Using Design Patterns to Develop
Object-Oriented Communication
Software Frameworks and

Applications

Douglas C. Schmidt

http://www.cs.wustl.edu/~schmidt/

schmidt@cs.wustl.edu

Washington University, St. Louis

Motivation

Developing efficient, robust, extensible, and
reusable communication software is hard

It is essential to understand successful tech-
niques that have proven effective to solve
common development challenges

Design patterns and frameworks help to cap-
ture, articulate, and instantiate these suc-
cessful techniques

Observations

e Developers of communication software con-
front recurring challenges that are largely
application-independent

— e.g., service initialization and distribution, error
handling, flow control, event demultiplexing, con-
currency control

e Successful developers resolve these challenges
by applying appropriate design patterns

e These patterns have traditionally been ei-
ther:

1. Locked inside the heads of expert software devel-
opers

2. Buried within the source code

Design Patterns

e Design patterns represent solutions to prob-
lems that arise when developing software
within a particular context

— i.e., “Patterns == problem/solution pairs in a con-
text”

e Patterns capture the static and dynamic struc-
ture and collaboration among key partici-
pants in software designs

— They are particularly useful for articulating how
and why to resolve non-functional forces

e Patterns facilitate reuse of successful soft-
ware architectures and designs

Proxy Pattern

1: METHOD

: BROKER \iALL More Observations

:QUOTER
PROXY

RETURN ! e Reuse of patterns alone is not insufficient

4: METHOD

2: FORWARD
REQUEST — Patterns enable reuse of architecture and design
knowledge, but not code (directly)

3: RESPONSE

e To be productive, developers must also reuse
detailed designs, algorithms, interfaces, im-
plementations, etc.

e Application frameworks are an effective way
to achieve broad reuse of software

e Indent: provide a surrogate for another ob-
ject that controls access to it

Frameworks Differences Between Class

Libraries and Frameworks

e A framework is:

— “An integrated collection of components that col- NETWORKING
laborate to produce a reusable architecture for a APPLICATION /

family of related applications” SPECIFIC

LOGIC INVOKES | MATH ADTs

>

USER
e Frameworks differ from conventional class - |_iTeRRacE
libraries:

CLASS
LIBRARIES

. Frameworks are ‘“semi-complete” applications

. Frameworks address a particular application do-

main NETWORKING USER

INTERFACE

. Frameworks provide “inversion of control” I~ APPLICATION 4
INVOKES CALL

SPECIFIC
/\ LOGIC %
\
e Typically, applications are developed by in- - v DATABASE

heriting from and instantiating framework OBJECT-ORIENTED

components FRAMEWORK

Tutorial Outline

e OQOutline key challenges for developing com-
munication software

e Present the key reusable design patterns in
an application-level Gateway

— Both single-threaded and multi-threaded solutions
are presented

e Discuss lessons learned from using patterns
on production software systems

Stand-alone vs. Distributed

Application Architectures

\ =
€D ROM FILE SYSTEM

(2) DISTRIBUTED APPLICATION ARCHITECTURE

Concurrency vs. Parallelism

WORK WORK
REQUEST REQUEST

CONCURRENT SERVER

PARALLEL SERVER

Sources of Complexity

e Distributed application development exhibits

both inherent and accidental complexity

e Inherent complexity results from fundamen-

tal challenges, e.g.,
— Distributed systems

> Latency
> Error handling
> Service partitioning and load balancing

— Concurrent systems

> Race conditions
> Deadlock avoidance
> Fair scheduling

> Performance optimization and tuning

Sources of Complexity (cont’d)

e Accidental complexity results from limita-
tions with tools and techniques, e.g.,
— Lack of type-secure, portable, re-entrant, and ex-

tensible system call interfaces and component li-
braries

— Inadequate debugging support

— Widespread use of algorithmic decomposition

> Fine for explaining network programming con-
cepts and algorithms but inadequate for devel-
oping large-scale distributed applications

OO Contributions

e Concurrent and distributed programming has

traditionally been performed using low-level
OS mechanisms, e.g.,

fork/exec
Shared memory
Signals

— Sockets and select

— POSIX pthreads, Solaris threads, Win32 threads

OO design patterns and frameworks elevate
development to focus on application con-
cerns, e.g.,

