The Design and Performance of a CORBA
Audio/Video Streaming Service

Sumedh Mungee, Nagarajan Surendran Douglas C. Schmidt
Yamuna Krishnamurthy
{sumedh,naga,yamup@cs.wustl.edu {schmid} @uci.edu
Department of Computer Science, Washington University Electrical & Computer Engineering Dept.
St. Louis, MO 63130 University of California, Irvine, CA 92697

This paper appeared a chapter in the bDekign and Man- have historically precluded DOC middleware from being used
agement of Multimedia Information Systems: Opportunitias their data transfer mechanism [Pyaralietal., 1996].
and Challengesedited by Mahbubur Syed and published biyor instance, inefficient CORBA Internet Inter-ORB
Idea Group Publishing, Hershey, USA, in 2001. Protocol (IIOP) [Gokhale and Schmidt, 1999] implemen-

tations perform excessive data-copying and memory
. allocation per-request which increases packet latency
1 Introduction [Gokhale and Schmidt, 1998]. Likewise, inefficient marshal-

o . , ing/demarshaling in DOC middleware decreases streaming
Motivation: Advances in network bandwidth and CPU Projata throughput [Gokhale and Schmidt, 1996].

cessing power have enabled the emergence of multimedia) .
applications, such as tele-conferencing or streaming vided S the performance of DOC middleware steadily improves,

that exhibit significantly more diverse and stringent qualitf}oWever. the stream establishment and control components of
tributed multimedia applications can benefit greatly from

of-service (QoS) requirements than traditional data-orien I§ o o . 4
applications, such as file transfer or email. For instandg€ Portability and flexibility provided by DOC middleware.

popular Internet-based streaming mechanisms, such as R _r.efore, to fgcilitgte the_deyelopment of standards-based
alvideo [RealNetworks, 1998] and Vxtreme [Vxtreme, 19982;§tnbuted multimedia .appllcanons, the Obje'ct Management
allow suppliers to transmit continuous streams of audio atidoUP (OMG) has defined the CORBA Audio/Video (A/V)
video packets to consumers. Likewise, non-continuous megise2Mming Service specification [OMG, 1997a], which defines
applications, such as medical imaging servers [Hu et al., 106§j"Mon interfaces and semantics necessary to control and
and network management agents [Schmidt and Suda, 198)nage A/V streams.
employ streaming to transfer bulk data efficiently from sup- The CORBA A/V Streaming Service specification defines
pliers to consumers. an architecture for implementing open distributed multime-
However, many distributed multimedia applications rely atia streaming applications. This architecture integrates (1)
custom and/or proprietary low-level stream establishment amell-defined modules, interfaces, and semantics for stream es-
signaling mechanisms to manage and control the presetaflishment and control with (2) efficient data transfer pro-
tion of multimedia content. These types of applications ré@cols for multimedia data transmission. In addition to
the risk of becoming obsolete as new protocols and servigedining standard stream establishment and control mecha-
are developed [Huard and Lazar, 1998]. Fortunately, there igms, the CORBA A/V Streaming Service specification al-
general trend to move from programming custom applicatidaws distributed multimedia applications to leverage the inher-
manually to integrating applications using reusable compait portability and flexibility benefits provided by standards-
nents based on open distributed object computing (DOC) mid@sed DOC middleware.
dleware, such as CORBA [Object Management Group, 1999]our prior research on CORBA middleware has
DCOM [Box, 1997], and Java RMI [Wollrath et al., 1996]. explored the efficiency, predictability, and scalabil-
Although DOC middleware is well-suited to handle rgty aspects of ORB endsystem design, including
quest/response interactions among client/server applicati@figic [Schmidt et al., 1998a] and dynamic [Gill et al., 2001]
the stringent QoS requirements of multimedia applicatioggheduling, 1/0 subsystem [Kuhnsetal., 1999] and plug-

*This work was supported in part by AFOSR grant F49620—00—1—033ﬂ?-b|e .ORB transport protocpl [O'Ryan et al., 2000]
Boeing, NSF grant NCR-9628218, DARPA contract 9701516, and Sprint. integration, synchronous [Schmidtet al., 2001] and asyn-

ject Adapter, stubs/skeletons, and servants, run in user-space
and handle connection management, data transfer, endpoint
and request demultiplexing, concurrency, (de)marshaling, and
application operation processing. TAO’s A/V Streaming Ser-
vice is implemented atop its user-space ORB components. At
(> m) the heart of TAO’s A/V Streaming Service is jituggable A/V

CONSUMERQ protocol framework This framework provides the “glue” that
/4 integrates TAO’s A/V Streaming Service with the underlying
I/O subsystem protocols and network interfaces.

STREAM STREAM STREAM STREAM I i . i I i -
ADAPTER || ITEREACE TEREACE ADAPTER Chapter organization: The remainder of this chapter is or
Pluggable) | AND CONTROL ANDCONTROL || ™ Fluggabie ganized as follows: Section 0.2 illustrates how we applied
Lrotucl Erotoco] patterns to develop and optimize the CORBA A/V Streaming

Service to support the standard OMG interfaces; Section 0.3
describes two case studies that illustrate how to develop dis-
tributed multimedia applications using TAO's A/V Stream-
ing Service and its pluggable A/V protocol framework; Sec-
tion 0.4 presents the results of empirical benchmarks we con-
OS KERNEL ACE COMPONENTS OS KERNEL ducted to illustrate the performance of TAO's A/V Stream-
REAL-TIME 1/0 REAL-TIME 1/0
SUBSYSTEM ing Service; Section 0.5 presents concluding results. For
HIGH-SPEED completeness, Appendix .1 outlines the intents of all the pat-
L INOR IR L INOKE N terns applied in TAO's A/V Streaming Service; Appendix .2
summarizes the CORBA reference model and Appendix .3
Figure 1: Layering of TAO's A/V Streaming Service Atop thdlustrates the various point-to-point and point-to-multipoint
TAO ORB Endsystem stream and flow endpoint bindings implemented in TAO’s A/V
Streaming Service.

