Developing Distributed Object
Computing Applications with CORBA

Douglas C. Schmidt

Professor Department of EECS
d.schmidt@vanderbilt.edu Vanderbilt University
www.cs.wustl.edu/~schmidt/ (615) 343-8197

D -GG

Sponsors
NSF, DARPA, ATD, BAE Systems, BBN, Boeing, Cisco, Comverse, GDIS, Experian,
Global MT, Hughes, Kodak, Krones, Lockheed, Lucent, Microsoft, Mitre, Motorola,
NASA, Nokia, Nortel, OCI, Oresis, OTI, Qualcomm, Raytheon, SAIC, SAVVIS,
Siemens SCR, Siemens MED, Siemens ZT, Sprint, Telcordia, USENIX

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Motivation: the Distributed Software Crisis
Symptoms
e Hardware gets smaller, faster, cheaper

e Software gets larger, slower, more
expensive

Culprits
e Inherent and accidental complexity
Solution Approach

e Components, Frameworks, Patterns,
& Architecture

r | !u
Vanderbilt University D C

CORBA Tutorial

Douglas C. Schmidt & Bala Natarajan

Techniques for Improving Software

APPLICATION-
SPECIFIC
FUNCTIONALITY

LOCAL

INVOCATIONS

ADT
CLASSES

\/

MATH
CLASSES

DATABASE
CLASSES

GUI
CLASSES

\

NETWORK
IPC

CLASSES

(A) CLASS LIBRARY ARCHITECTURE

EVENT
NETWORKING @

ADT
CLASSES

l

_+

INVOKES

MATH
CLASSES

"L
J

APPLICATION- [«

CALL

SPECIFIC BACKS

FUNCTIONALITY [*]

$_‘

L

DATABASE @

GUI

EVENT
LOOP

(B) FRAMEWORK ARCHITECTURE

Proven solutions —

e Components
— Self-contained, “pluggable”
ADTs
e Frameworks
— Reusable, “semi-complete”
applications
e Patterns
— Problem/solution/context
e Architecture
— Families of related patterns
and components

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of CORBA Middleware Architecture

INTERFACE IDL IMPLEMENTATION Goals of CORBA
REPOSITORY COMPILER REPOSITORY : :
o Simplify
In_args distribution by
oO———»
CLIENT (0B)) ©Operation() OBJECT automating
REF /) out args + return value (SERVANT)

— Object location &

+—0
IDL DS activation
DIl IDL ORB SKELETON — Paramet.er
STUBS INTEREACE (marshaling

— Demultiplexing
— Error handling

ORB CORE

QSTANDARD INTERFACE

GIOP/IIOP/ESIOPS

QSTANDARD LANGUAGE MAPPING ® Provide

() ORB-speciFic INTERFACE () STANDARD PROTOCOL foundation for
www.cs.wustl.edu/~schmidt/corba.htmi higher-level
Services
DHGHO
Vanderbilt University - N 3

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Key CORBA Concepts
e Object reference: A strongly-typed e Object: A CORBA
opaque handle that identifies an programming entity with an
object’s location identity, an interface, and an

e Client: Makes requests on an Implementation

object via one of its references e Servant: A programming
language entity that
Implements requests on one
or more objects

e POA: A container for
objects/servants in a server

e ORB Core:
Message-passing

e Skeleton: An adapter that converts infrastructure
messages back into method calls

e Server: Computational context
(e.g., process) for objects/servants

— Client and server are “roles” - a
program can play both roles

e Stub: A proxy that converts method
calls into messages

D-O-C

Vanderbilt University e L 4

CORBA Tutorial Douglas C. Schmidt

CORBA Twoway Processing Steps

IMPLEMENTATION @
REPOSITORY

Iin args :’:’:’

' OBJECT
CLIENT operation()
@-@ REF / out args + return value (SERVANT)
+—0
IDL

i
STUBS
@_@ (— ADAPTER

Client processing steps Server processing steps
1c Locate target object 1s Activate server (if
2c Sentrequest messageto necessary)
server 2s Activate object’s servant
3c Wait for request to (if necessary)
complete 3s Process request
4c Return control to client 4s Return result or
exception

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Applying CORBA to Medical Imaging
e Domain Challenges

— Large volume of “Blob” data
x e.g., 10 to 40 Mbps

— “Lossy compression” isn’t
viable

— Prioritization of requests

e URLS
—— . _ ~schmidt/PDF/COOTS-
I, sL0B 96.pdf

STORE

~schmidt/PDF/av_chapter.pdf

MODALITIES CENTRAL — ~schmidt/NMVC.html
(CT, MR, CR) BLOB STORE
=] r ﬁ! u -¢
Vanderbilt University D Y’ N 6

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Applying CORBA to Real-time Avionics

@@@ e Domain Challenges
— Real-time periodic

' . -
3:PUSH (EVENTS) 4{?“&“? pI'OCeSSI ng
EVENT # | REPLICATION B Complex .
CHANNEL | 3:pUsH (EVENTS) SERVICE dependenCIes
S ——
e — Very low latency
2: SENSOR PROXIES DEMARSHAL DATA
& PASS TO EVENT CHANNEL e URLS
— ~schmidt/PDF/JSAC-
1 08.pdf
: SENSORS :
CENERATE — Nsc_hmldt/TAO-
DATA boeing.html
r iy r:‘
Vanderbilt University D C Nt 7

CORBA Tutorial

Douglas C. Schmidt & Bala Natarajan

Applying CORBA to Global PCS

TRACKING
SATELLITES STATION

e Domain Challenges

PEERS . .
\\\\\\\\ — Long latency satellite links
— High reliability
! o ! — Prioritization
STATUVS INFO//
o 4/ S e URL
commanps ///) yd ” /BULK DATA .
1) /0 7 TSR — ~schmidt/PDE/TAPOS-
GATEWAY — e , OO df
== _ = P
LOCAL AREA NETWORK
GROUND P~ -
STATION
%
Y 8

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Tutorial Outline

e Motivation

e Example CORBA Applications

e Using CORBA to Cope with Changing Requirements

e Detailed Overview of CORBA Architecture and Features

e Evaluations and Recommendations

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Motivation for COTS Middleware

e It is hard to develop distributed applications whose components
collaborate efficiently, reliably, transparently, and scalably

e To help address this challenge, the Object Management Group
(OMGQG) is specifying the Common Object Request Broker
Architecture (CORBA)

e OMG is a consortium of ~800 companies
— Sun, HP, DEC, IBM, IONA, Borland, Cisco, Motorola, Boeing, etc.
e The latest version of the CORBA spec is available online

— www.omg.org/technology/documents/formal/

Vanderbilt University —__— 10

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Sources of Complexity for Distributed Applications

PRINTER = @ e Inherent complexity
/Qa/ — Latency
e | — Reliability
e — Partitioning
(1) STAND-ALONE APPLICATION ARCHITECTURE — Ordering

— Security

e Accidental Complexity

— Low-level APlIs
— Poor debugging tools

— Algorithmic
__ co oM T — decomposition
TER @ rnesvsew, — Continuous re-invention

(2) DISTRIBUTED APPLICATION ARCHITECTURE

m.{:!uﬁ

Vanderbilt University e 11

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Sources of Inherent Complexity

e Inherent complexity results from fundamental challenges in the
distributed application domain

e Key challenges of distributed computing include

— Addressing the impact of latency

— Detecting and recovering from partial failures of networks and
hosts

— Load balancing and service partitioning

— Consistent ordering of distributed events

Vanderbilt University S 12

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Sources of Accidental Complexity

e Accidental complexity results from limitations with tools and
techniques used to develop distributed applications

e |n practice, key limitations of distributed computing include

— Lack of type-safe, portable, re-entrant, and extensible system call
Interfaces and component libraries

— Inadequate debugging support

— Widespread use of algorithmic decomposition

— Continuous rediscovery and reinvention of core concepts and
components

Vanderbilt University —__— 13

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Motivation for CORBA

e Simplifies application interworking

— Higher level integration than untyped TCP bytestreams
e Supports heterogeneity

— e.g., middleware enables applications to be independent of
transports, OS, hardware, language, location, and implementation
details

e Benefits for distributed programming similar to OO languages

— e.g., encapsulation, interface inheritance, polymorphism, and
exception handling

e Provides a foundation for higher-level distributed object collaboration
— e.g., CCM, J2EE, and CORBAServices

PRGHO

Vanderbilt University et N 14

CORBA Tutorial

Douglas C. Schmidt & Bala Natarajan

CORBA Quoter Example

Int main (void)
{
// Use a factory to bind
/[to a Quoter.
Quoter_var quoter =
resolve _quoter_service ();

const char *name =
"ACME ORB Inc.";

CORBA::Long value =
guoter->get_quote (name);

cout << name << =
<< value << endl;

e |deally, a distributed
service should look just

like a non-distributed

service

e Unfortunately, life is

harder when errors
OCCuUr...

Vanderbilt University

15

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

CORBA Quoter Interface

/[l IDL interface is like a C++ e \We write an OMG
/I class or Java Iinterface. IDL interface for
Interface Quoter our Quoter
{
exception Invalid_Stock {}; — Used by both
clients and
long get_quote SEIVers

(in string stock name)
raises (Invalid_Stock);

3

Using OMG IDL promotes language/platform independence, location
transparency, modularity, and robustness

Vanderbilt University —__— 16

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of OMG Interfaces
e OMG Interfaces are similar to e There are several differences,

C++ abstract classes or Java however, since they

interfaces — Cannot define data

— They define object types members

— Can be passed as (reference) — Cannot have private or
parameters protected access control

— Can raise exceptions and sections

— Can be forward declared — Must designate their

parameter directions
e Only CORBA objects defined with interfaces can be accessed
remotely

— However, locality constrained CORBA objects can’t be accessed
remotely

Vanderbilt University —__— 17

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of OMG Operations

e Each operation in an OMG interface must have

— A name
— A return type (can be void)
— Zero or more parameters

e An operation can optionally have

— Araises clause, which indicates the exceptions(s) the operation

can throw
— A oneway qualifier, which indicates the caller doesn’t expect any

results
— A context clause, which is deprecated and non-portable...

e Due to limitations with certain programming language mappings,
operations cannot be overloaded in IDL interfaces

m.{:!u{:"

Vanderbilt University e et 18

CORBA Tutorial Douglas C. Schmidt

Using an OMG IDL Compiler for C++

interface Quoter

{
IDL FILE long get_quote (in string name);
b
IDL CO*IIPILER + +
SERVER SERVER
SKELETON SKELETON
HEADER BODY
CLIE ERVER b por l
SOUR(CLIENT SERVER DURCE ggggE
CH+ < copl SOURCE SOURCE (CODE > CH
COMPlLER< CODE CODE » COMPILER

D SERVER DEVELOPER
CLIENT DEVELOPER CORBA /
CLIENT <—| RUN-TIME SERVER

APPLICATION |LIBRARIES " APPLICATION

e Different IDL compilers generate different files
and provide different options

Vanderbilt University L7 '\’

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

OMG IDL-to-C++ Mapping Rules (1/2)

e There are mappings from OMG IDL to various programming
languages standardized by CORBA

e Mapping OMG IDL to C++ can be classified into

— Basic C++ mapping for basic and structured types
— Client-side mapping of IDL interfaces into C++ to support client

applications
— Server-side C++ mapping of IDL interfaces into C++ to support

server developers
— Pseudo-object C++ mapping of certain CORBA types, e.g.,

Object , ORB and PortableServer::POA

e Memory management in C++ mapping can be tricky

Vanderbilt University —__— 20

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

OMG IDL-to-C++ Mapping Rules (2/2)

e Sample mapping OMG IDL to C++

— Each module is mapped to a namespace (or class)
— Each interface IS mapped to a class
— Each operation is mapped to a C++ method with appropriate

parameters
— Each read/write attribute is mapped to a pair of get/set methods
— An Environment is defined to carry exceptions in languages

that lack this feature
e We’'ll discuss the various mapping issues as we go along

e See Henning and Vinoski for all details of IDL-to-C++ mapping

Vanderbilt University —__— 21

CORBA Tutorial Douglas C. Schmidt

Using an IDL Compiler for C++ & Java

interface Quoter

{

/ |DL FILE long get_quote (in string name);
b
IDL-TO-JAVA COMPILER IDL-TO-C++ COMPILER
v v v '
SERVER SERVER
SKELETON SKELETON
HEADER BODY
ﬂ
N S LENT SERVER pupes PURCE
SOURK(OURCE »
JAVA < coD| SOURCE SOURCE [copE 21T, CH+

>
COMPILER CODE CODE COMPILER

SERVER DEVELOPER
CLIENT DEVELOPER CORBA /
CLIENT <—|RUN-TIME SERVER

APPLICATION LIBRARIES > APPLICATION

e CORBA makes it straightforward to exchange
data between different programming languages
in different address spaces

Vanderbilt University = -

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Software Bus

/‘ “
: PRINTER TR NS : LOCATION
BROKER
.. QUOTER TIME
SOFTWARE BUS
: HEARTBEAT
MONITOR

e CORBA provides a communication infrastructure for a
heterogeneous, distributed collection of collaborating objects

+ STOCK
TRADER

« AUTHEN-
TICATOR

e Analogous to “hardware bus”

DG
Vanderbilt University - N 23

CORBA Tutorial Douglas C. Schmidt

CORBA Object Collaboration

«NAME
1: resolve ("Quoter") SERVICE

4: get quote ("ACME ORB, Inc.")