— Service functionality and policies
— Service configuration

— Concurrent event demultiplexing and event han-
dler dispatching

— Service concurrency and synchronization

Application-level Gateway

Example

e This example illustrates the reusable design
patterns and framework components used
in an OO architecture for application-level
Gateways

e Gateways route messages between Peers in
a distributed system

e Peers and Gateways communicate via a connection-

oriented transport protocol

— e.g., TCP/IP, IPX/SPX, TP4

Physical Architecture of the

Gateway

SATELLITES

TRACKING
STATION
PEERS

v
2 |/
STATUS INFO //

¥

WIDE AREA /’ BULK DATA
NETWORK f | TRANSFER
COMMANDS

GROUND
STATION
PEERS

OO Software Architecture of the

Gateway

: Routing
: Output Table

Channel
: Input

: Output
Channel . Channel : Channel Channel

Connector Acceptor

: Input
Channel

Graphical Notation

—>2
PROCESS

RN

. CLASS 2
> > TEMPLATE (/ UTILITY

(CLASS__ _

\ N~ — /

—_—
CLASS
CATEGORY INHERITS

INSTANTIATES

ABSTRACT
CLASS e

W CONTAINS

Gateway Behavior

e Components in the Gateway behave as fol-
lows:

1. Gateway parses configuration files that specify which
Peers to connect with and which routes to use

. Channel_Connector connects to Peers, then cre-
ates and activates the appropriate Channel sub-
classes (Input_Channel or Qutput_Channel)

. Once connected, Peers send messages to the Gate-
way

— Messages are handled by the appropriate Input_Channel

— Input_Channels work as follows:

(a) Receive and validate messages
(b) Consult a Routing Table

(c) Forward messages to the appropriate Peer(s)
via Qutput_Channels

Design Patterns in the Gateway

Active Object Router

G

Connector Acceptor

0O
19

Half-Sync/ Service
Half-Async Configurator

‘v‘\ /
STRATEGIC

PATTERNS Reactor

Template| | Factory

Iterator Method Method Adapter

e The Gateway components are based upon
a family of design patterns

Tactical Patterns

e Iterator

— “Provide a way to access the elements of an ag-
gregate object sequentially without exposing its
underlying representation”

e Factory Method

— “Define an interface for creating an object, but let
subclasses decide which class to instantiate”

> Factory Method lets a class defer instantiation
to subclasses

e Adapter

— “Convert the interface of a class into another in-
terface client expects”

> Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces

Concurrency Patterns

e Reactor

— “Decouples event demultiplexing and event han-
dler dispatching from application services performed
in response to events”

e Active Object

— “Decouples method execution from method invo-
cation and simplifies synchronized access to shared
resources by concurrent threads”

e Half-Sync/Half-Async

— “Decouples synchronous I/O from asynchronous
I/O in a system to simplify concurrent program-
ming effort without degrading execution efficiency”

Service Initialization Patterns

e Connector

— “Decouples active connection establishment from
the service performed once the connection is es-
tablished”

e Acceptor

— “Decouples passive connection establishment from
the service performed once the connection is es-
tablished”

e Service Configurator

— “Decouples the behavior of network services from
point in time at which services are configured into
an application”

Application-Specific Patterns

e Router

— “Decouples multiple sources of input from multiple
sources of output to route data correctly without
blocking”

ADAPTIVE Communication
Environment (ACE)

ACE Components in the Gateway

DISTRIBUTED
SERVICES 5 4 5 | | SERVER [

RBA

FRAMEWORKS ACCEPTORE|CONNECTO! : .
= P HANDLER

AND CLASS
CATEGORIES

ADAPTIVE SERVICE EXEC
(ASX)