chronous [Arulanthu et al., 2000] ORB Core architectures,

event processing [Harrison et al., 1997], optimization pri The Design of TAO’s Audio/Video

ciple patterns for ORB performance [Pyarali et al., 1999,) .

and the performance of various commercial and research Streaming Service

ORBs [Gokhale and Schmidt, 1996, Schmidt et al., 1998b]

over high-speed ATM networks. This chapter focuses @his section first presents an overview of the key archi-

another important topic in ORB endsystem researthe tectural components in the CORBA A/V Streaming Ser-

design and performance of the CORBA A/V Streaming Serwiz®. We then summarize the key design challenges faced

specification when developing TAO's CORBA A/V Streaming Service
The vehicle for our research on the CORBA A/V Streanand outline how we applied patterns [Gamma et al., 1995,

ing Service is TAO [Schmidtetal., 1998a]. TAO is a highBuschmann et al., 1996, Schmidt et al., 2000] to resolve these

performance, real-time Object Request Broker (ORB) endsghallenges. Finally, we describe the design and performance

tem targeted for applications with deterministic and statistiasfl the pluggable A/V protocol framework integrated into

QoS requirements, as well as best effort requirements. Ti#O's A/V Streaming Service.

TAO ORB endsystem contains the network interface, OS 1/0

subsystem, communication protocol, and CORBA-compliant

middleware components and services shownin Figure 1. 2.1 Overview of the CORBA Audio/Video
Figure 1 also illustrates how TAO's A/V Streaming Ser- Streaming Service Specification

vice is built over the TAO ORB subsystem. TAO’s

real-time 1/0 (RIO) [Kuhns et al., 2000] subsystem runs ihhe CORBA Audio/Video (A/V) Streaming Service specifi-

the OS kernel and sends/receives requests to/from cliez@gon [OMG, 1997a] defines an architectural model and stan-

across high-speed, QoS-enabled networks, such as Adidtd OMG IDL interfaces that can be used to build interopera-

or IP Integrated [Internet Engineering Task Force, 2000b] ablé distributed multimedia streaming applications. Below, we

Differentiated [Internet Engineering Task Force, 2000a] Sewtline the architectural components and goals of the CORBA

vices. TAO's ORB components, such as its ORB Core, OB/ Streaming Service specification.

2.1.1 Synopsis of Components in the CORBA A/V Standardized stream establishment and control protocols:
Streaming Service Using these protocols, consumers and suppliers can be devel-

. _ o ~ oped independently, while still being able to establish streams
The CORBA A/V Streaming Service specification definggith one another.

flows as a continuous transfer of media between two multi-

media devices. Each of these flows is terminated tipa SUPPOrt for multiple data transfer protocols: The
endpoint A set of flows, such as audio flow, video flow an&:ORBA A/V Streaming Service architecture separates its

data flow, constitute atream which is terminated by stream stream establishment and control protocols from its data trans-

endpoint A stream endpoint can have multiple flow endpoint€" Protocols, such as TCP, UDP, RTP, or ATM, thereby allow-

Figre shous mulimeciastesuhich s epreserted <9 SPDIC20ns o select e most sulable ot sl oo
a flow between twdlow endpointsOne flow endpoint acts asrequiremepn is PP

‘wm ==rrem ; Provide interoperability of flows: A flow specifications
;‘;ngﬁf‘ d interface ICE- N [Wikesll passed between two stream endpoints to convey per-flow in-
(Sink) Clriirel g‘;]";’c‘t" | (Soﬁe) formation, such as format, network host name and address,
| — and flow protocol, required to bind or communication between
|And Management two multimedia devices.
Objects

‘ Support many types of sources and sinks: Common

| stream sources include video-on-demand servers, video cam-
eras attached to a network, or stock quote servers. Com-
mon sinks include video-on-demand clients, display devices

attached to a network, or stock quote clients.

MULTIMEDIA
STREAM . .
2.2 Overview of Design Challenges and Resolu-
Figure 2: CORBA A/V Streaming Service Architecture tions

) Below, we present an overview of the key challenges faced
a source of the data and the other flow endpoint acts as a Sij{ken we developed TAO's CORBA A/V Streaming Service
Note that the control and signaling operations pass throughpe o tline how we applied patterns [Gamma et al., 1995,
GIOP/IIOP-path of the ORB, demarcated by the dashed b&knmidt et al., 2000] to resolve these challenges. Sec-
In contrast, the data stream useg-of-bandstream(s), which tjons 0.2.3 and 0.2.4 then examine these design and optimiza-
can be implemented using communication protocols that ggg, pattern techniques in more depth. Appendix .1 outlines

more suitable for multimedia streaming than HOP. Maintaifhe intents of all the patterns applied in TAO’s A/V Streaming
ing this separation of concerns is crucial to meeting end-to-ef\dice.

QoS requirements.
Each stream endpoint consists of three logical entities: (1

stream interface control objethat exports an IDL interface,

(2) adata source or sinkand (3) astream adaptothat is re-

ngibility in stream endpoint creation strategies: The
ORBA A/V Streaming Service specification defines the in-
terfaces and roles of stream components. Many performance-

sponsible for sending and receiving frames over a netwosgnsitive multimedia applications require fine-grained control
Control and Management objectse responsible for the esOVer the strategies governing the creation of their stream com-
tablishment and control of streams. The CORBA A/V Streafonents. For instance, our past studies of Web server per-
ing Service specification defines the interfaces and interactigffgnance [Hu etal., 1997, Hu et al., 1998] motivate the need
of the Stream Interface Control Objectd the Control and to supportadaptiveconcurrency strategies to develop efficient

Management objects. Section 0.2.3 describes the various cBRfl Scalable streaming applications. _
ponents in Figure 2 in detail. In the context of our A/V Streaming Service, we deter-

mined that the supplier-side of our MPEG case-study appli-
cation (described in Section 0.3.1) required a process-based

2.1.2 Synopsis of Goals for the CORBA A/V Streaming concurrency strategy to maximize stream throughput by al-
Service lowing parallel processing of separate streams. Other types

of applications required different implementations, however.

