Design Patterns and Frameworks
for Object-oriented

Communication Systems

Douglas C. Schmidt

http://www.cs.wustl.edu/~schmidt/

schmidt@cs.wustl.edu

Washington University, St. Louis

Motivation

Developing efficient, robust, extensible, and
reusable communication software is hard

It is essential to understand successful tech-
niques that have proven effective to solve
common development challenges

Design patterns and frameworks help to cap-
ture, articulate, and instantiate these suc-
cessful techniques

Observations

e Developers of communication software con-
front recurring challenges that are largely
application-independent

— e.g., service initialization and distribution, error
handling, flow control, event demultiplexing, con-
currency control

e Successful developers resolve these challenges
by applying appropriate design patterns

e However, these patterns have traditionally
been either:

1. Locked inside heads of expert developers

2. Buried in source code

Design Patterns

e Design patterns represent solutions to prob-
lems that arise when developing software
within a particular context

— i.e., “Patterns == problem/solution pairs in a con-
text”

e Patterns capture the static and dynamic struc-
ture and collaboration among key partici-
pants in software designs

— They are particularly useful for articulating how
and why to resolve non-functional forces

e Patterns facilitate reuse of successful soft-
ware architectures and designs

Proxy Pattern . .
Graphical Notation

1: METHOD
:BROKER CALL

\ >
4: METHOD :QUOTER OBJECT

PROXY

RETURN PROCESS

2: FORWARD
REQUEST
3: RESPONSE

THREAD

/ CLASS 2

> N, TEMPLATE (/ UTILITY
{ cLAss_ _
\\ e

—_—

CLASS
CATEGORY INHERITS INSTANTIATES

ABSTRACT

CLASS — —0

W CONTAINS

e Intent: provide a surrogate for another ob-
ject that controls access to it

Frameworks

. e A framework is:
More Observations

— “An integrated collection of components that col-

. o laborate to produce a reusable architecture for a
e Reuse of patterns alone is not sufficient family of related applications”

— Patterns enable reuse of architecture and design
knowledge, but not code (directly)

e Frameworks differ from conventional class
libraries:

e To be productive, developers must also reuse - Frameworks are "semi-complete” applications

detailed designs, algorithms, interfaces, im- . Frameworks address a particular application do-
plementations, etc. main

. Frameworks provide “inversion of control”

e Application frameworks are an effective way

to achieve broad reuse of software) o)
e Typically, applications are developed by in-

heriting from and instantiating framework
components

Differences Between Class

Libraries and Frameworks

,7 Tutorial Outline
APPLICATION / NETWORKING

SPECIFIC
LOGIC

INVOKES | MATH ADTs e Outline key challenges for developing com-

USER munication software
T INTERFACE

e Present the key reusable design patterns in

CLASS a distributed medical imaging system

LIBRARIES

— Both single-threaded and multi-threaded solutions

are presented
NETWORKING USER
\ / INTERFACE
|~ APPLICATION 4

INVOKES CALL

SPECIFIC i i
/ \ Toie fe-Backs e Discuss lessons learned from using patterns
1 on production software systems

1

- | DATABASE

OBJECT-ORIENTED
FRAMEWORK

Concurrency vs. Parallelism

Stand-alone vs. Distributed

Application Architectures

read_fds

SYSTEM

AN

(1) STAND-ALONE APPLICATION ARCHITECTURE)3 REQUEST REQUEST

CLIENT

CONCURRENT SERVER

FILE SYSTEM

(2) DISTRIBUTED APPLICATION ARCHITECTURE

PARALLEL SERVER

G

Sources of Complexity

e Distributed application development exhibits
both inherent and accidental complexity

e Inherent complexity results from fundamen-
tal challenges, e.g.,

— Distributed systems

> Latency
> Error handling
> Service partitioning and load balancing

— Concurrent systems

> Race conditions
> Deadlock avoidance
> Fair scheduling

> Performance optimization and tuning

Sources of Complexity (cont’d)

e Accidental complexity results from limita-
tions with tools and techniques, e.g.,

