

� The following example illustrates a con-

current OO architecture for a high-performance

Web client/server

� Key system requirements are:

1. Robust implementation of HTTP protocol

{ i.e., resilient to incorrect or malicious Web

clients/servers

2. Extensible for use with other protocols

{ e.g., DICOM, HTTP 1.1, SFP

3. Leverage multi-processor hardware and OS soft-

ware

{ e.g., Support various concurrency models

16

General Web Client/Server

Interactions

WWWWWW
SERVERSERVER

2: index.html2: index.html

1: GET ~schmidt1: GET ~schmidt
HTTP/1.0HTTP/1.0

COMMUNICATION PROTOCOL

(E.G., HTTP)

GUI

HTML
PARSER

REQUESTER

GRAPHICS
ADAPTER

NETWORKNETWORK

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

DISPATCHERDISPATCHER

PROTOCOLPROTOCOL

HANDLERSHANDLERS

WWWWWW
CLIENTCLIENT

17

Web Server Software Architecture

HTTPHTTP
HandlerHandler

SockSock
StreamStream

HTTPHTTP
AcceptorAcceptor

SockSock
AcceptorAcceptor

EventEvent
DispatcherDispatcher

HTTPHTTP
HandlerHandler

SockSock
StreamStream

HTTPHTTP
HandlerHandler

SockSock
StreamStream

� Event Dispatcher

{ Encapsulates Web server concurrency and dis-
patching strategies

� HTTP Handlers

{ Parses HTTP headers and processes requests

� HTTP Acceptor

{ Accepts connections and creates HTTP Han-

dlers

18

Design Patterns in the Web

Server Implementation

AcceptorAcceptor

ConnectorConnector

ThreadThread
PoolPool

Thread-perThread-per
RequestRequest

Thread-perThread-per
SessionSession

Half-Sync/Half-Sync/
Half-AsyncHalf-Async

Strategy AdapterState

TACTICALTACTICAL PATTERNSPATTERNS

STRATEGICSTRATEGIC PATTERNSPATTERNS

DoubleDouble
CheckedChecked
LockingLocking

Singleton

ServiceService
ConfiguratorConfigurator

Reactor/Reactor/
ProactorProactor

AsynchronousAsynchronous
CompletionCompletion

TokenToken

ActiveActive
ObjectObject

Abstract
Factory

19

Tactical Patterns

� Proxy

{ \Provide a surrogate or placeholder for another

object to control access to it"

� Strategy

{ \De�ne a family of algorithms, encapsulate each

one, and make them interchangeable"

� Adapter

{ \Convert the interface of a class into another

interface client expects"

� Singleton

{ \Ensure a class only has one instance and pro-

vide a global point of access to it"

� State

{ \Allow an object to alter its behavior when its
internal state changes"

20

Event Handling Patterns

� Reactor

{ \Decouples synchronous event demultiplexing
and event handler initiation dispatching from

service(s) performed in response to events"

� Proactor

{ \Decouples asynchronous event demultiplexing
and event handler completion dispatching from

service(s) performed in response to events"

� Asynchronous Completion Token

{ \E�ciently associates state with the comple-

tion of asynchronous operations"

21

Concurrency Patterns

� Active Object

{ \Decouples method execution from method in-

vocation and simpli�es synchronized access to

shared resources by concurrent threads"

� Half-Sync/Half-Async

{ \Decouples synchronous I/O from asynchronous

I/O in a system to simplify concurrent pro-

gramming e�ort without degrading execution
e�ciency"

� Double-Checked Locking Optimization Pat-
tern

{ \Ensures atomic initialization of objects and
eliminates unnecessary locking overhead on each

access"

22

Concurrency Architecture

Patterns

� Thread-per-Request

{ \Allows each client request to run concurrently

in a separate thread"

� Thread Pool

{ \Allows up to N requests to execute concur-
rently within a pool of threads "

� Thread-per-Connection

{ \Allows each client connection to run concur-
rently"

� Suited for HTTP 1.1, but not HTTP 1.0

23

Service Initialization Patterns

� Connector

{ \Decouples active connection establishment from
the service performed once the connection is

established"

� Acceptor

{ \Decouples passive connection establishment
from the service performed once the connec-

tion is established"

� Service Con�gurator

{ \Decouples the behavior of network services
from point in time at which services are con-

�gured into an application"

24

Selecting the Server's

Concurrency Architecture

� Problem

{ A very strategic design decision for high-performance

Web servers is selecting an e�cient concur-
rency architecture

� Forces

{ No single concurrency architecture is optimal

{ Key factors include OS/hardware platform and
workload

� Solution

{ Understand key alternative concurrency pat-

terns

25

Alternative Web Server

Concurrency Patterns

� The following example illustrates the de-

sign patterns (and framework components)

in an OO implementation of a concurrent

Web Server

� The following are the key concurrency pat-
tern alternatives:

