
Using Design Patterns to Develop

Object-Oriented Communication

Software Frameworks and

Applications

Douglas C. Schmidt

http://www.cs.wustl.edu/�schmidt/

schmidt@cs.wustl.edu

Washington University, St. Louis

1

Motivation

� Developing e�cient, robust, extensible, and

reusable communication software is hard

� It is essential to understand successful tech-

niques that have proven e�ective to solve

common development challenges

� Design patterns and frameworks help to cap-

ture, articulate, and instantiate these suc-

cessful techniques

2

Observations

� Developers of communication software con-
front recurring challenges that are largely
application-independent

{ e.g., service initialization and distribution, error

handling, 
ow control, event demultiplexing, con-

currency control

� Successful developers resolve these challenges

by applying appropriate design patterns

� These patterns have traditionally been ei-
ther:

1. Locked inside the heads of expert software devel-

opers

2. Buried within the source code

3

Design Patterns

� Design patterns represent solutions to prob-
lems that arise when developing software
within a particular context

{ i.e., \Patterns == problem/solution pairs in a con-

text"

� Patterns capture the static and dynamic struc-
ture and collaboration among key partici-
pants in software designs

{ They are particularly useful for articulating how

and why to resolve non-functional forces

� Patterns facilitate reuse of successful soft-

ware architectures and designs

4



Proxy Pattern

NETWORK

CLIENT

SERVER

: BROKER

1: METHOD

CALL

4: METHOD

RETURN

: QUOTER

2: FORWARD

REQUEST

3:  RESPONSE

: QUOTER

PROXY

� Indent: provide a surrogate for another ob-

ject that controls access to it

5

More Observations

� Reuse of patterns alone is not insu�cient

{ Patterns enable reuse of architecture and design

knowledge, but not code (directly)

� To be productive, developers must also reuse

detailed designs, algorithms, interfaces, im-

plementations, etc.

� Application frameworks are an e�ective way

to achieve broad reuse of software

6

Frameworks

� A framework is:

{ \An integrated collection of components that col-

laborate to produce a reusable architecture for a

family of related applications"

� Frameworks di�er from conventional class
libraries:

1. Frameworks are \semi-complete" applications

2. Frameworks address a particular application do-

main

3. Frameworks provide \inversion of control"

� Typically, applications are developed by in-

heriting from and instantiating framework

components

7

Di�erences Between Class

Libraries and Frameworks

APPLICATION

SPECIFIC

LOGIC

USER

INTERFACE

CLASS

LIBRARIES

NETWORKING

MATH ADTS

DATA

BASE

APPLICATION

SPECIFIC

LOGIC

MATH

OBJECT-ORIENTED

FRAMEWORK

ADTS

INVOKES

CALL

BACKS

NETWORKING USER

INTERFACE

DATABASE

INVOKES

EVENT

LOOP

EVENT

LOOP

8



Tutorial Outline

� Outline key challenges for developing com-

munication software

� Present the key reusable design patterns in
an application-level Gateway

{ Both single-threaded and multi-threaded solutions

are presented

� Discuss lessons learned from using patterns

on production software systems

9

Stand-alone vs. Distributed

Application Architectures

PRINTER

FILE
SYSTEM

PRINTER
FILE  SYSTEM

COMPUTER

(1)(1)    STAND-ALONESTAND-ALONE    APPLICATIONAPPLICATION    ARCHITECTUREARCHITECTURE

(2)(2)    DISTRIBUTEDDISTRIBUTED    APPLICATIONAPPLICATION    ARCHITECTUREARCHITECTURE

CD ROM

CD ROM

NETWORK

DISPLAY

SERVICE

FI LE

SERVICE

PRINT

SERVICE

CYCLE

SERVICES

10

Concurrency vs. Parallelism

CONCURRENT  SERVER

maxfdp1

read_fds

WORK

REQUEST

SERVER

CLIENT

WORK

REQUEST
WORK

REQUEST

WORK

REQUEST
CLIENT

CLIENT CLIENT

SERVER

CPU1 CPU2 CPU3 CPU4

WORK

REQUEST

WORK

REQUEST
WORK

REQUEST

WORK

REQUEST

CLIENT

CLIENT

CLIENT CLIENT

PARALLEL  SERVER

11

Sources of Complexity

� Distributed application development exhibits

both inherent and accidental complexity

� Inherent complexity results from fundamen-
tal challenges, e.g.,

{ Distributed systems

. Latency

. Error handling

. Service partitioning and load balancing

{ Concurrent systems

. Race conditions

. Deadlock avoidance

. Fair scheduling

. Performance optimization and tuning

12



Sources of Complexity (cont'd)

� Accidental complexity results from limita-
tions with tools and techniques, e.g.,

