
Single & Multiple Inheritance in C++

Douglas C. Schmidt
Professor Department of EECS
d.schmidt@vanderbilt.edu Vanderbilt University
www.dre.vanderbilt.edu/�schmidt/ (615) 343-8197

Douglas C. Schmidt OO Programming with C++

Background

� Object-oriented programming is often defined as the combination of
Abstract Data Types (ADTs) with Inheritance & Dynamic Binding

� Each concept addresses a different aspect of system
decomposition:

1. ADTs decompose systems into two-dimensional grids of modules
– Each module has public & private interfaces

2. Inheritance decomposes systems into three-dimensional
hierarchies of modules
– Inheritance relationships form a lattice

3. Dynamic binding enhances inheritance
– e.g., defer implementation decisions until late in the design

phase or even until run-time!

Copyright c
1997-2006 Vanderbilt University 1

Douglas C. Schmidt OO Programming with C++

Data Abstraction vs. Inheritance

DATA ABSTRACTION

(2 DIMENTIONAL)
DATA ABSTRACTION

(2 DIMENTIONAL)

INHERITANCE

(3 DIMENTIONAL)

Copyright c
1997-2006 Vanderbilt University 2

Douglas C. Schmidt OO Programming with C++

Motivation for Inheritance
� Inheritance allows you to write code to handle certain cases &

allows other developers to write code that handles more specialized
cases, while your code continues to work

� Inheritance partitions a system architecture into semi-disjoint
components that are related hierarchically

� Therefore, we may be able to modify and/or reuse sections of the
inheritance hierarchy without disturbing existing code, e.g.,

– Change sibling subtree interfaces

� i.e., a consequence of inheritance
– Change implementation of ancestors

� i.e., a consequence of data abstraction

Copyright c
1997-2006 Vanderbilt University 3

Douglas C. Schmidt OO Programming with C++

Inheritance Overview

� A type (called a subclass or derived type) can inherit the
characteristics of another type(s) (called a superclass or base type)

– The term subclass is equivalent to derived type

� A derived type acts just like the base type, except for an explicit list
of:

1. Specializations
– Change implementations without changing the base class

interface
– Most useful when combined with dynamic binding

2. Generalizations/Extensions
– Add new operations or data to derived classes

Copyright c
1997-2006 Vanderbilt University 4

Douglas C. Schmidt OO Programming with C++

Visualizing Inheritance

BaseBase

DerivedDerived
11

DerivedDerived
33

DerivedDerived
44

DerivedDerived
22

DerivedDerived
55

DerivedDerived
66

Copyright c
1997-2006 Vanderbilt University 5

Douglas C. Schmidt OO Programming with C++

Types of Inheritance

� Inheritance comes in two forms, depending on number of parents a
subclass has

1. Single Inheritance (SI)
– Only one parent per derived class
– Form an inheritance tree
– SI requires a small amount of run-time overhead when used

with dynamic binding
– e.g., Smalltalk, Simula, Object Pascal

2. Multiple Inheritance (MI)
– More than one parent per derived class
– Forms an inheritance Directed Acyclic Graph (DAG)
– Compared with SI, MI adds additional run-time overhead (also

involving dynamic binding)
– e.g., C++, Eiffel, Flavors (a LISP dialect)

Copyright c
1997-2006 Vanderbilt University 6

Douglas C. Schmidt OO Programming with C++

Inheritance Trees vs. Inheritance DAGs

DerivedDerived
33

DerivedDerived
11

BaseBase

DerivedDerived
44

INHERITANCEINHERITANCE

TREETREE

DerivedDerived
22

DerivedDerived
33

BaseBase
11

DerivedDerived
11

DerivedDerived
44

INHERITANCEINHERITANCE

DAGDAG

BaseBase
22

Copyright c
1997-2006 Vanderbilt University 7

Douglas C. Schmidt OO Programming with C++

Inheritance Benefits
1. Increase reuse & software quality

� Programmers reuse the base classes instead of writing new
classes
– Integrates black-box & white-box reuse by allowing extensibility

and modification without changing existing code

� Using well-tested base classes helps reduce bugs in applications
that use them

� Reduce object code size

2. Enhance extensibility & comprehensibility

� Helps support more flexible & extensible architectures (along with
dynamic binding)
– i.e., supports the open/closed principle