1. Reactive

2. Thread-per-request

3. Thread-per-connection

4. Synchronous Thread Pool

5. Asynchronous Thread Pool

26

Reactive Web Server

 Reactor Reactor

 HTTP HTTP
HandlerHandler

 HTTP HTTP
AcceptorAcceptor

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

6:6: PROCESS HTTP REQUEST PROCESS HTTP REQUEST

 HTTP HTTP
HandlerHandler

1:1: CONNECT CONNECT

2:2: HANDLE INPUT HANDLE INPUT

3:3: CREATE HANDLER CREATE HANDLER

4:4: ACCEPT CONNECTION ACCEPT CONNECTION

5:5: ACTIVATE HANDLER ACTIVATE HANDLER

27

Thread-per-Request Web Server

SERVER

CLIENT

CLIENT
CLIENT

ReactorReactor

 HTTP HTTP
AcceptorAcceptor

HTTPHTTP
HandlerHandler

 HTTP HTTP
HandlerHandler

HTTPHTTP
HandlerHandler

6:6: PROCESS HTTP REQUEST PROCESS HTTP REQUEST

1: CONNECT

2: HANDLE INPUT

3: CREATE HANDLER

4: ACCEPT CONNECTION

5: SPAWN THREAD

28

Thread-per-Connection Web

Server

SERVERSERVER
CLIENTCLIENT

CLIENTCLIENT CLIENTCLIENT

 HTTP HTTP
HandlerHandler

 HTTP HTTP
HandlerHandler

 HTTP HTTP
HandlerHandler HTTP HTTP

AcceptorAcceptor

 Reactor Reactor

2:2: CREATE CREATE,, ACCEPT ACCEPT,,
 AND ACTIVATE AND ACTIVATE

 HTTP HTTP__HANDLERHANDLER

1:1: HTTP HTTP

 REQUEST REQUEST

3:3: SPAWN THREAD SPAWN THREAD

 PER CONNECTION PER CONNECTION

4:4: PROCESS HTTP REQUEST PROCESS HTTP REQUEST

29

Handle-based Synchronous

Thread Pool Web Server

1:1: HTTP HTTP

 REQUEST REQUEST

4:4: PROCESS HTTP REQUEST PROCESS HTTP REQUEST

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

HTTPHTTP
HandlerHandler

HTTPHTTP
HandlerHandler

HTTPHTTP
HandlerHandler

EventEvent
DispatcherDispatcher

HTTPHTTP
AcceptorAcceptor HTTP HTTP

AcceptorAcceptor

2:2: ACCEPT CONNECTION ACCEPT CONNECTION

3:3: MORPH INTO HANDLER MORPH INTO HANDLER

30

Queue-based Synchronous

Thread Pool Web Server

 Reactor

 HTTP
Handler

SERVER

CLIENT

CLIENT
CLIENT

 HTTP
Handler

4:4: DEQUEUE DEQUEUE &&
PROCESSPROCESS

REQUESTREQUEST

ActiveActive
ObjectObject

ActiveActive
ObjectObject

ActiveActive
ObjectObject

ActiveActive
ObjectObject

MessageMessage
QueueQueue

 HTTP HTTP
AcceptorAcceptor

 HTTP HTTP
HandlerHandler

1:1: HTTP HTTP

 REQUEST REQUEST

2:2: HANDLE INPUT HANDLE INPUT

3:3: ENQUEUE REQUEST ENQUEUE REQUEST

5:5: PROCESS HTTP REQUEST PROCESS HTTP REQUEST

31

Asynchronous Thread Pool Web

Server

ProactorProactor

7:7: PROCESS HTTP REQUEST PROCESS HTTP REQUEST

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

6:6: DEQUEUE COMPLETION DEQUEUE COMPLETION

&& PROCESS PROCESS

REQUESTREQUEST

HTTPHTTP
HandlerHandler

HTTPHTTP
HandlerHandler

HTTPHTTP
HandlerHandler

HTTPHTTP
HandlerHandler

I/OI/O
CompletionCompletion

PortPort

AsyncAsync
ReadReadAsyncAsync

WriteWrite

AsyncAsync
AcceptAccept

AsyncAsync
AcceptAccept

3:3: HTTP HTTP

 REQUEST REQUEST

1:1: INITIATE ASYNC ACCEPT INITIATE ASYNC ACCEPT

2:2: RUN EVENT LOOP RUN EVENT LOOP

4:4: ACCEPT COMPLETES ACCEPT COMPLETES

5:5: QUEUE COMPLETION QUEUE COMPLETION

32

The ADAPTIVE Communication

Environment (ACE)

PROCESSESPROCESSES//
THREADSTHREADS

DYNAMICDYNAMIC

LINKINGLINKING

MEMORYMEMORY

MAPPINGMAPPING

SELECTSELECT//
IO COMPIO COMP

SYSTEMSYSTEM

VV IPCIPC
STREAMSTREAM

PIPESPIPES

NAMEDNAMED

PIPESPIPES

C
APIS

SOCKETSSOCKETS//
TLITLI

COMMUNICATIONCOMMUNICATION

SUBSYSTEMSUBSYSTEM

VIRTUAL MEMORYVIRTUAL MEMORY

SUBSYSTEMSUBSYSTEM

GENERAL POSIX AND WIN32 SERVICES

PROCESSPROCESS//THREADTHREAD

SUBSYSTEMSUBSYSTEM

FRAMEWORKS ACCEPTORACCEPTOR CONNECTORCONNECTOR

SELF-CONTAINED

DISTRIBUTED

SERVICE

COMPONENTS

NAMENAME

SERVERSERVER

TOKENTOKEN

SERVERSERVER

LOGGINGLOGGING

SERVERSERVER

GATEWAYGATEWAY

SERVERSERVER

SOCKSOCK__SAPSAP//
TLITLI__SAPSAP

FIFOFIFO

SAPSAP

LOGLOG

MSGMSG

SERVICESERVICE

HANDLERHANDLER

TIMETIME

SERVERSERVER

C++
WRAPPERS

SPIPESPIPE

SAPSAP

CORBACORBA

HANDLERHANDLER

SYSVSYSV
WRAPPERSWRAPPERS

SHAREDSHARED

MALLOCMALLOC

THE ACE ORBTHE ACE ORB

((TAOTAO))