Low-level tools

> e.g., Lack of type-secure, portable, re-entrant,
and extensible system call interfaces and com-
ponent libraries

Inadequate debugging support

Widespread use of algorithmic decomposition

> Fine for explaining network programming con-
cepts and algorithms but inadequate for devel-
oping large-scale distributed applications

— Continuous rediscovery and reinvention of core con-
cepts and components

OO Contributions

e Concurrent and distributed programming has
traditionally been performed using low-level
OS mechanisms, e.g.,

fork/exec
Shared memory
Signals

Sockets and select

POSIX pthreads, Solaris threads, Win32 threads

OO design patterns and frameworks elevate
development to focus on application con-
cerns, e.g.,

— Service functionality and policies

— Service configuration

— Concurrent event demultiplexing and event han-
dler dispatching

— Service concurrency and synchronization

Distributed Medical Imaging

Example

e This example illustrates the reusable design
patterns and framework components used in
an OO architecture for a distributed medical
imaging system

e Application clients uses Blob Servers to store
and retrieve medical images

e Clients and Servers communicate via a connection-

oriented transport protocol

— e.g., TCP/IP, IPX/SPX, TP4

Imaging Architecture

MODALITIES
(c1, MR, CR)

(— BLOB SERVER

DIAGNOSTIC

STATIONS H Msg
‘ = Processor \2Ueue

: Blob

ROUTING Handler
SERVICE

CLUSTER
STORE

TIME
SERVER

LOCATION
SERVICE

CENTRAL
STORE
MODALITIES

(ct, MR, CR) * Manage short-term and long-term blob persistence

.

* Respond to queries from Blob Locatog

Design Patterns in the Blob Tactical Patterns

Server
o Proxy

— “Provide a surrogate or placeholder for another

Thread-per object to control access to it”
Thread-per Session
O)

Request O

/
e Strategy

Active Object
Thread Connect — “Define a family of algorithms, encapsulate each
Pool onnector one, and make them interchangeable”

Half-Sync/ Service
Half-Async Configurator o Adapter

U\

— “Convert the interface of a class into another in-
STRATEGIC
Double Checked| terface client expects”

Locking

PATTERNS Reactor

e Singleton

Adapter || Singleton

— “Ensure a class only has one instance and provide
a global point of access to it”

Concurrency Patterns

e Reactor

— “Decouples event demultiplexing and event han-
dler dispatching from application services performed
in response to events”

e Active Object

— “Decouples method execution from method invo-
cation and simplifies synchronized access to shared
resources by concurrent threads”

e Half-Sync/Half-Async

— “Decouples synchronous I/O from asynchronous
I/O in a system to simplify concurrent program-
ming effort without degrading execution efficiency”

e Double-Checked Locking Pattern

— “Ensures atomic initialization of objects and elim-
inates unnecessary locking overhead on each ac-
cess”

Concurrency Architecture

Patterns

e T hread-per-Request

— “Allows each client request to run concurrently”

e T hread-Pool

— “Allows up to N requests to execute concurrently”

e T hread-per-Session

— “Allows each client session to run concurrently”

Service Initialization Patterns

e Connector

— “Decouples active connection establishment from
the service performed once the connection is es-
tablished”

e Acceptor

— “Decouples passive connection establishment from
the service performed once the connection is es-
tablished”

e Service Configurator

— “Decouples the behavior of network services from
point in time at which services are configured into
an application”

Concurrency Patterns in the Blob

Server

e The following example illustrates the design
patterns and framework components in an
OO implementation of a concurrent Blob
Server

e There are various architectural patterns for
structuring concurrency in a Blob Server

1. Reactive
2. Thread-per-request
3. Thread-per-session

4. Thread-pool

Thread-per-Request Blob Server
Reactive Blob Server Architecture

()