{ Lack of type-secure, portable, re-entrant, and ex-

tensible system call interfaces and component li-

braries

{ Inadequate debugging support

{ Widespread use of algorithmic decomposition

. Fine for explaining network programming con-

cepts and algorithms but inadequate for devel-

oping large-scale distributed applications

13

OO Contributions

� Concurrent and distributed programming has
traditionally been performed using low-level
OS mechanisms, e.g.,

{ fork/exec

{ Shared memory

{ Signals

{ Sockets and select

{ POSIX pthreads, Solaris threads, Win32 threads

� OO design patterns and frameworks elevate
development to focus on application con-
cerns, e.g.,

{ Service functionality and policies

{ Service con�guration

{ Concurrent event demultiplexing and event han-

dler dispatching

{ Service concurrency and synchronization

14

Application-level Gateway

Example

� This example illustrates the reusable design

patterns and framework components used

in an OO architecture for application-level

Gateways

� Gateways route messages between Peers in

a distributed system

� Peers and Gateways communicate via a connection-
oriented transport protocol

{ e.g., TCP/IP, IPX/SPX, TP4

15

Physical Architecture of the

Gateway

WIDE  AREA

NETWORK

SATELLITES

TRACKING

STATION

PEERS

STATUS  INFO

COMMANDS

BULK  DATA

TRANSFER

LOCAL  AREA  NETWORK

GATEWAY

GROUND

STATION

PEERS

16



OO Software Architecture of the

Gateway

: Reactor

GATEWAY

PEER2
PEER4PEER3

CONNECTION

REQUEST

CONNECTION

REQUEST

OUTGOING

MESSAGES

: Output

Channel

INCOMING

MESSAGES

: Channel
Acceptor

: Channel
Connector

PEER1

: Input

Channel

: Routing
Table

: Input

Channel

: Output

Channel

17

Graphical Notation

PROCESS

THREAD

OBJECT

:  CLASS

CLASS

CLASS

CATEGORY

CLASS

UTILITY

INHERITS

CONTAINS

INSTANTIATES

A

ABSTRACT

CLASS
USES

TEMPLATE

CLASS

18

Gateway Behavior

� Components in the Gateway behave as fol-
lows:

1. Gateway parses con�guration �les that specify which
Peers to connect with and which routes to use

2. Channel Connector connects to Peers, then cre-

ates and activates the appropriate Channel sub-

classes (Input Channel or Output Channel)

3. Once connected, Peers send messages to the Gate-

way

{ Messages are handled by the appropriate Input Channel

{ Input Channels work as follows:

(a) Receive and validate messages

(b) Consult a Routing Table

(c) Forward messages to the appropriate Peer(s)

via Output Channels

19

Design Patterns in the Gateway

Active ObjectActive Object

Half-Sync/Half-Sync/
Half-AsyncHalf-Async

FactoryFactory
MethodMethodIteratorIterator AdapterAdapter

TemplateTemplate
MethodMethod

TACTICALTACTICAL

PATTERNSPATTERNS

STRATEGIC

PATTERNS

ConnectorConnector AcceptorAcceptor

RouterRouter

ServiceService
ConfiguratorConfigurator

ReactorReactor

� The Gateway components are based upon

a family of design patterns

20



Tactical Patterns

� Iterator

{ \Provide a way to access the elements of an ag-

gregate object sequentially without exposing its

underlying representation"

� Factory Method

{ \De�ne an interface for creating an object, but let

subclasses decide which class to instantiate"

. Factory Method lets a class defer instantiation

to subclasses

� Adapter

{ \Convert the interface of a class into another in-

terface client expects"

. Adapter lets classes work together that couldn't

otherwise because of incompatible interfaces

21

Concurrency Patterns

� Reactor

{ \Decouples event demultiplexing and event han-

dler dispatching from application services performed

in response to events"

� Active Object

{ \Decouples method execution from method invo-

cation and simpli�es synchronized access to shared

resources by concurrent threads"

� Half-Sync/Half-Async

{ \Decouples synchronous I/O from asynchronous

I/O in a system to simplify concurrent program-

ming e�ort without degrading execution e�ciency"

22

Service Initialization Patterns

� Connector

{ \Decouples active connection establishment from

the service performed once the connection is es-

tablished"

� Acceptor

{ \Decouples passive connection establishment from

the service performed once the connection is es-

tablished"

� Service Con�gurator

{ \Decouples the behavior of network services from

point in time at which services are con�gured into

an application"

23

Application-Speci�c Patterns

� Router

{ \Decouples multiple sources of input from multiple

sources of output to route data correctly without

blocking"

24



The ADAPTIVE Communication

Environment (ACE)