C++ THREAD

wrappErs JMANAGER \HNA(.LR

SYNCH SPIPE SOCK su-/ MEM
WRAPPERS sAr TLI SAP / 4 MAP
A R
THREAD STREAM mm\FTe/ NAMED SELECT/ DYNAMIC MEMORY SVSTEM

S EE T S \

Pkorrw/nmr AD COMMUNICATION VIRTUAL MEMORY
SUBSYSTEM SUBSYSTEM SUBSYSTEM

GENERAL UNIX AND WIN32 SERVICES

: Output

Channel
: Message
:SOCK Queue
Stream
: Input

:SOCK
Stream

: Routing
Table

Channel : Connector

: Output

Channel
Ssage
:S0CK Qneue
Stream

e A set of C++ wrappers and frameworks
based on common design patterns

INCOMING
MESSAGES

OUTGOING
MESSAGES

CONNECTION a@ '

REQUEST
Y

CONNECTION
REQUEST ‘L

The Reactor Pattern

e Intent

— “Decouples event demultiplexing and event han-
dler dispatching from the services performed in re-
sponse to events”

e This pattern resolves the following forces
for event-driven software:

— How to demultiplex multiple types of events from
multiple sources of events efficiently within a single
thread of control

— How to extend application behavior without requir-
ing changes to the event dispatching framework

Structure of the Reactor Pattern

select (handles);
foreach h in handles {
if (h is output handler)

if (h is input handler)
table[h]->handle_input ();

if (h is signal handler)
table[h]->handle_signal ();

this->expire_timers ();

table[h]->handle_output () ;|

_ 1
V- 4
f Reactor \

handle_events() \

1 n- N
register_handler(h) ~O————) Handles) \

remove_handler(h)

: Concrete
/ Event_Handler /

ST

T — 5

(/Event_Handler />

handle_input() l\

handle_output() \
handle_signal() \\
handle_timeout()
get_handle()

P
e
/.
N

/
1 { Timer_Queue
LT g schedule_timer(h)
cancel_timer(h)
\ expire_timer(h)
N

=7

expire_timers() g
_®

- 1

1 - -7

e Participants in the Reactor pattern

Collaboration in the Reactor

Pattern

INITIALIZE

REGISTER HANDLER

EXTRACT HANDLE

START EVENT LOOP

FOREACH EVENT DO

DATA ARRIVES

OK TO SEND

SIGNAL ARRIVES

TIMER EXPIRES

EVENT HANDLING INITIALIZATION

REMOVE HANDLER

CLEANUP

main
program Event_Handler
|

callback :

Concrete reacto

Reactor()

r

: Reactor

!
»

|
il

register_handler(callback)
get handle()

-

handle events()

select) |

handle_input()

A

handle_output()

A

handle signal()

handle timeout()

A

remove_handler(callback

handle_close()

A

o e e e —

Using the Reactor for the

Gateway

APPLICATION

FRAMEWORK

KERNEL

REGISTERED
OBJECTS

end(msg)

2: recv(msg)

The Router Pattern

e Intent

— “Decouple multiple sources of input from multiple
sources of output to route data correctly without

blocking”

e The Router pattern resolves the following
forces for connection-oriented routers:

— How to prevent misbehaving connections from dis-
rupting the quality of service for well-behaved con-

nections

— How to allow different concurrency strategies for
Input and OQutput Channels

Structure of the Router Pattern

ROUTING
LAYER

\

—

—

-/

\ Channel \,

\
/recv_msg()
[- T

e

—~—

(_——

\
c /
\ Message L

I Queue /

N

n

—— —_—

7 Qutput)
\ Channel r\/

I/ send_msg()
\ put() O
NN s

-

/

EVENT SOURCE AND SINK

e Participants in the Router pattern

Collaboration in the Router

Pattern

Structure of the Single-Threaded
Router Pattern

~

-

: Routing : Output : Input 1/0
Table Channel Channel Layer
|

main()

INPUT
PROCESSING
PHASE

recv_msg()
RECV MSG

ROUTE MSG
find ()
FIND DESTINATIONS

(QUEUE IF FLOW send_msg()

CONTROLLED)

ROUTE
PHASE

|
|
|
enqueue()}
I

schedule_wakeup()
| >

FLOW CONTROL
ABATES

|
|
|
|
|
|
|
|
|
SEND MSG I
|
|
|
|
|
} ! wakeup()
}
| |
| dequeue(),
DEQUEUE AND SEND | | — |
MSG (REQUEUE 1F |
FLOW CONTROLLED),

