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Abstract

The goal of this paper is to illustrate how frameworks and pat-
terns address complexities that arise in the design and imple-
mentation of high-performance distributed software systems.
These complexities are bothinherent(e.g., latency reduction
and throughput preservation), andaccidental(e.g., the contin-
uous reinvention of key concepts and components). This pa-
per explains how complexities occurring in the development
of high-performance Web servers can be alleviated with the
use of design patterns and object-oriented application frame-
works. These techniques were applied to the development
our high-performance adaptive Web server framework, JAWS.
JAWS exemplifies how a framework can remain flexible with-
out sacrificing performance.

1 Applying Patterns and Frameworks
to Web Servers

Developers of Web servers strive to build fast, scalable, and
configurable systems. This paper describes some common pit-
falls encountered by these developers and how to avoid these
pitfalls. Common pitfalls include (1) coping with tedious and
error-prone low-level programming details, (2) lack of porta-
bility, and (3) the complexity of navigating the wide range of
server design alternatives. By carefully utilizing patterns and
frameworks, these hazards can be avoided, by allowing devel-
opers to leverage reuse of design and code.

1.1 Common Pitfalls of Developing Web Server
Software

Web servers perform the following tasks: connection estab-
lishment, service initialization, event demultiplexing, event
handler dispatching, interprocess communication, memory
management and file caching, static and dynamic component
configuration, concurrency, synchronization, and persistence.
In most Web servers, these tasks are implemented in anad hoc
manner using low-level native OS application programming
interfaces (APIs), such as Win32 or UNIX/POSIX, which are
written in C.

Unfortunately, native OS APIs are not an effective way to
develop Web servers or other types of communication middle-
ware and applications [1]. The following are common pitfalls
associated with the use of native OS APIs:

Excessive low-level details: Building Web servers with na-
tive OS APIs requires developers to have intimate knowl-
edge of low-level OS details. Developers must carefully track
which error codes are returned by each system call and handle
these OS-specific problems in their servers. Such details di-
vert attention from the broader, more strategic issues, such as
protocol semantics and server structure. For example, UNIX
developers who use thewait system call must distinguish be-
tween return errors due to no child processes being present and
errors from signal interrupts. In the latter case, thewait must
be reissued.

Reinvention of incompatible programming abstractions:
A common remedy for the excessive level of detail with OS
APIs is to define higher-level programming abstractions. For
instance, many Web servers create a file cache to avoid ac-
cessing the filesystem for each client request. However, these
types of abstractions are often rediscovered and reinvented in-
dependently by each developer or project. Thisad hocdevel-
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opment process hampers productivity and creates incompati-
ble components that are not readily reusable within and across
projects.

High potential for errors: Programming to low-level OS
APIs is tedious and error-prone due to their lack of type-
safety. For example, most Web servers are programmed with
the Socket API [2]. However, endpoints of communication
in the Socket API are represented as untyped handles. This
increases the potential for subtle programming mistakes and
run-time errors.

Lack of portability: Low-level OS APIs are notoriously
non-portable, even across releases of the same OS. For in-
stance, implementations of the Socket API on Win32 plat-
forms (WinSock) are subtly different than on UNIX plat-
forms. Moreover, even WinSock implementations on differ-
ent versions of Windows NT possess incompatible timing-
related bugs that cause sporadic failures when performing non-
blocking connections.

Steep learning curve: Due to the excessive level of detail,
the effort required to master OS-level APIs can be very high.
For instance, it is hard to learn how to program POSIX asyn-
chronous I/O [3] correctly. It is even harder to learn how to
write a portableapplication using asynchronous I/O mecha-
nisms since they differ widely across OS platforms.

Inability to handle increasing complexity: OS APIs define
basic interfaces to mechanisms like process and thread man-
agement, interprocess communication, file systems, and mem-
ory management. However, these basic interfaces do not scale
up gracefully as applications grow in size and complexity. For
instance, a typical UNIX process allows a backlog of only�7
pending connections [4]. This number is inadequate for heav-
ily accessed Web servers that process hundreds of simultane-
ous clients.

1.2 Overcoming Web Server Pitfalls with Pat-
terns and Frameworks

Software reuse is a a widely touted method of reducing devel-
opment effort. Reuse leverages the application domain knowl-
edge and prior effort of experienced developers. When ap-
plied effectively, reuse can avoid recreating and revalidating
common solutions to recurring application requirements and
software design challenges.

