Single & Multiple Inheritance in C++

Professor

d.schmidt@vanderbilt.edu

Douglas C. Schmidt

Department of EECS
Vanderbilt University

www.dre.vanderbilt.edu/~schmidt/ (615) 343-8197

p¥alo

Douglas C. Schmidt

OO Programming with C++

Data Abstraction vs. Inheritance

DATA ABSTRACTION
2 DIMENTIONAL) ~77\

=N
(

5/ \m/ =

-—_f
INHERITANCE
(3 DIMENTIONAL)

Copyright ©1997-2006

Vanderbilt University

Douglas C. Schmidt OO Programming with C++

Background

e Object-oriented programming is often defined as the combination of
Abstract Data Types (ADTSs) with Inheritance & Dynamic Binding

e Each concept addresses a different aspect of system
decomposition:

1. ADTs decompose systems into two-dimensional grids of modules
— Each module has public & private interfaces

2. Inheritance decomposes systems into three-dimensional
hierarchies of modules
— Inheritance relationships form a lattice

3. Dynamic binding enhances inheritance
— e.g., defer implementation decisions until late in the design

phase or even until run-time!

Copyright ©1997-2006 Vanderbilt University 1

Douglas C. Schmidt OO Programming with C++

Motivation for Inheritance

¢ Inheritance allows you to write code to handle certain cases &
allows other developers to write code that handles more specialized
cases, while your code continues to work

¢ Inheritance partitions a system architecture into semi-disjoint
components that are related hierarchically

e Therefore, we may be able to modify and/or reuse sections of the
inheritance hierarchy without disturbing existing code, e.g.,

— Change sibling subtree interfaces
x [.e., a consequence of inheritance
— Change implementation of ancestors
* I.e., a consequence of data abstraction

Copyright ©1997-2006 Vanderbilt University 3

Douglas C. Schmidt OO Programming with C++

Inheritance Overview

e Atype (called a subclass or derived type) can inherit the
characteristics of another type(s) (called a superclass or base type)

— The term subclass is equivalent to derived type

e A derived type acts just like the base type, except for an explicit list
of:

1. Specializations
— Change implementations without changing the base class
interface
— Most useful when combined with dynamic binding
2. Generalizations/Extensions
— Add new operations or data to derived classes

Copyright ©1997-2006 Vanderbilt University 4

Douglas C. Schmidt OO Programming with C++

Douglas C. Schmidt

Visualizing Inheritance

OO Programming with C++

Types of Inheritance
¢ Inheritance comes in two forms, depending on number of parents a
subclass has

1. Single Inheritance (Sl)
— Only one parent per derived class
— Form an inheritance tree
— Sl requires a small amount of run-time overhead when used
with dynamic binding
— e.g., Smalltalk, Simula, Object Pascal
2. Multiple Inheritance (MI)
— More than one parent per derived class
— Forms an inheritance Directed Acyclic Graph (DAG)
— Compared with SI, Ml adds additional run-time overhead (also
involving dynamic binding)
— e.g., C++, Eiffel, Flavors (a LISP dialect)

Copyright ©1997-2006

Vanderbilt University 6

N
/\ Base // O
N
PN _ \< ﬁc/erlved f
/4\;/ i g
//—\\\\ L 2 s
/\D / P
\ V2N
\\Derived/
S Y
_J
\/ N \Derlved) ==
Derived / C 4 1 —=
- - (
< 3 [- \Derived '
~ - r
I
. J/

Copyright ©1997-2006

Douglas C. Schmidt

Vanderbilt University

OO Programming with C++

Inheritance Trees vs.

Inheritance DAGSs

|

-
J/‘\\\\/’/f\
(_ Base N
‘ Denved ! /) N J Derived)
\\4 r- T \2
X *\
i Y INHERITANCE /Derlved\
J
ol -
Derived TREE N 4 >
) 3 D "
N 7
ST — -
S N
I /'1
(Base \\ ~ Base
L L (Denvedl ~ -— 2
- 51 i
N]
P —+—~
J \
(\Derive d [\ INHERITANCE /|Deriv e d)
) 3 DAG a4 |
S__ s N7
J