JAWS ADAPTIVEJAWS ADAPTIVE

WEB SERVERWEB SERVER

MIDDLEWARE

APPLICATIONS

REACTORREACTOR//
PROACTORPROACTOR

PROCESSPROCESS//
THREADTHREAD

MANAGERSMANAGERS

ADAPTIVE SERVICE EXECUTIVE ADAPTIVE SERVICE EXECUTIVE (ASX)(ASX)

SERVICESERVICE

CONFIGCONFIG--
URATORURATOR

SYNCHSYNCH

WRAPPERSWRAPPERS

MEMMEM

MAPMAP

OS ADAPTATION LAYER

� A set of C++ wrappers and frameworks

based on common communication soft-

ware design patterns

33

Architecture of Our WWW Server

: Reactor: Reactor

WWWWWW SERVER SERVER

: HTTP: HTTP
HandlerHandler

svc_runsvc_runsvc_runsvc_run

: HTTP: HTTP
HandlerHandler

: HTTP: HTTP
HandlerHandler

: HTTP: HTTP
AcceptorAcceptor

: Options: Options

svc_runsvc_run
svc_runsvc_run

: HTTP: HTTP
ProcessorProcessor

: Msg: Msg
QueueQueue

s

34

Demultiplexing and Dispatching

Events

� Problem

{ Web servers must process several di�erent types

of events simultaneously

� Forces

{ Multi-threading is not always available

{ Multi-threading is not always e�cient

{ Tightly coupling general event processing with

server-speci�c logic is in
exible

� Solution

{ Use the Reactor pattern to decouple generic

event processing from server-speci�c process-
ing

35

The Reactor Pattern

� Intent

{ \Decouples synchronous event demultiplexing

and event handler initiation dispatching from

service(s) performed in response to events"

� This pattern resolves the following forces
for synchronous event-driven software:

{ How to demultiplex multiple types of events

from multiple sources of events synchronously
and e�ciently within a single thread of control

{ How to extend application behavior without re-

quiring changes to the event dispatching frame-

work

36

Structure of the Reactor Pattern

InitiationInitiation
DispatcherDispatcher

handle_events()
register_handler(h)
remove_handler(h)

11

11

11

Event_HandlerEvent_Handler

handle_input()
handle_output()
handle_signal()
handle_timeout()
get_handle()

A

11

nn

nn

Timer_QueueTimer_Queue

schedule_timer(h)
cancel_timer(h)
expire_timers(h)

11

11

select (handles);
foreach h in handles {
 if (h is output handler)
 table[h]->handle_output () ;
 if (h is input handler)
 table[h]->handle_input ();
 if (h is signal handler)
 table[h]->handle_signal ();
}
timer_queue->expire_timers ();

n
Handles

1

APPLICATION-
DEPENDENT

APPLICATION-
INDEPENDENT

n

HTTP
Handler

HTTP
Acceptor

� Participants in the Reactor pattern

37

Collaboration in the Reactor

Pattern

mainmain
programprogram

INITIALIZEINITIALIZE

REGISTER HANDLERREGISTER HANDLER

callback :callback :
ConcreteConcrete

Event_HandlerEvent_Handler

START EVENT LOOPSTART EVENT LOOP

DATA ARRIVESDATA ARRIVES

OK TO SENDOK TO SEND

InitiationInitiation
DispatcherDispatcher

handle_events()

FOREACH EVENT DOFOREACH EVENT DO

handle_input()

select()

Reactor()

register_handler(callback)

handle_output()

SIGNAL ARRIVESSIGNAL ARRIVES

TIMER EXPIRESTIMER EXPIRES

handle_signal()

handle_timeout()

get_handle()
EXTRACT HANDLEEXTRACT HANDLE

REMOVE HANDLERREMOVE HANDLER
remove_handler(callback)

IN
IT

IA
L

IZ
A

T
IO

N
IN

IT
IA

L
IZ

A
T

IO
N

M
O

D
E

M
O

D
E

E
V

E
N

T

H
A

N
D

L
IN

G
E

V
E

N
T

H

A
N

D
L

IN
G

M
O

D
E

M
O

D
E

handle_close()
CLEANUPCLEANUP

38

A Single-threaded Reactive Web

Server

 Reactor Reactor

REGISTERED

OBJECTS

F
R

A
M

E
W

O
R

K

L
E

V
E

L

K
E

R
N

E
L

L
E

V
E

L

A
P

P
L

IC
A

T
IO

N

L
E

V
E

L

OS EVENT DEMULTIPLEXING INTERFACE

1: handle_input()

2: accept()
3: make_handler()

 Event
Handler

 HTTP HTTP
HandlerHandler

 Event Event
HandlerHandler

 HTTP HTTP
HandlerHandler

 Event Event
HandlerHandler

 HTTP HTTP
AcceptorAcceptor

InitiationInitiation
DispatcherDispatcher

 Event Event
HandlerHandler

 HTTP HTTP
HandlerHandler

4: handle_input()4: handle_input()

5: recv(request)5: recv(request)
6: process(request)6: process(request)

39

An Integrated Reactive/Active

Web Server

 Reactor Reactor

REGISTERED

OBJECTS

 Initiation
Dispatcher

F
R

A
M

E
W

O
R

K

L
E

V
E

L

K
E

R
N

E
L

L
E

V
E

L

A
P

P
L

IC
A

T
IO

N

L
E

V
E

L

OS EVENT DEMULTIPLEXING INTERFACEOS EVENT DEMULTIPLEXING INTERFACE

1: handle_input()1: handle_input()

svc_runsvc_run
svc_runsvc_run

svc_runsvc_run

 HTTP HTTP
ProcessorProcessor

 Message Message

QueueQueue

4: getq(msg)4: getq(msg)
5:svc(msg)5:svc(msg)