Java’sjava.lang.net and RogueWaveNet.h++ are
two common examples of applying reusable OO class libraries
to communication software. Although class libraries effec-
tively support component reuse-in-the-small, their scope is
overly constrained. In particular, class libraries do not capture
the canonical control flow and collaboration among families
of related software components. Thus, developers who apply

class library-based reuse often reinvent and reimplement the
overall software architecture and much of the control logic for
each new application.

A more powerful way to overcome the pitfalls described
above is to identify thepatterns that underlie proven Web
servers and to reify these patterns inobject-oriented applica-
tion frameworks[5]. Patterns and frameworks help alleviate
the continual rediscovery and reinvention of key Web server
concepts and components by capturing solutions to common
software development problems [6].

The benefits of patterns for Web servers: Patterns doc-
ument the structure and participants in common Web server
micro-architectures. For instance, the Reactor [7] and Active
Object [8] patterns are widely used as Web server dispatching
and concurrency strategies, respectively.

Traditionally, these types of patterns have either been locked
in the heads of the expert developers or buried deep within
the source code. Allowing this valuable information to reside
only in these locations is risky and expensive. For instance,
the insights of experienced Web server designers will be lost
over time if they are not documented. Therefore, capturing
and documenting Web server patterns explicitly is essential to
preserve design information for developers who enhance and
maintain existing software.

The benefits of frameworks for Web servers: Knowledge
of patterns helps to reduce development effort and mainte-
nance costs. However, reuse of patterns alone is not sufficient
to create flexible and efficient Web server software. While pat-
terns enable reuse of abstract design and architecture knowl-
edge, abstractions documented as patterns do not directly yield
reusable code [9]. Frameworks help developers avoid costly
reinvention of standard Web server components by implement-
ing common design patterns and factoring out common imple-
mentation roles.

1.3 Relationship Between Frameworks, Pat-
terns, and Other Reuse Techniques

Frameworks provide reusable software components for appli-
cations by integrating sets of abstract classes and defining stan-
dard ways that instances of these classes collaborate [10]. In
general, the components are not self-contained, since they usu-
ally depend upon functionality provided by other components
within the framework. However, the collection of these com-
ponents forms a partial implementation,i.e., an application
skeleton.

The scope of reuse in a Web server framework can be sig-
nificantly larger than using traditional function libraries or OO
class libraries of components. In particular, the JAWS frame-
work described in Section 2 is tailored for a wide range of Web
server tasks. These tasks include service initialization, error
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handling, flow control, event processing, file caching, concur-
rency control, and prototype pipelining. It is important to rec-
ognize that these tasks are also reusable for many other types
of communication software.

In general, frameworks and patterns enhance reuse tech-
niques based on class libraries of components in the following
ways.

Frameworks define “semi-complete” applications that em-
body domain-specific object structures and functionality:
Class libraries provide a relatively small granularity of reuse.
For instance, the classes in Figure 1 are typically low-level,
relatively independent, and general-purpose components like
Strings, complex numbers, arrays, and bit sets.
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Figure 1: Class Library Component Architecture

In contrast, components in a framework collaborate to pro-
vide a customizable architectural skeleton for a family of re-
lated applications. Complete applications can be composed by
inheriting from and/or instantiating framework components.
As shown in Figure 2, frameworks reduce the amount of
application-specific code since much of the domain-specific
processing is factored into generic framework components.

Frameworks are active and exhibit “inversion of control”
at run-time: Class library components generally behave
passively. In particular, class library components often per-
form their processing by borrowing the thread(s) of control
from application objects that are “self-directed.”

The typical structure and dynamics of applications built
with class libraries and components is illustrated in Figure 1.
This figure also illustrates how design patterns can help guide
the design, implementation, and use of class library compo-
nents. Note, that the existence of class libraries, while provid-
ing tools to solve particular tasks (e.g., establishing a network
connection) do not offer explicit guidance to system design.

In contrast to class libraries, components in a framework
are moreactive. In particular, they manage the canonical flow
of control within an application via event dispatching patterns
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Figure 2: Application Framework Component Architecture

like Reactor [7] and Observer [6]. The callback-driven run-
time architecture of a framework is shown in Figure 2.