� Often useful for modeling & classifying hierarchically-related
domains

Copyright c
1997-2006 Vanderbilt University 8

Douglas C. Schmidt OO Programming with C++

Inheritance Liabilities

1. May create deep and/or wide hierarchies that are hard to understand
& navigate without class browser tools

2. May decrease performance slightly

� i.e., when combined with multiple inheritance & dynamic binding

3. Without dynamic binding, inheritance has limited utility, i.e., can only
be used for implementation inheritance

� & dynamic binding is essentially pointless without inheritance

4. Brittle hierarchies, which may impose dependencies upon ancestor
names

Copyright c
1997-2006 Vanderbilt University 9

Douglas C. Schmidt OO Programming with C++

Inheritance in C++

� Deriving a class involves an extension to the C++ class declaration
syntax

� The class head is modified to allow a derivation list consisting of
base classes, e.g.,

class Foo { /* . . . */ };
class Bar : public Foo { / * . . . */ };
class Baz : public Foo, public Bar { /* . . . */ };

Copyright c
1997-2006 Vanderbilt University 10

Douglas C. Schmidt OO Programming with C++

Key Properties of C++ Inheritance
� The base/derived class relationship is explicitly recognized in C++

by predefined standard conversions

– i.e., a pointer to a derived class may always be assigned to a
pointer to a base class that was inherited publicly

� But not vice versa . . .

� When combined with dynamic binding, this special relationship
between inherited class types promotes a type-secure, polymorphic
style of programming

– i.e., the programmer need not know the actual type of a class at
compile-time

– Note, C++ is not arbitrarily polymorphic

� i.e., operations are not applicable to objects that don’t contain
definitions of these operations at some point in their inheritance
hierarchy

Copyright c
1997-2006 Vanderbilt University 11

Douglas C. Schmidt OO Programming with C++

Simple Screen Class
class Screen { /* Base class. */
public:

Screen (int = 8, int = 40, char = ’ ’);
˜Screen (void);
short height (void) const { return this->height_; }
short width (void) const { return this->width_; }
void height (short h) { this->height_ = h; }
void width (short w) { this->width_ = w; }
Screen &forward (void);
Screen &up (void); Screen &down (void);
Screen &home (void); Screen &bottom (void);
Screen &display (void); Screen © (const Screen &);

private:
short height_, width_;
char *screen_, *cur_pos_;

};

Copyright c
1997-2006 Vanderbilt University 12

Douglas C. Schmidt OO Programming with C++

Subclassing from Screen

� class Screen can be a public base class of class Window , e.g.,

class Window : public Screen {
public:

Window (const Point &, int rows = 24,
int columns = 80, char default_char = ’ ’);

void set_foreground_color (Color &);
void set_background_color (Color &);
void resize (int height, int width);
// . . .

private:
Point center_;
Color foreground_;
Color background_;

};

Copyright c
1997-2006 Vanderbilt University 13

Douglas C. Schmidt OO Programming with C++

Multiple Levels of Derivation

� A derived class can itself form the basis for further derivation, e.g.,
ls0.9

class Menu : public Window {
public:

void set_label (const char *l);
Menu (const Point &, int rows = 24,

int columns = 80,
char default_char = ’ ’);

// . . .
private:

char *label_;
};

� class Menu inherits data & methods from both Window &
Screen , i.e.,
sizeof (Menu) >= sizeof (Window) >= sizeof (Screen)

Copyright c
1997-2006 Vanderbilt University 14

Douglas C. Schmidt OO Programming with C++

The Screen Inheritance Hierarchy

WindowWindow

ScreenScreen

MenuMenu

PointPoint

ColorColor

Screen/Window/Menu hierarchy

Copyright c
1997-2006 Vanderbilt University 15

Douglas C. Schmidt OO Programming with C++

Variations on a Screen . . .

w :w :
WindowWindow

ps1 :ps1 :
ScreenScreen

ps2 :ps2 :
ScreenScreen

MenuMenu

� A pointer to a derived class can be assigned to a pointer to any of its
public base classes without requiring an explicit cast:

Menu m; Window &w = m; Screen *ps1 = &w;
Screen *ps2 = &m;

Copyright c
1997-2006 Vanderbilt University 16

Douglas C. Schmidt OO Programming with C++

Using the Screen Hierarchy
class Screen {

public: virtual void dump (ostream &); };
class Window : public Screen {

public: virtual void dump (ostream &);
};
class Menu : public Window {

public: virtual void dump (ostream &);
};
// stand-alone function
void dump_image (Screen *s, ostream &o) {