PHASE

ouTPUT
PROCESSING SELECTION

Sendimsg‘()
|

——

‘ TTTTA
P

{ Message {
I Queue /
\ Q Y

N———"/

/ —_
,~’Input J Output)
\ Channel \ Channel (
/handle 1nput()/ / handle output()) 7
/ - \ pu
\ /
A ST

(—jEvent ;
{l Handler

__—~

ROUTING
LAYER

\
Reactor)

,__‘J

REACTIVE
LAYER

Collaboration in Single-threaded

Gateway Routing

: Output
Channel

:Message \ 5: send_peer(msg)
Queue

Subscriber

ROUTE
D
Set : Output
3: find() P Channel

: Message
Queue

7: put (msg) 8: send_peer(msg)
: Input 9: enqueue(msg)
Channel 10: schedule_wakeup()

11: handle_output()
12: dequeue(msg)
13: send_peer(msg)

1: handle_input()
2: recv_peer(msg)

The Active Object Pattern

e Intent

— “Decouples method execution from method invo-
cation and simplifies synchronized access to shared
resources by concurrent threads”

e This pattern resolves the following forces
for concurrent communication software:

— How to allow blocking read and write operations
on one endpoint that do not detract from the qual-
ity of service of other endpoints

— How to simplify concurrent access to shared state

Structure of the Active Object

Pattern

.\’/ \\\ —> loop {
Client /‘ m = actQueue.remove()
(/ Interface dispatch (m)
VRS

\/ ResultHandle m1() ! L7 N T =

I" ResultHandle m2() | ‘Scheduler | _ - -
\ ResultHandle m3()// } 7/: P -
m— _dispatch()~ 7 TN
- > ml' / _/Activation)
Lom20 iy \. Queue !
VISIBLE \ m3'0) 1 S = /
TO o / insert() \

CLIENTS “”m"ve() J

- I -
L n
INVISIBLE - . y
" Method |

TO Resource 1
CLIENTS (Representatlon (Objects |

—<
/
N

- -~

Collaboration in the Active
Object Pattern

e The Scheduler is a “meta-object” that de-
termines the sequence Method Objects are
executed

N

. : Client : Activation : Represent-

client : Scheduler .
Interface Queue ation

o

hmio |

|
CREATE METHOD jcons(m1')
OBJECT E—

INVOKE

CONSTRUCTION

future()
RETURN RESULT
ANDLE «

INSERT IN

PRIORITY QUEUE

|
|
|
|
|
|
|
|
|

insert(m1') }
—
|

DEQUEUE NEXT remove(m1')

METHOD OBJECT

SCHEDULING/ METHOD OBJECT

EXECUTION

dispatch(m1')

|

|

|

|

EXECUTE |
I I
|

|

I

|

COMPLETION

RETURN RESULT reply_to_future()
i T

Using the Active Object Pattern

for the Gateway

Collaboration in the Active

Object-based Gateway Routing

REGISTERED
OBJECTS

APPLICATION
LEVEL

H
2: recv(msg) Han dler

FRAMEWORK

KERNEL

: Routing : Output
Table Channel

:Message

ACTIVE

j Subscriber
3: find() Set

4: put (msg)

— Channel

:Message 4’%

Queue

ACTIVE

1: handle_input ()

5: send_peer(msg)
2: recv_peer(msg)

Half-Sync/Half-Async Pattern

e Intent

— “Decouples synchronous I/O from asynchronous

I/O in a system to simplify programming effort
without degrading execution efficiency”

e This pattern resolves the following forces
for concurrent communication systems:

— How to simplify programming for higher-level com-

munication tasks

> These are performed synchronously

— How to ensure efficient lower-level I/O communi-

cation tasks

> These are performed asynchronously

Structure of the
Half-Sync/Half-Async Pattern

TASK LAYER

1,4: read(d\zs‘

| MESSAGE QUEUES

/ 3: enqueue(data)