THREAD

LIBRARY

SYNCHSYNCH

WRAPPERSWRAPPERS

COMMUNICATIONCOMMUNICATION

SUBSYSTEMSUBSYSTEM

VIRTUAL  MEMORYVIRTUAL  MEMORY

SUBSYSTEMSUBSYSTEM

DYNAMICDYNAMIC

LINKINGLINKING

MEMORYMEMORY

MAPPINGMAPPING

SELECTSELECT//
POLLPOLL

SYSTEMSYSTEM

VV    IPCIPC
STREAMSTREAM

PIPESPIPES

NAMEDNAMED

PIPESPIPES

SYSVSYSV
WRAPPERSWRAPPERS

SPIPE

SAP

GENERAL  UNIX  AND  WIN32  SERVICES

CC
APIAPISS

C++C++
WRAPPERSWRAPPERS

FRAMEWORKS

AND  CLASS

CATEGORIES

THREAD

MANAGER

PROCESS/THREAD

SUBSYSTEM

SOCKETS/
TLI

MEM

MAP

SHARED

MALLOC

ACCEPTOR CONNECTOR

DISTRIBUTED

SERVICES
NAME

SERVER

TOKEN

SERVER

LOGGING

SERVER

GATEWAY

SERVER

SOCK_SAP/
TLI_SAP

FIFO

SAP

REACTOR

LOG

MSG

SERVICE

CONFIG-
URATOR

ADAPTIVE  SERVICE  EXECUTIVE

(ASX)

SERVICE

HANDLER

CORBA

HANDLER

� A set of C++ wrappers and frameworks

based on common design patterns

25

ACE Components in the Gateway

GATEWAYGATEWAY

CONNECTIONCONNECTION

REQUESTREQUEST CONNECTION

REQUEST

OUTGOING

MESSAGES

: Output: Output

ChannelChannel

: Message: Message
QueueQueue: SOCK: SOCK

StreamStream

INCOMING

MESSAGES

: Acceptor: Acceptor

: SOCK: SOCK
AcceptorAcceptor

: Connector: Connector

: SOCK: SOCK
ConnectorConnector

: Map: Map
ManagerManager

: Input: Input

ChannelChannel

: SOCK: SOCK
StreamStream

: Routing: Routing
TableTable

: Map: Map
ManagerManager

: Output: Output

ChannelChannel

: Message: Message
QueueQueue: SOCK: SOCK

StreamStream

: Input: Input

ChannelChannel

: SOCK: SOCK
StreamStream

: Reactor: Reactor

PEERS
PEERS

26

The Reactor Pattern

� Intent

{ \Decouples event demultiplexing and event han-

dler dispatching from the services performed in re-

sponse to events"

� This pattern resolves the following forces
for event-driven software:

{ How to demultiplex multiple types of events from

multiple sources of events e�ciently within a single

thread of control

{ How to extend application behavior without requir-

ing changes to the event dispatching framework

27

Structure of the Reactor Pattern

ReactorReactor
handle_events()
register_handler(h)
remove_handler(h)
expire_timers()

11

11

11

Event_HandlerEvent_Handler

handle_input()
handle_output()
handle_signal()
handle_timeout()
get_handle()

A

11

nn

nn

ConcreteConcrete
Event_HandlerEvent_Handler

Timer_QueueTimer_Queue

schedule_timer(h)
cancel_timer(h)
expire_timer(h)

11

11

select (handles);select (handles);
foreach h in handles {foreach h in handles {
   if (h is output handler)   if (h is output handler)
      table[h]->handle_output () ;      table[h]->handle_output () ;
   if (h is input handler)   if (h is input handler)
      table[h]->handle_input ();      table[h]->handle_input ();
   if (h is signal handler)   if (h is signal handler)
      table[h]->handle_signal ();      table[h]->handle_signal ();
}}
this->expire_timers ();this->expire_timers ();

nn
HandlesHandles

11

APPLICATION

APPLICATION--

DEPENDENT

DEPENDENT
APPLICATION-

INDEPENDENT
n

� Participants in the Reactor pattern

28



Collaboration in the Reactor

Pattern

main
program

INITIALIZE

REGISTER  HANDLER

callback :
Concrete

Event_Handler

START  EVENT  LOOP

DATA  ARRIVES

OK TO  SEND

reactor
: Reactor

handle_events()

FOREACH  EVENT  DO

handle_input()

select()

Reactor()

register_handler(callback)

handle_output()

SIGNAL  ARRIVES

TIMER  EXPIRES

handle_signal()

handle_timeout()

get_handle()
EXTRACT  HANDLE

REMOVE  HANDLER
remove_handler(callback)