// Some processing omitted
s->dump (o);
// translates to: (*s->vptr[1]) (s, o));

}

Copyright c
1997-2006 Vanderbilt University 17

Douglas C. Schmidt OO Programming with C++

Using the Screen Hierarchy, (cont’d)
Screen s; Window w; Menu m;
Bit_Vector bv;

// OK: Window is a kind of Screen
dump_image (&w, cout);
// OK: Menu is a kind of Screen
dump_image (&m, cout);
// OK: argument types match exactly
dump_image (&s, cout);
// Error: Bit_Vector is not a kind of Screen!
dump_image (&bv, cout);

Copyright c
1997-2006 Vanderbilt University 18

Douglas C. Schmidt OO Programming with C++

Using Inheritance for Specialization
� A derived class specializes a base class by adding new, more

specific state variables & methods

– Method use the same interface, even though they are
implemented differently

� i.e., “overridden”
– Note, there is an important distinction between overriding, hiding,

& overloading . . .

� A variant of this is used in the Template Method pattern

– i.e., behavior of the base class relies on functionality supplied by
the derived class

– This is directly supported in C++ via abstract base classes & pure
virtual functions

Copyright c
1997-2006 Vanderbilt University 19

Douglas C. Schmidt OO Programming with C++

Specialization Example

� Inheritance may be used to obtain the features of one data type in
another closely related data type

� For example, we can create a class Date that represents an
arbitrary date:

class Date {
public:

Date (int m, int d, int y);
virtual void print (ostream &s) const {

s << month_ << day_ << year_ << std::endl;
}
// . . .

private:
int month_, day_, year_;

};

Copyright c
1997-2006 Vanderbilt University 20

Douglas C. Schmidt OO Programming with C++

Specialization Example, (cont’d)

� Class Birthday derives from Date, adding a name field, e.g.,

#include <string>

class Birthday : public Date {
public:

Birthday (const std::string &n, int m, int d, int y)
: Date (m, d, y),

person_ (n) { }
virtual void print (ostream &s) const;
// . . .

private:
std::string person_;

};

Copyright c
1997-2006 Vanderbilt University 21

Douglas C. Schmidt OO Programming with C++

Implementation & Use-case

� Birthday::print() could print the person’s name as well as the
date, e.g.,

void Birthday::print (ostream &s) const {
s << this->person_ << " was born on ";
Date::print (s); s << std::endl;

}

const Date july_4th (7, 4, 1993);
july_4th.print (cout); // july 4, 1993
Birthday igors_birthday ("Igor Stravinsky", 6, 17, 1882);
igors_birthday.print (cout);
// Igor Stravinsky was born on june 17, 1882

Date *dp = &igors_birthday;
dp->print (cout); // what gets printed ?!?!
// (*dp->vptr[1])(dp, cout);

Copyright c
1997-2006 Vanderbilt University 22

Douglas C. Schmidt OO Programming with C++

Alternatives to Specialization
� Note that we could also use object composition (containment)

instead of inheritance for this example, e.g.,

class Birthday {
public:

Birthday (const std::string &n, int m, int d, int y):
date_ (m, d, y), person_ (n) {}

// same as before
private:

Date date_;
std::string person_;

};

Copyright c
1997-2006 Vanderbilt University 23

Douglas C. Schmidt OO Programming with C++

Alternatives to Specialization, (cont’d)

� However, in this case we would not be able to utilize the dynamic
binding facilities for base classes & derived classes, e.g.,

Date *dp = &igors_birthday;
// ERROR, Birthday is not a subclass of date!

� While this does not necessarily affect reusability, it does affect
extensibility . . .