2: authenticate (broker)

3: timestamp()
« NETWORK < - AUTHEN-
TIME

TICATION

e Collaborating objects can be either remote or
local

— J.e., distributed or collocated

e For this to work transparently the ORB should
support nested upcalls and collocation
optimizations

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Communication Features of CORBA

e CORBA supports reliable, TARGET
' S CLIENT request OBJECT
uni-cast communication

[]
C]D operation(args) %

— I.e., oneway, twoway, deferred

+—0
synchronous, and S response |
asynchronous oo poller 1 request FARGET
] CLIENT ? ti OBJECT
e CORBA objects can also s operation(args)
collaborate in a client/server, P L)
) 2 3: response i}
peer-to-peer, or dga ||]
publish/subscribe manner O— |}
- : 1: request
— e.g., COS Event & Notification CALLBACK oy TARGET
Services define a publish & (4 operation(callback, args) ="
subscribe communication C]Dfojmmﬂ C]Dj

paradigm I ey QDD

DG
Vanderbilt University - N 25

CORBA Tutorial

Douglas C. Schmidt & Bala Natarajan

Fundamental CORBA Design Principles

e Separation of interface and implementation

— Clients depend on interfaces, not implementations

e Location transparency

— Service use is orthogonal to service location

e Access transparency

— Invoke operations on objects

e Typed interfaces

— Object references are typed by interfaces

e Support of multiple inheritance of interfaces

— Inheritance extends, evolves, and specializes behavior

Vanderbilt University

)

S

¥
L

O
L

=

26

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Related Work (1/4)

e Traditional Client/Server RPC (e.g., DCE)

— Servers offer a service and wait for clients to invoke remote
procedure calls (RPCs)

— When a client invokes an RPC the server performs the requested
procedure and returns a result

e Problems with Client/Server RPC

— Only supports “procedural” integration of application services

— Doesn’t provide object abstractions, e.g., polymorphism,
Inheritance of interfaces, etc.

— Doesn’t support async message passing, or dynamic invocation

Vanderbilt University S 27

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Related Work (2/4)

e Windows COM/DCOM/COM+

— A component model for Windows that support binary-level
Integration and reuse of components

e Problems with Windows COM/DCOM/COM+

— Largely limited to desktop applications
— Does not address heterogeneous distributed computing

Vanderbilt University —__— 28

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Related Work (3/4)

o SOAP

— A simple XML-based protocol that allows applications to
exchange structured and typed information on the Web using
HTTP and MIME

— Widely implemented

e Problems with SOAP

— Considerable time/space overhead

Vanderbilt University

29

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Related Work (4/4)

e Java RMI

— Limited to Java only
x Can be extended into other languages, such as C or C++, by
using a bridge across the Java Native Interface (JNI)
— Well-suited for all-Java applications because of its tight integration
with the Java virtual machine
x e.dg., can pass both object data and code by value
— However, many challenging issues remain unresolved
x e.g., security, robustness, and versioning

e J2EE and .NET

— Higher-level distributed component frameworks
— Widely used in business/enterprise domains

m.{:!u{:"

Vanderbilt University e et 30

CORBA Tutorial

Douglas C. Schmidt & Bala Natarajan

CORBA Stock Quoter Application Example

e The guote server(s)
maintains the

ATM _
LAN :I current stock prices
FDDI OUOTE e Brokers access the
SERVERS guote server(s) via
WIDE AREA
BROKERS NETWORK C O R BA
e Note all the
D Gateway/Router .
2 mvs - iBM heterogeneity!
[] sunos - sPARC :
D HP/UX - HPPA ETHERNET ® We use thIS example
@ o
[os/2 - PowerPC i i to explore many
= windows NT - Alpha features of CORBA
Bl Windows- Pentium BROKERS
adrff /% fl.:l.I|I|I
Vanderbilt University D Y’ N 31

CORBA Tutorial Douglas C. Schmidt

Simple OMG IDL Quoter Definition

module Stock {
/[Exceptions are similar to structs.
exception Invalid_Stock {};
exception Invalid_Factory {};

/I Interface is similar to a C++ class.
interface Quoter
{
long get quote (in string stock name)
raises (Invalid_Stock);

J

/[A factory that creates Quoter objects.
interface Quoter_ Factory
{
/[Factory Method that returns a new Quoter
/I selected by name e.g., "Dow Jones,"
I/l "Reuters,", etc.
Quoter create_quoter (in string quoter_service)
raises (Invalid_Factory);
3
I3

Note the use of the Factory Method pattern

Vanderbilt University D :

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of IDL Parameter Passing (1/2)

e Operation parameters in OMG IDL must be designated to have one
of the following directions:

— In , which means that the parameter is passed from the client to
the server

— out , which means that the parameter is returned from the server
to the client

— Inout , which means that the parameter is passed from the client
to the server and then returned from the server to the client,
overwriting the original value

e Parameter passing modes are used in CORBA to optimize the data
exchanged between client and server

Vanderbilt University —__— 33

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of IDL Parameter Passing (2/2)

e The C++ mapping for parameter passing depend on both the type
and the direction

— Built-in in params (e.g., char and long) passed by value
— User defined in params (e.g., structs) passed by const

reference
— Strings are passed as pointers (e.g., const char *)
— Inout params are passed by reference
— Fixed-size out params are passed by reference
— Variable-size out params are allocated dynamically
— Fixed-size return values are passed by value
— Variable-size return values are allocated dynamically
— Object reference out params and return values are duplicated

e As usual, applications can be shielded from most of these details by
using _var types

Vanderbilt University —__— 34

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Object References (1/3)

e An object reference is a strongly-typed opaque handle to one
iInstance of an interface that identifies the object’s location

e An object reference is an ORB-specific entity that can contain

— A repository ID, which identifies its interface type
— Transport address information, e.g., a server’s TCP/IP host/port

address(es)
— An object key that identifies which object in the server the request

IS destined for

e An object reference similar to a C++ “pointer on steriods” that’s been
enhanced to identify objects in remote address spaces

— e.g., it can be NULL and it can reference non-existent objects

PRGHO

Vanderbilt University bt Ve’ N 35

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Object References (2/3)

e Object references can be passed among processes on separate
hosts

— The underlying CORBA ORB will correctly convert object
references into a form that can be transmitted over the network

— The object stays where it is, however, and its reference is passed
by value

e The ORB provides the receiver with a pointer to a proxy in its own
address space

— This proxy refers to the remote object implementation
e Object references are a powerful feature of CORBA

— e.g., they support peer-to-peer interactions and distributed
callbacks

Vanderbilt University —__— 36

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Object References (3/3)

e The following is a transient object reference

— The timestamp helps ensure uniqueness across process lifetimes

Protocol Id Time Stamp Object Id

l l l

liop:1.0//pachanga:10015/P353bccdb00094ae8/firstPOA/myservant

| |

Communication Object
Endpoint Adapter Id

e Persistent object references omit the timestamp to help ensure
consistency across process lifetimes

— There’s also a requirement to keep port numbers and IP
addresses consistent...

m.{:!u{:"

Vanderbilt University e et 37

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of OMG Modules

e OMG modules are similar to C++ namespaces or Java packages

— I.e., they define scopes and can be nested

e OMG modules can be reopened to enable incremental definitions,
e.g..

module Stock {
interface Quoter { /* ... */ }
3
...
module Stock {
interface Quoter Factory { /* ... */ };

%

e Reopening of modules is particular useful for mutually dependent
Interfaces that require forward definitions

m.{:!u{:"

Vanderbilt University e et 38

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of OMG Exceptions

e Two types of exceptions in OMG IDL inherit from
CORBA::Exception

— System exceptions (e.g., CORBA::OBJECT_NOT_EXIST, which
are predefined by the CORBA spec and must not appear in a
raises clause

— User exceptions (e.g., Stock::Invalid_Stock), which can
be defined by user applications and can appear in a raises
clause

e There are various restrictions on exceptions in CORBA

— e.g., they can’t be nested or inherited and can’'t be members of
other data types

Vanderbilt University —__— 39

CORBA Tutorial Douglas C. Schmidt

Revised OMG IDL Quoter Definition
Apply the CORBA Lifecycle Service

module Stock {
exception Invalid_Stock {};

interface Quoter : CosLifeCycle::LifeCycleObject
{
long get_quote (in string stock name)
raises (Invalid_Stock);
/[Inherits:
/[void remove () raises (NotRemovable);

J

/[Manage the lifecycle of a Quoter object.
interface Quoter_ Factory
CosLifeCycle::GenericFactory

{
/l Returns a new Quoter selected by name
/I e.g., "Dow Jones," "Reuters,", etc.
/I Inherits:
/[Object create object (in Key K,
/l in Criteria criteria)
/I raises (NoFactory, InvalidCriteria,
Il CannotMeetCriteria);
%

Vanderbilt University

CORBA Tutorial

Douglas C. Schmidt & Bala Natarajan

Overview of OMG Object

e The CosLifeCycle::GenericFactory:.create object()
factory method returns an object reference to an instance that’s
derived from the CORBA::Object interface

e Since all objects implicitly inherit from CORBA::Object , all object
references support the following operations:

interface Object {
/| Reference counting methods
Object duplicate ();
void release ();
I/l Checks for existence and reference identity & relationships

boolean
boolean
boolean
boolean
/...

is_nil ();

non_existent ();

is_equivalent (in Object another_object);
Is_a (in string repository id);

Vanderbilt University

L S 41

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of Fixed- and Variable-size Types

Certain types are variable-size: Other types can be variable- or

. fixed-size:
Bounded or unbounded strings
(as shown in the e structs , unions , and arrays
Stock::Quoter example) are fixed-size if they contain only

Bounded or unbounded fixed-size fields (recursively)

sequences e structs , unions , and arrays
are variable-size if they contain
any variable-size fields

Type any (recursively)

Object references

Variable-size types require the sender to dynamically allocate
Instances and the receiver to deallocate instances

Again, use var types to simplify programming

Vanderbilt University e

i & f-'
D CC .

CORBA Tutorial Douglas C. Schmidt

RPC- vs. Object-style Designs

QUOTE CLIENT

= name QUOTE SERVER

: Quoter

get_quote()

Pro — 4 - 2o L - - - - =
A Xy ‘e >
LI) value >
E : Quoter -

Proxy

remove()

QUOTE
CLIENT

: Reuters
Quoter

name
O—»

create_object()

: DowJones

: DowJones Quoter

Quoter
Proxy

OBJECT-STYLE

Vanderbilt University Vs -

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Results of Compiling the Stock.idl File

Running the Stock module through the IDL compiler generates stubs
and skeletons

e Each (twoway) stub is a proxy that e Each skeleton is an adapter

1. Ensures a connection to the that
server is established 1. Demarshals the request
2. Marshals the request parameters
parameters 2. Performs an upcall on the
3. Sends the request designated servant
4. Waits to get the reply method
5. Demarshals the reply 3. Marshals the reply
parameters . parameters
6. Returns to the client caller 4. Sends the reply back to
the client
Vanderbilt University E-) 4 E! g {:-: 44

CORBA Tutorial Douglas C. Schmidt

Overview of Generated Client Stubs

/[Note C++ mapping of IDL module type

namespace Stock {
/l Note C++ mapping of IDL interface type
class Quoter // Quoter also IS-A CORBA::Object.

. public virtual CosLifeCycle::LifeCycleObject {

public:
/[Note C++ mapping of IDL long and string types
CORBA::Long get quote (const char *stock name);
...

g

class Quoter_Factory
. public virtual CosLifeCycle::GenericFactory {
public:
/[Factory method for creation that inherits:
/[CORBA::Object_ptr create object
Il (const CosLifeCycle::Key &factory key,

/l const CosLifeCycle::Criteria &criteria)
/I Note C++ mapping of Key and Criteria structs.
...

3
J

Note that you never instantiate a stub class directly,
but always via a factory

Vanderbilt University

CORBA Tutorial

Douglas C. Schmidt & Bala Natarajan

OMG Object and POA IDL Mappings

SERVER-SIDE
MAPPING

CLIENT-SIDE
MAPPING

/ ~
,/ CosLifeCycle::
[GenericFactory
| o—

. \
\ create_object() =0)
\ — —

\\\W//fI_—’

\create_object() = 0

pity— __,/
\\:W///
/"‘—-'/_"\\
/ Stock::

! Quoter \
[Factory_var \
\ create_object())

e ——
\\//

e The OMG client mapping inherits all
proxy interfaces from the Object
Interface

— Moreover, proxy classes mirror
the IDL inheritance hierarchy, so

(POA_CosLifeCycle: :\I
|
I
|

(GenericFactory : .
\greate_object() =0 , references to derived interfaces
_W j are compatible with references to
/;Poti_élgocf? A base interfaces via widening and
7/ Quoter_Factory .
(\\ create_object() = 0 /// p Oly mor p h Ism
\\\563/__ - .
N e The IDL server C++ mapping
A My 5 inherits all Servants from
. Quoter
\ Factory | ServantBase

\
(

\
J

|

|

| .

| create_object()
\

P
—
N7 N7

Vanderbilt University

46

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Generated Server Skeletons

e Skeleton classes provide the server counterpart to the client stub
class proxies

— There’s a C++ virtual method in the skeleton class for each
operation defined in the IDL interface

e CORBA associates a user-defined servant class to a generated IDL
skeleton class using either

1. The Class form of the Adapter pattern (inheritance)
POA_Stock::Quoter

2. The Object form of the Adapter pattern (object composition, /.e.,
TIE)
template <class Impl> class POA Stock::Quoter tie

Vanderhbilt University W L 47

CORBA Tutorial Douglas C. Schmidt

The Class Form of the Adapter Pattern

T —— = ~
—_ -~ \
(.
) client Servant
ST T \A/ Base

1: create object()

/ T~ —— T — \
\/ CosLifeCycle \\

\ GenericFactory)
) \

l/ create_object() =0
/ —_—— e
- \
r~7 N - =~ W /
r | ~ —— ~
\ Quoter / / Quoter
Factory \ \ Factory (.

create object() \ (create object() = O)

\\ - /// /\W/

—_ \\ —

\
l
I
l

Vanderbilt University D "\’

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Defining a Servant Using Inheritance
e Servant classes can inherit from their skeleton directly:

class My Quoter Factory : public virtual POA _Stock::Quoter Factory
public:
My Quoter_Factory (const char *factory = "my quoter factory");
virtual CORBA::Object_ptr // Factory method for creation.
create_object (const CosLifeCycle::Key &factory key,
const CosLifeCycle::Criteria &the_criteria)
throw (CORBA::SystemException, QuoterFactory::NoFactory);

private:
std::map<std::string, CORBA::Object _var> objref _list_;
3
e However, this approach can create a “brittle” hierarchy and make it
hard to integrate with legacy code (e.g., when distributing a
stand-alone application)

e Moreover, virtual inheritance is sometimes implemented poorly by
C++ compilers

Vanderbilt University Y’ N 49

CORBA Tutorial Douglas C. Schmidt

PortableServer::ServantBase

e PortableServer::ServantBase
Implements reference counting for servant
classes via two methods:

— _add _ref() increments reference count
(initial count is 1)

— _remove_ref() decrements reference
count by 1 and deletes servant when value is
0

e Servant classes implicitly inherit from
PortableServer::ServantBase

e Developers should create the servant using
operator new

e When ever any method is called that returns a
servant object (e.g., id_to_servant() :
reference _to_servant() , _this()),
_add _ref() is called automatically to
Increment the ref count by 1

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt

The Object Form of the Adapter Pattern

. ™\ 1: create_quoter () Servant
\ cient 1 ——
e
/'__/ \\
\/ CosLifeCycle \\
\ GenericFactory
) \

(/create obJect() O

/create _object() = O)

C My_Quoter l e i
/77| Factory /\W/ AN
/ Y / My \

r
| Quoter . Quoter |
lFactory tie * Factory \
I >
| create object() / 2: create_object() { e s \)
\\ﬁ///\\ /_’ \ :\ ’_//
u e Y
adrl "R 'r:‘
Vanderbilt University D C Nt

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

A TIE-based Implementation
class My Quoter Factory {
public:
My Quoter_Factory (const char *name = "my quoter factory");
// Factory method for creation.
CORBA::Object_ptr create_object
(const CosLifeCycle::Key &factory key,
const CosLifeCycle::Criteria &the criteria)
throw (CORBA::SystemException, QuoterFactory::NoFactory);
private: /I ...