 Event Event
HandlerHandler

 HTTP HTTP
HandlerHandler

 Event Event
HandlerHandler

 HTTP HTTP
HandlerHandler

 Event Event
HandlerHandler

 HTTP HTTP
HandlerHandler

2: recv_request(msg)2: recv_request(msg)
3: putq(msg)3: putq(msg)

40

The HTTP Handler Public

Interface

� The HTTP Handler is the Proxy for commu-
nicating with clients

{ Along with Reactor, this class implements the

asynchronous task part of Half-Sync/Half-Async

// Reusable base class.
template <class PEER_ACCEPTOR>
class HTTP_Handler :

public Svc_Handler<PEER_ACCEPTOR::PEER_STREAM,
NULL_SYNCH> {

public:
// Entry point into HTTP_Handler, called by
// HTTP_Acceptor.

virtual int open (void *) {
// Register with Reactor to handle client input.
Reactor::instance ()->register_handler (this, READ_M

// Register timeout in case client doesn't
// send any HTTP requests.
Reactor::instance ()->schedule_timer

(this, 0, ACE_Time_Value (HTTP_CLIENT_TIMEOUT));
}

41

The HTTP Handler Protected

Interface

� The following methods are invoked by call-

backs from the Reactor

protected:
// Reactor notifies when client's timeout.

virtual int handle_timeout (const Time_Value &,
const void *)

{
// Remove from the Reactor.
Reactor::instance ()->remove_handler

(this, READ_MASK);
}

// Reactor notifies when HTTP requests arrive.
virtual int handle_input (HANDLE);

// Receive/frame client HTTP requests (e.g., GET).
int recv_request (Message_Block &*);

};

42

Integrating Multi-threading

� Problem

{ Multi-threaded Web servers are needed since

Reactive Web servers are often ine�cient, non-

scalable, and non-robust

� Forces

{ Multi-threading can be very hard to program

{ No single multi-threading model is always op-

timal

� Solution

{ Use the Active Object pattern to allow multi-

ple concurrent server operations using an OO

programming style

43

The Active Object Pattern

� Intent

{ \Decouples method execution from method in-

vocation and simpli�es synchronized access to
shared resources by concurrent threads"

� This pattern resolves the following forces
for concurrent communication software:

{ How to allow blocking read and write opera-

tions on one endpoint that do not detract from

the quality of service of other endpoints

{ How to simplify concurrent access to shared

state

{ How to simplify composition of independent

services

44

Structure of the Active Object

Pattern

ClientClient
InterfaceInterface

get_request()
set_request()

head_request()

ActivationActivation
QueueQueue
insert()

remove()

SchedulerScheduler

ResourceResource
RepresentationRepresentation

MethodMethod
ObjectsObjects

loop {
 m = actQueue.remove()
 dispatch (m)
}

INVISIBLEINVISIBLE
TOTO

CLIENTSCLIENTS

VISIBLEVISIBLE
TOTO

CLIENTSCLIENTS

nn
11

11 11

11

11

1: get_request()

2: insert(get_request')

3: dispatch()

dispatch()
get_request'()
set_request'()

head_request'()

� The Scheduler determines the sequence

that Method Objects are executed

45

Collaboration in the Active

Object Pattern

INVOKEINVOKE

INSERT ININSERT IN
 PRIORITY QUEUE PRIORITY QUEUE

cons(m1')

remove(m1')DEQUEUE NEXTDEQUEUE NEXT
 METHOD OBJECT METHOD OBJECT

RETURN RESULTRETURN RESULT

EXECUTEEXECUTE

clientclient
: Client: Client

InterfaceInterface
: Activation: Activation

QueueQueue

insert(m1')

dispatch(m1')

M
E

T
H

O
D

 O
B

J
E

C
T

M
E

T
H

O
D

 O
B

J
E

C
T

C
O

N
S

T
R

U
C

T
IO

N
C

O
N

S
T

R
U

C
T

IO
N

S
C

H
E

D
U

L
IN

G
S

C
H

E
D

U
L

IN
G

//
E

X
E

C
U

T
IO

N
E

X
E

C
U

T
IO

N
C

O
M

P
L

E
T

IO
N

C
O

M
P

L
E

T
IO

N

m1()

: Represent-: Represent-
ation

: Scheduler

CREATE METHOD
OBJECT

reply_to_future()

future()RETURN RESULT
HANDLE

46

Using the Active Object Pattern

in the Web Server

 Reactor

Initiation
Dispatcher

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

1: handle_input()1: handle_input()

REGISTEREDREGISTERED

OBJECTSOBJECTS

 Event Event
HandlerHandler

 HTTP HTTP
HandlerHandler

 Event Event
HandlerHandler

 HTTP HTTP
HandlerHandler

 Event Event
HandlerHandler

 HTTP HTTP
HandlerHandler

svc_run svc_run

svc_run

4: getq(msg)
5:svc(msg)

 HTTP
Processor

 Message

Queue

2: recv_request(msg)
3: putq(msg)

OS EVENT DEMULTIPLEXING INTERFACE

47

The HTTP Processor Class

� Processes HTTP requests using the \Thread
Pool" concurrency model

{ Implement the synchronous task portion of the
Half-Sync/Half-Async pattern

class HTTP_Processor : public Task {
public:

// Singleton access point.
static HTTP_Processor *instance (void);

// Pass a request to the thread pool.
virtual int put (Message_Block *);

// Event loop for the pool thread
virtual int svc (int) {
Message_Block *mb = 0; // Message buffer.

// Wait for messages to arrive.
for (;;) {

getq (mb); // Inherited from class Task;
// Identify and perform WWW Server
// request processing here...

}
protected:

HTTP_Processor (void); // Constructor.