Copyright c
1997-2006 Vanderbilt University 24

Douglas C. Schmidt OO Programming with C++

Another View of Inheritance

� Inheritance can also be viewed as a way to construct a hierarchy of
types that are “incomplete” except for the leaves of the hierarchy

– e.g., you may wish to represent animals with an inheritance
hierarchy. Lets call the root class of this hierarchy “Animal”

– Two classes derive from Animal: Vertebrate and Invertebrate
– Vertebrate can be derived to Mammal, Reptile, Bird, Fish, etc..
– Mammals can be derived into Rodents, Primates, Pachyderms,

etc..
– Primates can be derived into Apes, Sloths, Humans, etc..
– Humans can be derived into Males & Females

� We can then declare objects to represent specific males &
females, e.g., Bob, Ted, Carol, & Alice

Copyright c
1997-2006 Vanderbilt University 25

Douglas C. Schmidt OO Programming with C++

Another View of Inheritance

Animal

Vertebrate Invertebrate

MammalReptile Bird Fish

Rodents Primates Pachyderms

Apes SlothsHumans

Males Females

Bob

Ted

Carol

Alice

� Advantages

– Share code &
set-up dynamic
binding

– Model & classify
external objects
with design &
implementation

Copyright c
1997-2006 Vanderbilt University 26

Douglas C. Schmidt OO Programming with C++

Using Inheritance for Extension/Generalization
� Derived classes add state variables and/or operations to the

properties and operations associated with the base class

– Note, the interface is generally widened!
– Data member & method access privileges may also be modified

� Extension/generalization is often used to faciliate reuse of
implementations, rather than interface

– However, it is not always necessary or correct to export interfaces
from a base class to derived classes

Copyright c
1997-2006 Vanderbilt University 27

Douglas C. Schmidt OO Programming with C++

Extension/Generalization Example

� Using class Vector as a private base class for derived class
Stack :

– class Stack : private Vector { /* . . . */ };

� In this case, Vector’s operator[] may be reused as an
implementation for the Stack push & pop methods

– Note that using private inheritance ensures that operator[]
does not appear in class Stack ’s interface!

Copyright c
1997-2006 Vanderbilt University 28 D
ou

gl
as

C
.S

ch
m

id
t

O
O

P
ro

gr
a

E
xt

en
si

on
/G

en
er

al
iz

at
io

n
E

xa
m

pl
e,

(c
on

t’d
)

�

O
fte

n,
a

be
tte

r
ap

pr
oa

ch
in

th
is

ca
se

is
to

us
e

a
co

m
po

si
tio

n/
H

as
-A

ra
th

er
th

an
a

de
sc

en
da

nt
/Is

-A
re

la
tio

ns
hi

p
.

.
.

C
O

N
SU

M
E

R

R
E

L
A

T
IO

N
SH

IP

D
E

SC
E

N
D

A
N

T

R
E

L
A

T
IO

N
SH

IP

St
ac

k

V
ec

to
r

C
he

ck
ed

V
ec

to
r

V
ec

to
r

A
da

V
ec

to
r

C
op

yr
ig

ht
c

19
97

-2
00

6
V

an
de

rb
ilt

U
ni

ve
rs

ity

Douglas C. Schmidt OO Programming with C++

Vector Interface

� Using class Vector as a base class for a derived class such as
class Checked Vector or class Ada Vector

/* Bare-bones Vector implementation, fast but not safe:
the array of elements is uninitialized, & ranges are
not checked. Also, assignment is not supported. */

template <class T> class Vector {
public:

Vector (size_t s);
˜Vector (void);
size_t size (void) const;
T &operator[] (size_t index);

private:
T *buf_;
size_t size_;

};

Copyright c
1997-2006 Vanderbilt University 30

Douglas C. Schmidt OO Programming with C++

Vector Implementation
template <class T>
Vector<T>::Vector (size_t s): size_ (s), buf_ (new T[s])
{}

template <class T>
Vector<T>::˜Vector (void) { delete [] this->buf_; }

template <class T> size_t
Vector<T>::size (void) const { return this->size_; }

template <class T> T &
Vector<T>::operator[] (size_t i)
{

return this->buf_[i];
}

Copyright c
1997-2006 Vanderbilt University 31

Douglas C. Schmidt OO Programming with C++

Vector Use-case
int
main (int, char *[])
{

Vector<int> v (10);

v[6] = v[5] + 4; // oops, no initial values

int i = v[v.size ()]; // oops, out of range!

// destructor automatically called
}

Copyright c
1997-2006 Vanderbilt University 32

Douglas C. Schmidt OO Programming with C++

Benefits of Inheritance

� Inheritance enables modification and/or extension of ADTs without
changing the original source code

– e.g., someone may want a variation on the basic Vector
abstraction:

1. A vector whose bounds are checked on every reference
2. Allow vectors to have lower bounds other than 0
3. Other vector variants are possible too . . .

� e.g., automatically-resizing vectors, initialized vectors, etc.