Architecture

BLOB SERVER 2: HANDLE INPUT
3: CREATE PROCESSOR BLOB SERVER 2: HANDLE INPUT
4: ACCEPT CONNECTION 3: CREATE PROCESSOR
: Blob S: ACTIVATE PROCESSOR : 4: ACCEPT CONNECTION
Processor 5: SPAWN THREAD
: Blob .
Acceptor

: Reactor

6: PROCESS BLOB REQUEST
1

\

Thread-per-Session Blob Server Thread-Pool Blob Server
Architecture Architecture

BLOB SERVER i
. Msg 332+ HANDLE INPUT
BLOB SERVER 2: CREATE, ACCEPT, -B"’b X

Processor
AND ACTIVATE

3: SPAWN THREAD BLOB_PROCESSOR

5: DEQUEUE &
PROCESS

\ 1:BLOB
\ REQUEST

The ADAPTIVE Communication
Environment (ACE)

N
DISTRIBUTED IGATEWAY TOKEN LOGGING NAME TIME
SERVICES SERVER SERVER SERVER SERVER SERVER

FRAMEWORKS - b SERVICE |
AND CLASS 4 HANDLER J
CATEGORIES

SERVICE
CONFIG-
URATOR

C+
WRAPPERS

PROCESS/THREAD COMMUNICATION VIRTUAL MEMORY
SUBSYSTEM SUBSYSTEM SUBSYSTEM

GENERAL UNIX AND WIN32 SERVICES

e A set of C++4 wrappers and frameworks
based on common design patterns

The Reactor Pattern

e Intent

— “Decouples event demultiplexing and event han-
dler dispatching from the services performed in re-
sponse to events”

e This pattern resolves the following forces
for event-driven software:

— How to demultiplex multiple types of events from
multiple sources of events efficiently within a single
thread of control

— How to extend application behavior without requir-
ing changes to the event dispatching framework

Structure of the Reactor Pattern

table[h]->handle_output () ;|
if (h is input handler)
table[h]->handle_input (); i I ~

if (h is signal handler) / \
table[h]->handle_signal 0; | { Event_Handler /

-

select (handles); -

foreach h in handles { \ Concrete)
if (h is output handler) ‘/ Event_H andler

N 7T~ _~

this->expire_timers (); handle_input() ‘\
\ handle_output() \
\ handle_signal() \\
handle_timeout()
get_handle()

,
Z¢
Vg,
-
-~ ’
~= \\W/ 1
1 ~@l
VT —— -7

¥ \ / . \
, _Reactor 1 { Timer_Queue !
handle_events() \ 1 n-- "B - - |
= C I schedule_timer(h
register_handler(h) = O——— Handles | \ cancel tiTner(h)(4 /
remove_handler(h) N \ expire_timer(h)
expire_timers() g/ N - J

- ~—"7>

T T~ 1 1 NS

Collaboration in the Reactor

Pattern

e Participants in the Reactor pattern

callback :
main Concrete reactor
program Event Handler : Reactor
! ! Reactor() '

|
>
|

INITIALIZE |
register_handler(callback)l

REGISTER HANDLER
get_handle()

<
-

|
|
|
|
! handle_events()
|
|
|

EXTRACT HANDLE

S
S
=

START EVENT LOOP

select() >
handle_input()

FOREACH EVENT DO

DATA ARRIVES
handle output()

OK TO SEND
handle signal()

SIGNAL ARRIVES
handle timeout()

TIMER EXPIRES

EVENT HANDLING INITIALIZATION

remove_handler(callback
REMOVE HANDLER = >

handle close()

CLEANUP -

Using the Reactor in the Blob

Server

REGISTERED

OBJECTS 4: getq(msg)
5:sve(msg)

svc_run

: Blob
Handler Processor

APPLICATION

: Event 2: recv_request(msg)
Handler3: putq(msg)

AN
1: handle_input()

FRAMEWORK

KERNEL

The Blob_Handler Interface

e The Blob_Handler is the Proxy for commu-
nicating with clients

— Together with Reactor, it implements the asyn-
chronous task portion of the Half-Sync/Half-Async
pattern

// Reusable Svc Handler.
class Blob_Handler : public Event_Handler
{
public:
// Entry point into Blob Handler.
virtual int open (void) {

// Register with Reactor to handle client input.