%

TIE allows classes to become distributed even if they weren't
developed with prior knowledge of CORBA

e There is no use of inheritance and operations need not be virtual!

e However, lifecycle issues for “tie” and “tied” objects are tricky...

pRGO

Vanderbilt University . . 52

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Defining a Servant Using TIE

namespace POA_Stock {
template <class Impl>
class Quoter Factory tie : public Quoter Factory { /* ... */ };
...

We generate a typedef and a servant that places an implementation
pointer object within the TIE class:

typedef POA_Stock::Quoter Factory tie<My Quoter Factory>
MY _QUOTER_FACTORY;

MY_QUOTER_FACTORY *factory =
new MY_QUOTER_FACTORY (new My_Quoter_Factory);

All operation calls via the TIE class are then delegated to the
Implementation object

Vanderbilt University Y’ N 53

CORBA Tutorial Douglas C. Schmidt

Implementing My_Quoter _Factory

The following code is identical regardless of which
form of Adapter pattern is used for servant classes

CORBA::Object_ptr
My Quoter Factory:.create_object
(const CosLifeCycle::Key &factory key,
const CosLifeCycle::Criteria &the_criteria)
{
POA_Stock::Quoter *quoter;
PortableServer:.ServantBase var xfer;

/Il Factory method selects quoter.
if (strcmp (factory key.id,
"my quoter") == 0) {
xfer = quoter = new My_Quoter;

else if (strcmp (factory key.id,
"dow jones") == 0) {
xfer = quoter = new Dow_Jones_ Quoter;
} else // Raise an exception.
throw Quoter_ Factory::NoFactory ();

I/l Create a Stock::Quoter ptr, register

/[the servant with the default POA, and
/I return the new Object Reference.
return quoter->_this ();

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt

Another create _object()
Implementation

Preventing multiple servant activations for the
same key

CORBA::Object_ptr
My Quoter Factory::.create object
(/* args omitted */)
{
CORBA::Object_var objref;
if (objref _list_.find (factory key.id,
objref) == 0)
return objref._retn ();
/[Declarations...
/[Factory method selects quoter.
if (strcmp (factory key.id,
"my quoter") == 0) {
xfer = quoter = new My_ Quoter;
}
/[Create a Stock::Quoter_ptr, register
/I the servant with the default POA, and
/I return the new Object Reference.
objref = quoter->_this ();

/[operator=() defined in CORBA::Object var
/I duplicates references.
objref_list_.bind (factory key.id,
objref);
return objref._retn ();

3

Vanderbilt University

CORBA Tutorial

Douglas C. Schmidt & Bala Natarajan

Overview of Implicit Activation and _this()

e Each generated skeleton class contains a _this() method, e.g.:

class POA_Stock::Quoter

. public virtual CosLifeCycle::LifeCycleObject {

public:
Quoter_ptr _this ();

I3
e Depending on the POA policy, the _this()

method can be used to

activate a servant and return the corresponding object reference

e Internally, this() duplicates the object reference, so it must be
decremented at some point to avoid memory leaks

e Ifyouuse this() foraservantin a non-Root POA, make sure to

override the servant’s _default POA()

method...

Vanderbilt University

56

CORBA Tutorial Douglas C. Schmidt

Reference Counting Servants Properly

e When a servant that inherits from
PortableServer::ServantBase IS created
Its ref countis setto 1

e When it's activited with the POA its ref count is
iIncremented to 2

e When PortableServer::POA::
deactivate object() IS called later the ref
count is deremented by 1

— But the servant is only destroyed when its ref
countis O

e To ensure the servant is destroyed properly, use
PortableServer::ServantBase var to
hold the newly allocated servant pointer since its
destructor calls _remove_ref() automatically

— This approach is also exception-safe

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Implementing the My_Quoter Interface

Implementation of the Quoter IDL interface

class My Quoter : virtual public POA Stock::Quoter
{
public:

My Quoter (void *state); // Constructor.

/l Returns the current stock value.
long get quote (const char *stock name)
throw (CORBA::SystemException, Quoter::InvalidStock);

// Deactivate quoter instance.
void remove (void)
throw (CORBA::SystemException,
CosLifeCycle::LifeCycleObject::NotRemovable);
private:
...

I3

rll 18y
Vanderbilt University D C . 58

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Throwing Exceptions

e To throw an exception, simply instantiate the exception class and
throw it, i.e., throw Quoter_Factory::NoFactory()

— The process is slightly more baroque using emulated exceptions

e Servant code should generally try to throw user exceptions

— Avoid throwing system exceptions since they convey less
Information to clients

— When you do throw a system exception, set its completion status
to indicate what state the operation was in

e Use C++1try blocks to protect scopes where operations may throw

exceptions and always use _var and/or std::auto_ptr<> types
appropriately
g, T vy
Vanderbilt University E-} 4 C e 59

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Memory Management Tips (1/3)

e Memory management is straightforward for basic/fixed types, but
more complicated for variable-sized types

e Rule of thumb: Caller owns all storage
e Use var to manage memory automatically

— But never declare method signatures using _var ; use _ptr

Instead...
Quoter_ptr factory (CORBA::Object_ptr arg); // Ok
Quoter_var factory (CORBA::Object var arg); // Wrong

e Remember var owns the memory

— Unless retn() is used

e Not obeying the rules can cause crashes (if you're lucky) or memory
leaks/corruption (if you're not)

PRGHO

Vanderbilt University bt Ve’ N 60

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Memory Management Tips (2/3)

e Server-side implementations of operations should

— Object references must be duplicated before being stored to

prevent premature deletion
— Operations receiving variable-sized data types should perform a

deep copy of the incoming data to safely use them later
x Caching pointers to the parameter will not help
— Allocate memory for out and return parameters of variable-sized
types
x Clients handle this by using var types
— Servants automatically give up ownership of memory allocated for

out and return parameters.

x Call _duplicate() or equivalent operation if servants need to
retain ownership.
— Use PortableServer:.:ServantBase var and

o PRGHO
Vanderbilt University bt Ve’ N 61

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
std::auto_ptr<> to prevent memory leaks when exceptions
occur

Vanderbilt University

-\ 62

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Memory Management Tips (3/3)

e Frequently Made Mistakes (FMM's)

=

Storing strings within sequences and structs

Not handling the return reference from an operation, but passing it
to another operation

Not activating the POA manager

Not setting length() of sequence properly

Not duplicating object references properly

Not using ServantBase var properly

N

o 01w

e We’'ll show how to avoid these mistakes in subsequent slides

Vanderbilt University —__— 63

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Motivation for the CORBA Naming Service

e Clients access Quoter objects returned by My Quoter_ Factory

— But how do clients find My _Quoter_Factory ?!

e One approach is to use CORBA::ORBhelper operations to convert
an object reference to a string and vice versa

interface ORB {
...
string object to_string (in Object 0);
Object string_to_object (in string S);

I3
e Stringified object references can be written to and read from a file,
passed between ORBs, and/or stored in a database

e A more effective and scalable approach, however, is often to use the
CORBA Naming Service

Vanderbilt University —__— 64

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of the CORBA Naming Service

,,,,,,,,,,,,,,,,,,,,,,, e Purpose

— Maps sequences of
strings to object
references

3: create_object() 2: resolve()
4: get_quote()

e Capabilities

— A Naming Context
can be a hierarchically
nested graph

— Naming Contexts
can also be federated

9
>
(=

Vanderbilt University 65

CORBA Tutorial Douglas C. Schmidt

Registering My_Quoter _Factory with
the Naming Service

extern CosNaming::NamingContextExt_ptr
name_context;

My Quoter_Factory::My_ Quoter Factory
(const char *factory _name) {
char tmp[] = "object impl";
CORBA::StringSeq sseq (2); sseq.length (2);
sseq[0] = factory _name; sseq[l] = tmp; // FMM 1
/[FMM: assignment from const char * duplicates
/I the string but a non-const char doesn't.
CosNaming::Name name;
name.length (1);
name[0].id = sseq[0]; name[0].kind = sseq[1];

/[Obtain objref and register with POA.
Quoter_Factory var gf = this-> this ();

/[Export objref to naming context.
name_context->bind (name, qf.in ());

/[FMM 2 is to do the following.
/[name_context->bind (name, this->_this ());

%
Real code should handle exceptions...
DCC

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Programming with Object References (1/3)

e An IDL compiler generates two different object reference types for
each interface

— <interface>_ptr — C++ pointer to object reference
x An “unmanaged type” that requires programmers to manipulate
reference ownership via <proxy>:._duplicate() and
CORBA::release()
— <interface> var — “Smart pointer” to object reference
x Manages reference lifetime by assuming ownership of
dynamically allocated memory and deallocating it when the

_var goes out of scope
x operator->() delegates to the underlying pointer value
x _var types are essential for writing exception-safe code

Vanderbilt University S 67

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Programming with Object References (2/3)

e You should use var types as often as possible since they
automate most of the error-prone reference counting, e.g.:

I/ When ORB returns object reference its proxy has

I/l a reference count of 1

Quoter_ptr quoter = resolve quoter_service ();

CORBA::Long value = quoter->get quote ("ACME ORB Inc.");
CORBA::release (quoter);

Il release() decrements the reference count by one,

/Il which causes deallocate when the count reaches O

Versus

Quoter_var quoter = resolve_quoter_service ();
CORBA::Long value = quoter->get _quote ("ACME ORB Inc.");
/[quoter automatically releases object reference.
e Calls to duplicate() and CORBA::release() only affect the

local proxy, not the remote object!!!

pRGO

Vanderbilt University = . 68

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Programming with Object References (3/3)

e To handle broken C++ compilers, you may need to use special
helper methods generated by the IDL compiler to workaround
problems with implicit type conversions from _var to the underlying
pointer

— in() passesthe var asanin parameter
— Inout() passesthe var as aninout parameter
— out() passesthe var as anout parameter

e Variable-size var types have a retn() method that transfers
ownership of the returned pointer

— This method is important for writing exception-safe code

Vanderbilt University —__— 69

CORBA Tutorial Douglas C. Schmidt

The Main Server Program
Uses persistent activation mode

int main (int argc, char *argv[])

{

ORB_Manager orb_manager (argc, argv);
const char *factory name = "my quoter factory";

I/l Create the servant, which registers with
/I the rootPOA and Naming Service implicitly.
My Quoter_ Factory *factory =

new My Quoter Factory (factory name);

/[Transfer ownership to smart pointer.
PortableServer::ServantBase var xfer (factory);

// Block indefinitely waiting for incoming

I/l invocations and dispatch upcalls.

return orb_manager.run ();

/[After run() returns, the ORB has shutdown.

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Motivation for ORB _Manager

e Like many CORBA servers, our stock quoter server is initialized via
the following steps:

1. We call CORBA::ORB init() to obtain the locality constrained

object reference to the ORB pseudo-object
2. We use the ORB object reference to obtain the Root POA
3. We then instantiate the quoter factory servant and activate it to

obtain its object reference
4. We next make the object reference for the quoter factory available

to clients via the Naming Service
5. Finally, we activate the Root POA’s manager and run the ORB’s

event loop

e To automate many of these steps, we define the ORB_Manager
wrapper facade class

Vanderbilt University —__— 71

CORBA Tutorial Douglas C. Schmidt

Overview of ORB _Manager

class ORB_Manager {
public:
/I Initialize the ORB manager.
ORB_Manager (int argc, char *argv[]) {
orb_ = CORBA:ORB_init (argc, argv, 0);
CORBA::Object_var obj =
orb_->resolve initial_references ("RootPOA");

poa_ =
PortableServer::POA::_narrow (obj.in ());
poa_manager_ = poa_->the_POAManager ();

}
/[ORB Accessor.

CORBA::ORB_ptr orb (void) { return orb_; }

// Run the main ORB event loop.

int run (void) {
poa_manager_->activate (); // FMM 3
return orb_->run ();

}

/[Cleanup the ORB and POA.
"ORB_Manager () { orb_->destroy (); }
private:
CORBA::ORB var orb_;
PortableServer::POA var poa_;
PortableServer::POA_Manager_var poa_manager_;

J

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Pseudo-objects and Locality Constraints

e The CORBA::ORBand PortableServer::POA Interfaces define
“pseudo-objects,” i.e.:
orb = CORBA:ORB init (argc, argv, 0);
CORBA::Object_var obj =
orb_->resolve initial _references ("RootPOA");
poa_ =
PortableServer::POA:._narrow (obj.in ());
e Pseudo-objects have IDL interfaces but are implemented in the
ORB'’s runtime library, rather than by using generated

stubs/skeletons

e Pseudo-objects are “locality constrained,” which means that their
object references can’t be passed to remote address spaces

PHGRO 73

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of _narrow() Conversion Operators

e The IDL compiler generates static method narrow() for each
proxy that behaves like the C++ dynamic_cast operator

— Le., it returns a non-nil reference if the argument to the method is
the right type, else nil

e Note that narrow() implicitly calls _duplicate() , Which
Increments the reference count

class Quoter : public virtual CosLifeCycle::LifeCycleObject {
public:

static Quoter_ptr _narrow (CORBA::Object ptr arg);

...

class Stat Quoter : public virtual Quoter {

public:
static Stat_Quoter_ptr _narrow (CORBA::Object ptr arg);
...