Copyright ©1997-2006

Vanderbilt University

Douglas C. Schmidt

OO Programming with C++

Inheritance Benefits

1. Increase reuse & software quality

e Programmers reuse the base classes instead of writing new

classes

— Integrates black-box & white-box reuse by allowing extensibility

and modification without changing existing code

e Using well-tested base classes helps reduce bugs in applications
that use them

e Reduce object code size

2. Enhance extensibility & comprehensibility

e Helps support more flexible & extensible architectures (along with

dynamic bi

nding)

— i.e., supports the open/closed principle

e Often useful for modeling & classifying hierarchically-related

domains

Copyright ©1997-2006

Douglas C. Schmidt

Vanderbilt University

OO Programming with C++

Inheritance in C++

e Deriving a class involves an extension to the C++ class declaration

syntax

e The class head is modified to allow a derivation list consisting of
base classes,

class Foo {
class Bar :
class Baz :

eg.,
A
public Foo { / R

public Foo, public Bar { /* . .

Y h

Copyright ©1997-2006

Vanderbilt University

10

Douglas C. Schmidt OO Programming with C++

Inheritance Liabilities

1. May create deep and/or wide hierarchies that are hard to understand
& navigate without class browser tools

2. May decrease performance slightly
e i.e., when combined with multiple inheritance & dynamic binding

3. Without dynamic binding, inheritance has limited utility, i.e., can only
be used for implementation inheritance

e & dynamic binding is essentially pointless without inheritance

4. Brittle hierarchies, which may impose dependencies upon ancestor
names

Copyright ©1997-2006 Vanderbilt University 9

Douglas C. Schmidt OO Programming with C++

Key Properties of C++ Inheritance =
e The base/derived class relationship is explicitly recognized in C++

by predefined standard conversions

— I.e., a pointer to a derived class may always be assigned to a
pointer to a base class that was inherited publicly
* But not vice versa.. . .

e When combined with dynamic binding, this special relationship
between inherited class types promotes a type-secure, polymorphic
style of programming

— Ie., the programmer need not know the actual type of a class at
compile-time
— Note, C++ is not arbitrarily polymorphic
x [.e., operations are not applicable to objects that don’t contain
definitions of these operations at some point in their inheritance
hierarchy

Copyright ©1997-2006 Vanderbilt University 11

Douglas C. Schmidt

OO Programming with C++

class Screen {
public:

Screen (int =

Simple Screen Class
P /* Base class. */

8, int = 40, char = ');

“Screen (void);

short height (void) const { return this->height ; }

short width (void) const { return this->width_; }

void height (short h) { this->height_ = h; }

void width (short w) { this->width_ = w; }

Screen &forward (void);

Screen &up (void); Screen &down (void);

Screen &home (void); Screen &bottom (void);

Screen &display (void); Screen © (const Screen &);

private:

short height_

, width_;

char *screen_, *cur_pos_;

h

Copyright ©1997-2006

Douglas C. Schmidt

Vanderbilt University

12

OO Programming with C++

e A derived class can

1s0.9

class Menu
public:

Multi%glhevel of De

. public Window {

void set label (const char *I);
Menu (const Point &, int rows = 24,
int columns = 80,

char default_char = ' 7);
/. ..
private:
char *label_;
J3
e class Menu inherits data & methods from both Window &
Screen , i.e.,

sizeof (Menu) >= sizeof (Window) >= sizeof (Screen)

rjvatio _—
orm the basis #oragurtﬂer derivation, e.g.,

Copyright ©1997-2006

Vanderbilt University

14

Douglas C. Schmidt OO Programming with C++

Subclassing from Screen

e class Screen can be a public base class of class Window , e.g.,

class Window : public Screen {

public:
Window (const Point &, int rows = 24,

int columns = 80, char default_char = ' °);

void set foreground_color (Color &);
void set background_color (Color &);
void resize (int height, int width);
n. ..

private:
Point center_;
Color foreground_;
Color background_;

h

Copyright ©1997-2006 Vanderbilt University 13
Douglas C. Schmidt OO Programming with C++

The Screen Inheritance Hierarchy

N\

)
J
Screen/Window/Menu hierarchy

Copyright ©1997-2006 Vanderbilt University 15

Douglas C. Schmidt

OO Programming with C++

Variations on a Screen . . .

s N
= _
J f
4 psl ‘ h
N s2
) Screen)Sl;reen b
\Wmdow Menu /
N —
_ J

e A pointer to a derived class can be assigned to a pointer to any of its
public base classes without requiring an explicit cast:

Menu m; Window &w = m; Screen *psl = &w;
Screen *ps2 = &m;