EXTERNAL
EVENT SOURCES

ASYNCHRONOUS QUEUEING SYNCHRONOUS
TASK LAYER LAYER

Collaborations in the
Half-Sync/Half-Async Pattern

Using the Half-Sync/Half-Async

Pattern in the Gateway

SYNC QUEUEING ASYNC

PHASE

PHASE PHASE

External Async Message Sync
Event Source Task Queue Task
i

I notification() |
— M

EXTERNAL EVENT

|
read(ms
RECV MSG (msg)

work()
PROCESS MSG

enqueue(msg)

DEQUEUE MSG

EXECUTE TASK

|
|
|
|
|
|
|
ENQUEUE MSG }
|
|
|
|
|
|
|
I

e Thisillustrates input processing (output pro-

cessing is similar)

TASK LAYER

1: dequeue(msg)
2: send(msg)

LAYER

QUEUEING SYNCHRONOUS

MESSAGE QUEUES

3: get_route(msg)

/ 2: recv(msg)
4: enqueue(msg)

1: dispatch()

: Input
Channel
Y,

ASYNCHRONOUS
TASK LAYER

44

The Connector Pattern

e Intent

— “Decouples active initialization of a service from
the task performed once a service is initialized”

e This pattern resolves the following forces
for network clients that use interfaces like

sockets or TLI:

How to reuse active connection establishment code

for each new service

How to make the connection establishment code
portable across platforms that may contain sock-

ets but not TLI, or vice versa

How to enable flexible service concurrency policies

How to actively establish connections with large

number of peers efficiently

Structure of the Connector

Pattern

I~
(// n SOCK Stream

', Concrete /

\
{Sve Handler)
\ open() /I

APPLICATION
LAYER

\ Sve Handler \\

)
Lm0 %7

~~-

CONNECTION
LAYER

REACTIVE
LAYER

/ handle output()\n

\, -/

\’ Handler ;/’Q Reactor)

N

—~— | Concrete_Sve_Handler

,{1 SOCK_Connector
o~
. Concrete /
)

| Connector

- ~_
\
- i SVC_HANDLER
| PEER_CONNECTOR |

_Connector \

l | connect_svc handler()\

)\ activate_svc_handler() |
/Ohandle_output() /
L connect(sh, addr)O/

I ST TS /"

\
connect_svc_handler
(sh, addr);

activate_svc_handler
(sh);

ST

_J

N =T

Collaboration in the Connector

Pattern

Collaboration in the Connector

Pattern

CONNECTION INITIATION/

SERVICE
PROCESSING
PHASE

Client

|
FOREACH CONNECTION connect(sh, addr)

INITIATE CONNECTION
SYNC CONNECT

ACTIVATE OBJECT

INSERT IN REACTOR

SEVICE INITIALIZATION

EXTRACT HANDLE

START EVENT LOOP

con : :SOCK
Connector Connector

connect() 1
———»

N
sh: reactor :

Sve_Handler Reactor
I
|
|

- connect_svc_handler(sh, addr)
i

activatejsvc_handler(sh)

register_handler(sh)

get_handle()
PV

handle_events()

FOREACH EVENT DO

DATA ARRIVES

PROCESS DATA

select() C |

handle_input()
; sve()

e Synchronous

Client

con :

: SOCK sh:

Connector Connector Svc_Handler Reactor

|
FOREACH CONNECTION

connect(sh, addr)

INITIATE CONNECTION

ASYNC CONNECT

INSERT IN REACTOR

CONNECTION
INITIATION
PHASE

|
<1 connect_svc_handler(sh, addr) | ‘

register_| handler(conl\

handle_events()

START EVENT LOOP

FOREACH EVENT DO

CONNECTION COMPLETE

ACTIVATE OBJECT

SERVICE
INITIALIZATION
PHASE

INSERT IN REACTOR

EXTRACT HANDLE

DATA ARRIVES

PROCESS DATA

SERVICE
PROCESSING
PHASE

select() j

|

|

!

0

! \
connect() !
b

|

|

|

I

|

|

} | handle_event()

a‘ctivateisvcihand ler(sh)
open() !

register_handler(sh)

} get_handle()
-
|
|
|

handle_input()
; sve()

|

|

reactor :

~

e Asynchronous mode

Using the Connector for the

Gateway

ACTIVE
CONNECTION.