Vanderbilt University L S 74

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of ORB Shutdown

e The following two operations shutdown the ORB gracefully:

interface ORB {
void shutdown (in boolean wait_for_completion);
void destroy ();

I3
e These operations do the following:

— Stop the ORB from accepting new requests
— Allow existing requests to complete and
— Destroy all POAs associated with the ORB

e The wait_for _completion boolean allows the caller to decide
whether to wait for the ORB to finish shutting down before returning

— This is important for multi-threaded ORB implementations...

Vanderbilt University —__— 75

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Recap of the Stock Quoter Server

e In our stock quoter e The ORB and associated tools (e.g., IDL
server, we (I.e., the compiler) provides the rest:
application
PP : 1. Generated skeleton classes that
developers) simply .
write connect the ORB with the

application-defined servant classes

1. The IDL interfaces 2. (De)marshaling code
2. The servant classes 3. Management of object references

3. Code to initialize 4, The ORB runtime libraries that handle
the server event connection management, GIOP data
loop transfer, endpoint and request

demuxing, and concurrency control

Vanderbilt University —__— 76

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

How a Client Accesses a CORBA Object

e Several steps:

1. Client uses resolve_Initial _references() and
“Interoperable Naming Service” to obtain a NamingContext
— This is the standard ORB “bootstrapping” mechanism

2. Client then uses NamingContext to obtain desired object
reference

3. The client then invokes operations via object reference

e Object references can be passed as parameters to other remote
objects

— This design supports various types of “factory” patterns

Vanderbilt University W L 77

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Stock Quoter Client Program (1/3)

Int main (int argc, char *argv[]) {
CORBA::ORB var orb = CORBA:ORB init (argc, argv, 0);

CORBA::Object_var obj =
orb->resolve_initial_references ("NameService");

CosNaming::NamingContextExt_var name_context =
CosNaming::NamingContextExt:: narrow (obj.in ());

Stock::Quoter_var quoter; // Manages refcounts.
char *stock name = 0;

Vanderbilt University —__— 78

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Stock Quoter Client Program (2/3)

try { // Use a factory to resolve any quoter.
Stock::Quoter Factory var gf =
resolve_service<Stock::Quoter_Factory>
("my quoter factory", name_context.in ());
if (CORBA::is_nil (gf.in ())) return O;

CosLifeCycle::Key key; key.length (1);
key[O].id = "my quoter";

// Find a quoter and invoke the call.
CORBA::Object_var obj = (f->create_object (key);
guoter = Stock::Quoter::_narrow (obj);

stock_name = CORBA:string_dup ("ACME ORB Inc.");
CORBA:Long value = quoter->get _quote (stock name);

i & f-'
D-C-C .

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Stock Quoter Client Program (3/3)

cout << stock name << " = " << value << end|
/[Destructors of * var release memory.

}

catch (Stock::Invalid Stock &)

{

cerr << stock_name << " not valid" << end;
} catch (...) { /* Handle exception... */ }

CORBA::string_free (const _cast <char *> (stock _name));

guoter->remove (); // Shut down server object

Vanderbilt University B 4 80

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Memory Management for OMG Strings

e CORBA provides the following methods that must be used to
manage the memory of dynamically allocated strings

namespace CORBA {
char *string_dup (const char *ostr);
void string_free (char *nstr);
char *string_alloc (ULong len); // Allocates len + 1 chars
/[... Similar methods for wstrings ...

}

e These methods are necessary for platforms such as Windows that
have constraints on heap allocation/deallocation

e In the Stock Quoter client example above we could have avoided the
use of dynamic string allocations by simply using the following

const char *stock name = "ACME ORB Inc.";

m.{:!u{:"

Vanderbilt University e et 81

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Obtaining an Object Reference

template <class T>
typename T:. ptr _type /[* trait */
resolve_service (const char *n,
CosNaming::NamingContextExt_ptr name_context) {
CosNaming::Name svc_name;
svc_name.length (1); svc_name[0].id = n;
svc_name[0].kind = "object Impl";

/l Find object reference in the name service.
obj] = name_context->resolve (svc_name);

/[Can also use
/I ob] = name_context->resolve_str (n);

/[Narrow to the T interface and away we go!
T g
B'C' (P 82

Vanderbilt University

CORBA Tutorial

Douglas C. Schmidt & Bala Natarajan

return T:._narrow (obj);

Vanderbilt University

83

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Coping with Changing Requirements

e New Quoter features
— Format changes to extend functionality
— New interfaces and operations

e Improving existing Quoter features

— Batch requests

e |Leveraging other ORB features

— Asynchronous Method Invocations (AMI)
— Passing object references to implement a publisher/subscriber

architecture

Vanderbilt University S 84

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

New Formats

For example, percentage that stock increased or decreased since start
of trading day, volume of trades, etc.

module Stock

1
I ...

interface Quoter

{

long get quote (in string stock name,
out double percent _change,
out long trading_volume)
raises (Invalid_Stock);

%
%

Note that even making this simple change would involve a great deal of
work for a sockets-based solution...

| & f-'
D C-C .

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Adding Features Unobtrusively

e Interface inheritance allows new features to be added without
breaking existing interfaces

module Stock {
/I No change to Quoter interface!!
interface Quoter { /* ... */ };

interface Stat Quoter : Quoter // a Stat_Quoter IS-A Quoter {
// Note OMG IDL’s inability to support overloading!
long get stats (in string stock name,
out double percent_change,
out long volume) raises (Invalid_Stock);
...

e Applications can pass a Stat_Quoter whereever a Quoter is
expected

— Clients can use _narrow() to determine actual type

m.{:!u{:"

Vanderbilt University e et 86

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

New Interfaces and Operations
For example, adding a trading interface

module Stock {

/I Interface Quoter Factory and Quoter same as before.
interface Trader {

void buy (in string name,
inout long num_shares,

in long max_value) raises (Invalid_Stock);
/I sell() operation is similar...

¥
interface Trader Factory { /* ... */ },

3
Multiple inheritance is also useful to define a full service broker:

interface Full_Service Broker : Stat Quoter, Trader {};

Note that you can’t inherit the same operation from more than one
interface

PRGHO

Vanderbilt University bt Ve’ N 87

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Batch Requests
Improve performance for multiple queries or trades

interface Batch_Quoter : Stat Quoter
{ /I Batch_Quoter IS-A Stat Quoter
typedef sequence<string> Names;
struct Stock Info {
/I Acts like String_var initialized to empty string.
string name;
long value;
double change;
long volume;
I3
typedef sequence<Stock Info> Info;
exception No Such Stock { Names stock; };

// Note problems with exception design...
void batch _quote (in Names stock names,
out Info stock info) raises (No_Such_Stock);

%

m.{:!u{:"

Vanderbilt University e et 88

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of OMG Structs

e |IDL structs are similar to C++ structs

— I.e., they contain one or more fields of arbitrary types
e However, IDL structs must be named and have one or more fields

e The C++ mapping rules are different for fixed- and variable-size
structs

— Ie., variable-size structs must be dynamically allocated by
sender and deallocated by receiver

e Using the IDL-generated var helper types minimize the differences
between fixed- and variable-sized structs in C++ mapping

Vanderbilt University —__— 89

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of OMG Sequences (1/2)

e IDL sequences are variable-length vectors of size >= 0

e They can be bounded or unbounded

— Bounded sequences have a max number of elements
— Unbounded sequences can grow to any (reasonable) length

e Seguences can contain other sequences

typedef sequence<octet> Octet Sequence;
typedef sequence<Octet Sequence> Octet Argyv;

e Sequences can be also used to define recursive data structures for
structs and unions

struct Node {
sequence<Node> Children;
...

I3

Vanderbilt University Y’ N 90

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of OMG Sequences (2/2)

e Each IDL sequence type maps to a distinct C++ class
e Thelength() accessor returns # elements in sequence
e The length() = mutator can change # elements in sequence

e Each C++ class defines pair of overloaded subscript operators
(operator[])

e Although it’s illegal to access beyond the current length, you can use
the length() mutator to grow the sequence length at its tail

e FMM 4: Using the sequence to store data without setting the
length() can cause undefined behaviors

e The copying semantics of sequences depend on the types of its
elements

Vanderbilt University S 91

CORBA Tutorial Douglas C. Schmidt

Motivation for Asynchronous
Method Invocations (AMI)

e Early versions of CORBA lacked support for
asynchronous two-way invocations

e This omission yielded the following drawbacks

1. Increase the number of client threads
— e.g., due to synchronous two-way
communication
2. Increase the end-to-end latency for multiple
requests
— e.g., due to blocking on certain long-delay
operations
3. Decrease OS/network resource utilization
— e.g., inefficient support for bulk data
transfers

Vanderbilt University D :

CORBA Tutorial Douglas C. Schmidt

Limitations with Workarounds for
CORBA's Lack of Asynchrony

e Synchronous method invocation (SMI)
multi-threading

— Often non-portable, non-scalable, and
Inefficient
e Oneway operations

— Best-effort semantics are unreliable

— Requires callback objects

— Applications must match callbacks with
requests

e Deferred synchronous

— Uses DII, thus very hard to program
— Not type-safe

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

OMG Solution — CORBA Messaging Specification

e Defines QoS Policies for the

ORB 2:poller 1 request
POLLINGpO$ Oo—> EAI;F‘:;CETT
— Ti CLIENT operation(args B
Tlme_outs = p (g)>:J
— Priority P C)
. S T —
— Reliable one-ways L| reponse
ger |L|)
. O——» | E
e Specifies two asynchronous R)
method invocation (AMI) models P
CALLBACK O@, TARGET
1. Poller model CLIENT _operation(callback, args) 2BIECT

2. Callback model) ‘ﬁmﬂ

0 le
e Standardizes time-independent EEEEED

invocation (T1l) model

>

2: response

— Used for store/forward routers

p¥elo

Vanderbilt University 94

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

AMI Callback Overview

Implied-IDL for client:

QUOTE STOCK module Stock {
CLIENT stock name QUOTER /I ReplyHandler,
O—» (] interface AMI_QuoterHandler
et auote ("IBM" . Messaging::ReplyHandler {
(@ﬂ get_quote)% /I Callback method.
<+«—0 void get_quote (in long return_value);
G N

interface Quoter {
/[Two-way synchronous operation.
long get quote (in string stock name);

Quoter IDL Interface:
module Stock {
interface Quoter {

/" Two-way operation to /I Two-way asynchronous operation.
/l get current stock value. void sendc_get_quote

Iong get__quote (in AMI_QuoterHandler handler,
\ (in string stock name); in string stock):
) };
...)

Vanderbilt University D ' 95

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Example: Synchronous Client

QUOTE stock Application:
CLIENT stock name QUOTER // NASDAQ abbreviations for ORB vendors.
o—> (] static const char *stocks] =

et_quote ("IBM") {
C]D — ({——Dfﬂ "IONA" /I IONA Orbix

+«—O @) "BEAS" // BEA Systems WLE

I

vatue "IBM" /[IBM Component Broker
IDL-generated stub: }
CORBA::ULong Il Set the max number of ORB stocks.
Stock::Quoter::get_quote static const int MAX _STOCKS = 3;

(const char *name)

{ /[Make synchronous two-way calls.
/l 1. Setup connection for (int i = 0; i < MAX_STOCKS; i++) {
/[2. Marshal CORBA::Long value =
/I 3. Send request & wait quoter_ref->get_quote (stocks[i]);
Il 4. Get reply cout << "Current value of "
/[5. Demarshal << stocks[i] << " stock: "
/I 6. Return << value << end|
3 }

Vanderbilt University 96

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Example: AMI Callback Client (1/2)
CALLBACK Reply Handler Servant:
851(::;]; sende gt quote(handler, class My_Async_Stock_Handler

handler AJ HIBMH)»

BD Jaupeall . stock_name BD
—— bl — |
_ 2:value _

Asynchronous stub:
void
Stock::Quoter::sendc_get_quote
(AMI_QuoterHandler_ptr,
const char *name)

/[1. Setup connection
Il 2. Store reply handler
Il in ORB

/[3. Marshal

/[4. Send request

/[5. Return

. public POA_Stock::AMI_QuoterHandler {
public:
My Async_Stock Handler (const char *s)
. stock _ (s)

{}
"My _Async_Stock Handler (void) { }

/I Callback method.
virtual void get_guote
(CORBA::Long ami_return_val) {
cout << stock .in () << " stock: "
<< ami_return_val << endl;
/[Decrement global reply count.
reply count--;
1
private:
CORBA::String_var stock_;

Vanderbilt University

97

CORBA Tutorial

Douglas C. Schmidt & Bala Natarajan

Example: AMI Callback Client (2/2)

/l Global reply count
int reply_count = MAX_STOCKS;

/Il Servants.
My_Async_Stock_Handler *
handlersf]MAX_STOCKS];

I/l Obijrefs.
Stock::AMI_QuoterHandler_var
handler_refs[MAX_STOCKS];

int I;

/I Initialize ReplyHandler

/I servants.

for (i = 0; i < MAX_STOCKS; i++)
handlers[i] = new

My Async_Stock Handler (stocksli]);

/I Initialize ReplyHandler object refs.
for (i = 0; 1 < MAX_STOCKS; i++)
handler_refs[i] =
handlers[i]->_this ();

/I Make asynchronous two-way calls
/I using the callback model.
for (i = 0; i < MAX_STOCKS; i++)
guoter_ref->sendc_get_quote
(handler_refs[i].in (),
stocksli]);

/I ... activate POA manager ...

/I Event loop to receive all replies.
while (reply_count > 0)
if (orb->work_pending ())
orb->perform_work ();
else

Vanderbilt University

98

CORBA Tutorial

Douglas C. Schmidt & Bala Natarajan

Additional Information on AMI

e Messaging specification is integrated into CORBA spec.