� This is done by defining new derived classes that inherit the
characteristics of the Vector base class

– Note that inheritance also allows code to be shared

Copyright c
1997-2006 Vanderbilt University 33

Douglas C. Schmidt OO Programming with C++

Checked Vector Interface

� The following allows run-time range checking:

/* File Checked-Vector.h (incomplete wrt
initialization & assignment) */

struct Range_Error { Range_Error (size_t index); /* ... */ };

template <class T>
class Checked_Vector : public Vector<T> {
public:

Checked_Vector (size_t s);
T &operator[] (size_t i) throw (Range_Error);
// Vector::size () inherited from base class Vector.

protected:
int in_range (size_t i) const;

private:
typedef Vector<T> inherited;

};

Copyright c
1997-2006 Vanderbilt University 34

Douglas C. Schmidt OO Programming with C++

Implementation of Checked Vector
template <class T> int
Checked_Vector<T>::in_range (size_t i) const {

return i < this->size (); }

template <class T>
Checked_Vector<T>::Checked_Vector (size_t s)
: inherited (s) {}

template <class T> T &
Checked_Vector<T>::operator[] (size_t i)

throw (Range_Error) {
if (this->in_range (i))

return (*(inherited *) this)[i];
// equivalent to: return inherited::operator[](i);

else throw Range_Error (i); }

Copyright c
1997-2006 Vanderbilt University 35

Douglas C. Schmidt OO Programming with C++

Checked Vector Use-case
#include Checked_Vector.h
typedef Checked_Vector<int> CV_int;

int foo (int size)
{

try
{

CV_int cv (size);
int i = cv[cv.size ()]; // Error detected!

// exception raised . . .
// Call base class destructor

}
catch (Range_Error)
{ /* . . . */ }

}

Copyright c
1997-2006 Vanderbilt University 36

Douglas C. Schmidt OO Programming with C++

Describing Relationships Between Classes

� Consumer/Composition/Aggregation

– A class is a consumer of another class when it makes use of the
other class’s services, as defined in its interface

� For example, our Bounded Stack implementation relies on
Array for its implementation, & thus is consumer of the Array
class

– Consumers are used to describe a Has-A relationship

� Descendant/Inheritance/Specialization

– A class is a descendant of one or more other classes when it is
designed as an extension or specialization of these classes. This
is the notion of inheritance

– Descendants are used to describe an Is-A relationship

Copyright c
1997-2006 Vanderbilt University 37

Douglas C. Schmidt OO Programming with C++

Interface vs. Implementation Inheritance

� Class inheritance can be used in two primary ways:

1. Interface inheritance: a method of creating a subtype of an
existing class for purposes of setting up dynamic binding, e.g.,
– Circle is a subclass of Shape (i.e., Is-A relation)
– A Birthday is a subclass of Date

2. Implementation inheritance: a method of reusing an
implementation to create a new class type
– e.g., a class Stack that inherits from class Vector. A Stack is not

really a subtype or specialization of Vector
– In this case, inheritance makes implementation easier, because

there is no need to rewrite & debug existing code.
– This is called using inheritance for reuse
– i.e., a pseudo-Has-A relation

Copyright c
1997-2006 Vanderbilt University 38

Douglas C. Schmidt OO Programming with C++

The Dangers of Implementation Inheritance
� Using inheritance for reuse may sometimes be a dangerous misuse

of the technique

– Operations that are valid for the base type may not apply to the
derived type at all

� e.g., performing an subscript operation on a stack is a
meaningless & potentially harmful operation

class Stack : public Vector { / * . . . */ };
Stack s;
s[10] = 20; // could be big trouble!

– In C++, the use of a private base class minimizes the dangers

� i.e., if a class is derived “private,” it is illegal to assign the
address of a derived object to a pointer to a base object

– On the other hand, a consumer/Has-A relation might be more
appropriate . . .