PENDING

CONNECTIONS : ReaCtor

The Acceptor Pattern

e Intent

— “Decouples passive initialization of a service from
the tasks performed once the service is initialized”

e This pattern resolves the following forces
for network servers using interfaces like sock-
ets or TLI:

1. How to reuse passive connection establishment code
for each new service

How to make the connection establishment code
portable across platforms that may contain sock-
ets but not TLI, or vice versa

How to ensure that a passive-mode descriptor is
not accidentally used to read or write data

How to enable flexible policies for creation, con-
nection establishent, and concurrency

Structure of the Acceptor Pattern

APPLICATION
LAYER

LAYER

CONNECTION

REACTIVE
LAYER

e~
// n SOCK Stream ——| Concrete_Svc_Handler
e _/1 |SOCK_Acceptor

Collaboration in the Acceptor

Pattern

\,_Concrete / (;
iSve Handler \ , Concrete /
\ Toren ! ([Acceptor)

/ \
! }_— —~_s"

s

\

N B
- SVC_HANDLER |
= - PEER_ACCEPTOR \

\
\ Handler | __--$ _Acceptor |

{ open() IF T NTS \ |make_svc_handler() |

SR /‘\accept sve_handler() N
W |activate_svc_handler() /

/ open() /

\/Ohandle input() __~

e
- o T~

sh = make_svc_handler();
accept_svc_handler (sh);

activate_svc_handler (sh);

~ PEER STREAM K

/o~

=N

/Event o

Handler /Q Reactor :’
/handle mput() \

— "

\’/ ~_

ENDPOINT
PROCESSING INITIALIZATION INITIALIZATION

SERVICE

SERVICE

acc: :SOCK sh: reactor :
Acceptor Acceptor Sve_Handler Reactor

INITIALIZE PASSIVE j open() |
LIZE PASSIVE open()|

ENDPOINT

Server

|
|
|
K |
register _handler(acc)

|
|
|
! »
get_handle() 1 U
|
|
|
|
|

REGISTER HANDLER

EXTRACT HANDLE

handle_events() i
|

START EVENT LOOP

select() >
| handle_input()

|
| -
|
1
|
FOREACH EVENT DO |
|

CONNECTION EVENT sh =make_svc_handler()
accept_svc_handler (sh)
activate_svc_handler (sh)

b

CREATE, ACCEPT,
AND ACTIVATE OBJECT

REGISTER HANDLER

register_handler(sh)
FOR CLIENT I/O

} get_handle()
P VA
|

|

|

|

1

} handle_input()
} sve()
|

|

|

|

I

EXTRACT HANDLE
DATA EVENT
PROCESS MSG

! handle_close()
———=— |

1 handle_close()

CLIENT SHUTDOWN

SERVER SHUTDOWN

e Acceptor is a factory that creates, connects,
and activates a Svc_Handler

Using the Acceptor Pattern in the

Gateway

: Input
Acceptor

ACTIVE
PASSIVE CONNECTIONS
: Output (_LISTENERS

Acceptor

: Reactor

The Service Configurator Pattern

e Intent

— “Decouples the behavior of network services from
the point in time at which these services are con-
figured into an application”

e This pattern resolves the following forces
for highly flexible communication software:

— How to defer the selection of a particular type, or
a particular implementation, of a service until very
late in the design cycle

> i.e., at installation-time or run-time

— How to build complete applications by composing
multiple independently developed services

— How to reconfigure and control the behavior of the
service at run-time

Structure of the Service

Configurator Pattern

~

e
¢ Concrete

| Service Object
N\ /

—
/ T
T~ ——

~—N N — \]
_ Service ‘-
> Ve

Config

-9 -——-®1

APPLICATION
LAYER

TN
/Service
! .
. Object !
N o
\
\ suspend() ‘|
| resume() \| 1
I init())
| finiQ) ?Z/ /1
\\info()// n P .\—\)
~c- Service |
(Repository >,
A

~=

CONFIGURATION
LAYER

~Il_ -
// ™

- \

L Event
1.