Copyright ©1997-2006 Vanderbilt University 16

Douglas C. Schmidt OO Programming with C++

Using the Screen Hierarchy, (contd)
Screen s; Window w; Menu m;
Bit_Vector bv;

/I OK: Window is a kind of Screen
dump_image (&w, cout);

/I OK: Menu is a kind of Screen
dump_image (&m, cout);

/I OK: argument types match exactly
dump_image (&s, cout);

/I Error: Bit_Vector is not a kind of Screen!
dump_image (&bv, cout);

Copyright ©1997-2006 Vanderbilt University 18

OO Programming with C++

Using the Screen Hierarchy
class Screen {
public: virtual void dump (ostream &); };
class Window : public Screen {
public: virtual void dump (ostream &);
%
class Menu : public Window {
public: virtual void dump (ostream &);
h
/I stand-alone function
void dump_image (Screen *s, ostream &o0) {
/I Some processing omitted
s->dump (0);
/I translates to: (*s->vptr[1l]) (s, 0));

}

Douglas C. Schmidt

Copyright ©1997-2006 Vanderbilt University 17

Douglas C. Schmidt OO Programming with C++

Using Inheritance for Specialization

e A derived class specializes a base class by adding new, more
specific state variables & methods

— Method use the same interface, even though they are
implemented differently
x I.e., “overridden”

— Note, there is an important distinction between overriding, hiding,
& overloading . . .

e A variant of this is used in the Template Method pattern

— I.e., behavior of the base class relies on functionality supplied by
the derived class

— This is directly supported in C++ via abstract base classes & pure
virtual functions

Copyright ©1997-2006 Vanderbilt University 19

Douglas C. Schmidt OO Programming with C++
_ Specialization Example _
e Inheritance may be used to obtain the features of one data type in
another closely related data type

e For example, we can create a class Date that represents an
arbitrary date:

class Date {
public:
Date (int m, int d, int y);
virtual void print (ostream &s) const {
S << month_ << day_ << year_ << std::endl;

}
. ..
private:
int month_, day_, year_;
h
Copyright ©1997-2006 Vanderbilt University 20
Douglas C. Schmidt OO Programming with C++
. . Implementation & Use-case
e Birthday::print() P cou‘i prmt%e person’s name as well as the
date, e.g.,

void Birthday::print (ostream &s) const {
S << this->person_ << " was born on "
Date::print (s); s << std::endl;

}

const Date july _4th (7, 4, 1993);

july_4th.print (cout); // july 4, 1993

Birthday igors_birthday ("lgor Stravinsky", 6, 17, 1882);
igors_birthday.print (cout);

/I 1gor Stravinsky was born on june 17, 1882

Date *dp = &igors_birthday;
dp->print (cout); // what gets printed ?!?!
/I (*dp->vptr[1])(dp, cout);

Copyright ©1997-2006 Vanderbilt University 22

Douglas C. Schmidt OO Programming with C++

Specialization Example, (contd)

e Class Birthday derives from Date, adding a hame field, e.g.,

#include <string>

class Birthday : public Date {
public:
Birthday (const std::string &n, int m, int d, int y)
. Date (m, d, y),
person_ (n) { }
virtual void print (ostream &s) const;

n. ..
private:
std::string person_;
Copyright ©1997-2006 Vanderbilt University 21
Douglas C. Schmidt OO Programming with C++

Alternatives to Specialization

e Note that we could also use object composition (containment)
instead of inheritance for this example, e.g.,

class Birthday {
public:
Birthday (const std::string &n, int m, int d, int y):
date_ (m, d, y), person_ (n) {}
I/l same as before
private:
Date date_;
std::string person_;

J3

Copyright ©1997-2006 Vanderbilt University 23

Douglas C. Schmidt OO Programming with C++

Alternatives to Specialization, (cont'd)

e However, in this case we would not be able to utilize the dynamic
binding facilities for base classes & derived classes, e.g.,

Date *dp = &igors_birthday;
/l ERROR, Birthday is not a subclass of date!

e While this does not necessarily affect reusability, it does affect
extensibility . . .