Figure 2 illustrates a key characteristic of a framework: its
“inversion of control” at run-time. Inversion of control al-
lows the framework, rather than each application, to deter-
mine which set of application-specific methods to invoke in
response to external events (such as HTTP connections and
data arriving on sockets). As a result, the framework reifies
an integrated set of patterns, which are pre-applied into col-
laborating components. This design reduces the burden for
software developers.

In practice, frameworks, class libraries, and components are
complementary technologies [5]. Frameworks often utilize
class libraries and components internally to simplify the devel-
opment of the framework. For instance, portions of the JAWS
framework use the string and vector containers provided by
the C++ Standard Template Library [11] to manage connec-
tion maps and other search structures. In addition, application-
specific callbacks invoked by framework event handlers fre-
quently use class library components to perform basic tasks
such as string processing, file management, and numerical
analysis.

2 The JAWS Web Server Framework

Figure 3 illustrates the major structural components and design
patterns that comprise the JAWS Adaptive Web Server (JAWS)
framework. JAWS is designed to allow the customization of
various Web server strategies in response to environmental
factors. These factors includestatic factors (e.g., number of
available CPUs, support for kernel-level threads, and availabil-
ity of asynchronous I/O in the OS), as well asdynamicfactors
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Figure 3: Architectural Overview of the JAWS Framework

(e.g., Web traffic patterns and workload characteristics).

2.1 Components and Patterns in JAWS

JAWS is structured as aframework of frameworks. The over-
all JAWS framework contains the following components and
frameworks: anEvent Dispatcher, Concurrency Strategy, I/O
Strategy, Protocol Pipeline, Protocol Handlers, andCached
Virtual Filesystem. Each framework is structured as a set of
collaborating objects implemented using components in ACE
[12]. The collaborations among JAWS components and frame-
works are guided by a family of patterns, which are listed
along the borders in Figure 3. An outline of the key frame-
works, components, and patterns in JAWS is presented below.1

notifies

Acceptor

accept()
peer_acceptor_

Protocol Handler
create

+ activate
Protocol Handler
peer_stream_
open()

ConcurrencyEvent Dispatcher

Task

Figure 4: Structure of the Acceptor Pattern in JAWS

Event Dispatcher: This component is responsible for coor-
dinating JAWS’Concurrency Strategywith its I/O Strategy.

1Due to space limitations it is not possible to describe each pattern in de-
tail. The references provide additional information on each pattern mentioned
below.

As illustrated in Figure 4, the passive establishment of con-
nection events with Web clients follows theAcceptorpattern
[13]. New incoming HTTP request events are serviced by a
concurrency strategy. As events are processed, they are dis-
patched to theProtocol Handler, which is parameterized by
an I/O strategy. JAWS ability to dynamically bind to a par-
ticular concurrency strategy and I/O strategy from a range of
alternatives follows theStrategypattern [6].

snmp_request()
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Resource Representation

Protocol Pipeline

ftp_request()

for (;;) {

}

m = aq->remove();
dispatch(m);

http_request()

Scheduler

aq->insert(http)

Protocol Handler
http_request()

snmp_request()
ftp_request()

Activation Queue
insert()
remove()

Method Object
delegates

Figure 5: Structure of the Active Object Pattern in JAWS

Concurrency Strategy: This framework implements con-
currency mechanisms (such as single-threaded, thread-per-
request, or thread pool) that can be selected adaptively at
run-time using theState pattern [6] or pre-determined at
initialization-time. TheService Configuratorpattern [14] is
used to configure a particular concurrency strategy into a
Web server at run-time. When concurrency involves multi-
ple threads, the strategy creates protocol handlers that follow
theActive Objectpattern [8]. This is illustrated in Figure 5.

I/O Strategy: This framework implements various I/O
mechanisms, such as asynchronous, synchronous and reac-
tive I/O. Multiple I/O mechanisms can be used simultaneously.
In JAWS, asynchronous I/O is implemented using theAsyn-
chronous Completion Token[15] pattern andProactor [16]
pattern, as illustrated in Figure 6. Reactive I/O is accom-
plished through theReactorpattern [7]. Reactive I/O utilizes
theMementopattern [6] to capture and externalize the state of
a request so that it can be restored at a later time.