IN
IT

IA
L

IZ
A

T
IO

N

M
O

D
E

E
V

E
N

T
  
H

A
N

D
L

IN
G

M
O

D
E

handle_close()
CLEANUP

29

Using the Reactor for the

Gateway

:: Reactor Reactor

REGISTEREDREGISTERED

OBJECTSOBJECTS

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

OS  EVENT  DEMULTIPLEXING  INTERFACE

:Timer:Timer
QueueQueue

: Signal: Signal
HandlersHandlers

: Handle: Handle
TableTable

: Event: Event
HandlerHandler

: Output: Output
ChannelChannel

: Event: Event
HandlerHandler

: Output: Output
ChannelChannel

: Event: Event
HandlerHandler

: Input: Input
ChannelChannel

1: handle_input()1: handle_input()

4: send(msg)4: send(msg)

2: recv(msg)2: recv(msg)
3: route(msg)3: route(msg)

30

The Router Pattern

� Intent

{ \Decouple multiple sources of input from multiple

sources of output to route data correctly without

blocking"

� The Router pattern resolves the following
forces for connection-oriented routers:

{ How to prevent misbehaving connections from dis-

rupting the quality of service for well-behaved con-

nections

{ How to allow di�erent concurrency strategies for

Input and Output Channels

31

Structure of the Router Pattern

RoutingRouting
TableTable

find()

OutputOutput
ChannelChannel

send_msg()
put()

InputInput
ChannelChannel

recv_msg()

1

nn

I/
O

I/
O

L
A

Y
E

R
L

A
Y

E
R

R
O

U
T

IN
G

R
O

U
T

IN
G

L
A

Y
E

R
L

A
Y

E
R

MessageMessage
QueueQueue

EVENT  SOURCE  AND  SINKEVENT  SOURCE  AND  SINK

� Participants in the Router pattern

32



Collaboration in the Router

Pattern

: Routing: Routing
TableTable

recv_msg()

find ()

I/OI/O
LayerLayer

: Input: Input
ChannelChannel

FIND  DESTINATIONSFIND  DESTINATIONS

ROUTE  MSGROUTE  MSG

main()main()

SEND  MSGSEND  MSG

((QUEUE  IF  FLOWQUEUE  IF  FLOW

CONTROLLEDCONTROLLED))

put()

wakeup()
FLOW  CONTROLFLOW  CONTROL

ABATESABATES

DEQUEUE  AND  SENDDEQUEUE  AND  SEND

MSG  MSG  ((REQUEUE  IFREQUEUE  IF

FLOW  CONTROLLEDFLOW  CONTROLLED))

: Output: Output
ChannelChannel

RECV  MSGRECV  MSG

send_msg()

IN
P

U
T

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

R
O

U
T

E
S

E
L

E
C

T
IO

N
P

H
A

S
E

O
U

T
P

U
T

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

dequeue()

enqueue()

send_msg()

schedule_wakeup()

33

Structure of the Single-Threaded

Router Pattern

RoutingRouting
TableTable

find()

OutputOutput
ChannelChannel

handle_output()
put()

InputInput
ChannelChannel

handle_input()

1

nn

ReactorReactor11
nn

EventEvent
HandlerHandler

R
E

A
C

T
IV

E
R

E
A

C
T

IV
E

L
A

Y
E

R
L

A
Y

E
R

R
O

U
T

IN
G

R
O

U
T

IN
G

L
A

Y
E

R
L

A
Y

E
R

MessageMessage
QueueQueue

34

Collaboration in Single-threaded

Gateway Routing

: Routing: Routing
TableTable

: Input: Input
ChannelChannel

7: put (msg)7: put (msg)

1: handle_input()1: handle_input()
2: recv_peer(msg)2: recv_peer(msg)

3: find()3: find()

::  MessageMessage
QueueQueue

: Output: Output
ChannelChannel

5: send_peer(msg)5: send_peer(msg)

ROUTEROUTE
IDID

SubscriberSubscriber
SetSet

4:
 p

ut (
m

sg
)

4:
 p

ut (
m

sg
)

::  MessageMessage
QueueQueue

: Output: Output
ChannelChannel

8: send_peer(msg)8: send_peer(msg)
9: enqueue(msg)9: enqueue(msg)
10: schedule_wakeup()10: schedule_wakeup()
------------------------------
11: handle_output()11: handle_output()
12: dequeue(msg)12: dequeue(msg)
13: send_peer(msg)13: send_peer(msg)

35

The Active Object Pattern

� Intent

{ \Decouples method execution from method invo-

cation and simpli�es synchronized access to shared

resources by concurrent threads"

� This pattern resolves the following forces
for concurrent communication software:

{ How to allow blocking read and write operations

on one endpoint that do not detract from the qual-

ity of service of other endpoints

{ How to simplify concurrent access to shared state

36



Structure of the Active Object

Pattern

ClientClient
InterfaceInterface

ResultHandle m1()
ResultHandle m2()
ResultHandle m3()

ActivationActivation
QueueQueue
insert()

remove()

SchedulerScheduler

dispatch()
m1'()
m2'()
m3'()