Copyright ©1997-2006 Vanderbilt University 24

Douglas C. Schmidt OO Programming with C++

Another View of Inheritance

e Advantages
— Share code &
(o) oo) (o TL)| vk dhynamic
|
|| Rodents»wiﬁimes \ — Model & classify
external objects
e | Humans\\ with design &
e] [Fomaes | implementation
\ Bob | caol |
‘ Ted H Alice ‘

Copyright ©1997-2006 Vanderbilt University 26

Douglas C. Schmidt OO Programming with C++

Another View of Inheritance

e Inheritance can also be viewed as a way to construct a hierarchy of
types that are “incomplete” except for the leaves of the hierarchy

— e.g., you may wish to represent animals with an inheritance
hierarchy. Lets call the root class of this hierarchy “Animal”

— Two classes derive from Animal: Vertebrate and Invertebrate

Vertebrate can be derived to Mammal, Reptile, Bird, Fish, etc..

Mammals can be derived into Rodents, Primates, Pachyderms,

etc..

Primates can be derived into Apes, Sloths, Humans, etc..

Humans can be derived into Males & Females

x We can then declare objects to represent specific males &
females, e.g., Bob, Ted, Carol, & Alice

Copyright ©1997-2006 Vanderbilt University 25

Douglas C. Schmidt OO Programming with C++

Using Inheritance for Extension/Generalization

e Derived classes add state variables and/or operations to the
properties and operations associated with the base class

— Note, the interface is generally widened!
— Data member & method access privileges may also be modified

e Extension/generalization is often used to faciliate reuse of
implementations, rather than interface

— However, it is not always necessary or correct to export interfaces
from a base class to derived classes

Copyright ©1997-2006 Vanderbilt University 27

Douglas C. Schmidt OO Programming with C++

Extension/Generalization Example

e Using class Vector as a private base class for derived class
Stack :

— class Stack : private Vector { /* . . . * }

e |n this case, Vector’s operator]] may be reused as an
implementation for the Stack push & pop methods

— Note that using private inheritance ensures that operator|]
does not appear in class Stack s interface!

Copyright ©1997-2006 Vanderbilt University 28

Douglas C. Schmidt OO Programming with C++

Vector Interface
e Using class Vector as a base class for a derived class such as
class Checked _Vector or class Ada_Vector
[* Bare-bones Vector implementation, fast but not safe:
the array of elements is uninitialized, & ranges are
not checked. Also, assignment is not supported. */
template <class T> class Vector {
public:
Vector (size_t s);
“Vector (void);
size_t size (void) const;
T &operator[] (size_t index);
private:
T *buf_;
size_t size_;

J3

Copyright ©1997-2006 Vanderbilt University 30

OO Progr:

N\
\

—~_) T~
(Ada \\
Vector
/
~/
Vanderbilt University

\

! Vector -

J
\
/
\

DESCENDANT
\ RELATIONSHIP

Checked \\

@®©
()]
2]
- S
D o
= +—
s o
c 3
x ©
Ll © - /
c Q2 c T
IS £38 g - RN /
= ~ Cc+ c | 8) - /
C T = =n o= -
N = c O e
S5 888
=8 o8 & N\
2= 5<e |z§ AN
) %(}) = Z / |3 f
s < 2 2 ' S~
o 5T 0 2 E N
[} Z N ©
i — = << -
[B cs SR =]
o O)
56 88% :E g
) © B2 TN 2
Q c / S —
o= - O
(%]) | ~— f
@ c Q'O N vy ©
O + [E a — o~ e
9 X £ 5 0 L N) 2
5| W Ooco =3
> Qo
o Y =]
a O
Douglas C. Schmidt OO Programming with C++

Vector Implementation
template <class T>
Vector<T>::Vector (size_t s): size_ (s), buf_ (new T[s])

it

template <class T>
Vector<T>:"Vector (void) { delete [] this->buf_; }

template <class T> size_t
Vector<T>::size (void) const { return this->size ; }

template <class T> T &
Vector<T>::operator[] (size_t i)

{
}

Copyright ©1997-2006 Vanderbilt University 31

return this->buf _Ji];

Douglas C. Schmidt

OO Programming with C++ Douglas C. Schmidt OO Programming with C++

Vector Use-case
int
main (int, char *[])
{
Vector<int> v (10);
v[6] = Vv[5] + 4; // oops, no initial values
int i = v[v.size ()]; // oops, out of range!