— WWW.0mg.org

e See Vinoski's CACM article on CORBA 3.0 for more info.

— www.cs.wustl.edu/~schmidt/vinoski-98.pdf

e See our papers on AMI

— www.cs.wustl.edu/~schmidt/report-doc.html
— www.cs.wustl.edu/~schmidt/PDF/amil.pdf
— www.cs.wustl.edu/~schmidt/PDF/ami2.pdf

e See TAO release to experiment with working AMI examples

— $TAO_ROOT/tests/AMI/

Vanderbilt University

99

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Motivation for a Publisher/Subscriber Architecture

e To this point, our stock quoter service has required the client to “poll”
the server periodically to receive the latest quote value

— However, this design is inefficient since the client keeps
contacting the server, even if nothing has changed!

e A more scalable approach may be to use the Publisher/Subscriber
architectural pattern

— This pattern decouples the publishers who produce quote events
from subscribers who consume them

e We’'ll redesign our stock quoter application to implement the
Publisher/Subscriber pattern using object references

Vanderbilt University —__— 100

CORBA Tutorial Douglas C. Schmidt

A Publisher/Subscriber Stock Quoter
Architecture

Notifier
Notifier C.on
ObjRef ObjRef 5

[

Con

A:
Consumer

Consumer
Notifier ’
ObjRef £
m@

Note the use of the Publisher/Subscriber pattern

Vanderbilt University L7 '\’

CORBA Tutorial Douglas C. Schmidt

Event Type

e \We define an Event struct that contains a
string and an any:

struct Event {
string topic_; // Used for filtering.
any value ; // Event contents.

I3
e This maps to the following C++ class

struct Event {
TAO::String_mgr topic_;
CORBA::Any value_;

I3

e The TAO::String_mgr behaves like a
String_var that’s initialized to the empty string

— Do not use the TAQO::String_mgr In your
application code since it's explicitly designed
to be ORB-specific!!!

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of the CORBA Any Type (1/2)

e OMG IDL defines type any for use with applications that can only
determine the types of their data at runtime

e This type contains the following pair of fields:

— The TypeCode that describes the type of the value in the any in

order to ensure typesafety
— The current value of the any

e The client ORB stores the TypeCode before the value so that the
server ORB can properly decode and interpret the value

Vanderbilt University —__— 103

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of the CORBA Any Type (2/2)

e |IDL any maps to the C++ class CORBA::Any:

class Any {
public:
Any (); /I Constructs an Any that contains no value.
Any (const Any &); /| Deep copy semantics
Any &operator= (const Any &); // Deep copy semantics
...
e Built-in types are inserted and extracted using overloaded

operator<<= and operator>>= |, respectively

— The Insertion operators copies the value and sets the typecode
— The extract operators return true iff the extraction succeeds, /.e., if

the typecodes match!

e The IDL compiler generates these overloaded operators for
user-defined types, as shown later in a DIl example

o PRGHO
Vanderbilt University bt Ve’ N 104

CORBA Tutorial

Douglas C. Schmidt

Event Receiver Interface

Interface Consumer

{

/[l Inform the Consumer
/I event has occurred.
oneway void push (in Event event);

/I Disconnect the Consumer
/I from the Notifier.
void disconnect (in string reason);

%

A Consumer is called back by the Notifier

Vanderbilt University D :

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Oneway Operations

e The push() operations in Consumer and Notifier interfaces are
oneway

— They must therefore have void return type, only in parameters,
and no raises clause

e By default, oneway operations have “best effort” semantics

— I.e., there is no guarantee they will be delivered in the order sent
or that they’ll even be delivered at all!

e Later versions of CORBA define so-called “reliable oneways,” which
address some of these issues via the SyncScope policy

— e.g., SYNC_NONE, SYNC_WITH_TRANSPORT, SYNC_WITH_SERVER,
and SYNC_WITH_TARGET

Vanderbilt University —__— 106

CORBA Tutorial Douglas C. Schmidt

Notifier Interface

Interface Notifier {

%

/Il = For Consumers.
[/ Subscribe a consumer to receive
I/l events that match filtering_criteria
// applied by notifier. Returns consumer
long subscribe
(in Consumer consumer,
In string filtering_criteria);
// Remove a particular consumer.
void unsubscribe (in long consumer _id);

/[= For Suppliers.

/I Push the event to all the consumers
/I who have subscribed and who match
/I the filtering criteria.

oneway void push (in Event event);

A Notifier publishes Events to subscribed
Consumers

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Limitations of Object References

e Note that the Notifier::subscribe() operation returns a
consumer ID that the unsubscribe() operation uses to remove
the subscription of a particular consumer

e We need this ID since it's invalid to compare objects for equality
directly using object references, i.e.:

— Object references only indicate location, not object identity
— Object::is_equivalent() IS a local operation that tests
object reference identity, not object identity!!

e Other invalid operations on object references include

— Using C++ dynamic_cast rather than _narrow()
— Testing for NULL rather than using CORBA::is_nil()

oG
Vanderbilt University bt Ve’ N 108

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Notifier Implementation

class My Notifier { // C++ pseudo-code, error checking omitted...
public:
CORBA::Long subscribe (Consumer_ptr con, const char *fc) {
// Not using _duplicate is FMM 5
consumer_set_.bind (fc, Consumer::_duplicate (con));
return consumer_id;
}
void unsubscribe (CORBA::Long con_id) {
Consumer_var con;
/I FMM 5 is to use _ptr; var needed since _ptr's in map.
consumer_set_.unbind (fc, con);
remove <con_id> from <consumer_set >.

void push (const Event &event) {
foreach <consumer> in <consumer_set >
if (event.topic_ matches <consumer> filter_criteria)
<consumer>.push (event);

private: // e.g., use an STL map.
std::map <string, Consumer_ptr> consumer_set_;
3

oG
Vanderbilt University bt Ve’ N 109

CORBA Tutorial Douglas C. Schmidt

CORBA ORB Architecture

NAMING IDL
SERVICE COMPILER

INTERFACE
REPOSITORY

IMPLEMENTATION
REPOSITORY

in args

operation() OBJECT

(SERVANT)

CLIENT

\M mLT T

out args + return value

DSI

SKELETON

ORB OBJECT
STUBS INTERFACE (ADAPTER

y ORB
GIOP/TIOP CORE

OS KERNEL OS KERNEL

0S 1/0 SUBSYSTEM 0S 1/0 SUBSYSTEM
NETWORK INTERFACES NETWORK INTERFACES

NETWORK

DII

pRGNO
Vanderbilt University - N

CORBA Tutorial Douglas C. Schmidt

Overview of CORBA Components

e The CORBA specification contains the following
major components:

— Object Request Broker (ORB) Core

— Interoperability Spec (GIOP and IIOP)
— Interface Definition Language (IDL)

— Programming language mappings for IDL
— Static Invocation Interface (Sll)

— Dynamic Invocation Interface (DII)

— Static Skeleton Interface (SSI)

— Dynamic Skeleton Interface (DSI)

— Portable Object Adapter (POA)

— Implementation Repository

— Interface Repository

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
OMA Reference Model Interface Categories

APPLICATION DOMAIN COMMON
INTERFACES INTERFACES FACILITIES
A A A A A A

A A A

OBJECT REQUEST BROKER

\J \J \J
OBJECT
SERVICES

The Object Management Architecture (OMA) Reference Model

describes the interactions between various CORBA components and
layers

DHGHO
Vanderbilt University N 112

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of the ORB Core

j Features

[OBJECT ADAPTER

e Connection/memory
ORB CORE management

e Request transfer

e
e Endpoint demuxing

GIOP TRANSPORT PROTOCOLS
IOPTCPIP AIM e Concurrency control

DG
Vanderbilt University - N 113

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Tracing a Request Through a CORBA ORB

@® Request invocation phases
a Client ORB _ _
- _ N 1. Client ORB connection
Connection Cache Memory Pool
@ oeo || 0] 1® management
Leader/Followers) 2. Server ORB connection
@[ren Connectof--@) management
o 3. Client invocation for twoway
> @ © calls
(.Server ORB 4. Server processing for
Connection Cache Memory Pool
®leee } [[HD*D —® twoway calls
@_;ccepmM Reacor | [POA}@ 5. Client reply handling for
A|B|C
\. |) > twoway calls
PBEGYT E

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Client ORB Connection Management

The following are the activities a client ORB performs to create a
connection actively when a client application invokes an operation on
an object reference to a target server object:

1. Query the client ORB’s connection cache for an existing connection
to the server designated in the object reference on which the
operation is invoked

2. If the cache doesn’t contain a connection to the server, use a
connector factory to create a new connection S

3. Add the newly established connection S to the connection cache

4. Also add connection S to the client ORB'’s reactor since S is
bi-directional and the server may send requests to the client using S

o PRGHO
Vanderbilt University bt Ve’ N 115

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Server ORB Connection Management

The server ORB activities for accepting a connection passively include:

5. Use an acceptor factory to accept the new connection C' from the
client

6. Add C to the server ORB’s connection cache since C'is
bi-directional and the server can use it to send requests to the client

7. Also add connection C to the server ORB’s reactor so the server is
notified when a request arrives from the client

8. Wait in the reactor’s event loop for new connection and data events

Vanderbilt University S 116

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Client Invocation of Synchronous Twoway Operation

We now describe the steps involved when a client invokes a
synchronous two-way request to a server:

9. Allocate a buffer from a memory pool to marshal the parameters in
the operation invocation

10. Send the marshaled data to the server using connection S.
Connection S is locked for the duration of the transfer

11. Use the leader/followers manager to wait for a reply from the server.
Assuming that a leader thread is already available, the client thread
waits as a follower on a condition variable or semaphore.?

1The leader thread may actually be a server thread waiting for incoming requests or another client
thread waiting for its reply

o PRGHO
Vanderbilt University bt Ve’ N 117

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Server Processing for Twoway Operation

The server ORB activities for processing a request are described
below:

12.

13.

14.

15.

16.

17.

Read the header of the request arriving on connection C' to
determine the size of the request

Allocate a buffer from a memory pool to hold the request
Read the request data into the buffer

Demultiplex the request to find the target portable object adapter
(POA), servant, and skeleton — then dispatch the designated upcall
to the servant after demarshaling the request parameters

Send the reply (if any) to the client on connection C', connection C'is
locked for the duration of the transfer

Wait in the reactor’s event loop for new connection and data events

Vanderbilt University e

v lrr-'“'!lu!l:I|I|I
n Y’ N 118

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Client Reply Handling for Twoway Operation

Finally, the client ORB performs the following activities to process a
reply from the server:

18. The leader thread reads the reply from the server on connection S

19. After identifying that the reply belongs to the follower thread, the
leader thread hands off the reply to the follower thread by signaling
the condition variable used by the follower thread

20. The follower thread demarshals the parameters and returns control
to the client application, which processes the reply

Vanderbilt University S 119

CORBA Tutorial Douglas C. Schmidt

CORBA Interoperability Protocols

STANDARD CORBA PROGRAMMING API

ORB MESSAGING
COMPONENT

ORB TRANSPORT
ADAPTER COMPONENT

GIOP GIOPLITE ESIOP

IoP VME-IOP ATM -10P

__________________________________ RELIABLE
SEQUENCED
TRANSPORT LAYER TCP
VME AAL S
DRIVER
NETWORK LAYER P ATM

PROTOCOL CONFIGURATIONS

e GIOP

— Enables ORB-t0o-ORB interoperability
e |IIOP

— Works directly over TCP/IP, no RPC
e ESIOPs

— e.g., DCE, DCOM, wireless, etc.

PHRGHO

Vanderbilt University L/ e

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of GIOP and IIOP

e Common Data Representation (CDR)

— Transfer syntax mapping OMG-IDL data types into a bi-canonical
low-level representation
x Supports variable byte ordering and aligned primitive types

e Message transfer

— Request multiplexing, I.e., shared connections
— Ordering constraints are minimal, i.e., can be asynchronous

e Message formats

— Client: Request , CancelRequest , LocateRequest
— Server: Reply , LocateReply , CloseConnection
— Both: MessageError

e IIOP is a mapping of GIOP over TCP/IP

o PRGHO
Vanderbilt University bt Ve’ N 121

CORBA Tutorial

Douglas C. Schmidt

Example GIOP Format

module GIOP {
enum MsgType {

J

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError

struct MessageHeader {

1

char magicl[4];

Version GIOP_version;

octet byte order; // Fragment bit in 1.1.
octet message_type;

unsigned long message_size;

struct RequestHeader {

1

|OP::ServiceContextList service context;
unsigned long request id,;

/| Reliable one-way bits in 1.2
boolean response requested,;
sequence<octet> object key;

string operation;

Principal requesting_principal;

...

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Interface Definition Languages (IDLS)

e Motivation

— Developing flexible distributed applications on heterogeneous

platforms requires
+ An interface contract between client and server that defines

permissible operations and types
x Strict separation of interface from implementation(s)

e Benefits of using an IDL

— Ensure platform independence — e.g., Windows NT to UNIX

— Enforce modularity — e.g., separate concerns
— Increase robustness — e.g., eliminate common network

programming errors
— Enable language independence — e.g., COBOL, C, C++, Java,

etc.