48

Using the Singleton Pattern

� The HTTP Processor is implemented as a

Singleton that is created \on demand"

HTTP_Processor *
HTTP_Processor::instance (void)
{

// Beware of race conditions!
if (instance_ == 0)
instance_ = new HTTP_Processor;

return instance_;
}

� Constructor creates the thread pool

HTTP_Processor::HTTP_Processor (void)
{

// Inherited from class Task.
activate (THR_NEW_LWP, num_threads);

}

49

Subtle Concurrency Woes with

the Singleton Pattern

� Problem

{ The canonical Singleton implementation has

subtle \bugs" in multi-threaded applications

� Forces

{ Too much locking makes Singleton too slow: : :

{ Too little locking makes Singleton unsafe: : :

� Solution

{ Use the Double-Checked Locking optimization

pattern to minimize locking and ensure atomic

initialization

50

The Double-Checked Locking

Optimization Pattern

� Intent

{ \Ensures atomic initialization of objects and

eliminates unnecessary locking overhead on each

access"

� This pattern resolves the following forces:

1. Ensures atomic initialization or access to ob-

jects, regardless of thread scheduling order

2. Keeps locking overhead to a minimum

{ e.g., only lock on creation

� Note, this pattern assumes atomic mem-

ory access: : :

51

Using the Double-Checked

Locking Optimization Pattern for

the Web Server

HTTP
Processor

static instance()
static instance_

if (instance_ == NULL) {
 mutex_.acquire ();
 if (instance_ == NULL)
 instance_ = new HTTP_Processor;
 mutex_.release ();
}
return instance_;

Mutex

52

Integrating Reactive and

Multi-threaded Layers

� Problem

{ Justifying the hybrid design of our Web server

can be tricky

� Forces

{ Engineers are never satis�ed with the status

quo ;-)

{ Substantial amount of time is spent re-discovering

the intent of complex concurrent software de-
sign

� Solution

{ Use the Half-Sync/Half-Async pattern to ex-

plain and justify our Web server concurrency
architecture

53

Half-Sync/Half-Async Pattern

� Intent

{ \Decouples synchronous I/O from asynchronous
I/O in a system to simplify programming e�ort

without degrading execution e�ciency"

� This pattern resolves the following forces
for concurrent communication systems:

{ How to simplify programming for higher-level

communication tasks

� These are performed synchronously

{ How to ensure e�cient lower-level I/O com-

munication tasks

� These are performed asynchronously

54

Structure of the

Half-Sync/Half-Async Pattern

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

L
A

Y
E

R
L

A
Y

E
R

A
S

Y
N

C
H

R
O

N
O

U
S

A
S

Y
N

C
H

R
O

N
O

U
S

T

A
S

K

L

A
Y

E
R

T

A
S

K

L

A
Y

E
R

S
Y

N
C

H
R

O
N

O
U

S
S

Y
N

C
H

R
O

N
O

U
S

 T
A

S
K

L

A
Y

E
R

 T
A

S
K

L

A
Y

E
R SSYNCYNC

TASK TASK 11

SSYNCYNC

TASK TASK 33

SSYNCYNC

TASK TASK 22

1, 4: read(data)1, 4: read(data)

3: enqueue(data)3: enqueue(data)

2: interrupt2: interrupt

ASYNCASYNC

TASKTASK

EXTERNALEXTERNAL

EVENT SOURCESEVENT SOURCES

MESSAGE QUEUESMESSAGE QUEUES

55

Collaborations in the

Half-Sync/Half-Async Pattern

EXTERNAL EVENTEXTERNAL EVENT

PROCESS MSGPROCESS MSG

read(msg)

EXECUTE TASKEXECUTE TASK

ENQUEUE MSGENQUEUE MSG

ExternalExternal
Event SourceEvent Source

AsyncAsync
TaskTask

SyncSync
TaskTask

MessageMessage
QueueQueue

work()

DEQUEUE MSGDEQUEUE MSG

A
S
Y

N
C

A
S
Y

N
C

P
H

A
S

E
P

H
A

S
E

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

P
H

A
S

E
P

H
A

S
E

S
Y

N
C

S
Y

N
C

P
H

A
S

E
P

H
A

S
E

RECV MSGRECV MSG

notification()

read(msg)

work()

enqueue(msg)

� This illustrates input processing (output

processing is similar)

56

Using the Half-Sync/Half-Async

Pattern in the Web Server

A
S

Y
N

C

T

A
S

K
A

S
Y

N
C

T

A
S

K

L
E

V
E

L
L

E
V

E
L

S
Y

N
C

T

A
S

K
S

Y
N

C

T

A
S

K

L
E

V
E

L
L

E
V

E
L

1: handle_input()1: handle_input()

 Reactor Reactor

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

L
E

V
E

L
L

E
V

E
L

 Event Event
HandlerHandler

 HTTP HTTP
HandlerHandler

 Event Event
HandlerHandler

 HTTP HTTP
HandlerHandler

 Event
Handler

 HTTP
Handler

svc_run

svc_run svc_run

4: getq(msg)
5:svc(msg)

 HTTP
Processor

 Message

Queue

2: recv_request(msg)
3: putq(msg)

57

Joining Async and Sync Tasks in

the Web Server

� The following methods form the boundary

between the Async and Sync layers

int
HTTP_Handler::handle_input (void)
{

Message_Block *mb = 0;

// Try to receive and frame message.
if (recv_request (mb) == HTTP_REQUEST_COMPLETE) {

Reactor::instance ()->remove_handler
(this, READ_MASK);

Reactor::instance ()->cancel_timer (this);
// Insert message into the Queue.
HTTP_Processor<PA>::instance ()->put (mb);