Reactor::instance ()->register_handler
(this, READ_MASK);
}

protected:

// Notified by Reactor when client requests arrive.

virtual int handle_input (void);

// Receive and frame client requests.
int recv_request (Message_Block &*);

SOCK_Stream peer_stream_; // IPC endpoint.
};

The Active Object Pattern

e Intent

— “Decouples method execution from method invo-
cation and simplifies synchronized access to shared
resources by concurrent threads”

e This pattern resolves the following forces
for concurrent communication software:

How to allow blocking read and write operations
on one endpoint that do not detract from the qual-
ity of service of other endpoints

How to simplify concurrent access to shared state

How to simplify composition of independent ser-
vices

Structure of the Active Object

Pattern

¢~ Interface

/

I e NN — loop {
) Client | m = actQueue.remove()
dispatch (m)

S

" ResultHandle m1() | LN T —=
[ResultHandle m2() ‘Scheduler \ -
\ ResultHandle m3()/ _—
N b \ dispatch() - ‘ R \/./‘\\
‘, mi') _/Activation)
m2'() gy \\ Queue |
VISIBLE \ m3 () 1 > !
TO insert() \

CLIENTS remove()

\
- 1
n
P

N7 TN

S~

—_ =

INVISIBLE \)

)
TO Resource 5 ~'Method *
CLIENTS (Representatlon

Tl /

e The Scheduler determines the sequence that
Method Objects are executed

Collaboration in the Active
Object Pattern

Using the Active Object Pattern

in the Blob Server

SCHEDULING/ METHOD OBJECT

EXECUTION

COMPLETION

CONSTRUCTION

client : Client : Scheduler
Interface

i ml() |
|
}cons(ml')

o
INVOKE

CREATE METHOD
OBJECT
future()

|
|
|
|
|
| |
RETURN RESULT
HANDLE < | }
|
|
|
|

INSERT IN

1 r
PRIORITY QUEUE insert(m1')

-

remove(ml') |
METHOD OBJECT »

|

|

|

|

|

DEQUEUE NEXT }
|

|

|

EXECUTE |
I

dispatch(m1')

s)
: Activation : Represent-
Queue ation

RETURN RESULT reply_to_future()

t
|
|

FRAMEWORK APPLICATION
LEVEL

KERNEL

REGISTERED
OBJECTS

sve_run
4: getq(msg) _,
5:sve(msg)

: Blob
Processor

1: handle_input()

e Processes Blob requests using the “Thread-

The Blob_Processor Class

Pool” concurrency model

Half-Sync/Half-Async pattern

class Blob_Processor :
public:
// Singleton access point.
static Blob_Processor *instance (void);

public Task {

// Pass a request to the thread pool.
virtual put (Message_Block *);

// Event loop for the pool thread
virtual int svc (int) {
Message_Block *mb = 0; // Message buffer.

// Wait for messages to arrive.

for (5;) {

— Implement the synchronous task portion of the

getq (mb); // Inherited from class Task;

// Identify and perform Blob Server
// request processing here...

protected:
Blob_Processor (void); // Constructor.

Using the Singleton Pattern

e T he Blob Processor iS implemented as a Sin-
gleton that is created “on demand”

Blob_Processor *
Blob_Processor::instance (void) {

}

// Beware race conditions!
if (instance_ == 0) {

instance_ = new Blob_Processor;
}

return instance_;

e Constructor creates the thread pool

Blob_Processor: :Blob_Processor (void) {

Thread_Manager: :instance ()->spawn_n
(num_threads, THR_FUNC (svc_run),
(void #) this, THR_NEW_LWP);

The Double-Checked Locking

Pattern

e Intent

— “Ensures atomic initialization of objects and elim-
inates unnecessary locking overhead on each ac-
cess"”

e This pattern resolves the following forces:

1. Ensures atomic initialization or access to objects,
regardless of thread scheduling order

2. Keeps locking overhead to a minimum

— e.g., only lock on first access

e Note, this pattern assumes atomic memory
access. ..