ResourceResource
RepresentationRepresentation

MethodMethod
ObjectsObjects

loop {
  m = actQueue.remove()
  dispatch (m)
}

INVISIBLEINVISIBLE
TOTO

CLIENTSCLIENTS

VISIBLEVISIBLE
TOTO

CLIENTSCLIENTS

nn

11

11
11

11

11

� The Scheduler is a \meta-object" that de-

termines the sequence Method Objects are

executed

37

Collaboration in the Active

Object Pattern

INVOKEINVOKE

INSERT  ININSERT  IN
                            PRIORITY  QUEUE                            PRIORITY  QUEUE

cons(m1')

remove(m1')DEQUEUE  NEXTDEQUEUE  NEXT
      METHOD  OBJECT      METHOD  OBJECT

RETURN  RESULTRETURN  RESULT

EXECUTEEXECUTE

clientclient
: Client: Client

InterfaceInterface
: Activation: Activation

QueueQueue

insert(m1')

dispatch(m1')

M
E

T
H

O
D

  O
B

J
E

C
T

M
E

T
H

O
D

  O
B

J
E

C
T

C
O

N
S

T
R

U
C

T
IO

N
C

O
N

S
T

R
U

C
T

IO
N

S
C

H
E

D
U

L
IN

G
/

E
X

E
C

U
T

IO
N

C
O

M
P

L
E

T
IO

N

m1()

: Represent-: Represent-
ationation

: Scheduler: Scheduler

CREATE  METHOD
OBJECT

reply_to_future()

future()RETURN  RESULTRETURN  RESULT
HANDLEHANDLE

38

Using the Active Object Pattern

for the Gateway

:: Reactor Reactor

REGISTERED

OBJECTS

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

OS  EVENT  DEMULTIPLEXING  INTERFACE

:Timer:Timer
QueueQueue

: Signal: Signal
HandlersHandlers

: Handle: Handle
TableTable

: Event: Event
HandlerHandler

: Output: Output
ChannelChannel

: Event: Event
HandlerHandler

: Input: Input
ChannelChannel

: Event: Event
HandlerHandler

: Input: Input
ChannelChannel

: Event: Event
HandlerHandler

: Input: Input
ChannelChannel

1: handle_input()1: handle_input()

: Event: Event
HandlerHandler

: Output: Output
ChannelChannel

4: send(msg)4: send(msg)

2: recv(msg)2: recv(msg)
3: route(msg)3: route(msg)

39

Collaboration in the Active

Object-based Gateway Routing

: Routing
Table

: Input
Channel

: Message
Queue

: Output
Channel

4: put (msg)

1: handle_input ()
2: recv_peer(msg)

3: find()

: Message
Queue

: Output
Channel

5: send_peer(msg)

5: send_peer(msg)

ACTIVE

ACTIVE

ROUTE
ID

Subscriber
Set

40



Half-Sync/Half-Async Pattern

� Intent

{ \Decouples synchronous I/O from asynchronous

I/O in a system to simplify programming e�ort

without degrading execution e�ciency"

� This pattern resolves the following forces
for concurrent communication systems:

{ How to simplify programming for higher-level com-

munication tasks

. These are performed synchronously

{ How to ensure e�cient lower-level I/O communi-

cation tasks

. These are performed asynchronously

41

Structure of the

Half-Sync/Half-Async Pattern

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

L
A

Y
E

R
L

A
Y

E
R

A
S

Y
N

C
H

R
O

N
O

U
S

A
S

Y
N

C
H

R
O

N
O

U
S

  
T

A
S

K
  
L

A
Y

E
R

  
T

A
S

K
  
L

A
Y

E
R

S
Y

N
C

H
R

O
N

O
U

S
S

Y
N

C
H

R
O

N
O

U
S

 T
A

S
K

  
L

A
Y

E
R

 T
A

S
K

  
L

A
Y

E
R SYNC

TASK 1

SSYNCYNC

TASK TASK 33

SSYNCYNC

TASK TASK 22

1, 4: read(data)1, 4: read(data)

3: enqueue(data)3: enqueue(data)

2: interrupt2: interrupt

ASYNCASYNC

TASKTASK

EXTERNALEXTERNAL

EVENT  SOURCESEVENT  SOURCES

MESSAGE  QUEUESMESSAGE  QUEUES

42

Collaborations in the

Half-Sync/Half-Async Pattern

EXTERNAL   EVENT

PROCESS  MSG

read(msg)

EXECUTE  TASK

ENQUEUE  MSG

External
Event  Source

Async
Task

Sync
Task

Message
Queue

enqueue(msg)

work()

DEQUEUE  MSG

A
S

Y
N

C

P
H

A
S

E

Q
U

E
U

E
IN

G

P
H

A
S

E

S
Y

N
C

P
H

A
S

E

RECV  MSG

notification()

read(msg)

work()