Protocol Handler: This framework allows system develop-
ers to apply the JAWS framework to a variety of Web system
applications. AProtocol Handleris parameterized by a con-
currency strategy and an I/O strategy. These strategies are de-
coupled from the protocol handler using theAdapter[6] pat-
tern. In JAWS, this component implements the parsing and
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Figure 6: Structure of the Proactor Pattern in JAWS

handling of HTTP/1.0 request methods. The abstraction al-
lows for other protocols (such as HTTP/1.1, DICOM, and SFP
[17]) to be incorporated easily into JAWS. To add a new pro-
tocol, developers simply write a newProtocol Handlerimple-
mentation, which is then configured into the JAWS framework.

Protocol Pipeline: This framework allows filter operations
to be incorporated easily with the data being processed by the
Protocol Handler. This integration is achieved by employing
the Adapter pattern. Pipelines follow thePipes and Filters
pattern [18] for input processing. Pipeline components can be
linked dynamically at run-time using theService Configurator
pattern, as shown in Figure 7.

Cached Virtual Filesystem: This component improves
Web server performance by reducing the overhead of filesys-
tem access. Various caching strategies, such as LRU, LFU,
Hinted, and Structured, can be selected following theStrategy
pattern [6]. This allows different caching strategies to be pro-
filed and selected based on their performance. Moreover, opti-
mal strategies to be configured statically or dynamically using
the Service Configuratorpattern, as shown in Figure 7. The
cache for each Web server is instantiated using theSingleton
pattern [6].

Tilde Expander: This component is another cache compo-
nent that uses a perfect hash table [19] that maps abbrevi-
ated user login names (e.g.,�schmidt ) to user home direc-
tories (e.g., /home/cs/faculty/schmidt ). When per-
sonal Web pages are stored in user home directories, and user
directories do not reside in one common root, this component
substantially reduces the disk I/O overhead required to access
a system user information file, such as/etc/passwd . By
virtue of theService Configuratorpattern, the Tilde Expander
can be unlinked and relinked dynamically into the server when
a new user is added to the system.
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LRU Strategy LFU Strategy

Protocol Pipeline

Filter Repository

Cache Strategy Repository

Service
init()
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suspend()
resume()
info()

Filecache

Protocol Handler

...

FilterRead Request

Parse Request Log Request
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Figure 7: The Service Configurator Pattern in JAWS

2.2 JAWS Web Server Performance

Our research [20, 21] demonstrates that it is possible to im-
prove server performance through superior server design (a
similar observation was made in [22]). Thus, while a “hard-
coded” server,i.e., one that uses fixed concurrency, I/O, and
caching strategies, can provide excellent performance, a flex-
ible server framewor like JAWS need necessarily not perform
poorly.

Figure 8 below illustrates how the flexible nature of the
JAWS framework enables it to adapt from its baseline perfor-
mance to perform as well as, and in some cases better than,
state of the art commercial Web servers produced by Zeus and
Netscape. We achieved this level of performance through sys-
tematic benchmarking of different configurations of JAWS un-
der different server load conditions. We then selected the com-
bination of features that yielded the best overall performance
[21].

3 Concluding Remarks

Computing power and network bandwidth has increased dra-
matically over the past decade. However, the development of
high-performance Web servers has remained expensive and
error-prone. Much of the cost and effort stems from the re-
peated rediscovery and reinvention of fundamental design pat-
terns and framework components. Moreover, the growing het-
erogeneity of hardware architectures and diversity of OS and
network platforms makes it hard to build correct, portable, and
efficient Web servers from scratch.

In general, OO application frameworks and patterns help
to reduce the cost and improve the quality of communication
software [23]. In the context of Web servers, these benefits
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Figure 8: Comparative Performance for JAWS

accrue from leveraging proven software designs and reusable
components that can be customized to meet new application
requirements.

The JAWS framework described in this article exemplifies
how high-performance Web server software development can
be simplified and unified. One measure of success of the
JAWS framework is illustrated by the fact that it outperforms
other commercial and non-commercial Web servers. Com-
mercial Web servers, such as Netscape Enterprise and Zeus,
provide excellent performance, but their techniques for do-
ing so remain behind the veils of proprietary software. Free
Web servers, such as Apache and PHTTPD, provide good per-
formance but the lack the architectural reuse that the JAWS
framework provides.

The JAWS framework is freely available at
www.cs.wustl.edu/ �schmidt/ACE.html . This
URL contains complete source code, documentation, and
further technical information on JAWS.
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