The goals of the CORBA A/V Streaming Service include tHeor example, the consumer-side of our MPEG application (de-
following: scribed in Section 0.3.1) benefited from the creation of reactive

[Schmidt, 1995] consumers that contain all related endpoifisxibility in stream control interfaces: A/V streaming
within a single process. middleware should provide flexible mechanisms that allow de-
To achieve a high degree of flexibility, therefore, TAO’s A/\velopers to define and use different operations for different
Streaming Service design decouples Hehaviorof stream streams. For instance, a video application typically supports
components from the strategies governing teedation We a variety ofoperations such agplay , stop , andrewind .
achieved this decoupling via tiactory MethodandAbstract Conversely, a stream in a stock quote application may support
Factory patterns [Gamma et al., 1995], as described in Se@ther operations, such agart andstop . Since the opera-
tion 0.2.3. tions provided by the stream are application-defined, it is use-
ful for the control logic component in streaming middleware
Flexibility in data transfer protocol: A CORBA A/V to be flexible and adaptive.
Streaming Service implementation may need to selectTherefore, another design challenge facing designers of
from a variety of transfer protocols. For instanc&§ORBA A/V Streaming Services is to allow applications the
an Internet-based streaming application, such as Rexibility to define their own stream control interfaces and ac-
alvideo [RealNetworks, 1998], may use the UDP protocekss these interfaces in an extensible, type-safe manner. In
whereas a local intranet video-conferencing tool [et al., 199@0's A/V Streaming Service implementation, we used the
might prefer the QoS features offered by native high-speextension InterfacgSchmidt et al., 2000] pattern to resolve
ATM protocols. Likewise, RTP [Schulzrinne et al., 1994] ithis challenge.

gaining acceptance as a transfer protocol for streaming au'(_j]'o

0.
and video data over the Internet. Thus, it is essential that gxmmty In managing states of stream supplier and con-

A/V Streaming Service support a range of data transfer pro%g_mers: The data transfer component of a streaming appli
colsdynamically cation often must change behavior depending on the current

. . i . f th . Fori invoki -
The CORBA A/V Streaming Service defines a simple sp?ateo the system. For instance, invoking thiay opera

o . . on on the stream control interface of a video supplier may
cialized protocolSimple Flow Protoco(SFP), which makes ause it to enter @&LAYING state. Likewise, sending it the
no assumptions about the communication protocols used %rp operation may cause it to transition,to tBEOPPED
data streaming and provides an architecture independent OW. More complex state machines can result due to addi-
content transfer. Consequently, the stream establishment ¢

f8%al operations, such aswind andfast _forward op-

ponents in TAO’s A/V Streaming Service provide flexibl rationsp ' B P
gqlgzhe&;\?vlsmsp:2giaar!?nv?nnggfstIs(:)l,rllcshtgsdsecl;?lfe '?s nsnzs_?LT:rt]'Thus, an important design challenge for developers is de-
: L ' ' slgning flexible applications whose states can be extended.
multiple communication protocols, such as TCP, UDP, RTP, Iﬂg g bp

ATM.) pplications, and the A/V Streaming Service itself, must be
Therefore, another design challenge we faced was to de{)§|_jefined. To address this issue we appliedState Pat-
stream establishment components that can work with avarig% [Gamma et al., 1995, as described in Section 0.3.1. The

of data transfer protocols. To resolve this challenge, we Aate pattern is described in Appendix .1

plied theStrategypattern [Gamma et al., 1995], as explained
in Section 0.2.3. Providing a uniform interface for full and light profiles:

To allow developers and applications to control and manage
Providing a uniform API for different flow protocols: flows and streams, the CORBA A/V Streaming Service speci-
The CORBA A/V Streaming Service specification defindikation exposes certain of their IDL interfaces. There are two
the flow specification syntax that can be used for coevels of exposure defined by the CORBA A/V Service: (1)
nection establishment. It defines the protocol names ahd light profile, where only the stream and stream endpoint
syntax for specifying the flow and data transfer protinterfaces are exposed and the flow interfaces are not exposed
col information, but it does not define any interfacemnd (2) thdull profile, where flow interfaces are also exposed.
for protocol implementations. We resolved this omishis two-level design provides more flexibility and granularity
sion with ourpluggable A/V protocol frameworfdescribed of control to applications and developers since flow interfaces
in Section 0.2.4) using design patterns, described in Agre CORBA interfaces and are not locality constrained.
pendix .1, such asayer[Buschmann et al., 1996JAcceptor- Therefore, the design challenge was to define a uniform
Connector[Schmidt et al., 2000]Facadeand Abstract Fac- interface for both the light and full profiles to make use
tory [Gamma et al., 1995]. Moreover, TAO’s A/V Streamingf TAO’s pluggable A/V protocol framework. We resolved
Service defines a uniform API for the different flow protocols$his challenge by deriving the full and light profile end-
such as RTP and SFP, that can handle variations using the points from a base interface and by generating the flow
icy interface described in Section 0.2.4. specification using thd~orward _FlowSpec _Entry and

oreover, in each state, the behavior of supplier/consumer

Reverse _FlowSpec _Entry classes, as mentioned in semame for each role is provided in brackets. In addition, we il-
tion 0.2.3. lustrate how TAO provides solutions to the design challenges

Providing multipoint-to-multipoint bindings: Different outlined in Section 0.2.2.

multimedia applications require different stream endpoint

bindings. For example, video-on-demand applications 31 Multimedia Device Factory (MMDevice)

quire point-to-point bindings between consumer and sup-

plier endpoints whereas video-conferencing applications pgy MMDevice abstracts the behavior of a multimedia device.