/I destructor automatically called

Benefits of Inheritance

e Inheritance enables modification and/or extension of ADTs without
changing the original source code

— e.g., someone may want a variation on the basic Vector
abstraction:
1. A vector whose bounds are checked on every reference
2. Allow vectors to have lower bounds other than 0
3. Other vector variants are possible too . . .
x e.g., automatically-resizing vectors, initialized vectors, etc.

e This is done by defining new derived classes that inherit the
characteristics of the Vector base class

— Note that inheritance also allows code to be shared

Copyright ©1997-2006 Vanderbilt University

Douglas C. Schmidt

32 Copyright ©1997-2006 Vanderbilt University 33

OO Programming with C++ Douglas C. Schmidt OO Programming with C++

Checked _Vector Interface
e The following allows run-time range checking:

/* File Checked-Vector.h (incomplete wrt
initialization & assignment) */

struct Range_Error { Range_Error (size_t index); /* ...

template <class T>
class Checked_Vector :
public:

Checked_Vector (size_t s);

T &operator[] (size_t i) throw (Range_Error);

/I Vector::size () inherited from base class Vector.
protected:

int in_range (size_t i) const;
private:

typedef Vector<T> inherited;

2

public Vector<T> {

Implementation of Checked _Vector
template <class T> int
Checked_Vector<T>::in_range (size_t i) const {
return i < this->size (); }
%
template <class T>
Checked_Vector<T>::Checked_Vector (size_t s)

. inherited (s) {}

template <class T> T &
Checked_Vector<T>:.operator[] (size_t i)
throw (Range_Error) {
if (this->in_range (i)
return (*(inherited *) this)]i];
/I equivalent to: return inherited::operator[](i);
else throw Range_Error (i); }

Copyright ©1997-2006 Vanderbilt University

34 Copyright ©1997-2006 Vanderbilt University 35

Douglas C. Schmidt OO Programming with C++

Checked _Vector Use-case

#include Checked_Vector.h
typedef Checked Vector<int> CV_int;

int foo (int size)
{
try
{
CV_int cv (size);
int i = cvlcv.size ()]; /[Error detected!
/I exception raised . . .
/I Call base class destructor
}
catch (Range_Error)
{r...*}
}

Copyright ©1997-2006

Vanderbilt University 36

Douglas C. Schmidt OO Programming with C++

Interface vs. Implementation Inheritance

e Class inheritance can be used in two primary ways:

1. Interface inheritance: a method of creating a subtype of an
existing class for purposes of setting up dynamic binding, e.g.,
— Circle is a subclass of Shape (i.e., Is-A relation)
— A Birthday is a subclass of Date
2. Implementation inheritance: a method of reusing an
implementation to create a new class type
— e.g., aclass Stack that inherits from class Vector. A Stack is not
really a subtype or specialization of Vector
— In this case, inheritance makes implementation easier, because
there is no need to rewrite & debug existing code.
— This is called using inheritance for reuse
— le., a pseudo-Has-A relation

Copyright ©1997-2006 Vanderbilt University 38

Douglas C. Schmidt OO Programming with C++

Describing Relationships Between Classes

e Consumerl Composition/ Aggregation

— A class is a consumer of another class when it makes use of the
other class’s services, as defined in its interface
x For example, our Bounded_Stack implementation relies on
Array for its implementation, & thus is consumer of the Array
class
— Consumers are used to describe a Has-A relationship

e Descendant/Inheritancel Specialization

— A class is a descendant of one or more other classes when it is
designed as an extension or specialization of these classes. This
is the notion of inheritance

— Descendants are used to describe an /s-A relationship

Copyright ©1997-2006 Vanderbilt University 37

Douglas C. Schmidt OO Programming with C++

The Dangers of Implementation Inheritance
e Using inheritance for reuse may sometimes be a dangerous misuse
of the technique

— Operations that are valid for the base type may not apply to the
derived type at all
x e.g., performing an subscript operation on a stack is a
meaningless & potentially harmful operation
class Stack : public Vector { / R
Stack s;
s[10] = 20; // could be big trouble!
— In C++, the use of a private base class minimizes the dangers
x I.e., if a class is derived “private,” it is illegal to assign the
address of a derived object to a pointer to a base object
— On the other hand, a consumer/Has-A relation might be more
appropriate . . .