Using the Double-Checked

Locking Pattern for the Blob

Server

/Blob Processor) 7

/
\ static instance() O~ \
[/ static instance AN

if (instance =NULL) {
mutex_.acquire ();
if (instance =NULL)
instance_=new Blob_Processor;
mutex_.release ();

}

T - -

e \

\'/ Mutex ¢
\

o /

\mme

Half-Sync/Half-Async Pattern

e Intent

— “Decouples synchronous I/O from asynchronous
I/O in a system to simplify programming effort
without degrading execution efficiency”

e This pattern resolves the following forces
for concurrent communication systems:

— How to simplify programming for higher-level com-
munication tasks

> These are performed synchronously

— How to ensure efficient lower-level I/O communi-
cation tasks

> These are performed asynchronously

Structure of the

Half-Sync/Half-Async Pattern

QUEUEING SYNCHRONOUS

ASYNCHRONOUS

LAYER TASK LAYER

TASK LAYER

1,4: read(da>‘ ! !

| MESSAGE QUEUES

/ 3: enqueue(data)

EXTERNAL
EVENT SOURCES

Using the Half-Sync/Half-Async
Pattern in the Blob Server

Collaborations in the
Half-Sync/Half-Async Pattern

sve_run
—>

N
External Async Message Sync
Event Source Task Queue Task
i

.

4: getq(msg)

I notification() |
! 5:sve(msg)

EXTERNAL EVENT

: Blob
Processor

SYNCH TASK

RECV MSG

PHASE

work()
PROCESS MSG -

enqueue(ms‘g)
ENQUEUE MSG

: read(msg)
[—

i
|
read(msg) I :
|
|
|
|

: Message

DEQUEUE MSG Queue

QUEUEING

: work()

EXECUTE TASK | > Handler
|
|

SYNC QUEUEING ASYNC
PHASE PHASE

2: recv_request(msg)
3: putq(msg)

e Thisillustrates input processing (output pro-
cessing is similar)

1: handle_input()>~/. R eactor

ASYNC TASK

Joining Async and Sync Tasks in
the Blob Server

The Acceptor Pattern

e Intent

e The following methods form the boundary — “Decouples passive initialization of a service from
between the Async and Sync layers the tasks performed once the service is initialized”

int
Blob_Handler::handle_input (void) e This pattern resolves the following forces

{ for network servers using interfaces like sock-
Message_Block *mb = 0O; ets or TLI:

// Receive and frame message
// (uses peer_stream_).
recv_request (mb);

1. How to reuse passive connection establishment code
for each new service

// Insert message into the Queue. . How to make the connection establishment code
Blob_Processor: :instance ()->put (mb); portable across platforms that may contain sock-
} ets but not TLI, or vice versa

// Task entry point. . . .
Blob_Processor: :put (Message_Block *msg) . How to ensure that a passive-mode descriptor is

{ not accidentally used to read or write data

// Insert the message on the Message_Queue
// (inherited from class Task). . How to enable flexible policies for creation, con-
putq (msg); nection establishment, and concurrency

Structure of the Acceptor Pattern

Collaboration in the Acceptor

Pattern

ST — = /—_JSvcHandler:

_ 7) 7 —
CsveHandler) scceptor
I peer stream |

% peer_acceptor_
\\ i)lief(z s - N handle_input() g

/"_\‘”'
-
7/ - =

ACT[VATES

(\“ Reactor

! handle_input() '\
N e

~— — —

SERVICE ENDPOINT

SERVICE
PROCESSING INITIALIZATION INITIALIZATION

N

. peer_acceptor_ .