quire a multipoint-to-multipoint bindings. The CORBA A/VThe actual device can Iphysica) such as a video microphone

Specification defines a point—to-multipoint binding, but not g Speaker, or b&)gicaL such as a program that reads video

multipoint-to-multipoint binding, which is left as a responsilips from a file or a database that contains information about

bility of implementors. stock prices. There is typically odMDevice per physical
Thus, we faced the design challenge of providing logical device.

multipoint-to-multipoint bindings for applications that use por instance, a particular device might support

multicast protocols provided by the underlying network. WapEG-1 [1ISO, 1993] compression or ULAW audio

have provided a solution based on IP multicast and useqdg)n Microsystems, 1992]. Such parameters are termed

Adapter pattern [Gamma etal., 1995] to adapt it to ATM&operties” of theMMDevice. Properties can be asso-

multicast model. The Adapter pattern is used to allow Mpied with the MMDevice using the CORBA Property

tiple components to work together, even if they were not origaryice [OMG, 1996], as shown in Figure 4.
inally designed to work together. This adaptation was done

by having TAO's A/V Streaming Service set source ids for the o (String) [Valus (CORBA “Any™ t7pe)
flow producers so that the flow consumers can distinguish the

sources. We added support in both SFP and RTP to allow then] " V¢ec-Format’|"MPEG", "JPEG", "AVT
to be adapted for such bindings. Our implementation of Vic, | Ve | Gand’ "Starvars’...

described in Section 0.3.2, uses TAO'’s A/V Streaming Service

multipoint-to-multipoint binding and its RTP adapter. A |
P

"Connections" |4

define_property ();

2.3 CORBA A/V Streaming Service Compo- || setpropery_vaiue () | | Properties ;
nents delete_property (); MMDevice

Figure 4: Multimedia Device Factory

The CORBA A/V Streaming Service specification defines a
set of standard IDL interfaces that can be implemented to pro- L .
vide a reusable framework for distributed multimedia stream-*\" MMDewce is also an endpom.t factory that creatgs new
ing applications. Figure 3 illustrates the key components'%ﬁdpo'ntS for new stream connections. Each endpoint con-

the CORBA A/V Streaming Service. This subsection da!sts of a pair of objects: (1) a virtual devicéRev), which

encapsulates the device-specific parameters of the connection
and (2) theStreamEndpoint , which encapsulates the data
Controller
Stream Stream
e

transfer-specific parameters of the connection. The roles of
VDev andStreamEndpoint are described in Section 0.2.3
and Section 0.2.3, respectively.

The MMDevice component also encapsulates the imple-

@ mentation ofstrategiesthat govern the creation of théDev
N andStreamEndpoint objects. For instance, the implemen-
_ T Multimedia tation of MMDevice in TAO's A/V Streaming Service pro-
==l Stream supplier Vides the following two concurrency strategies:
- [One per device
Consumer D One per stream Process-based strategy: The process-based concurrency
strategy creates new virtual devices and stream endpoints in a
Figure 3: A/V Streaming Service Components new process, as shown in Figure 5. This strategy is useful for

applications that create a separate process to handle each new

scribes the design of TAO's AIV Streaming Service Compg_ndpoin'[. For instance, the supplier in our MPEG player appli-
nents shown in Figure 3. The corresponding IDL interfag&@tion described in Section 0.3.1 creates separate processes to
stream the audio and video data to the consumer concurrently.

requested

Server Process

Connection MMDevice CreatIS

Child
Process

(VDev) (MediaCtrl)
(_ StreamEndpoint)

configure (string name, Any value)

if (name == "video_format")
switch (value)
case "MPEG": use_mpeg ();

the MPEG video format, it can invoke tltenfigure oper-
ation on the suppliev¥Dev, as shown in Figure 7.

configure () = 0;

default: return Exception;

Figure 5:MMDevice Process-based Concurrency Strategy | ;™

Reactive strategy: In this strategy, endpoint objects for each configure
new stream are created in the same process as the factory, g8video_format",
shown in Figure 6. Thus, a single process handles all the "MPEG");

configure ();

Video VDev

Figure 7: Virtual Device

Connection creates

Stream establishmens a mechanism defined by the

requested i . = : .
: y CORBA A/V Streaming Service specification to permit the
(VDev) MediaCtrl) negotiation of QoS parameters \peoperties Properties are
Server - irs.i i _
e | CStreamEndpoint) name-valugpairs,i.e., they have astring name and a cor

responding value. The properties used by the A/V Stream-
ing Service are implemented using the CORBA Property Ser-
vice [OMG, 1996].

simultaneous connectionsactively [Schmidt, 1995]. This The CORBA A/V Streaming Service specification spec-
strategy is useful for applications that dedicate one proces#igs the names of the common properties used by the
control multiple streams. For instance, to minimize synchréDev objects. For instance, the propertyrrformat
nization overhead, the consumer of the MPEG A/V player dg-a string that contains the current encoding forrea,
plication described in Section 0.3.1 uses this strategy to creM@EG.” During stream establishment, eaubev can use

the audio and video endpoints in the same process. the get _property _value operation on its peeyDev to

' .)) ensure that the peer uses the same encoding format.
In TAO’s A/V Streaming Service, theIMDevice uses the \when a new pair of/Dev objects are created, eaviDev

Abstract Factonpattern [Gamma et al., 1995] to decouple (Lises theconfigure operation on its peer to set the stream
the creation strategy of the stream endpoint and virtual deviggfiguration parameters. If the negotiation fails, the stream
from (2) the concrete classes that define it. Thus, applieay pe torn down and its resources released immediately.

tions that use th&/MDevice can subclass both the strategies geaction 0.2.3 describes the CORBA AV Streaming Service
described above, as well as tSeamEndpoint and the iream establishment protocol in detail.