Vanderbilt University S 123

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Example IDLs

e Many IDLs are currently available, e.g.,

— OSIASN.1

— 0S|I GDMO

— SNMP SMI

— DCE IDL

— Microsoft's IDL (MIDL)
— OMG IDL

— ONC's XDR

e However, many of these are procedural IDLs

— These are more complicated to extend and reuse since they don'’t
support inheritance

Vanderbilt University S 124

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of OMG IDL (1/2)

e OMG IDL is an object-oriented interface definition language

— Used to specify interfaces containing operations and attributes
— OMG IDL support interface inheritance (both single and multiple

iInheritance)
e OMG IDL is designed to map onto multiple programming languages

— e.g., C, C++, C#, Java, Smalltalk, COBOL, Perl, etc.

e All data exchanged between clients and servers must be defined
using OMG IDL

Vanderbilt University S 125

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of OMG IDL (2/2)

e OMG IDL is similar to Java interfaces or C++ abstract classes

— Ie., it defines the interface and type “contracts” that clients and
servers must agree upon to exchange data correctly and
efficiently

e OMG IDL is not a complete programming language, however

— e.g., itis purely declarative and can not be used to define object
state or perform computations

e |IDL source files must end with the .idl suffix

Vanderbilt University S 126

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

OMG IDL Features

e OMG IDL is similar to C++ and Java

— e.g., comment styles, identifiers, built-in types, etc.

e OMG IDL supports the following features:

— modules and interfaces

— Operations and Attributes

— Single and multiple inheritance

— Fixed-size basic types (e.g., double , long , char , octet , etc).
— Arrays and sequence

— struct, enum, union, typedef

— consts

— exceptions

Vanderbilt University —__— 127

CORBA Tutorial

Douglas C. Schmidt & Bala Natarajan

OMG IDL Differences from C++ and Java

e Case-insensitive
e NoO control constructs

e NoO data members (cf
valuetypes)

e No pointers (cf valuetypes)
e No constructors or destructors

e NoO overloaded operations

Unions require a tag
Different String type
Different Sequence type
Different exception interface

No templates

e oneway call semantics

readonly keyword

e Noint data type e any type
e Contains parameter passing
modes
W e
Vanderbilt University E-)"--*' Nt 128

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Using OMG IDL Interfaces Effectively
e The CORBA specification and services are defined using IDL

e Interfaces described using OMG IDL can also be application-specific

— e.g., databases, spreadsheets, spell checkers, network
managers, air traffic control systems, documents, medical
Imaging systems, etc.

e Objects may be defined at any level of granularity

— e.g., from fine-grained GUI objects to multi-megabyte multimedia
“Blobs”

e It's essential to remember that distributed objects will incur higher
latency than collocated objects

— Interfaces designed for purely stand-alone applications may
therefore require reengineering

PHGRO

Vanderbilt University . . 129

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Static Invocation Interface (SllI)

/I Get object reference. e The common way to use OMG IDL is
Quoter_var quoter = /I ... the “Static Invocation Interface” (Sll)

const char *name =

"ACME ORB Inc." e All operations are specified in

advance and are known to client via

CORBA::Long value = stubs
guoter->get_quote (name);
cout << name << " =" — Stubs marshal operation calls into

<< value << endl;
request messages

e The advantages of Sll are simplicity, typesafety, and efficiency

e The disadvantage of Sll is its inflexibility (and potentially its footprint)

Vanderbilt University —__— 130

CORBA Tutorial Douglas C. Schmidt

SlI Stubs use the Proxy Pattern

: METHOD CALL
get_quote()

- BROKER

Ay : QUOTER

4: METHOD RETURN PROXY

\\ 2: FORWARD REQUEST
3: RESPONSE

—— QUOTER SKELETON
\cLENT)|

B f/lget_quote()

TR HHEaE Hi SERVER

NETWORK : QUOTER '

Intent: provide a surrogate for another object that
controls access to it

Vanderbilt University = -

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Dynamic Invocation Interface (DIl)

e A less common programming API is the “Dynamic Invocation
Interface” (DII)

— Enables clients to invoke operations on objects that aren’t known
until run-time
x e.g., MIB browsers

— Allows clients to “push” arguments onto a request stack and
identify operations via an ASCIlI name
x Type-checking via meta-info in “Interface Repository”

e The DIl is more flexible than the SMI Sl

— e.g., It supports deferred synchronous invocation and enables
dynamic dispatching of operations

e However, the DIl is also more complicated, less typesafe, and
iInefficient

PRGHO

Vanderbilt University bt Ve’ N 132

CORBA Tutorial Douglas C. Schmidt

An Example DII Client

/[Get Quoter reference.
Stock::Quoter_var quoter_ref = /[...
CORBA::Long value;

/[Create request object.
CORBA::Request_var request =
qguoter_ref-> request ("get _quote");

/[Add parameter using insertion operation,
/[which makes a “deep copy” and sets
/I typecode to “unbounded string.”
request->add_in_arg () <<= "IONAY";
request->set_return_type (CORBA::_tc_long);

request->invoke (); // Call method.

/I Retrieve/print value using extraction
/I operator, which makes a *shallow copy.”
if (request->return_value () >>= value)
cout << "Current value of IONA stock: "
<< value << endl;

e The DIl example above is more complicated and
Inefficient than the earlier Sll example

e Www.cs.wustl.edu/~schmidt/report-doc.html has
more information on DI

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Static and Dynamic Skeleton Interface

e The Static Skeleton Interface (SSI) is generated automatically by the
IDL compiler

— The SlI performs the operation demuxing/dispatching and
parameter demarshaling

e The Dynamic Skeleton Interface (DSI) provides analogous
functionality for the server that the DIl provides on the client

— It is defined primarily to build ORB “Bridges”

— The DSI lets server code handle arbitrary invocations on CORBA
objects

— The DSI requires the use of certain POA features

Vanderbilt University —__— 134

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Advanced CORBA Features

Component
(Servant)

in args ’) ’ < w
operation() '_ o 1)
<.| COMPONENT
out args + ,_ " " 8
return ¢ | MIDDLEWARE
m \ E LAYER
SKEL
Container ‘
ORB c DISTRIBUTION
INTERFACE (Object Adapter MIDDLEWARE
LAYER
HOST
INFRASTRUCTURE

MIDDLEWARE LAYER

OS/KERNEL OS/KERNEL

NETWORK
PROTOCOLS

NETWORK
PROTOCOLS

NETWORK NETWORK NETWORK
INTERFACE INTERFACE

www.cs.wustl.edu/~schmidt/corba.html

Features

e Portable Object
Adapter

e Multi-threading

e Implementation
Repository

e CORBA
Component Model

p¥elo

L

Vanderbilt University

135

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of the Portable Object Adapter (POA)

SERVANTS) (SERVAN PortableServer Interfaces
SERVANTS) SERVANTS
SERVANTS e POA
e POAManager
OBJECT ID b
[OBJECT 1D J ® Servant
ORIECT 1D \ —— / e POA Polices
OBJECT ID PO A .
OBJECT D Root | e Servant activators and servant
ACTIVE OBJECT MAP POA locators
g OBJECT ADAPTER /) e POACurrent

ORB CORE e AdapterActivator

I/0 SUBSYSTEM

DC-C
Vanderbilt University - N 136

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Design Goals of the Portable Object Adapter

e Servants that are portable between ORBs

e Objects with persistent & transient identities

e Transient objects with minimal programming effort and overhead
e Transparent activation & deactivation of servants

e Implicit and explicit servant activation

e A single servant can support multiple object identities

e Multiple (nested) instances of the POA in a server process

e POA behavior is dictated by creation policies

e Servants can inherit from skeletons or use DSI

PRGHO

Vanderbilt University bt Ve’ N 137

CORBA Tutorial

Douglas C. Schmidt

The POA Architecture

[poAA)
/ SERVANT
default servant
POA Manager
dv_ Active Object Map// SERVANT
; T Object Id O]
. Object Ild O——4
; Object Id O » SERVANT
: Objectld O+ 1~
L 4 S J
ROOtPOA }-------- > POAB) /Q?s/zttirr
Active Object Map adapter activator|
Object Id Servant
. servant | _{--~ Activator
/ activator
SERVANT Active Object Map | gy SERVANT
Object Id O
Object Id O »{ SERVANT
Legend | Object Id &j\‘ SERVANT
Object reference :
"""" > \ Servant
Pointer K ‘ Locator
N v
User definec P - - - POA C
object POA Manager servant
POA object locator
o S+ CMails
Vanderbilt University bt N’ N

CORBA Tutorial

Douglas C. Schmidt & Bala Natarajan

Object Lifecycle for a POA

zarvani =arvani CORBA zarvani
incar nafian incarnation Dhlﬂﬂt incarnatian
ACTIVATED
| | |
=zaryani zarvani zarvani
atharealizalion alharaalizalian aiharealizalion

7 4

=zarvani
incarnalion

zarvan
atharaalizalion

7/}

LJ

)\y CORBA u
Object

L
L7

DEACTIVATED
CORBA Objeci CORBA Objeci
creation desiruciion

CORBA
Object

NON-EXISTENT

o BLGT

Vanderbilt University e = 139

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Object IDs

e Object IDs are the value used by the POA and by the ORB
Implementation to identify particular CORBA objects

— Object ID values may be assigned by the POA or by the
application

— Object ID values are encapsulated by references and hidden from
clients

— Object ID have no standard form; they are managed by the POA
as uninterpreted octet sequences

e An object reference encapsulates an object Id, a POA identity, and
transport profiles

Vanderbilt University S 140

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of POAs

e POAs form a hierarchical namespace for objects in servers

— I.e., a namespace for object ids and child POAs

e Each servant belongs to one POA, but a POA can contain many
servants

e A POA is a manager for object lifecycles, e.g.:

— A factory for creating object refs
— Activates and deactivates objects
— Etherealizes and incarnates servants

e A POA maps client requests to servants

e POA policies specify the characteristics of a child POA when it is
created

Vanderbilt University —__— 141

CORBA Tutorial Douglas C. Schmidt

POA Architecture in UML

1.1 the_parent j 0.
PortableServer:: AdapterActivator PortableServer::POAManager
(from PortableServer) (from PortableServer) PortableServer::POA
unknown_adapter() activate() (from PortableServer)
0..n hold_requests() the_name : string
discard_requests() the_parent : PortableServer::POA
deactivate() the_manager

the_activator

. PortableServer::POAManager
the_activator

: PortableServer::AdapterActivator
the_servant_manager

: PortableServer::ServantM anager

/4

PortableServer::ServantManager | 0..n create POA()
(from PortableServer) ~ find_POA()
the_servant_manager destroy()
| create_thread policy()

0..1| create lifespan_policy()
create_id_uniqueness _poalicy()
PortableServer:: ServantL ocator PortableServer:: ServantActivator create id_assignment_policy()
(from PortableServer) (from PortableServer) create_implicit_activation_policy()
X X create_servant_retention_policy()
pr(;nvokl((e() gt‘ﬁargglt_eo create_request_processing_policy()
postinvo ‘e() erealize() _ 1 get_instance_manager()
| S ’ P set_instance_manager()
y 'S 2 S e
PortableServer::Cookie PortableServer::Servant |~~~ acti_\fgtrc\e/ acr)]b?ect()
(from PortableServer) (from PortableServer)) e activate_object_with_id()
P deactivate_object()
-7 create_referenc
CORBA::Current B PortableServer::Current | -~ Creae—referencgowith id()
(from CORBA Core) (from PortableServer) -7 servant to id)

.7 servant_to_reference()
get_PSA() d 7 reference_to_servant()
get_object_id() - .7 | reference to_id()

e e id_to_servant()
CORBA::PolicyList |1-N CORBA.::Policy Z , id_to_reference()
(from CORBA Core) = O;n (from CORBA Core) ya
- CORBA::Poli " PortableServer::Objectld
At copy() (from PortableServer)
destroy()

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of the POA Manager

C? e Encapsulates the processing
destroy state of associated POAs

@ deactivate e Can dispatch, hold, or discard
requests for the associated

deactivate deactivate P OAS an d d € aCtivate P OA (S)

| discard_requests - . ”
acive) @rdmg — The default state is “holding
| e A POA manager is associated

hold_requests . . .
hold_requests with a POA at creation time and

activate

| cannot be changed after
Holding discard_requests Creation
create_ POA
.
g lr r-"! u r:‘
Vanderbilt University D Y’ N 143

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of POA Policies

e When a POA is created, its behavior can be controlled by up to
seven policies

— ILe., lifespan, ID assignment, ID uniqueness, implicit activation,
request processing, servant retention, and thread policies

e These policies all inherit from the CORBA::Policy interface

module CORBA {
typedef unsigned long PolicyType;
interface Policy {
readonly attribute PolicyType policy type;

Policy copy ();
void destroy ();

I3
typedef sequence<Policy> PolicyList;
...

e The POA interface defines a factory method to create each policy

o PHGHO
Vanderbilt University i 144

CORBA Tutorial Douglas C. Schmidt

Overview of the Active Object Map

e By default, a POA contains an active object map
(AOM)

e The object ID in the object key sent by the client
IS the index into the AOM

T > -
= = =
& | === |3 |SERVANTS
- % % %
T
"8 [SKEL j [SKEL j
E 1 2
w| 2
¥ | =
= | < \RVANT1 SERVANT2 SERVANTNW
o O HEER
ﬁ _ |\OBJECTID{ | OBJECTIDg OBJECT Dy,)
o g ACTIVE OBJECT MAP
(Al
$ V>

org (__ROOT POA)

3= ORBCORE

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Overview of the Root POA

e The Root POA has a preordained set of policies that cannot be
changed:

— The lifespan policy is transient

— The ID assignment policy uses system IDs

— The ID unigueness policy uses unique IDs

— The implicit activation policy is enabled (not default)

— The request processing policy uses an active object map
— The servant retention policy retains servants

— The thread policy gives the ORB control

e |f these policies are inappropriate, you can create your own child

POAs via the PortableServer::POA:.create POA() factory
5 T
Vanderbilt University E-} 4 C " N 146

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Canonical Steps to Obtain the Root POA

/[ORB is “locality constrained”
CORBA::ORB_var orb = CORBA::ORB _init (argc, argv);

/l Root POA is the default POA (locality constrained)
CORBA::Object_var obj =
orb->resolve_initial_references ("RootPOA");

I/l Type-safe downcast.
PortableServer::POA var root_poa
= PortableServer::POA:._narrow (obj.in ());

/I Activate the POA.