}
}

// Task entry point.
HTTP_Processor::put (Message_Block *msg) {

// Insert the message on the Message_Queue
// (inherited from class Task).
putq (msg);

}

58

Optimizing Our Web Server for

Asynchronous Operating Systems

� Problem

{ Synchronous multi-threaded solutions are not

always the most e�cient

� Forces

{ Purely asynchronous I/O is quite powerful on

some OS platforms

� e.g., Windows nt 4.x

{ Good designs should be adaptable to new con-

texts

� Solution

{ Use the Proactor pattern to maximize perfor-
mance on Asynchronous OS platforms

59

The Proactor Pattern

� Intent

{ \Decouples asynchronous event demultiplexing

and event handler completion dispatching from

service(s) performed in response to events"

� This pattern resolves the following forces
for asynchronous event-driven software:

{ How to demultiplex multiple types of events

from multiple sources of events asynchronously
and e�ciently within a minimal number of threads

{ How to extend application behavior without re-

quiring changes to the event dispatching frame-

work

60

Structure of the Proactor Pattern

Completion
Dispatcher

handle_events()
register_handle()

1

1

1

Event_Handler

handle_accept()
handle_read_file()
handle_write_file()
handle_timeout()
get_handle()

1

n

HTTP
Handler

Timer_QueueTimer_Queue

schedule_timer(h)
cancel_timer(h)
expire_timer(h)

11

11

overlapped_result =overlapped_result =
 GetQueuedCompleteStatus(); GetQueuedCompleteStatus();
overlapped_result->complete()overlapped_result->complete()

nn
HandlesHandles

11

APPLICATIONAPPLICATION--
DEPENDENTDEPENDENT

APPLICATIONAPPLICATION--
INDEPENDENTINDEPENDENT

nnA

AsyncAsync
OpOp

open()
cancel()

HTTP
Acceptor

Async
Write

Async
Accept

� Participants in the Proactor pattern

61

Collaboration in the Proactor

Pattern

Completion
Dispatcher

Proactive
Initiator

Asynchronous
Operation
Processor

Asynchronous
operation initiated

Completion
Handler

Operation performed
asynchronously

Operation completes

Completion Handler
notified

handle event

Asynchronous
Operation

register (operation, handler, dispatcher)

execute

dispatch

62

Client Connects to a Proactive

Web Server

4: connect Web Server

Web
Browser Acceptor

Completion
Dispatcher

HTTP
Handler

1: accept
connections

Operating
System

2: accept
(Acceptor,
Dispatcher)

3: handle
events

5: accept
complete

6:
accept

complete

7: create

8: read (connection,
Handler, Dispatcher)

63

Client Sends Request to a

Proactive Web Server

Web Server

Web
Browser

File
System

Completion
Dispatcher

HTTP
Handler

Operating
System

1: GET
/etc/passwd

2: read complete

3: read
complete

4: parse request

6: write (File, Conn.,
Handler, Dispatcher)

7: write
complete

8: write
complete5: read (File)

64

Structuring Service Initialization

� Problem

{ The communication protocol used between clients

and the Web server is often orthogonal to the

initialization protocol

� Forces

{ Low-level connection establishment APIs are

tedious, error-prone, and non-portable

{ Separating initialization from use can increase
software reuse substantially

� Solution

{ Use the Acceptor pattern to decouple passive

service initialization from run-time protocol

65

The Acceptor Pattern

� Intent

{ \Decouples passive initialization of a service

from the tasks performed once the service is

initialized"

� This pattern resolves the following forces
for network servers using interfaces like
sockets or TLI:

1. How to reuse passive connection establishment

code for each new service

2. How to make the connection establishment code

portable across platforms that may contain sock-

ets but not TLI, or vice versa

3. How to ensure that a passive-mode descriptor

is not accidentally used to read or write data

4. How to enable
exible policies for creation,

connection establishment, and concurrency

66

Structure of the Acceptor Pattern

CREATE CREATE &&
ACTIVATEACTIVATE

HTTPHTTP
HandlerHandler

peer_stream_
open()

HTTPHTTP
AcceptorAcceptor

peer_acceptor_
handle_input()

HTTP HandlerHTTP Handler

EventEvent
DispatcherDispatcher

NOTIF
IE

S

NOTIF
IE

S

� Acceptor is a factory that creates, con-

nects, and activates a Svc Handler

67

Collaboration in the Acceptor

Pattern

ServerServer

REGISTER HANDLERREGISTER HANDLER

START EVENT LOOPSTART EVENT LOOP

CONNECTION EVENTCONNECTION EVENT

REGISTER HANDLERREGISTER HANDLER

FOR CLIENT FOR CLIENT I/OI/O

FOREACH EVENT DOFOREACH EVENT DO

EXTRACT HANDLEEXTRACT HANDLE

INITIALIZE PASSIVEINITIALIZE PASSIVE

ENDPOINTENDPOINT

acc :acc :
AcceptorAcceptor

handle_input()

handle_close()

: Initiation
Dispatcher

select()

sh:
Svc_Handler

handle_input()

get_handle()
EXTRACT HANDLE

DATA EVENT

CLIENT SHUTDOWN

svc()PROCESS MSG

open()

CREATE, ACCEPT,
AND ACTIVATE OBJECT

SERVER SHUTDOWN
handle_close()

E
N

D
P

O
IN

T

IN
IT

IA
L

IZ
A

T
IO

N

 P
H

A
S

E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N

P
H

A
S

E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G

P
H

A
S

E

peer_acceptor_
: SOCK
Acceptor

handle_events()

get_handle()

register_handler(acc)

sh = make_svc_handler()
accept_svc_handler (sh)
activate_svc_handler (sh)

open()

register_handler(sh)