Copyright c
1997-2006 Vanderbilt University 39

Douglas C. Schmidt OO Programming with C++

Private vs Public vs Protected Derivation

� Access control specifiers (i.e., public, private, protected) are also
meaningful in the context of inheritance

� In the following examples:

– <. . . .> represents actual (omitted) code
– [. . . .] is implicit

� Note, all the examples work for both data members & methods

Copyright c
1997-2006 Vanderbilt University 40

Douglas C. Schmidt OO Programming with C++

Public Derivation
class A {
public:

<public A>
protected:

<protected A>
private:

<private A>
};

class B : public A {
public:

[public A]
<public B>

protected:
[protected A]
<protected B>

private:
<private B>

};

Copyright c
1997-2006 Vanderbilt University 41

Douglas C. Schmidt OO Programming with C++

Protected Derivation
class A {
public:

<public A>
protected:

<protected A>
private:

<private A>
};

class B : protected A {
public:

<public B>
protected:

[protected A]
[public A]
<protected B>

private:
<private B>

};

Copyright c
1997-2006 Vanderbilt University 42

Douglas C. Schmidt OO Programming with C++

Private Derivation
class A {
public:

<public A>
private:

<private A>
protected:

<protected A>
};

class B : private A {
// same as class B : A
public:

<public B>
protected:

<protected B>
private:

[public A]
[protected A]
<private B>

};

Copyright c
1997-2006 Vanderbilt University 43

Douglas C. Schmidt OO Programming with C++

Derived Class Access to Base Class Members
Base Class Inheritance mode
Access Control public protected private
public public protected private
protected protected protected private
private none none none

� The vertical axis represents the access rights specified in the base
class

� The horizontal access represents the mode of inheritance used by
the derived class

� Note that the resulting access is always the most restrictive of the
two

Copyright c
1997-2006 Vanderbilt University 44

Douglas C. Schmidt OO Programming with C++

Other Uses of Access Control Specifiers

� Selectively redefine visibility of individual methods inherited from
base classes. NOTE: the redifinition can only be to the visibility of
the base class. Selective redefinition can only override the
additional control imposed by inheritance.

class A {
public:

int f (void);
int g_;
. . .

private:
int p_;

};

class B : private A {
public:

A::f; // Make public
protected:

A::g_; // Make protected
};

Copyright c
1997-2006 Vanderbilt University 45

Douglas C. Schmidt OO Programming with C++

Common Issues with Access Control Specifiers

� It is an error to increase the access of an inherited method above
the level given in the base class

� Deriving publicly & then selectively decreasing the visibility of base
class methods in the derived class should be used with caution:
removes methods from the public interface at lower scopes in the
inheritance hierarchy.

// Error if p_ is
// protected in A!
class B : private A {
public:

A::p_;
};

class B : public A {
private:

A::f; // hides A::f
};

Copyright c
1997-2006 Vanderbilt University 46

Douglas C. Schmidt OO Programming with C++

General Rules for Access Control Specifiers
� Private methods of the base class are not accessible to a derived

class (unless the derived class is a friend of the base class)

� If the subclass is derived publicly then:

1. Public methods of the base class are accessible to the derived
class

2. Protected methods of the base class are accessible to derived
classes & friends only

Copyright c
1997-2006 Vanderbilt University 47

Douglas C. Schmidt OO Programming with C++

Caveats

� Using protected methods weakens the data hiding mechanism
because changes to the base class implementation might affect all
derived classes.

� However, performance & design reasons may dictate use of the
protected access control specifier

– Note, inlining functions often reduces the need for these efficiency
hacks.

Copyright c
1997-2006 Vanderbilt University 48

Douglas C. Schmidt OO Programming with C++

Caveats, example
class Vector {
public:

// . . .
protected:

// allow derived classes direct access
T *buf_;
size_t size_;

};
class Ada_Vector : public Vector {
public:

T &operator() (size_t i) {
return this->buf_[i];

} // Note the strong dependency on the buf_
};

Copyright c
1997-2006 Vanderbilt University 49

Douglas C. Schmidt OO Programming with C++

Overview of Multiple Inheritance in C++

� C++ allows multiple inheritance

– i.e., a class can be simultaneously derived from two or more base
classes, e.g.,
class X { / * . . . */ };
class Y : public X { /* . . . */ };
class Z : public X { /* . . . */ };
class YZ : public Y, public Z { /* . . . */ };

– Derived classes Y, Z, & YZ inherit the data members & methods
from their respective base classes

Copyright c
1997-2006 Vanderbilt University 50

Douglas C. Schmidt OO Programming with C++

Liabilities of Multiple Inheritance
� A base class may legally appear only once in a derivation list, e.g.,

class Two_Vect : public Vect, public Vect // ERROR!