Copyright ©1997-2006 Vanderbilt University 39

Douglas C. Schmidt

OO Programming with C++

Private vs Public vs Protected Derivation

e Access control

specifiers (i.e., public, private, protected) are also

meaningful in the context of inheritance

e In the following examples:

-<. .. .>

L.]

represents actual (omitted) code
is implicit

e Note, all the examples work for both data members & methods

Copyright ©1997-2006

Douglas C. Schmidt

Vanderbilt University 40

OO Programming with C++

Protected Derivation

class A { class B : protected A {
public: public:

<public A> <public B>
protected: protected:

<protected A> [protected A]
private: [public A]

<private A> <protected B>
h private:

<private B>
2

Copyright ©1997-2006 Vanderbilt University 42

Douglas C. Schmidt

OO Programming with C++

Public Derivation

class A { class B : public A {
public: public:

<public A> [public A]
protected: <public B>

<protected A> protected:
private: [protected A]

<private A> <protected B>
h private:

<private B>
2

Copyright ©1997-2006 Vanderbilt University 41

Douglas C. Schmidt

OO Programming with C++

class A {
public:

<public A>
private:

<private A>
protected:

<protected A>

h

Private Derivation

class B : private A {
/[same as class B : A
public:

<public B>
protected:

<protected B>
private:

[public A]

[protected A]

<private B>

h

Copyright ©1997-2006

Vanderbilt University 43

Douglas C. Schmidt OO Programming with C++
Derived Class Access to Base Class Members
Base Class Inheritance mode
Access Control public protected | private
public public protected | private
protected protected | protected | private
private none none none

e The vertical axis represents the access rights specified in the base
class

e The horizontal access represents the mode of inheritance used by
the derived class

e Note that the resulting access is always the most restrictive of the
two

Copyright ©1997-2006 Vanderbilt University 44

Douglas C. Schmidt OO Programming with C++

Common Issues with Access Control Specifiers

e |t is an error to increase the access of an inherited method above
the level given in the base class

e Deriving publicly & then selectively decreasing the visibility of base
class methods in the derived class should be used with caution:
removes methods from the public interface at lower scopes in the
inheritance hierarchy.

/I Error if p_ is class B : public A {
/I protected in Al private:
class B : private A { A:f, /I hides A:f
public: };

Alp_;
h

Copyright ©1997-2006 Vanderbilt University 46

Douglas C. Schmidt OO Programming with C++

Other Uses of Access Control Specifiers

e Selectively redefine visibility of individual methods inherited from
base classes. NOTE: the redifinition can only be to the visibility of
the base class. Selective redefinition can only override the
additional control imposed by inheritance.

class A { class B : private A {
public: public:

int f (void); A:f, /I Make public

int g_; protected:

. A::g_; /| Make protected
private: h

int p_;
h
Copyright ©1997-2006 Vanderbilt University 45
Douglas C. Schmidt OO Programming with C++

General Rules for Access Control Specifiers

e Private methods of the base class are not accessible to a derived
class (unless the derived class is a friend of the base class)

e If the subclass is derived publicly then:

1. Public methods of the base class are accessible to the derived
class

2. Protected methods of the base class are accessible to derived
classes & friends only

Copyright ©1997-2006 Vanderbilt University a7

Douglas C. Schmidt OO Programming with C++

Caveats

e Using protected methods weakens the data hiding mechanism
because changes to the base class implementation might affect all
derived classes.

e However, performance & design reasons may dictate use of the
protected access control specifier

— Note, inlining functions often reduces the need for these efficiency

hacks.
Copyright ©1997-2006 Vanderbilt University 48
Douglas C. Schmidt OO Programming with C++

Overview of Multiple Inheritance in C++
e C++ allows multiple inheritance

— le., a class can be simultaneously derived from two or more base

classes, e.g.,

class X {/ * .. .* }

class Y : public X { /* . . . * }

class Z : public X { /* . . . * }

class YZ : public Y, public z { I* . . . * }

— Derived classes Y, Z, & YZ inherit the data members & methods
from their respective base classes

Copyright ©1997-2006 Vanderbilt University 50

Douglas C. Schmidt OO Programming with C++

Caveats, example

class Vector {
public:
n. ..
protected:
/I allow derived classes direct access
T *buf_;
size_t size_;
h
class Ada_ Vector : public Vector {
public:
T &operator() (size_t i) {
return this->buf _[iJ;
} /I Note the strong dependency on the buf_

}1
Copyright ©1997-2006 Vanderbilt University 49
Douglas C. Schmidt OO Programming with C++

Liabilities of Multiple Inheritance
e A base class may legally appear only once in a derivation list, e.g.,
class Two_Vect : public Vect, public Vect / ERROR!