68

Using the Acceptor Pattern in the

Web Server

PASSIVE LISTENERPASSIVE LISTENER

ACTIVEACTIVE

CONNECTIONSCONNECTIONS

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

 Acceptor Acceptor

 Reactor Reactor

 HTTP HTTP
AcceptorAcceptor

1: handle_input()1: handle_input()
2: sh = make_svc_handler()2: sh = make_svc_handler()
3: accept_svc_handler(sh)3: accept_svc_handler(sh)
4: activate_svc_handler(sh)4: activate_svc_handler(sh)

69

The Acceptor Class

� The Acceptor class implements the Accep-

tor pattern

// Reusable Factor
template <class SVC_HANDLER>
class Acceptor :

public Service_Object // Subclass of Event_Handler.
{
public:

// Notified by Reactor when clients connect.
virtual int handle_input (void)
{

// The strategy for initializing a SVC_HANDLER.
SVC_HANDLER *sh = new SVC_HANDLER;
peer_acceptor_.accept (sh->peer ());
sh->open ();

}
// ...

protected:
// IPC connection factory.

SOCK_Acceptor peer_acceptor_;
}

70

The HTTP Acceptor Class

Interface

� The HTTP Acceptor class accepts connec-

tions and initializes HTTP Handlers

class HTTP_Acceptor
: public Acceptor<HTTP_Handler>
// Inherits handle_input() strategy from Acceptor.

{
public:

// Hook called automatically when HTTP_Acceptor
// is dynamically linked.

virtual int init (int argc, char *argv[]);

// Hook called automatically when HTTP_Acceptor is
// dynamically unlinked.

virtual int fini (void);

// ...
}

71

Putting the Pieces Together at

Run-time

� Problem

{ Prematurely committing ourselves to a partic-
ular Web server con�guration is in
exible and

ine�cient

� Forces

{ Certain server con�guration decisions can't be
made e�ciently until run-time

{ Forcing users to pay for components they don't

use is undesirable

� Solution

{ Use the Service Con�gurator pattern to assem-

ble the desired Web server components dynam-

ically

72

The Service Con�gurator Pattern

� Intent

{ \Decouples the behavior of communication ser-
vices from the point in time at which these

services are con�gured into an application or

system"

� This pattern resolves the following forces
for highly
exible communication software:

{ How to defer the selection of a particular type,

or a particular implementation, of a service un-

til very late in the design cycle

� i.e., at installation-time or run-time

{ How to build complete applications by compos-

ing multiple independently developed services

{ How to optimize, recon�gure, and control the

behavior of the service at run-time

73

Structure of the Service

Con�gurator Pattern

ReactorReactor11nn

EventEvent
HandlerHandler

ConcreteConcrete
Service ObjectService Object

R
E

A
C

T
IV

E
R

E
A

C
T

IV
E

L
A

Y
E

R
L

A
Y

E
R

C
O

N
F

IG
U

R
A

T
IO

N
C

O
N

F
IG

U
R

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

11

11

ServiceService
ConfigConfig

nn

ServiceService
ObjectObject

A

suspend()
resume()
init()
fini()
info()

1
Service

Repository

1

74

Collaboration in the Service

Con�gurator Pattern

: Service: Service
ConfigConfig

main()main()

REGISTER SERVICEREGISTER SERVICE

START EVENT LOOPSTART EVENT LOOP

INCOMING EVENTINCOMING EVENT

FOREACH EVENT DOFOREACH EVENT DO

STORE IN REPOSITORYSTORE IN REPOSITORY

CONFIGURECONFIGURE

FOREACH SVC ENTRY DOFOREACH SVC ENTRY DO

svc :svc :
Service_ObjectService_Object

: Reactor: Reactor

run_event_loop()

handle_events()

handle_input()

Service_Config()

: Service: Service
RepositoryRepository

insert()
EXTRACT HANDLE

INITIALIZE SERVICE
init(argc, argv)

fini()

DYNAMICALLY LINK
SERVICE

link_service()

unlink_service()

SHUTDOWN EVENT handle_close()

UNLINK SERVICE
remove()

register_handler(svc)

get_handle()

remove_handler(svc)

C
O

N
F

IG
U

R
A

T
IO

N

M
O

D
E

E
V

E
N

T

H
A

N
D

L
IN

G

M
O

D
E

process_directives()

CLOSE SERVICE

75

Using the Service Con�gurator

Pattern in the Web Server

SERVICESERVICE

CONFIGURATORCONFIGURATOR

RUNTIMERUNTIME

 Service Service
RepositoryRepository

 Service Service
ObjectObject

 TP TP
WWW ServerWWW Server

 Service Service
ObjectObject

 TPR TPR
WWW ServerWWW Server

SHAREDSHARED

OBJECTSOBJECTS

 Service Service
ObjectObject

 Reactive Reactive
WWW ServerWWW Server

 Service Service
ConfigConfig

 Reactor Reactor

� Existing Web server is based on Half-Sync/Half-

Async pattern

� Other versions could be single-threaded,

could use other concurrency strategies, and

other protocols

76

The HTTP Acceptor Class

Implementation

// Initialize service when dynamically linked.

int HTTP_Acceptor::init (int argc, char *argv[])
{

Options::instance ()->parse_args (argc, argv);

// Set the endpoint into listener mode.
Acceptor::open (local_addr);

// Initialize the communication endpoint.
Reactor::instance ()->register_handler (this, ACCEPT_MASK)

}

// Terminate service when dynamically unlinked.

int HTTP_Acceptor::fini (void)
{

// Unblock threads in the pool so they will
// shutdown correctly.
HTTP_Processor::instance ()->close ();

// Wait for all threads to exit.
Thread_Manager::instance ()->wait ();

}

77

Con�guring the Web Server with

the Service Con�gurator

� The concurrent Web Server is con�gured

and initialized via a con�guration script

% cat ./svc.conf
dynamic TP_WWW_Server Service_Object *
www_server.dll:make_TP_WWW_Server()
"-p $PORT -t $THREADS"

� Factory function that dynamically allocates

a Half-Sync/Half-Async Thread Pool Web

Server

extern "C" Service_Object *make_TP_WWW_Server (void);

Service_Object *make_TP_WWW_Server (void)
{

return new HTTP_Acceptor;
// ACE dynamically unlinks and deallocates this object.