� However, a base class may appear multiple times within a derivation
hierarchy

– e.g., class YZ contains two instances of class X

� This leads to two problems with multiple inheritance:

1. It gives rise to a form of method & data member ambiguity
– Explicitly qualified names & additional methods are used to

resolve this
2. It also may cause unnecessary duplication of storage

– Virtual base classes are used to resolve this

Copyright c
1997-2006 Vanderbilt University 51

Douglas C. Schmidt OO Programming with C++

Motivation for Virtual Base Classes

� Consider a user who wants an Init_Checked_Vector :

class Checked_Vector : public virtual Vector
{ /* . . . */ };
class Init_Vector : public virtual Vector
{ /* . . . */ };
class Init_Checked_Vector :

public Checked_Vector, public Init_Vector
{ /* . . . */ };

� In this example, the virtual keyword, when applied to a base class,
causes Init_Checked_Vector to get one Vector base class
instead of two

Copyright c
1997-2006 Vanderbilt University 52

Douglas C. Schmidt OO Programming with C++

Overview of Virtual Base Classes

� Virtual base classes allow class designers to specify that a base
class will be shared among derived classes

– No matter how often a virtual base class may occur in a derivation
hierarchy, only one shared instance is generated when an object
is instantiated

� Under the hood, pointers are used in derived classes that
contain virtual base classes

� Understanding & using virtual base classes correctly is a non-trivial
task because you must plan in advance

– Also, you must be aware when initializing subclasses objects . . .

� However, virtual base classes are used to implement the client &
server side of many implementations of CORBA distributed objects

Copyright c
1997-2006 Vanderbilt University 53

Douglas C. Schmidt OO Programming with C++

Virtual Base Classes Illustrated

VectorVector

CheckedChecked
VectorVector

InitInit
CheckedChecked
VectorVector

VectorVector

CheckedChecked
VectorVector

NONNON--VIRTUALVIRTUAL

INHERITANCEINHERITANCE

VectorVector

CheckedChecked
VectorVector

InitInit
CheckedChecked
VectorVector

VIRTUALVIRTUAL

INHERITANCEINHERITANCE

vv vv

CheckedChecked
VectorVector

Copyright c
1997-2006 Vanderbilt University 54

Douglas C. Schmidt OO Programming with C++

Initializing Virtual Base Classes
� With C++ you must chose one of two methods to make constructors

work correctly for virtual base classes:

1. You need to either supply a constructor in a virtual base class that
takes no arguments (or has default arguments), e.g.,
Vector::Vector (size_t size = 100); // not clean!

2. Or, you must make sure the most derived class calls the
constructor for the virtual base class in its base initialization
section, e.g.,
Init_Checked_Vector (size_t size, const T &init):

Vector (size), Check_Vector (size),
Init_Vector (size, init)

Copyright c
1997-2006 Vanderbilt University 55

Douglas C. Schmidt OO Programming with C++

Virtual Base Class Initialization Example
#include <iostream.h>
class Base {
public:

Base (int i) { cout << "Base::Base (" << i << ")" << endl; }
};

class Derived1 : public virtual Base {
public:

Derived1 (void) : Base (1) { cout << "Derived1 (void)" << endl; }
};

class Derived2 : public virtual Base {
public:

Derived2 (void) : Base (2) { cout << "Derived2 (void)" << endl; }
};

Copyright c
1997-2006 Vanderbilt University 56

Douglas C. Schmidt OO Programming with C++

Virtual Base Class Initialization Example, (cont’d)
class Derived : public Derived1, public Derived2 {
public:

// The Derived constructor _must_ call the Base
// constructor explicitly, because Base doesn’t
// have a default constructor.
Derived (void) : Base (3) {

cout << "Derived (void)" << endl;
}

};

Copyright c
1997-2006 Vanderbilt University 57

Douglas C. Schmidt OO Programming with C++

Virtual Base Class Initialization Example, (cont’d)
int
main (int, char *[])
{

Base b (0); // Direct instantiation of Base:
// Base::Base (0)

Derived1 d1; // Instantiates Base via Derived1 ctor:
// Base::Base (1)

Derived2 d2; // Instantiates Base via Derived2 ctor:
// Base::Base (2)

Derived d; // Instantiates Base via Derived ctor:
// Base::Base (3)

return 0;
}

Copyright c
1997-2006 Vanderbilt University 58

Douglas C. Schmidt OO Programming with C++

Vector Interface Revised
� The following example illustrates templates, multiple inheritance,

and virtual base classes in C++:
#include <iostream.h>
// A simple-minded Vector base class,
// no range checking, no initialization.
template <class T> class Vector
{
public:

Vector (size_t s): size_ (s), buf_ (new T[s]) {}
T &operator[] (size_t i) { return this->buf_[i]; }
size_t size (void) const { return this->size_; }

private:
size_t size_;
T *buf_;

};

Copyright c
1997-2006 Vanderbilt University 59

Douglas C. Schmidt OO Programming with C++

Init Vector Interface

� A simple extension to the Vector base class, that enables
automagical vector initialization

template <class T>
class Init_Vector : public virtual Vector<T>
{
public:

Init_Vector (size_t size, const T &init)
: Vector<T> (size)

{
for (size_t i = 0; i < this->size (); i++)

(*this)[i] = init;
}
// Inherits subscripting operator \& size().

};

Copyright c
1997-2006 Vanderbilt University 60

Douglas C. Schmidt OO Programming with C++

Checked Vector Interface

� Extend Vector to provide checked subscripting

template <class T>
class Checked_Vector : public virtual Vector<T> {
public:

Checked_Vector (size_t size): Vector<T> (size) {}
T &operator[] (size_t i) throw (Range_Error) {

if (this->in_range (i)) return (*(inherited *) this)
else throw Range_Error (i);

}
// Inherits inherited::size.

private:
typedef Vector<T> inherited;
int in_range (size_t i) const

{ return i < this->size (); }
};

Copyright c
1997-2006 Vanderbilt University 61

Douglas C. Schmidt OO Programming with C++

Init Checked Vector Interface

� A simple multiple inheritance example that provides for both an
initialized and range checked Vector

template <class T>
class Init_Checked_Vector :

public Checked_Vector<T>, public Init_Vector<T> {
public:

Init_Checked_Vector (size_t size, const T &init):
Vector<T> (size),
Init_Vector<T> (size, init),
Checked_Vector<T> (size) {}

// Inherits Checked_Vector::operator[]
};

Copyright c
1997-2006 Vanderbilt University 62

Douglas C. Schmidt OO Programming with C++

Init Checked Vector Driver
int main (int argc, char *argv[]) {

try {
size_t size = ::atoi (argv[1]);
size_t init = ::atoi (argv[2]);
Init_Checked_Vector<int> v (size, init);
cout << "vector size = " << v.size ()

<< ", vector contents = ";

for (size_t i = 0; i < v.size (); i++)
cout << v[i];

cout << "\n" << ++v[v.size () - 1] << "\n";
}
catch (Range_Error) { /* . . . */ }

}

Copyright c
1997-2006 Vanderbilt University 63

Douglas C. Schmidt OO Programming with C++

Multiple Inheritance Ambiguity

� Consider the following:

struct Base_1 { int foo (void); /* . . . */ };
struct Base_2 { int foo (void); /* . . . */ };
struct Derived : Base_1, Base_2 { /* . . . */ };
int main (int, char *[]) {

Derived d;
d.foo (); // Error, ambiguous call to foo ()

}

Copyright c
1997-2006 Vanderbilt University 64

Douglas C. Schmidt OO Programming with C++

Multiple Inheritance Ambiguity, (cont’d)

� There are two ways to fix this problem:

1. Explicitly qualify the call, by prefixing it with the name of the
intended base class using the scope resolution operator, e.g.,

d.Base_1::foo (); // or d.Base_2::foo ()
2. Add a new method foo to class Derived (similar to Eiffel’s

renaming concept) e.g.,
struct Derived : Base_1, Base_2 {

int foo (void) {
Base_1::foo (); // either, both
Base_2::foo (); // or neither

}
};

Copyright c
1997-2006 Vanderbilt University 65

Douglas C. Schmidt OO Programming with C++

Summary

� Inheritance supports evolutionary, incremental development of
reusable components by specializing and/or extending a general
interface/implementation

� Inheritance adds a new dimension to data abstraction, e.g.,

– Classes (ADTs) support the expression of commonality where the
general aspects of an application are encapsulated in a few base
classes

– Inheritance supports the development of the application by
extension and specialization without affecting existing code . . .

� Without browser support, navigating through complex inheritance
hierarchies is difficult . . . tools can help.

Copyright c
1997-2006 Vanderbilt University 66