]

‘ Handle#r/,n

N~

REACTIVE
LAYER

~

Collaboration in the Service

Configurator Pattern

CONFIGURATION

EVENT HANDLING

mainQ) sve: : Reactor : Service : Service
Service_Object ° Config Repository
|

CONFIGURE
FOREACH SVC ENTRY DO

DYNAMICALLY LINK

SERVICE

INITIALIZE SERVICE

REGISTER SERVICE

EXTRACT HANDLE

STORE IN REPOSITORY

START EVENT LOOP

FOREACH EVENT DO

INCOMING EVENT

SHUTDOWN EVENT

CLOSE SERVICE

UNLINK SERVICE

Service_Config() } |

|
I
} processid‘irectives() =
| Ilink_service()

|

=

|
init(argc, argv) |
T
register_handler(svc) |

get_handle()
insert()

|
|
| |
| |
| run_event_loop() ! |
f t |
| | handle_events() |
I e
D handle_input() }
«————— =PV
|
|
|
|
|

| handle_close()

|

|

|

|

|

|

| -——
} remove_handler(svc)
|

| } |unlink_service()

} } - fini() 1 remove()

| | |

Using the Service Configurator

Pattern for the Gateway

SERVICE

CONFIGURATOR

RUNTIME Service

. Service 3 SHARED

. . OBJECTS
Repository
: Service . : Reactor

Config ; : Service

Object

e Replace the single-threaded Gateway with a
multi-threaded Gateway

Benefits of Design Patterns

Design patterns enable large-scale reuse of
software architectures

Patterns explicitly capture expert knowledge
and design tradeoffs

Patterns help improve developer communi-
cation

Patterns help ease the transition to object-
oriented technology

Drawbacks to Design Patterns

Patterns do not lead to direct code reuse

Patterns are deceptively simple

Teams may suffer from pattern overload

Patterns are validated by experience rather
than by testing

Integrating patterns into a software devel-
opment process is a human-intensive activ-
ity

Suggestions for Using Patterns

Effectively

e Do not recast everything as a pattern

— Instead, develop strategic domain patterns and reuse
existing tactical patterns

Institutionalize rewards for developing pat-
terns

Directly involve pattern authors with appli-
cation developers and domain experts

Clearly document when patterns apply and
do not apply

Manage expectations carefully

Books and Magazines on Patterns
Conferences and Workshops on

* Books Patterns

— Gamma et al., “Design Patterns: Elements of
Reusable Object-Oriented Software” Addison-Wesley,

Reading, MA, 1994, e Joint Pattern Languages of Programs Con-

ferences

— “Pattern Languages of Program Design,” editors
James O. Coplien and Douglas C. Schmidt, Addison-
Wesley, Reading, MA, 1995

— 3rd PLoP

> September 4—6, 1996, Monticello, Illinois, USA

e Special Issues in Journals — 1st EuroPLoP

— “Theory and Practice of Object Systems” (guest > July 10—14, 1996, Kloster Irsee, Germany
editor: Stephen P. Berczuk)

o . — http://www.cs.wustl.edu/~schmidt/jointPLoP—-96.html/

— “Communications of the ACM" (guest editors: Dou-
glas C. Schmidt, Ralph Johnson, and Mohamed
Fayad)

¢ USENIX COOTS

e Magazines — June 17-21, 1996, Toronto, Canada

— C++ Report and Journal of Object-Oriented Pro- _ . . .
gramming, columns by Coplien, Vlissides, and De http://www.cs.wustl.edu/~schmidt/COOTS—-96.html/

Souza

Obtaining ACE

The ADAPTIVE Communication Environ-
ment (ACE) is an OO toolkit designed ac-
cording to key network programming pat-
terns

All source code for ACE is freely available

— Anonymously ftp to wuarchive.wustl.edu

— Transfer the files /languages/c++/ACE/*.gz and
gnu/ACE-documentation/*.gz

Mailing lists

* ace-users@cs.wustl.edu

* ace-users-request@cs.wustl.edu

* ace-announce®@cs.wustl.edu

* ace-announce-request@cs.wustl.edu

WWW URL

— http://www.cs.wustl.edu/~schmidt/