VDev that are created.
The Abstract Factory pattern allows applications to cus-

tomize the concurrency strategies to suit their needs. ForZm3-3 Media Controller (MediaCtrl)
stancg, by dgfault, the reactive §trategy .creates new streqid media ControllerlfediaCtrl
endpoints using dynamic allocatioe,g, via the new op-
erator in C++. Applications can override this behavi
via subclassing so they can allocate stream endpoints
ing other allocation techniques, such as thread-specific s
age [Schmidt et al., 2000] or special framebuffers.

Figure 6:MMDevice Reactive Concurrency Strategy

) is an IDL interface that
defines operations for controlling a stream.MediaCtrl
®hterface imotdefined by the CORBA A/V Streaming Service
f‘pl?écification. Instead, it is defined by multimedia application

e(\'/elopers to support operations for a specific stream, such as
the following IDL interface for a video service:

interface video_media_control
{
The virtual device YDev) component is created by the Void Select__vldeo (string name_of_movie);
MMDevice factory in response to a request for a new stream?°id Play () _
. . . void rewind (short num_frames);
connection. There is onéDev per stream. Th¥Devis used g pause ();
by an application to define its responsecnfigure re- void stop ();
guests. For instance, if a consumer of a stream wants to Jse

2.3.2 Virtual Device (VDev)

The CORBA A/V Streaming Service provides develop-

Y

handle_connection_requested (..)

ers with the flexibility to associate an application-defined {

MediaCtrl interface with a stream. Thus, the A/V Stream- create transport endpoint;

ing Service can be used with an infinitely extensible variety of return "TCP=tango:8455"; -
streams, such as audio and video, as well as non-multimedia } TCP_StreamEndpoint

streams, such as a stream of stock quotes. connection_requested (..)
The VDev object represented device-specific parameters,_Connection | { B

such as compression format or frame rate. Likewise, the Retq“eSted handle_connection_requested ();
MediaCtrl interface is device-specific since different de- ==t | retum flowspec;

[

vices support different control interfaces. Therefore, the 1CP=tango:8455"

MediaCtrl is associated with th&/Dev object using the Figure 8: Interaction BetweeStreamEndpoint and a
Property Service [OMG, 1996]. Multimedia Application
There is typically oneMediaCtrl per stream. In some

cases, however, application developers may choose to control

multiple streams using the sarvediaCtrl . For instance, Step 2: When binding twdleDevices-, theStrgamCtrI
2\ kesconnect on oneStreamEndpoint with the peer

the video and audio streams for a movie might have a comm@aff)

MediaCtrl to enable a single CORBA operation, such as-"-StreamEndpoint as a parameter.

play , to start both audio and video playback simultaneousitep 3: The StreamEndpoint then requests the
TCP.StreamEndpoint to establish the connection for this

stream using the network addresses it is listening on.

StreamEndpoint

2.3.4 Stream Controller StreamCtrl) .)
Step 4: The virtualhandle _connection _requested

The Stream ControllerStreamCtrl) interface abstracts aoperation of theTCP.StreamEndpoint is invoked and
continuous media transfer between virtual deviaé3€vs). It connects with the listening network address on the peer side.

supports operations to bind twdMDevice objects together Thus, by applying patterns, titreamEndpoint design

using a stream. Thus, t8ireamCtrl - component binds theallows each application to configure its own data transfer pro-

sgppher aqd consumer Of. a streagrg, a wdeo-camera and atocoI, while reusing the generic stream establishment control
display. It is the key participant in th&tream E:~:tabl|:~:hmentIogic in TAO's A/V Streaming Service

protocol described in Section 0.2.3.

In general, &8treamCtrl object is instantiated by an ap- . .
plication developer. There is or&treamCtrl per stream, 236 Interaction Between Components in the CORBA

i.e., per consumer/supplier pair. Audio/Video Streaming Service Model

The preceding discussion in Section 0.2.3 described the struc-
ture of components that constitute the CORBA A/V Streaming
Service. Below, we describe how these componietésactto

The StreamEndpoint object is created by aMMDevice Provide two key A/V Streaming Service featurestream es-
in response to a request for a new stream. There is éalishmenandflexible stream control

StreamEndpoint per stream. AStreamEndpoint en- Stream establishment: Stream establishment is the process
capsulates the data transfer-specific parameters of a stref#Binding two peers who need to communicate vistraam
For instance, a stream that uses UDP as its data transfer profg= CORBA A/V Streaming Service specification defines a
col will identify its StreamEndpoint via a host name andstandard protocol for establishing a binding between streams.
port number. Several A/V Streaming Service components are involved in
In TAO’s A/V Streaming Service, thStreamEndpoint stream establishment. A key motivation for providing an elab-
implementation uses patterns, suchsuble Dispatching orate stream establishment protocol is to allow components to
andTemplate MethofiGamma et al., 1995], described in Apbe configured independently. This allows the stream establish-
pendix .1, to allow applications to define and exchange datent protocol to remain standard, and yet provide sufficient
transfer-level parameters flexibly. This interaction is shown fwoks for multimedia application developers to customize this
Figure 8 and occurs as follows: process for a specific set of requirements. For instance, an
) o) . MMDevice can be configured to use one of several concur-
Step 1: An A/V streaming application can inherit fromyency strategies to create stream endpoints. Thus, at each stage

the StreamEndpoint class and override the operatioRt the stream establishment process, individual components
handle _connection _requested in the new subclass g pe configured to implement desired policies.
TCP_StreamEndpoint

2.3.5 Stream Endpoint StreamEndpoint)

The CORBA A/V Streaming Service specification identifiegquest them to creatd Endpoint and B_Endpoint
two peers in stream establishment, which are known as&he tndpoints, respectively.