� This illustrates input processing (output pro-

cessing is similar)

43

Using the Half-Sync/Half-Async

Pattern in the Gateway

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

L
A

Y
E

R
L

A
Y

E
R

A
S

Y
N

C
H

R
O

N
O

U
S

A
S

Y
N

C
H

R
O

N
O

U
S

  
T

A
S

K
  
L

A
Y

E
R

  
T

A
S

K
  
L

A
Y

E
R

S
Y

N
C

H
R

O
N

O
U

S
S

Y
N

C
H

R
O

N
O

U
S

 T
A

S
K

  
L

A
Y

E
R

 T
A

S
K

  
L

A
Y

E
R

1: dequeue(msg)1: dequeue(msg)
2: send(msg)2: send(msg)

: Output: Output
ChannelChannel

2: recv(msg)2: recv(msg)
3: get_route(msg)3: get_route(msg)
4: enqueue(msg)4: enqueue(msg)

1: dispatch()1: dispatch()

: Reactor: Reactor

MESSAGE  QUEUESMESSAGE  QUEUES

: Input: Input
ChannelChannel: Input: Input

ChannelChannel

: Input: Input
ChannelChannel

: Output: Output
ChannelChannel

: Output: Output
ChannelChannel

44



The Connector Pattern

� Intent

{ \Decouples active initialization of a service from

the task performed once a service is initialized"

� This pattern resolves the following forces
for network clients that use interfaces like
sockets or TLI:

1. How to reuse active connection establishment code

for each new service

2. How to make the connection establishment code

portable across platforms that may contain sock-

ets but not TLI, or vice versa

3. How to enable 
exible service concurrency policies

4. How to actively establish connections with large

number of peers e�ciently

45

Structure of the Connector

Pattern

ReactorReactor11nn

EventEvent
HandlerHandler

ConnectorConnector
connect_svc_handler()
activate_svc_handler()
handle_output()
connect(sh, addr)

SVC_HANDLERSVC_HANDLER

PEER_CONNECTORPEER_CONNECTOR

ConcreteConcrete
ConnectorConnector

Concrete_Svc_HandlerConcrete_Svc_Handler

SOCK_ConnectorSOCK_Connector11

ConcreteConcrete
Svc HandlerSvc Handler

SOCK StreamSOCK Stream

open()

nn

R
E

A
C

T
IV

E
R

E
A

C
T

IV
E

L
A

Y
E

R
L

A
Y

E
R

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

handle_output()

AA

connect_svc_handlerconnect_svc_handler

   (sh, addr);   (sh, addr);1:1:

Svc HandlerSvc Handler

PEER_STREAMPEER_STREAM

open() AA

INITS

activate_svc_handleractivate_svc_handler

   (sh);   (sh);2:2:

nn

46

Collaboration in the Connector

Pattern

Client

FOREACH  CONNECTION

      INITIATE  CONNECTION

      SYNC  CONNECT

INSERT  IN  REACTOR

con :
Connector

handle_input()

reactor :
Reactor

sh:
Svc_Handler

register_handler(sh)

get_handle()EXTRACT  HANDLE

DATA  ARRIVES

svc()PROCESS  DATA

connect(sh, addr)

connect()

ACTIVATE  OBJECT

: SOCK
Connector

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

activate_svc_handler(sh)

connect_svc_handler(sh, addr)

C
O

N
N

E
C

T
IO

N
 I

N
IT

IA
T

IO
N

/

S
E

V
IC

E
 I

N
IT

IA
L

IZ
A

T
IO

N

P
H

A
S

E

START  EVENT  LOOP

FOREACH  EVENT  DO

handle_events()

select()

open()

� Synchronous mode

47

Collaboration in the Connector

Pattern

Client

FOREACH  CONNECTION

      INITIATE  CONNECTION

      ASYNC  CONNECT

      INSERT  IN  REACTOR

START  EVENT  LOOP

FOREACH  EVENT  DO

handle_events()

select()

CONNECTION  COMPLETE

INSERT  IN  REACTOR

con :
Connector

handle_input()

reactor :
Reactor

sh:
Svc_Handler

handle_event()

register_handler(sh)

get_handle()
EXTRACT  HANDLE

DATA  ARRIVES

svc()PROCESS  DATA

connect(sh, addr)

connect()

ACTIVATE  OBJECT

register_handler(con)

: SOCK
Connector

C
O

N
N

E
C

T
IO

N

IN
IT

IA
T

IO
N

 P
H

A
S

E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N

P
H

A
S

E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G

P
H

A
S

E

activate_svc_handler(sh)

connect_svc_handler(sh, addr)

open()