PortableServer::POA_Manager_var poa_manager =
root_poa->the POAManager ();

poa_manager->activate ();

Il FMM 2

/I root_poa->the POAManager ()->activate ();

rll 18y r‘
Vanderbilt University B C . 147

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Implicit Activation Policy

e This policy controls whether a servant can be activated implicitly or
explicitly

enum ImplicitActivationPolicyValue {
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION /* DEFAULT * }

interface ImplicitActivationPolicy : CORBA::Policy {
readonly attribute ImplicitActivationPolicyValue value;
}

e When the IMPLICIT_ACTIVATION policy value is used with
RETAIN and SYSTEM_IDpolicy values servants are added to the
AOM by calling _this()

e The NO_IMPLICIT_ACTIVATION policy value requires servants to
be activated via one of the POA::activate object*() calls

o PRGHO
Vanderbilt University bt Ve’ N 148

CORBA Tutorial Douglas C. Schmidt

Implict Activation with System IDs

This example illustrates _this()

interface Quoter { // ... IDL
long get_quote (in string stock name)
raises (Invalid_Stock);

J

/[Auto-generated for use by servants.
class My Quoter : public virtual POA_Stock::Quoter
{
public:
...
CORBA::Long get quote (const char *stock name);

I3
My Quoter *quoter = new My Quoter;

/I FMM 6 -- not transfering the ownership to
I/l PortableServer:.ServantBase var

/I Implicit activation with system ID
CORBA::Object_var objref = quoter->_this ();

PortableServer::POA Manager_var poa_manager =
root_poa->the POAManager ();

poa_manager->activate ();

orb->run ();

Vanderbilt University D :

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of ID Assignment Policy

e This policy controls whether object IDs are created by the ORB or
by an application

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM ID /* DEFAULT */

%

interface IdAssignmentPolicy : CORBA::Policy {
readonly attribute IdAssignmentPolicyValue value;

}

e The USER_ID policy value works best with the
NO_ IMPLICIT_ACTIVATION and PERSISTENTpolicy values

e The SYSTEM IDpolicy value works best with the
IMPLICIT_ACTIVATION and TRANSIENTpolicy values

PRGHO

Vanderbilt University bt Ve’ N 150

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Lifespan Policy

e This policy controls whether object references are transcient or
persistent
enum LifespanPolicyValue {

PERSISTENT,
TRANSIENT /* DEFAULT */

J§

interface LifespanPolicy : CORBA::Policy {
readonly attribute LifespanPolicyValue value;

}

e The PERSISTENTpolicy value works best with the
NO_IMPLICIT_ACTIVATION and USER_ID policy values

e The TRANSIENTpolicy value works best with the
IMPLICIT_ACTIVATION and SYSTEM_IDpolicy values

o PRGHO
Vanderbilt University bt Ve’ N 151

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Creating a Child POA

We use the PortableServer::POA:.create POA() operation to
create a new POA with the USER_ID and PERSISTENTpolicies

/I FMM 4. Not calling length() is a mistake!
CORBA::PolicyList policies (2); policies.length (2);

policies[0] = root_poa->create_id_assignment_policy
(PortableServer::ldAssignmentPolicy::USER_ID);

policies[1] = root_poa->create_lifespan_policy
(PortableServer::LifespanPolicy::PERSISTENT);

PortableServer::POA var child _poa =
root_poa->create POA

("child_poa", I/ New POA name
PortableServer::POAManager::_nil (), // Non-shared POA manager
policies); /I New POA policies

for (CORBA:ULong i = O; i != policies.length (); ++i)

policies[i]->destroy ();

o PRGHO
Vanderbilt University bt Ve’ N 152

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Explicit Activation with User IDs
This example illustrates POA::activate_object with_id()

/[Create a new servant instance.
My Quoter *quoter = new My Quoter;

/| Create a new user-defined object ID for the object.
PortableServer::Objectld _var oid =
PortableServer::string_to Objectld ("my quoter");

/I Activate the object with the new object ID

child_poa->activate_object with_id (oid.in (), quoter);

PortableServer::POA Manager var poa_manager =
child_poa->the_ POAManager ();

poa_manager ()->activate ();

// Run the ORB’s event loop.

orb->run ();

PRGHO

Vanderbilt University bt Ve’ N 153

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Deactivating Objects

e There are certain steps to follow when deactivating objects

void My Quoter::remove (void)
throw (CORBA::SystemEXxception,
CosLifeCycle::LifeCycleObject::NotRemovable);

PortableServer::POA_var poa = this->_default POA ();
PortableServer::Objectld_var oid = poa->servant to id (this);
/[POA calls remove_ref() on servant once all

/| operations are completed

poa->deactivate object (oid.in ());

}

e Calling remove_ref() from the application could destroy the
servant, but the POA has no knowledge of this and could potentially
dispatch calls to the same servant since object entries in the active
object map are still active and they haven’t been invalidated

m.ﬁ!u{?

Vanderbilt University bt N’ Nt 154

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
The Servant Retention Policy

e This policy controls whether a POA has an active object map.

enum ServantRetentionPolicyValue
{ NON_RETAIN, RETAIN /* DEFAULT * };

interface ServantRetentionPolicy : CORBA::Policy {
readonly attribute ServantRetentionPolicyValue value;

}

e The NON_RETAINpolicy value must be used in conjunction with the
request processing policy of either

— USE_DEFAULT_SERVANTn which case the POA delegates

Incoming requests to a default servant (used for DSI)
— USE_SERVANT_ MANAGHRWhich case the POA uses the

Interceptor pattern to determine how to associate a servant with
the request

Vanderbilt University —__— 155

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
POA Policies for Lazy Object Allocation

The following example illustrates how to create references without first

activating objects:

PortableServer::Objectld _var oid =
PortableServer::string_to_Objectld ("my quoter");
CORBA::Object_var obj =
child_poa->create_reference with_id
(oid.in (),
"IDL:Stock/Quoter:1.0"); // Repository ID.

/[l Insert into a name context.
name_context->bind (svc_name, obj.in ());

/I Later the following steps happen:

/I 1. A new My Quoter servant is created

/[2. This object is activated in the child _poa
DHGHO

Vanderbilt University = . 156

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Repository IDs

e An IDL compiler generates a unique repository ID for each identifier
iIn an IDL file

module Stock { /[IDL:Stock:1.0
interface Quoter { // IDL:Stock/Quoter:1.0
long get _quote (in string stock name);
I/l IDL:Stock/Quoter/get_quote:1.0

I3

e YOU can use #pragma prefix to ensure the unigueness of
repository IDs

#pragma prefix "wallstreet.com"
module Stock { /[IDL:wallstreet.com/Stock:1.0
interface Quoter { // IDL:wallstreet.com/Stock/Quoter:1.0
long get _quote (in string stock name);
I/l IDL:wallstreet.com/Stock/Quoter/get_quote:1.0

I3
e You can use #pragma version to change the version number

o PRGHO
Vanderbilt University bt Ve’ N 157

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Servant Managers

e The POA defines servant managers to support the lazy object
allocation approach described above

e A servant manager is an interceptor that incarnates and
etherealizes servants on-demand

e Two types of servant managers are supported

— ServantActivator . which allocates a servant the first time it's

accessed
— ServantLocator . which allocates and deallocates a servant on

each request

e Naturally, each type of servant manager can be selected via POA
policies

Vanderbilt University —__— 158

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
The Request Processing Policy

e This policy controls whether a POA uses an AOM, a default servant,
or “faults in” servants on-demand

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY /* DEFAULT */,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

%

interface RequestProcessingPolicy : CORBA::Policy {
readonly attribute RequestProcessingPolicyValue value;
}

e The USE_ACTIVE _OBJECT_ MAP_ONLpolicy value must be used
In conjunction with the RETAIN servant retention policy

e The USE_DEFAULT_SERVANgolicy value must be used in
conjunction with the MULTIPLE_ID ID uniqueness policy

oG
Vanderbilt University bt Ve’ N 159

CORBA Tutorial Douglas C. Schmidt

Servant Activator Definition
A POA created with RETAIN servant retention
policy and the USE_SERVANT MANAGE#&Rjuest
processing policy uses the servant activator to
“fault In” servants into the POA

typedef ServantBase *Servant;

I/l Skeleton class
namespace POA_PortableServer
{
class ServantActivator
public virtual ServantManager
{
/[Destructor.
virtual “ServantActivator (void);

/I Create a new servant for <id>.
virtual Servant incarnate

(const Objectld &id,

POA ptr poa) = O;

/[<servant> is no longer active in <poa>.
virtual void etherealize

(const Objectld &,

POA _ptr poa,

Servant servant,

Boolean remaining_activations) = O;

Vanderbilt University

CORBA Tutorial

Douglas C. Schmidt

Custom ServantActivator
Definition and Creation

/[Implementation class.
class My Quoter Servant Activator :

public POA_PortableServer::ServantActivator
{

Servant incarnate (const Objectld &oid,
POA ptr poa) {
String_var s =
PortableServer::Objectld _to_string (oid);

if (strcmp (s.in (), "my quoter") == 0)
return new My _ Quoter;
else
throw CORBA::OBJECT _NOT_EXIST ();
}

void etherealize
(const Objectld &oid,
POA ptr poa,
Servant servant,
Boolean remaining_activations) {
if (remaining_activations == 0)
servant->_remove_ref ();

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt

Overview of the String _var Class
String_var Is a “smart pointer” class

class String_var {

public:
/[Initialization and termination methods.
String_var (char *); // Assumes ownership.
String_var (const char *); /[CORBA::string_dup().
I/l ... (assignment operators are similar)
“String_var (); // Deletes the string.

/I Indexing operators.
char &operator[] (CORBA::ULong index);
char operator[] (CORBA::ULong index) const;

/[Workarounds for broken C++ compilers.
const char *in () const;

char *&inout ();

char *&out ();

/I Relinquishes ownership.
char * _retn ();

J

IsStream &operator >> (istream, CORBA::String_var &);
ostream &operator << (ostream,
const CORBA::String_var);

PRGHO
Vanderbilt University e

CORBA Tutorial Douglas C. Schmidt

Servant Locator Definition

A POA created with NON_RETAINservant retention
policy and the USE_SERVANT MANAGE#juest
processing policy uses the servant locator to
create/destroy a servant for each request

namespace POA_PortableServer
{
class ServantLocator :
public virtual ServantManager {
/[Destructor.
virtual “ServantLocator (void);

/[Create a new servant for <id>,
virtual PortableServer::Servant preinvoke
(const PortableServer::Objectld &id,

PortableServer::POA ptr poa,
const char *operation,
PortableServer::Cookie &cookie) = 0;

/[<servant> is no longer active in <poa>.
virtual void postinvoke
(const PortableServer::Objectld &id,
PortableServer::POA ptr poa,
const char *operation,
PortableServer::Cookie cookie,
PortableServer::Servant servant) = 0;

Vanderbilt University

CORBA Tutorial

Douglas C. Schmidt

Custom ServantLocator
Definition and Creation

/l Implementation class.
class My Quoter Servant Locator :
public POA_PortableServer::ServantLocator {
Servant preinvoke
(const PortableServer::Objectld &oid,
PortableServer::POA ptr poa,
const char *operation,
PortableServer::Cookie &cookie) {
CORBA::String_var key =
PortableServer::Objectld _to_string (oid);
Object_State state;
if (database lookup (key, state) == -1)
throw CORBA::OBJECT_NOT_EXIST ();
return new My _ Quoter (&state);

}

void postinvoke
(const PortableServer::Objectld &id,
PortableServer::POA_ptr poa,
const char *operation,
PortableServer::Cookie cookie,
PortableServer::Servant servant) {
database update (servant);
servant->_remove_ref ();

}
1

DRGRO
Vanderbilt University - N

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Registering Servant Locators

PortableServer::Objectld _var oid =
PortableServer::string_to_Objectld ("my quoter");
CORBA::Object_var obj =
poa->create reference with_id (oid.in (),
"IDL:Quoter:1.0");
I/l Insert into a name context.
name_context->bind (svc_name, obj.in ());

My Quoter Servant_Locator *quoter locator =
new My Quoter Servant_ Locator;

// Locality constrained.

ServantLocator_var locator = quoter_locator->_this ();

poa->set_servant_manager (locator.in ());

PortableServer::POA Manager _var poa_manager =
poa->the POAManager ();

poa_manager ()->activate ();

orb->run ();

B o T o
Vanderbilt University -’ N

165

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of Adapter Activators

e Adapter Activator: Callback object used when a request is received
for a child POA that does not exist currently

— The adapter activator can then create the required POA on
demand

B'C!"{:_-: 166

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Additional Information on the POA

e See OMG POA specification for some examples:

— One Servant for all Objects
— Single Servant, many objects and types, using DSI

e See Vinoski/Henning book for even more examples
e See Schmidt/Vinoski C++ Report columns
— www.cs.wustl.edu/~schmidt/report-doc.html
e See TAO release to experiment with working POA examples

— $TAO_ROOT/tests/POA/
— $TAO_ROOT/examples/POA/

Vanderbilt University —__— 167

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Motivation for Concurrency in CORBA

= *5 maxidp? e [everage hardware/software
Icusml\ o read_fds .
WORK S Tem £ — e.g., multi-processors and OS
\ thread support
RZV ?JF;K T RZVQ%RE};T%R&%F;ET
S el [e Increase performance
el E=—=])
(1) ITERATIVE SERVER — e.g., overlap computation and

communication

==/ 0 1 e Improve response-time
ICLlENTl i-» H—> H-» H—> i
work _\ | ; % ; % — e.g., GUIs and network servers
,,,,, l____1 \,1“,,,1 \,,\,,J . .
o T e, e Simplify program structure

Mlcuem l

ICLIENT l

— e.g., sync vs. async

=N R

(2) CONCURRENT SERVER

Vanderbilt University 168

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Overview of the Thread Policy

e This policy controls whether requests are dispatched serially (i.e.,
single-threaded) or whether they are dispatched using an
ORB-defined threading model

enum ThreadPolicyValue
{ SINGLE_ THREAD_MODEL, ORB_CTRL _MODEL /* DEFAULT */ };

interface ThreadPolicy : CORBA::Policy {
readonly attribute ThreadPolicyValue value;

}

e The SINGLE THREAD MODHmolicy value serializes all requests
within a particular POA (but not between POAs, so beware of
“servant sharing”...)

e The ORB_CTRL_MODHtan be used to allow the ORB to select the
type of threading model and synchronization for a particular POA
(which is not very portable, of course...)

oG
Vanderbilt University bt Ve’ N 169

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Threading in TAO

e An application can choose to ignore threads and if it creates none, it
need not be thread-safe

e TAO can be configured with various concurrency strategies:

— Reactive (default)

— Thread-per-Connection
— Thread Pool

— Thread-per-Endpoint

e TAO also provides many locking strategies

— TAO doesn’t automatically synchronize access to application
objects

— Therefore, applications must synchronize access to their own
objects

Vanderbilt University —__— 170

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

TAO Multi-threading Examples

e Each example implements a concurrent CORBA stock quote service
— Show how threads can be used on the server
e The server is implemented in two different ways:

1. Thread-per-Connection — Every client connection causes a new
thread to be spawned to process it

2. Thread Pool — A fixed number of threads are generated in the
server at start-up to service all incoming requests

e Note that clients are unaware which concurrency model is being
used...