Server , 2¢¢: : SOCK sh:
Acceptor

Acceptor

i open() |

reactor :
Svce_Handler Reactor

INITIALIZE PASSIVE
ENDPOINT

open() }

REGISTER HANDLER

EXTRACT HANDLE

T
get_handle()

handle_events()

|

select() >
handle_input()

' |
! |
| |
. ! |
register_handler(acc) | o
T
‘ ﬂ
t
|
}
|
FOREACH EVENT DO |
|
L

|
|
|
START EVENT LOOP |
|
|
|

|
|
|
|
CONNECTION EVENT ! sh = make_svc_handler()
accept_svc_handler (sh)
activate_svc_handler (sh)
St m—.

CREATE, ACCEPT,
AND ACTIVATE OBJECT

register_handler(sh)
REGISTER HANDLER =

FOR CLIENT 1/O }M

|

|

}

} ‘ handle_input()
|

1 r;vco

|

|

|

|

EXTRACT HANDLE

PROCESS MSG i

I handle_close()
jandic_closel) |
! handle_close()

CLIENT SHUTDOWN

|
|
|
|
|
|
|
DATA EVENT |
|
|
|
|
|
|
|

SERVER SHUTDOWN

e Acceptor iS a factory that creates, connects,

and activates a Svc_Handler

Using the Acceptor Pattern in the

Blob Server

: Acceptor

: handle_input()

: sh =make_svc_handler() ACTIVE

: accept_svc_handler(sh) CONNECTIONS
: activate_svc_handler(sh)

PASSIVE LISTENER

: Reactor

The Acceptor Class

e The Acceptor class implements the Acceptor

pattern

// Reusable Factor
template <class SVC_HANDLER>
class Acceptor :
public Service_Object // Subclass of Event_Handler.
{
public:
// Notified by Reactor when clients connect.
virtual int handle_input (void)
{
// The strategy for initializing a SVC_HANDLER.
SVC_HANDLER *sh = new SVC_HANDLER;
peer_acceptor_.accept (*sh);
sh->open)}
}
// ...

protected:
// IPC connection factory.
SOCK_Acceptor peer_acceptor_;
}

The Blob_Acceptor Class
Interface

e TheBlob Acceptor class accepts connections
and initializes Blob_Handlers

class Blob_Acceptor
: public Acceptor<Blob_Handler>
// Inherits handle_input() strategy from Acceptor.
{
public:
// Called when Blob_Acceptor is dynamically linked.
virtual int init (int argc, char *argv);

// Called when Blob_Acceptor is dynamically unlinked.

virtual int fini (void);

The Service Configurator Pattern

e Intent

— “Decouples the behavior of communication ser-
vices from the point in time at which these services
are configured into an application or system”

e This pattern resolves the following forces
for highly flexible communication software:

— How to defer the selection of a particular type, or
a particular implementation, of a service until very
late in the design cycle

> i.e., at installation-time or run-time

— How to build complete applications by composing
multiple independently developed services

— How to optimize, reconfigure, and control the be-
havior of the service at run-time

Structure of the Service

Configurator Pattern

~

e
{ Concrete

| Service Object
N\ /

- N
~ -~
/Service
/ .
i Object !
\ o
\
\ suspend() ‘|
| resume() \

I init())
| finiQ) V/ 1

\ info() / - n\/ b - S
-~ 1 Service |

(Repository >,
Lepository

—~

APPLICATION
LAYER

CONFIGURATION
LAYER

/T~ ~
d \\
(\ Event

1.
]
‘ Handlgr/,n

N~

\
)

REACTIVE
LAYER

Collaboration in the Service

Configurator Pattern

mainQ) sve: : Reactor : Service : Service
Service_Object ° Config Repository
\

Service_Config()
processﬁd‘ireclives() —
Ilink_service()

init(argc, argv)
register_handler(svc
| get_handle()
|—

run_event_loop()

|

CONFIGURE |
FOREACH SVC ENTRY DO }
|

|

DYNAMICALLY LINK
SERVICE

INITIALIZE SERVICE

REGISTER SERVICE

EXTRACT HANDLE

CONFIGURATION

insert()
STORE IN REPOSITORY

START EVENT LOOP

|
|
| |
T |
| handle events()
FOREACH EVENT DO | e |
handle_input() |
INCOMING EVENT -+ |
|
|
I
|
|

| handle_close()
- e TSRV

remove_handler(svc)

SHUTDOWN EVENT

CLOSE SERVICE

EVENT HANDLING

unlink_service()

I
UNLINK SERVICE ! . }
} fini() ‘ || remove()
| |

————»
|

~

Using the Service Configurator

The Blob_A r Cl
Pattern in the Blob Server e Blob _Acceptor Class

Implementation

// Initialize service when dynamically linked.