party and.the. B” party. These terms define complimentary 3. VDev configuration: After the two peevDev objects
relationshipsj.e, a stream always has @nparty at one end 5,6 heen created, they can usedbefigure operation to

e;]nd aB party at ;he q(tjher. Tha part?]/ maysge theink i.et.), exchange device-level configuration parameters. For instance,
the consumer, of a video stream, whereasBiparty may be these parameters can be used to designate the video format and

thesourcei.e., the supplier, of wdeg stream' and vice _Ver,sﬁompression technique used for subsequent stream transfers.
Note that the CORBA A/V Streaming Service specification

defines twadistinct IDL interfaces for theA andB party end- 4. Stream setup: In this step,aStreamCtrl invokes
points. Hence, for a given stream, there will be two distinte connect operation on theA Endpoint . This opera-
types for the supplier and the consumer. Thus, the cOR#@n instructs theA_LEndpoint to initiate a connection with
AJV Streaming Service specification ensures that the compig Peer. TheA_Endpoint initializes its data transfer end-
mentary relationship between suppliers and consumers is typints in response to this operation. In TAO's A/V Stream-
safe. An exception will be raised if a supplier tries to establi§hg Service, applications can customize this behavior using
a stream with another supplier accidentally. the Double DispatcHGamma et al., 1995] pattern described
Stream establishment in TAO’s A/V Streaming Servid8 Section 0.2.3.
occurs in several steps, as illustrated in Figure 9. This5, Stream Establishment: In this step, theé_ Endpoint
_ invokes therequest _connection operation on its peer
aStmeyl — Dbind devs(GMMBe, endpoint. TheA Endpoint passes its network endpoint
aMMDev 2.1 creaie P 3 . parametgrs,e.g, hpstname and port nymber, as parame-
/W(e« 2.4)8\% : bMMDev ters to this operation. When tH&Endpoint receives the
22 A" o Foin 8 Vo request _connection operation, it initializes its end of
\00“(\ the data transfer connection. It subsequently connects to the
data transfer endpoint passed to it by £&a&ndpoint

5) request_connection

A_EndPoint B_EndPoint After completing these five stream establishment protocol

, steps, a data transfer-level stream is established between the
-w two endpoints of the stream. Section 0.2.3 describes how the

avbev bvDey Media Controller(MediaCtrl) can control an established

. . . .streamg.g, by starting or stopping the stream.
Figure 9: Stream Establishment Protocol in the A/V Streaming £9. 0y g PRINg

Service Stream control: EachMMDevice endpoint factory can be
configured with an application-definedediaCtrl inter-
figure shows a stream controllea§treamCtrl) binding face, as described in Section 0.2.3. Each stream has one
the A party together with theB party of a stream. TheMediaCtrl and everyMediaCtrl controls one stream.
stream controller need not be collocated with either end ofhus, if a particular movie has two streams, one for audio
stream. To simplify the example, however, we assume tlad the other for video, it will have twhlediaCtrl s. The

the controller is collocated with th& party, and is called the MediaCtrl is arExtension Interface described in Ap-
aStreamCtrl . Each step shown in Figure 9 is explainegendix .1.
below: After a stream has been established by the stream con-

troller, applications can obtain object references to their
. . i L .~ MediaCtrl s from theirVDev. These object references con-
(MMDevice) objects together. -Application developers in- trol the flow of data through the stream. For instance, a

voke thebind _devs operation onaStreamCtrl . They . . .)
. . . video stream might support certain operations, sughlags ,
provide the controller with the object references of twg i
ind , andstop , and be used as shown below:

MMDevice objects. These objects are factories that creatd’

the twoStreamEndpoint s of the new stream. /I The Audio/Video Streaming Service invokes this

. . . /I application-defined operation to give the
2. Stream Endpomt creation: In this step, /I application a reference to the media controller

aStreamCitrl requests the MMDevice objects, // for the stream.
i.e, aMMDevice and bMMDevice, to create the Video_Client VDev:set media_ctrl
StreamEndpoint s and VDev objects. The (CORBA:Object ptr media_ctrl,

. CORBA::Environment &env)
aStreamCtrl invokes create _A and create B op-
erations on the twdMMDevice objects. These operations // "Narrow" the CORBA::Object pointer into

1. The aStreamCtrl binds two Multimedia Device

/I a media controller for the video stream. 2.4 The Design of a Pluggable A/V Protocol

this->video_control_ = . Framework for TAO’s A/V Streaming Ser-
Video_Control::_narrow (media_ctrl);

} vice

At the heart of TAO'’s A/V Streaming Service is iduggable

The video control interface can be used to control the streq&r/\,/ protocol frameworkwhich defines a common interface

as follows: for various flow protocols, such as TCP, UDP, RTP, or ATM.
This framework provides the “glue” that integrates its ORB
/I Select the video to watch. components with the underlying 1/0 subsystem protocols and
this->video_control_->select_video ("gandh"); network interfaces. In this section, we describe the design of
/I Start playing the video stream. the pluggable A/V protocol framework provided in TAO’s A/V
this->video_control_->play (); Streaming Service and describe how we resolved key design

challenges that arose when developing this framework.
/I Pause the video.

this->video_control_->stop ();

/I Rewind the video 100 frames. 2.4.1 Overview of TAO’s Pluggable A/V Protocol Frame-
this->video_control_->rewind (100); work

The pluggable A/V protocol frameworkin TAO’s A/V Stream-
Flow specification: When binding two multimedia de-INg Service consists of the components shown in Figure 11.

vices, a flow specification is passed between the tgch of these componentsis described below.
StreamEndpoints to convey per-flow information. A flow

specification represents key aspects of a flow, such as its ngFLOW PROTOCOL COMPONENT
format, flow protocol being used, and the network name al| ~-----________,
address. A flow specification string is analogous tarder-
operable object referend¢OR) in the CORBA object model.
The syntax for the interoperable flow specifications is shoy| - >~/ [s / || rLow proocoL
in Figure 10. Standardizing the flow specifications ensures t -]

%4 7 TSa _’:/# «¥- - ~||FLOW TRANSPORT]