� Asynchronous mode

48



Using the Connector for the

Gateway

: Connector

: Reactor
PENDING

CONNECTIONS

ACTIVE

CONNECTIONS

: Svc
Handler

: Channel

: Svc
Handler

: Channel

: Svc
Handler

: Channel

: Svc
Handler

: Channel

: Svc
Handler

: Channel

: Svc
Handler

: Channel
: Svc

Handler

: Channel

49

The Acceptor Pattern

� Intent

{ \Decouples passive initialization of a service from

the tasks performed once the service is initialized"

� This pattern resolves the following forces
for network servers using interfaces like sock-
ets or TLI:

1. How to reuse passive connection establishment code

for each new service

2. How to make the connection establishment code

portable across platforms that may contain sock-

ets but not TLI, or vice versa

3. How to ensure that a passive-mode descriptor is

not accidentally used to read or write data

4. How to enable 
exible policies for creation, con-

nection establishent, and concurrency

50

Structure of the Acceptor Pattern

ReactorReactor11

AcceptorAcceptor

SVC_HANDLERSVC_HANDLER

PEER_ACCEPTORPEER_ACCEPTOR

ConcreteConcrete
AcceptorAcceptor

Concrete_Svc_HandlerConcrete_Svc_Handler

SOCK_AcceptorSOCK_Acceptor11
ConcreteConcrete

Svc HandlerSvc Handler

SOCK StreamSOCK Stream

open()

nn

R
E

A
C

T
IV

E
R

E
A

C
T

IV
E

L
A

Y
E

R
L

A
Y

E
R

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

INITS
INITS

SvcSvc
HandlerHandler

PEER_STREAMPEER_STREAM

open()

AA

sh = make_svc_handler();sh = make_svc_handler();

accept_svc_handler (sh);accept_svc_handler (sh);

activate_svc_handler (sh);activate_svc_handler (sh);

nn

EventEvent
HandlerHandler

handle_input()

AA

make_svc_handler()
accept_svc_handler()
activate_svc_handler()
open()
handle_input()

51

Collaboration in the Acceptor

Pattern

Server

REGISTER  HANDLER

START  EVENT  LOOP

CONNECTION  EVENT

REGISTER  HANDLER

FOR  CLIENT  I/O

FOREACH  EVENT  DO

EXTRACT  HANDLE

INITIALIZE  PASSIVE

ENDPOINT

acc :
Acceptor

handle_input()

handle_close()

reactor :
Reactor

select()

sh:
Svc_Handler

handle_input()

register_handler(sh)

get_handle()
EXTRACT  HANDLE

DATA  EVENT

CLIENT  SHUTDOWN

svc()
PROCESS  MSG

open()

CREATE, ACCEPT,
AND  ACTIVATE  OBJECT

SERVER  SHUTDOWN
handle_close()

E
N

D
P

O
IN

T

IN
IT

IA
L

IZ
A

T
IO

N

 P
H

A
S

E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N

P
H

A
S

E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G

P
H

A
S

E

: SOCK
Acceptor

handle_events()

get_handle()

register_handler(acc)

sh = make_svc_handler()
accept_svc_handler (sh)
activate_svc_handler (sh)

open()

� Acceptor is a factory that creates, connects,

and activates a Svc Handler

52



Using the Acceptor Pattern in the

Gateway

: Input: Input
AcceptorAcceptor

:: Reactor Reactor

ACTIVE

CONNECTIONS

: Svc
Handler

: Input: Input
ChannelChannel

: Svc: Svc
HandlerHandler

: Output: Output
ChannelChannel

: Svc: Svc
HandlerHandler

: Output: Output
ChannelChannel

: Svc: Svc
HandlerHandler

: Input: Input
ChannelChannel

PASSIVE

LISTENERS: Output: Output
AcceptorAcceptor

53

The Service Con�gurator Pattern

� Intent

{ \Decouples the behavior of network services from

the point in time at which these services are con-

�gured into an application"

� This pattern resolves the following forces
for highly 
exible communication software:

{ How to defer the selection of a particular type, or

a particular implementation, of a service until very

late in the design cycle

. i.e., at installation-time or run-time

{ How to build complete applications by composing

multiple independently developed services

{ How to recon�gure and control the behavior of the

service at run-time

54

Structure of the Service

Con�gurator Pattern

ReactorReactor11nn

EventEvent
HandlerHandler

ConcreteConcrete
Service ObjectService Object

R
E

A
C

T
IV

E
R

E
A

C
T

IV
E

L
A

Y
E

R
L

A
Y

E
R

C
O

N
F

IG
U

R
A

T
IO

N
C

O
N

F
IG

U
R

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

11

11

ServiceService
ConfigConfig

nn

ServiceService
ObjectObject

A

suspend()suspend()
resume()resume()
init()init()
fini()fini()
info()info()