Vanderbilt University —__— 171

CORBA Tutorial Douglas C. Schmidt

TAQ'’s Thread-per-Connection
Concurrency Architecture

Client
3 3 3 o__inargs Object
7 3 7 oBJ | operation() (Servant)
REF)

out args +
9 O

return
IDL
SKEL

IDL
STUBS ‘ Object Adapter
orb->run()
ORB CORE ?7733’5 ?
111

Pros Cons
e Simple to e EXxcessive overhead for

Implement and short-duration requests

efficient for
long-duration
requests

e Permits unbounded
number of concurrent
requests

PRGHO

Vanderbilt University L7 '\’

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Thread-per-Connection Main Program
Server creates a Quoter _Factory and waits in ORB’s event loop

int main (void) {
ORB_Manager orb_manager (argc, argv);

const char *factory name = "my quoter factory";

I/l Create servant (registers with rootPOA and Naming Service).
My Quoter_ Factory *factory =

new My Quoter Factory (factory name);
/I Transfer ownership to smart pointer.
PortableServer::ServantBase _var xfer (factory);

/I Block indefinitely dispatching upcalls.
orb_manager.run ();
/[After run() returns, the ORB has shutdown.

}
The ORB’s svc.conf file

static Advanced_ Resource Factory "-ORBReactorType select mt"
static Server_Strategy Factory "-ORBConcurrency thread-per-connection”

rfl 8y r‘
Vanderbilt University B C . 173

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Thread-per-Connection Quoter Interface

Implementation of the Quoter IDL interface

typedef u long COUNTER; // Maintain request count.
class My Quoter : virtual public POA Stock::Quoter

public:
My Quoter (void *state); // Constructor.

/l Returns the current stock value.
long get _quote (const char *stock name)
throw (CORBA::SystemException, Quoter::InvalidStock);

void remove (void)
throw (CORBA::SystemException,
CosLifeCycle::LifeCycleObject::NotRemovable);
private:
ACE_Thread Mutex lock ; // Serialize access to database.
static COUNTER req_ count /[Maintain request count.
CORBA::String_var last quote /[The last symbol looked up.

I3
RGO
Vanderbilt University - N 174

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Thread-per-Connection Quoter Implementation

Implementation of multi-threaded Quoter callback invoked by the
CORBA skeleton

long My _ Quoter::.get_quote (const char *stock _name) {
ACE_GUARD_RETURN (ACE_Thread Mutex, g, lock , -1);

++My_Quoter::;req_count_; // Increment the request count.

/[Obtain stock price (beware...).
long value =

Quote_Database::instance ()->lookup_stock price (stock name);

if (value == -1)
throw Stock::Invalid_Stock (); // Skeleton handles exceptions.

last_quote = stock name;
return value;

rll 18y r‘
Vanderbilt University B C . 175

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Thread Pool

e This approach creates a thread pool to amortize the cost of
dynamically creating threads

¢ In this scheme, before waiting for input the server code creates the
following:

1. A Quoter_Factory (as before)
2. A pool of threads based upon the command line input

e Note the use of the ACE_Thread Manager::spawn_n() method
to spawn multiple pool threads

Vanderbilt University —__— 176

CORBA Tutorial Douglas C. Schmidt

TAQO’s Thread Pool
Concurrency Architecture

Client
3 3 3 in args Object
3 3 7 0B \ © operation) > (Servant)
REF) <Llutangs +

O
N return

IDL IDL
STUBS SKEL
Object Adapter
orb->run()) orb->run()) orb->run()
ORB CORE
11|
Pros Cons
e Bounds the number of concurrent e May
requests Deadlock

e Scales nicely for multi-processor
platforms, e.g., permits load balancing

mr{:!uﬁ

Vanderbilt University St

CORBA Tutorial Douglas C. Schmidt

Thread Pool Main Program

int main (int argc, char *argv[]) {

try {
ORB_Manager orb_manager (argc, argv);

const char *factory name = "my quoter factory";

/I Create the servant, which registers with
/I the rootPOA and Naming Service implicitly.
My Quoter_Factory *factory =

new My_Quoter_Factory (factory_name);
/[Transfer ownership to smart pointer.
PortableServer::ServantBase var xfer (factory);

int pool_size = // ..

/I Create a thread pool.

ACE_Thread Manager::instance ()->spawn_n
(pool_size,
&run_orb,
(void *) orb _manager.orb ());

/I Block indefinitely waiting for other

/I threads to exit.

ACE_Thread Manager::instance ()->wait ();

/[After run() returns, the ORB has shutdown.
} catch (...) { /* handle exception ... */ }

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt

Thread Pool Configuration

The run_orb() adapter function

void run_orb (void *arg)

{

try {
CORBA::ORB _ptr orb =

ACE_static_cast (CORBA::ORB_ptr, arg);

I/l Block indefinitely waiting for incoming
I/l invocations and dispatch upcalls.
orb->run ();

/[After run() returns, the ORB has shutdown.
} catch (...) { /* handle exception ... */ }

}
The ORB’s svc.conf file

static Resource_ Factory "-ORBReactorType tp"

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Additional Information on CORBA Threading

e See Real-time CORBA 1.0 specification
— Now adopted as part of CORBA specifications
e See our papers on CORBA Threading

— www.cs.wustl.edu/~schmidt/PDF/CACM-arch.pdf
— www.cs.wustl.edu/~schmidt/PDF/RTAS-02.pdf

— www.cs.wustl.edu/~schmidt/PDF/RT-perf.pdf

— www.cs.wustl.edu/~schmidt/PDF/COQOTS-99.pdf
— www.cs.wustl.edu/~schmidt/PDF/orc.pdf

— www.cs.wustl.edu/~schmidt/report-doc.html

e See TAO release to experiment with working threading examples

— $TAO ROOT/tests/

Vanderbilt University —__— 180

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Implementation Repository

e Allows the ORB to activate servers to process operation invocations
e Store management information associated with objects

— e.g., resource allocation, security, administrative control, server
activation modes, etc.

e Primarily designed to work with persistent object references

e From client’s perspective, behavior is portable, but administrative
details are highly specific to an ORB/OS environment

— I.e., not generally portable

e Www.cs.wustl.edu/~schmidt/PDF/binding.pdf

Vanderbilt University —__— 181

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Typical Implementation Repository Use-case

1. some_request

iiop ://ringil:5000/poa_name/object_name
4. LOCATION_FORWARD

poa_name server.exe ringil:5500

iiop ://ringil:5500/poa_name/object_name

airplane_poa | plane.exe ringil:4500

2. ping
3. is_running
2.1 start

5. some_request

6. some_response

DG
Vanderbilt University - N 182

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Server Activation via Implementation Repository

e If the server isn’t running when a client invokes an operation on an
object it manages, the Implementation Repository automatically
starts the server

e Servers can register with the Implementation Repository

— e.g., In TAO
% tao _imr add airplane_poa -c "plane.exe"

e Server(s) may be installed on any machine

e Clients may bind to an object in a server by using the Naming
Service or by explicitly identifying the server

-G

Vanderbilt University B - Ve 183

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Server Activation Modes

e An idle server will be automatically launched when one of its objects
IS invoked

e TAO’s Implementation Repository supports four types of activation

1. Normal — one server, started if needed but not running

2. Manual — one server, will not be started on client request, i.e.,
pre-launched

3. Per-client call — one server activated for each request to the
Implementation Repository

4. Automatic — like normal, except will also be launched when the
Implementation Repository starts

Vanderbilt University —__— 184

CORBA Tutorial

Douglas C. Schmidt & Bala Natarajan

The CORBA Component Model

Oﬁ Home ﬁ\atlelffe;cct? Oﬁ Home Callback . Featu reS

Interface§

1 I
1 1
O CORBA 7 1
External COMPONENT] 7

Interfaces

~HO=<- O CORBA | (-
|/ Extemnal COMPONENT| /
: -O=

Interfaces

I il

Internal

Interfaces |POA Internal POA

Interfaces

Container

T 99

ORB

Container

Transactions Persistent

Security Notification

~schmidt/PDF/CBSE.pdf

Navigation among
Interfaces supported by
components
Standardized
system-component
Interaction

Standardized component
life-cycle management
Component
Interconnections
Standardized component
configuration
Standardized ORB
services interfaces

m.ﬁ!u{?

Vanderbilt University e

185

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Evaluating CORBA

INTERFACE IDL IMPLEMENTATION Criteria
REPOSITORY COMPILER REPOSITORY _
_ e Learning curve
in args
i OBJECT T
CLIENT (oBJ) _ ©peration() e Interoperabilit
REFJ out args + return value (SERVANT) p y
+—0 .y
/ e Portability
IDL
IDL skeLeton || PS! e Feature
DIl ORB .
STUBS R (Limitations

e Performance

GIOP/IIOP/ESIOPS

QSTANDARD LANGUAGE MAPPING

ORB CORE

QSTANDARD INTERFACE

() ORB-speciFic INTERFACE () STANDARD PROTOCOL

www.cs.wustl.edu/~schmidt/corba.html

D-O-C 186

L —

Vanderbilt University

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Learning Curve

e CORBA introduces the following:

1. New concepts
— e.g., object references, proxies, and object adapters
2. New components and tools
— e.g., interface definition languages, IDL compilers, and
object-request brokers
3. New features
— e.g., exception handling and interface inheritance

e Time spent learning this must be amortized over many projects

Vanderbilt University —__— 187

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Interoperability

e The first CORBA 1 spec was woefully incomplete with respect to
interoperability

— The solution was to use ORBs provided by a single supplier

e CORBA 2.x defines a useful interoperability specification
— Later extensions deal with portability issues for server
x I.e., the POA spec
e Most ORB implementations now support IIOP or GIOP robustly...

— However, higher-level CORBA services aren’'t covered by ORB
Interoperability spec...

Vanderbilt University —__— 188

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Portability

e To Improve portability, the latest CORBA specification standardizes

— IDL-to-C++ language mapping

— Naming service, event service, lifecycle service
— ORSB initialization service

— Portable Object Adapter API

— Servant mapping

— Server thread pools (Real-time CORBA)

e Porting applications from ORB-to-ORB is greatly simplified by
corbaconf

— http://corbaconf.kiev.ua

Vanderbilt University —__— 189

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Feature Limitations (1/3)

e Standard CORBA doesn’t yet address all the “inherent” complexities
of distributed computing, e.g.,

— Latency
— Causal ordering
— Deadlock

e |t does address

— Service partitioning
— Fault tolerance
— Security

Vanderbilt University B 4 190

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Feature Limitations (2/3)

e All ORBs support the following semantics:

— Object references are passed by-reference
x However, all operations are routed to the originator

— C-style structures and discriminated unions may be passed
by-value

x However, these structures and unions do not contain any
methods

e Older ORBs didn’t support passing objects-by-value (OBV)

— However, CORBA 2.3 OBV spec. defines a solution for this and
many ORBs now implement it

e If OBV is not available, objects can be passed by value using
hand-crafted “factories” (tedious)

PHGRO

Vanderbilt University . . 191

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Feature Limitations (3/3)

e Many ORBs do not yet support AMI and/or standard CORBA
timeouts

— However, these capabilities are defined in the OMG Messaging
and are implemented by ORBs like TAO and Orbix 2000

Specification
e Most ORBs do not yet support fault tolerance

— This was standardized by the OMG recently, however
— www.omg.org/techprocess/meetings/schedule/Fault_Tolerance _-RFP.html

e \ersioning is supported in IDL via pragmas

— Unlike Sun RPC or DCE, which include in language

o PRGHO
Vanderbilt University bt Ve’ N 192

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Performance Limitations

e Performance may not be as good as hand-crafted code for some
applications due to

— Additional remote invocations for naming

— Marshaling/demarshaling overhead

— Data copying and memory management

— Endpoint and request demultiplexing

— Context switching and synchronization overhead

e Typical trade-off between extensibility, robustness, maintainability —
micro-level efficiency

e Note that a well-crafted ORB may be able to automatically optimize
macro-level efficiency

Vanderbilt University —__— 193

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

CORBA Implementations

e Many ORBs are now available

— Orbix2000 and ORBacus from IONA

— VisiBroker from Borland

— BEA Web Logic Enterprise

— Component Broker from IBM

— e*ORB from PrismTech and ORB Express from OIS

— Open-source ORBs — TAO, JacORB, omniORB, and MICO

e In theory, CORBA facilitates vendor-independent and
platform-independent application collaboration

— In practice, heterogeneous ORB interoperability and portability
still an issue...

Vanderbilt University —__— 194

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

CORBA Services

e Other OMG documents (e.g., COSS) specify higher level services

— Naming service
x Mapping of convenient object names to object references

— Event service
x Enables decoupled, asynchronous communication between

objects
— Lifecycle service
+ Enables flexible creation, copy, move, and deletion operations

via factories

e Other CORBA services include transactions, trading, relationship,
security, concurrency, property, A/V streaming, etc.

Vanderbilt University S 195

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan

Summary of CORBA Features

e CORBA specifies the following functions to support an Object
Request Broker (ORB)

— Interface Definition Language (IDL)

— A mapping from IDL onto C++, Java, C, COBOL, etc.

— A Static Invocation Interface, used to compose operation requests
via proxies

— A Dynamic Invocation Interface, used to compose operation
requests at run-time

— Interface and Implementation Repositories containing meta-data
gueried at run-time

— The Portable Object Adapter (POA), allows service programmers
to interface their code with an ORB

Vanderbilt University S 196

CORBA Tutorial Douglas C. Schmidt & Bala Natarajan
Concluding Remarks

e Additional information about CORBA is available on-line at the
following WWW URLSs

— Doug Schmidt's CORBA page

x Www.cs.wustl.edu/~schmidt/corba.html
— OMG’s WWW Page

* WwWw.omg.org/corba/
— CETUS CORBA Page

x WwWW.cetus-links.org/oo_corba.html

Vanderbilt University S 197