{"video\out\MIME:video/MPEG", FACTORY
video\TCP=ace.cs;5678"}

| |
| |
1| RTP RTCP | 1 SFP NULL
| |
| |
| |

-

FLOW TRANSPORT COMPONENT

STREAMENDPOINT A
STREAMENDPOINT B

{"audio\out\MIME:audio/MPEG\SFP:1.0:credit=10\UDP=ace.cs:900"

"audio\UDP=d .cs:9000" . .
aude aneones) Figure 11: Pluggable A/V Protocol Componentsin TAO’s A/V

Figure 10: Flow Specification Streaming Service

two differentStreamEndpoints from two different imple- o

mentations can interoperate. There are two different flow spf¥-Core: This singleton [Gamma et al., 1995] component
ifications, depending on the direction in which the flowspecifs & container for flow and data transfer protocol factories.
traveling. Ifitis from theA party’sStreamEndpoint to the An application using TAO's A/V implementation must ini-

B party’s StreamEndpoirthen it is a “forward flowspec:” the tialize this singleton before using any of its A/V classes,
opposite direction is the “reverse flowspec.” such asStreamCtrl and MMDevice. During initializa-

TAO's CORBA AV Streaming Service implemental®™: the AV—Clore C'aslsf'oad? al thg 20"" pmto‘;;o' ‘;ac'
tion defines two CIaSSEE,Orward _FIOWSpec _Entry and tories, contro prOtOCO actories, an ata transfer facto-

Reverse _FlowSpec _Entry , that allow multimedia appli- ries dynami.cally using th&ervice Configurator _pat
cations to construct th#ow specification stringrom their ternh[lfchmldt ettal., IZOOO] and creates default instances for
components without worrying about the syntactic details. Fopch known protocol.

example, the entry takes the address as bothlBi _Addr

and astring and provides convenient parsing utilities foPat@ Transfer components: The components illustrated in
strings. Figure 12 and described below are required for each data trans-

fer protocol:

9

ACE_SERVICE_OBJECT each flow protocol supported by TAO's A/V Streaming Ser-

vice:
e Flow_Protocol_Factory: This class is an abstract fac-
ot prooeolpeoocs narne) R tory that creates flow protocol objects.
- - e Protocol_ Object: This class defines flow protocol func-
)/ \ tionality. Applications use this class to send frames and the
<< INSTANTIATES ;\? Protocol _Object uses application-specifie@allback
> . objects to deliver frames.
TRANSPORT TRANSPORT
ACCEPTOR CONNECTOR Figure 13 illustrates the relationships among the flow proto-

TAO_AV_FLOW < INSTANTIATES >% col components in TAO’s pluggable A/V protocol framework.
HANDLER h 4

\ /

\ /
\ ’
4 »
ACE SERVICE OBJECT
TRANSPORT |— TRANSPORT

HANDLER - |

Figure 12: TAO's A/V Streaming Service Pluggable Data Erenipseeees
Transfer Components

< < IN/S’T;NTIATES > >

V4
e Acceptor and Connector: These classes are im- FLOW HANDLER el | TRANSPORT

plementations of the Acceptor-Connector pat- AN 3 '
tern [Schmidtetal., 2000], which are used to accept \ i ;
connecgons passively and establish connections actively, N CALLBAGK
respectively.

e Transport_Factory: This class is an abstract fac-:: 'gglr ecirgﬁ -I(_)An(zstglv Streaming Service Pluggable AV Pro-

tory [Gamma et al., 1995] that provides interfaces to create P

Acceptor s andConnector s in accordance to the appro-

priate type of data transfer protocol. AV _Connector and AV_Acceptor Registry: As mentioned

e Flow.Handler: All data transfer handlers derive fromabove, diffe_rent data transfer proto_cols require the creation of

the Flow _Handler class, whose methods can start, sto ;rges_?ﬁgic%g?éa g:g:fi:J:ggrlﬁzvaéger]%tgéféraniggnnec'

and provide flow-specific functionality for timeout upcalls t VA ; B stry ol) d_ tacade that main-

theCallback objects, which are described in the following_. cceptor — registry classes to provide a facade that main-

paragraph. ains angl accesses the f':\bstrgct flow qnd dgta tra}nsfer factories
both forlight andfull profile objects. This design gives users a

Callback interface: TAO’s A/V Streaming Service usessingle interface that hides the complexity of creating and ma-

this callback interface to deliver frames and to notifgipulating different data transfer factories.

FlowEndPoints of start and stop events. Multimedia ap-

plication developers subclass this interface for each flow ends > Applying Patterns to Resolve Design Challenges for

point,i.e, there are producer and consumer callbacks. TAO’s Pluggable A/V Protocols Frameworks

A/V Streaming Service dispatches timeout events automati-

cally so that applications need not write event handling medglow, we outline the key design challenges faced when

anisms. For example, all flow producers are automatically ré§veloping TAO’s pluggable A/V protocol framework and

istered for a timer events with a Reactor. The value for tH&cuss how we resolved these challenges by applying var-

timeout is obtained through thget _timeout hook method 0us patterns [Gammaetal., 1995, Buschmannetal., 1996,

on the Callback interface. This hook method is called>chmidt et al., 2000].

yvhenever a time(_)ut occurs since multimedia applications Wéﬁiding new data transfer protocols transparently:

ically have adaptive timeout values.