: Re e . . .
SERVICE int Blob_Acceptor::init (int argc, char *argv[])

CONFIGURATOR . TP A 1
RUNTIME Blob Server : Service Options::instance ()->parse_args (argc, argv);

sarep \ Object

: Service : Service OBJECTS // Set the endpoint into listener mode.

Repository Object Acceptor::open (local_addr);

-) // Initialize the communication endpoint.
: SerV}ce : Reactor - Reactor::instance ()->register_handler
Config : Service (this, READ_MASK)

Object }

// Terminate service when dynamically unlinked.

int Blob_Acceptor::fini (void)
e Existing service is based on Half-Sync/Half- {

// Unblock threads in the pool so they will

Async pattern // shutdown correctly.
Blob_Processor::instance ()->close ();

. i // Wait for all threads to exit.
e Other versions could be single-threaded or Thread_Manager: :instance ()->wait ();

use other concurrency strategies. ..

Configuring the Blob Server with

the Service Configurator Main Program for Blob Server

e The concurrent Blob Server is configured ¢ gynamically configure and execute the Blob
erver
and initialized via a configuration script

— Note that this is totally generic!

% cat ./svc.conf

dynamic TP_Blob_Server Service_0bject *
blob_server.dll:make_TP_Blob_Server() {
"-p $PORT -t $THREADS" Service_Config daemon;

int main (int argc, char *argv[])

// Initialize the daemon and dynamically
// configure the service.

e Factory function that dynamically allocates daemon.open (argc, argv);

a Half_synC/Half_ASynC Blob_Server object // Loop forever, running services and handling
// reconfigurations.

extern "C" Service_Object *make_TP_Blob_Server (void);
daemon.run_event_loop ();
Service_Object *make_TP_Blob_Server (void)
{
return new Blob_Acceptor;
// ACE dynamically unlinks and deallocates this object.

/* NOTREACHED */

}

The Connector Pattern

e Intent Structure of the Connector

— “Decouples active initialization of a service from Pattern
the task performed once a service is initialized”

/T ~
-~ Service == 1
(~—~JService Handler|
) i \, _Handler O S
e This pattern resolves the following forces | peer stream) - Connector
for network clients that use interfaces like | peer =/ {

_— \
sockets or TLI: \ open() <= > connect(sh, addr) !
- N ACTIVATES 1 l\ complete() P

J

~N - i

1. How to reuse active connection establishment code /O”
for each new service
HANDLE ASYNC

. . CONNECTION COMPLETION
How to make the connection establishment code

portable across platforms that may contain sock- ST T

- \
ets but not TLI, or vice versa Reactor '/
J

—

———

\
(
~_—

How to enable flexible service concurrency policies

How to actively establish connections with large
number of peers efficiently

Collaboration in the Connector
Collaboration in the Connector Pattern

Pattern

~

con: Peer_stream_ sh: reactor :

Client Connector *SOCK gvc Handler Reactor
, Connector | !
connect(sh, addr) i | |

~

~
peer_stream_ h:

:SOCK 5ye gandler Reactor
Connector | —

FOREACH CONNECTION connect(sh, addr) | }

I
INITIATE CONNECTION [<« connect_svc_handler(sh, addr)
]

FOREACH CONNECTION

con: | | I
|
INITIATE CONNECTION T — C(‘)nnect sve_handler(sh, addr) |
|

Connector

Client reactor :

ASYNC CONNECT connect() !
—

INSERT IN REACTOR

CONNECTION
INITIATION
PHASE

. |
register_handler(con) |
gl
SYNC CONNECT connect() }
F———m
ACTIVATE OBJECT . activate_svc_handler(sh)
I

open()
INSERT IN REACTOR register_handler(sh

EXTRACT HANDLE 4%

handle_events()

I
|
! 1
I >
select() |

| handle_output()

e a tivate_‘svc_handler(sh)
open() !