}

78

Main Program for Web Server

� Dynamically con�gure and execute the Web
Server

{ Note that this is totally generic!

int main (int argc, char *argv[])
{

Service_Config daemon;

// Initialize the daemon and dynamically
// configure the service.
daemon.open (argc, argv);

// Loop forever, running services and handling
// reconfigurations.

daemon.run_event_loop ();

/* NOTREACHED */
}

79

The OO Architecture of the

JAWS Framework

Protocol

Filter

Handler

Protocol

Framework
Strategy
Concurrency

Protocol Pipeline
Framework

Framework
I/O Strategy

Filesystem
Cached Virtual

Expander
Tilde ~

/home/...
Event Dispatcher

A
cceptor

A
ct

iv
e

O
bj

ec
t

Asynchronous Completion Token

Reactor/Proactor Singleton

Adapter

Streams

Strategy

Service Configurator

State

St
ra

te
gy

� www.cs.wustl.edu/~jxh/research/

80

Web Server Optimization

Techniques

� Use lightweight concurrency

� Minimize locking

� Apply �le caching and memory mapping

� Use \gather-write" mechanisms

� Minimize logging

� Pre-compute HTTP responses

� Avoid excessive time calls

� Optimize the transport interface

81

Applying Patterns to CORBA

ORBs

ACCEPTORCONNECTOR

ABSTRACT

FACTORY

SERVANTCLIENT

OS KERNELOS KERNEL

ACTIVE

OBJECT

THREAD-SPECIFIC

STORAGE

SERVICE

CONFIGURATOR

STRATEGY

REACTORREACTOR

WRAPPER FACADESWRAPPER FACADES

� www.cs.wustl.edu/~schmidt/ORB-patterns.ps.gz

82

Bene�ts of Design Patterns

� Design patterns enable large-scale reuse

of software architectures

� Patterns explicitly capture expert knowl-

edge and design tradeo�s

� Patterns help improve developer commu-

nication

� Patterns help ease the transition to object-

oriented technology

83

Drawbacks to Design Patterns

� Patterns do not lead to direct code reuse

� Patterns are deceptively simple

� Teams may su�er from pattern overload

� Patterns are validated by experience and

discussion rather than by automated test-

ing

� Integrating patterns into a software devel-

opment process is a human-intensive ac-

tivity

84

Suggestions for Using Patterns

E�ectively

� Do not recast everything as a pattern

{ Instead, develop strategic domain patterns and

reuse existing tactical patterns

� Institutionalize rewards for developing pat-

terns

� Directly involve pattern authors with ap-

plication developers and domain experts

� Clearly document when patterns apply and

do not apply

� Manage expectations carefully

85

Lessons Learned using OO

Frameworks

� Bene�ts of frameworks

{ Enable direct reuse of code (cf patterns)

{ Facilitate larger amounts of reuse than stand-

alone functions or individual classes

� Drawbacks of frameworks

{ High initial learning curve

� Many classes, many levels of abstraction

{ The
ow of control for reactive dispatching is

non-intuitive

{ Veri�cation and validation of generic compo-

nents is hard

86

Patterns and Framework

Literature

� Books

{ Gamma et al., \Design Patterns: Elements of

Reusable OO Software" AW, 1994

{ Pattern Languages of Program Design series

by AW, 1995�1997

{ Siemens, Pattern-Oriented Software Architec-

ture, Wiley, 1996

� Special Issues in Journals

{ October '96 \Communications of the ACM"

(eds: Douglas C. Schmidt, Ralph Johnson, and

Mohamed Fayad)

{ October '97 \Communications of the ACM"

(eds: Douglas C. Schmidt and Mohamed Fayad)

� Magazines

{ C++ Report and JOOP, columns by Coplien,
Vlissides, Vinoski, Schmidt, and Martin

87

Conferences and Workshops on

Patterns

� Pattern Language of Programs Confer-
ences

{ September, 1998, Monticello, Illinois, USA

{ st-www.cs.uiuc.edu/users/patterns/patterns.html

� The European Pattern Languages of Pro-
gramming conference

{ July, 1998, Kloster Irsee, Germany

{ www.cs.wustl.edu/~schmidt/patterns.html

� USENIX COOTS

{ April 27�30, 1998, Santa Fe, New Mexico

{ www.usenix.org/events/coots98/

88

Obtaining ACE and JAWS

� The ADAPTIVE Communication Environ-
ment (ACE) is an OO toolkit designed ac-
cording to key network programming pat-
terns

{ JAWS is both a Web server framework and a

high-performance Web server

� All source code for ACE and JAWS is freely
available

{ www.cs.wustl.edu/~schmidt/ACE.html

� Mailing lists

* ace-users@cs.wustl.edu
* ace-users-request@cs.wustl.edu
* ace-announce@cs.wustl.edu
* ace-announce-request@cs.wustl.edu

� Newsgroup

{ comp.soft-sys.ace

89