11
ServiceService

RepositoryRepository

11

55

Collaboration in the Service

Con�gurator Pattern

: Service: Service
ConfigConfig

main()main()

REGISTER  SERVICEREGISTER  SERVICE

START  EVENT  LOOPSTART  EVENT  LOOP

INCOMING  EVENTINCOMING  EVENT

FOREACH  EVENT  DOFOREACH  EVENT  DO

STORE  IN  REPOSITORYSTORE  IN  REPOSITORY

CONFIGURECONFIGURE

FOREACH  SVC  ENTRY  DOFOREACH  SVC  ENTRY  DO

svc :svc :
Service_ObjectService_Object

: Reactor: Reactor

run_event_loop()

handle_events()

handle_input()

Service_Config()

: Service: Service
RepositoryRepository

insert()
EXTRACT  HANDLEEXTRACT  HANDLE

INITIALIZE  SERVICEINITIALIZE  SERVICE
init(argc, argv)

fini()

DYNAMICALLY  LINKDYNAMICALLY  LINK
SERVICESERVICE

link_service()

unlink_service()

SHUTDOWN  EVENTSHUTDOWN  EVENT handle_close()

UNLINK  SERVICEUNLINK  SERVICE
remove()

register_handler(svc)

get_handle()

remove_handler(svc)

C
O

N
F

IG
U

R
A

T
IO

N
C

O
N

F
IG

U
R

A
T

IO
N

M
O

D
E

M
O

D
E

E
V

E
N

T
  

H
A

N
D

L
IN

G

M
O

D
E

process_directives()

CLOSE  SERVICECLOSE  SERVICE

56



Using the Service Con�gurator

Pattern for the Gateway

: Service
Config

SERVICE

CONFIGURATOR

RUNTIME

: Service
Repository

: Reactor

: Service
Object

: Reactive
Gateway

: Service
Object

: Thread Pool
Gateway

SHARED

OBJECTS

: Service
Object

: Thread
Gateway

� Replace the single-threaded Gateway with a

multi-threaded Gateway

57

Bene�ts of Design Patterns

� Design patterns enable large-scale reuse of

software architectures

� Patterns explicitly capture expert knowledge

and design tradeo�s

� Patterns help improve developer communi-

cation

� Patterns help ease the transition to object-

oriented technology

58

Drawbacks to Design Patterns

� Patterns do not lead to direct code reuse

� Patterns are deceptively simple

� Teams may su�er from pattern overload

� Patterns are validated by experience rather

than by testing

� Integrating patterns into a software devel-

opment process is a human-intensive activ-

ity

59

Suggestions for Using Patterns

E�ectively

� Do not recast everything as a pattern

{ Instead, develop strategic domain patterns and reuse

existing tactical patterns

� Institutionalize rewards for developing pat-

terns

� Directly involve pattern authors with appli-

cation developers and domain experts

� Clearly document when patterns apply and

do not apply

� Manage expectations carefully

60



Books and Magazines on Patterns

� Books

{ Gamma et al., \Design Patterns: Elements of

Reusable Object-Oriented Software" Addison-Wesley,

Reading, MA, 1994.

{ \Pattern Languages of Program Design," editors

James O. Coplien and Douglas C. Schmidt, Addison-

Wesley, Reading, MA, 1995

� Special Issues in Journals

{ \Theory and Practice of Object Systems" (guest

editor: Stephen P. Berczuk)

{ \Communications of the ACM" (guest editors: Dou-

glas C. Schmidt, Ralph Johnson, and Mohamed

Fayad)

� Magazines

{ C++ Report and Journal of Object-Oriented Pro-

gramming, columns by Coplien, Vlissides, and De

Souza

61

Conferences and Workshops on

Patterns

� Joint Pattern Languages of Programs Con-
ferences

{ 3rd PLoP

. September 4�6, 1996, Monticello, Illinois, USA

{ 1st EuroPLoP

. July 10�14, 1996, Kloster Irsee, Germany

{ http://www.cs.wustl.edu/~schmidt/jointPLoP�96.html/

� USENIX COOTS

{ June 17�21, 1996, Toronto, Canada

{ http://www.cs.wustl.edu/~schmidt/COOTS�96.html/

62

Obtaining ACE

� The ADAPTIVE Communication Environ-

ment (ACE) is an OO toolkit designed ac-

cording to key network programming pat-

terns

� All source code for ACE is freely available

{ Anonymously ftp to wuarchive.wustl.edu

{ Transfer the �les /languages/c++/ACE/*.gz and
gnu/ACE-documentation/*.gz

� Mailing lists

* ace-users@cs.wustl.edu
* ace-users-request@cs.wustl.edu
* ace-announce@cs.wustl.edu
* ace-announce-request@cs.wustl.edu

� WWW URL

{ http://www.cs.wustl.edu/~schmidt/

63