START EVENT LOOP

PR S, I —

FOREACH EVENT DO

CONNECTION COMPLETE

CONNECTION INITIATION/
SEVICE INITIALIZATION

ACTIVATE OBJECT
handle_events()

select() |
|

handle_input()
aondie_mpwy) |
Dtl sve()

START EVENT LOOP

register_handler(sh

get_handle()

SERVICE
INITIALIZATION
PHASE

|
|
|
t
| INSERT IN REACTOR
FOREACH EVENT DO |

EXTRACT HANDLE
DATA ARRIVES

SERVICE
PROCESSING

handle_input()
; sve()
|
|

PROCESS DATA

DATA ARRIVES

PROCESS DATA

SERVICE
PROCESSING
PHASE

C
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

e Synchronous mode

e Asynchronous mode

Using the Connector in the Blob

Clients

PENDING
CONNECTIONS

Benefits of Design Patterns

Design patterns enable large-scale reuse of
software architectures

Patterns explicitly capture expert knowledge
and design tradeoffs

Patterns help improve developer communi-
cation

Patterns help ease the transition to object-
oriented technology

Drawbacks to Design Patterns

Patterns do not lead to direct code reuse

Patterns are deceptively simple

Teams may suffer from pattern overload

Patterns are validated by experience and dis-
cussion rather than by automated testing

Integrating patterns into a software devel-
opment process is a human-intensive activ-
ity

Suggestions for Using Patterns

Effectively

e Do not recast everything as a pattern

— Instead, develop strategic domain patterns and reuse
existing tactical patterns

Institutionalize rewards for developing pat-
terns

Directly involve pattern authors with appli-
cation developers and domain experts

Clearly document when patterns apply and
do not apply

Manage expectations carefully

Books and Magazines on Patterns

e Books
Conferences and Workshops on

— Gamma et al., “Design Patterns: Elements of
Reusable Object-Oriented Software” Addison-Wesley, Patterns
Reading, MA, 1994.

— “Pattern Languages of Program Design,” editors e 1st EuroPLoP
James O. Coplien and Douglas C. Schmidt, Addison-

Wesley, Reading, MA, 1995 — July 10—-14, 1996, Kloster Irsee, Germany

e Special Issues in Journals
e 3rd Pattern Languages of Programs Con-

— “Theory and Practice of Object Systems” (guest ference
editor: Stephen P. Berczuk)

— September 4—6, 1996, Monticello, Illinois, USA

— “Communications of the ACM" (guest editors: Dou-
glas C. Schmidt, Ralph Johnson, and Mohamed

Fayad)
e Relevant WWW URLS

e Magazines http://www.cs.wustl.edu/~schmidt/jointPLoP—96.html/

http://st-www.cs.uiuc.edu/users/patterns/patterns.htmi

— C++ Report and Journal of Object-Oriented Pro-
gramming, columns by Coplien, Vlissides, and De
Souza

Obtaining ACE

The ADAPTIVE Communication Environ-
ment (ACE) is an OO toolkit designed ac-
cording to key network programming pat-
terns

All source code for ACE is freely available

— Anonymously ftp to wuarchive.wustl.edu

— Transfer the files /languages/c++/ACE/*.gz and
gnu/ACE-documentation/*.gz

Mailing lists

* ace-users@cs.wustl.edu

* ace-users-request@cs.wustl.edu

* ace-announce®@cs.wustl.edu

* ace-announce-request@cs.wustl.edu

WWW URL

— http://www.cs.wustl.edu/~schmidt/ACE.html

71