e However, a base class may appear multiple times within a derivation
hierarchy

— e.g., class YZ contains two instances of class X
e This leads to two problems with multiple inheritance:

1. It gives rise to a form of method & data member ambiguity
— Explicitly qualified names & additional methods are used to
resolve this
2. It also may cause unnecessary duplication of storage
— Virtual base classes are used to resolve this

Copyright ©1997-2006 Vanderbilt University 51

Douglas C. Schmidt

OO Programming with C++

Douglas C. Schmidt OO Programming with C++

Motivation for Virtual Base Classes
e Consider a user who wants an Init_Checked_Vector

class Checked_Vector : public virtual Vector

{rF...*}
class Init_Vector : public virtual Vector
{r...*}

class Init_Checked_Vector :
public Checked_Vector, public Init_Vector
{r...*}

e In this example, the virtual keyword, when applied to a base class,

causes Init_Checked_Vector base class

instead of two

to get one Vector

Overview of Virtual Base Classes

e Virtual base classes allow class designers to specify that a base
class will be shared among derived classes

— No matter how often a virtual base class may occur in a derivation
hierarchy, only one shared instance is generated when an object
is instantiated
+x Under the hood, pointers are used in derived classes that

contain virtual base classes

e Understanding & using virtual base classes correctly is a non-trivial
task because you must plan in advance

— Also, you must be aware when initializing subclasses objects . . .

e However, virtual base classes are used to implement the client &
server side of many implementations of CORBA distributed objects

Copyright ©1997-2006

Douglas C. Schmidt

Vanderbilt University

OO Programming with C++

52 Copyright ©1997-2006 Vanderbilt University 53

Douglas C. Schmidt OO Programming with C++

Virtual Base Classes lllustrated

{ . / N
“Vector .’ e (
< |/ NON-VIRTUAL '\ Vector
! INHERITANCE ' __

/ P v -~ \
(/Checked /\\\C Inlt‘ N Checked\\
N Vector / hecked / A Vector >
- ‘S Vector _ LT !

/\Vector /

VIRTUAL
INHERITAN CE

—— \ .~

\ Init" — N Checked@
CChecked ,/w\ Vector, ~

\Vector |

- N
) Checked)
\ Vector(

Initializing Virtual Base Classes

e With C++ you must chose one of two methods to make constructors
work correctly for virtual base classes:

1. You need to either supply a constructor in a virtual base class that
takes no arguments (or has default arguments), e.g.,
Vector::Vector (size_t size = 100); // not clean!

. Or, you must make sure the most derived class calls the
constructor for the virtual base class in its base initialization
section, e.g.,

Init_Checked_Vector (size_t size, const T &init):
Vector (size), Check Vector (size),
Init_Vector (size, init)

Copyright ©1997-2006

Vanderbilt University

54 Copyright ©1997-2006 Vanderbilt University 55

Douglas C. Schmidt OO Programming with C++

Virtual Base Class Initialization Example
#include <iostream.h>
class Base {
public:
Base (int i) { cout << "Base:Base (" << i << ")" << endl; }

h

class Derivedl : public virtual Base {
public:
Derivedl (void) : Base (1) { cout << "Derivedl (void)" << endl; }

h

class Derived2 : public virtual Base {
public:
Derived2 (void) : Base (2) { cout << "Derived2 (void)" << endl; }

h

Copyright ©1997-2006 Vanderbilt University 56

Douglas C. Schmidt OO Programming with C++

Virtual Base Class Initialization Example, (cont'd)
int
main (int, char *[])
{
Base b (0); // Direct instantiation of Base:
I Base::Base (0)
Derivedl di1; // Instantiates Base via Derivedl ctor:
/[Base:Base (1)
Derived2 d2; /I Instantiates Base via Derived2 ctor:
/[Base:Base (2)
Derived d; /I Instantiates Base via Derived ctor:
1 Base::Base (3)
return O;

Copyright ©1997-2006 Vanderbilt University 58

Douglas C. Schmidt OO Programming with C++

Virtual Base Class Initialization Example, (cont'd)
class Derived : public Derivedl, public Derived2 {
public:

/I The Derived constructor _must_ call the Base

/I constructor explicitly, because Base doesn'’t

/I have a default constructor.

Derived (void) : Base (3) {

cout << "Derived (void)" << endl;

Copyright ©1997-2006 Vanderbilt University 57
Douglas C. Schmidt OO Programming with C++

Vector Interface Revised

e The following example illustrates templates, multiple inheritance,
and virtual base classes in C++:
#include <iostream.h>
/I A simple-minded Vector base class,
/I no range checking, no initialization.
template <class T> class Vector

{
public:
Vector (size_t s): size_ (s), buf_ (new T[s]) {}
T &operator[] (size_t i) { return this->buf _[i]; }
size t size (void) const { return this->size ; }
private:
size t size_;
T *buf_;
¥
Copyright ©1997-2006 Vanderbilt University 59

Douglas C. Schmidt OO Programming with C++

Init _Vector Interface

e A simple extension to the Vector base class, that enables
automagical vector initialization

template <class T>
class Init_Vector : public virtual Vector<T>

{
public:
Init_Vector (size_t size, const T &init)
: Vector<T> (size)
{
for (size_t i = 0; i < this->size (); i++)
(*this)[i] = init;
}
/I Inherits subscripting operator \& size().
h
Copyright ©1997-2006 Vanderbilt University 60
Douglas C. Schmidt OO Programming with C++

Init _Checked _Vector Interface

e A simple multiple inheritance example that provides for both an
initialized and range checked Vector

template <class T>
class Init_Checked_Vector :
public Checked_Vector<T>, public Init Vector<T> {
public:
Init_Checked_Vector (size_t size, const T &init):
Vector<T> (size),
Init_Vector<T> (size, init),
Checked_ Vector<T> (size) {}
/I Inherits Checked_Vector::operator(]

h

Copyright ©1997-2006 Vanderbilt University 62

Douglas C. Schmidt OO Programming with C++

Checked _Vector Interface
e Extend Vector to provide checked subscripting

template <class T>
class Checked_Vector : public virtual Vector<T> {
public:
Checked_Vector (size_t size): Vector<T> (size) {}
T &operator[] (size_t i) throw (Range_Error) {
if (this->in_range (i)) return (*(inherited *) this)
else throw Range_Error (i);

}

/I Inherits inherited::size.
private:
typedef Vector<T> inherited;
int in_range (size_t i) const
{ return i < this->size (); }

h
Copyright ©1997-2006 Vanderbilt University 61
Douglas C. Schmidt OO Programming with C++

Init _Checked _Vector Driver
int main (int argc, char *argv[]) {

try {
size_t size = :atoi (argv[l]);
size_t init = :atoi (argv[2]);

Init_Checked_Vector<int> v (size, init);
cout << "vector size = " << v.size ()
<< ", vector contents = ",

for (size_t i = 0; i < v.size (); i++)
cout << VJi|;

cout << "\n" << ++v[v.size () - 1] << "\n";

}
catch (Range Error) { I* . . . * }

}

Copyright ©1997-2006 Vanderbilt University 63

Douglas C. Schmidt OO Programming with C++

Multiple Inheritance Ambiguity

e Consider the following:

struct Base 1 { int foo (void); /* . . . * }
struct Base 2 { int foo (void); /* . . . * }
struct Derived : Base 1, Base 2 { /* . . . */ }
int main (int, char *]) {
Derived d;
d.foo (); // Error, ambiguous call to foo ()
}
Copyright ©1997-2006 Vanderbilt University 64
Douglas C. Schmidt OO Programming with C++

Summary

e Inheritance supports evolutionary, incremental development of
reusable components by specializing and/or extending a general
interface/implementation

e Inheritance adds a new dimension to data abstraction, e.g.,

— Classes (ADTs) support the expression of commonality where the
general aspects of an application are encapsulated in a few base
classes

— Inheritance supports the development of the application by
extension and specialization without affecting existing code . . .

e Without browser support, navigating through complex inheritance
hierarchies is difficult . . . tools can help.

Copyright ©1997-2006 Vanderbilt University 66

Douglas C. Schmidt OO Programming with C++

Multiple Inheritance Ambiguity, (cont'd)

e There are two ways to fix this problem:

1. Explicitly qualify the call, by prefixing it with the name of the
intended base class using the scope resolution operator, e.g.,
d.Base_1:foo (); // or d.Base_2:foo ()
2. Add a new method foo to class Derived (similar to Eiffel's
renaming concept) e.g.,
struct Derived : Base 1, Base 2 {
int foo (void) {
Base_1::foo (); // either, both
Base_2::foo (); // or neither
}
h

Copyright ©1997-2006 Vanderbilt University 65