Flow protocol components: Flow protocols carry in-band e Context: Different multimedia applications often have
information for each flow that a receiver can use to reprodwtiferent QoS requirements. For example, a video applica-
the source stream. The following components are requiredtion over an intranet may want to take advantage of native

10

ATM protocols to reserve bandwidth. An audio applicatiohhe Connector _Registry described above plays the fa-
in a video-conferencing application may want to use a retiade role.

able data transfer protocol, such as TCP, since loss of audio

is more visible to users than video and the bit-rate of audiglding new A/V protocols transparently:

flows are low &8 kbps using GSM compression). In con-
trast, a video application might not want the overhead of re-
transmission and slow-start congestion protocol incurred bX
TCP [Stevens, 1993]. Thus, it may want to use the facilities of_ .
an unreliable data transfer protocol, such as UDP, since losi tion for the receiver to reproduce the source stream. For

. example, every frame may need a timestamp so that the re-
a small number of frames may not affect perceived QoS. . : .
ceiver can play the frame at the right time. Moreover, sequence

e Problem: It should be possible to add new data transféimbers will be needed if a connectionless protocol, such as
protocols to TAO's pluggable A/V protocol framework withlUDP, is used so that the applications can do resequencing. In
out modifying the rest of TAO's A/V Streaming Service. Thugddition, multicast flows may require information, such as a
the framework must be open for extensions but closed to mé@urce identification number, to demultiplex flows from dif-
ifications,i.e., the Open/Closed principle [Meyer, 1989]. Ideferent sources.
ally, creating a new protocol and configuring it into TAO’s SFP is a simple flow protocol defined by the CORBA
pluggable A/V protocol framework should be all that is reA/V Streaming Service specification to transport in-
quired. band data. Likewise, the Real-time Transport Protocol

(RTP) [Schulzrinne et al., 1994] defines facilities to transport

e Solution: Use a registry to maintain a collectionn_pand data. RTP is Internet-centric, however, and cannot
of abstract factoriesbased on the Abstract Factory Palcarry CORBA IDL-typed flows directly. For example, RTP
tern [Gammaetal,, 1995]. In this pattern, a single claggecifies that all header fields should be in network-byte
defines an interface for creating families of related objectgder, whereas the SFP uses CORBAs CDR encoding and
without specifying their concrete types. Subclasses of glgries the byte-order in each header.
stract factories are responsible for creating concrete classes
that collaborate amongst themselves. In the context of pluge Problem: Flow protocols should be able to run over dif-
gable A/V protocols, each abstract factory can create concreli@ent data transfer protocols. This configuration of a flow pro-
Connector andAcceptor classes for a particular prototocol over different data transfer protocol should be done eas-
col. ily and transparently to the application developers and users.

e Context: Multimedia flows often require a flow proto-
& since most multimedia flows need to carry in-band infor-

~* Applying this solution in TAO's AV Stream- o gpjution: To solve the problem of a flow protocol
ing Service: In TAO's AV Streaming Service, therynning over different data transfer protocols, we applied
Connector _Registry plays the role of the protocol reghe Layerspattern [Buschmann et al., 1996] described in Ap-
istry. This registry is created by th&V.Core class. Fig- pendix .1. We have structured the flow protocols and data
ure 14 depicts theConnector _Registry and its re- yansfer protocols as two different layers. The flow protocol
lation to the abstract factories. These factories are @ger creates the frames with the in-band flow information.
The data transfer layer performs the connection establishment
and sends the frames that are sent down from the flow proto-
| — || e || ATM | col layer onto the network. The layered approach makes the

AAL5 flow and data transfer protocols independent of each other and
hence it is easy to tie different flow protocols with different
data transfer protocols transparently.

CONNECTOR REGISTRY / ACCEPTOR REGISTRY

y y

e Applying this solution in TAO'’s A/V Streaming Ser-
vice: TAO's A/V Streaming Service provides a uniform
data transfer layer for a variety of flow protocols, includ-
ing UDP unicast, UDP multicast, and TCP. TAO’s A/V
Streaming Service provides a flow protocol layer using a

_ _ _ Protocol _Object interface. Likewise, itf\V_Core class
cessed via a facade defined according to Faeadepat- maintains a registry of A/V protocol factories.

tern [Gamma et al., 1995]. This design hides the complexity
of manipulating multiple factories behind a simpler interfacAdding new protocols dynamically:

ABSTRACT
ABSTRACT
FACTORY
FACTORY

FACTORY
ABSTRACT

Figure 14: Connector Registry

11

e Context: When developing new pluggable A/V proto- ACCEPTOR / CONNECTOR REGISTRY

cols, it is inconvenient to recompile TAO’s A/V Streaming TRANSPORT e CRETEEEL
Service and applications just to validate a new protocol imple-
mentation. Moreover, it is often useful to experiment with dif- ‘ o ‘ ‘ o ‘ ‘ATM ‘ ‘ — ‘ ‘ R ‘ ‘RTCP‘

ferent protocols to compare their performance, footprint size,
and QoS guarantees systematically. Moreover, in telecom sys-

> > &
. . - . I x =
tems with 24<7 availability requirements, it is important to g ° e &% 5% Sz
. . . . o T =g
configure protocols dynamically, even while the system is run- £ £ & ab a5 |85
. - - L 5 3 = B s s
ning. This level of flexibility helps simplify upgrades and pro- 2 5 <
tocol enhancements. X : : 4 3 ,
N \ I / 7
e Problem: The user would like to populate the registry N A
dynamicallywith a set of factories during run-time and avoid AN \l\N S LF AN T,fA TES >>

the inconvenience of recompiling the AV Service and the ap- ‘ /
plications when different protocols are plugged in. The solu-
tion explains how we can achieve this.

SERVICE CONFIGURATOR

e Solution: We can solve the above stated problem usir’}q) . .)
the Service Configuratgpattern [Schmidt et al., 2000], which gure 15: Acceptor-Connector Registry and Service Config-
decouples the implementation of a component from the pol'fﬁ?tor
intime when it is configured into the application. By using this
pattern, a pluggable A/V protocol framework can dynamically e Solution: The solution is to make the control proto-
load the set of entries in a registry. For instance, a registry gt information part of the flow protocol. For example, RTP
simply parse a configuration script and dynamically link thenows that RTCP is its control protocol. Therefore, to reuse
services listed in it. pluggability features, it may be necessary to make the control

« Applying this solution in TAO's AV Streaming Ser- protocol use the same interfaces as its data components.

vice: TheAV_Core class maintains all parameters specified ¢ Applying this solution in TAO's A/V Streaming Ser-

in a configuration script. Adding a new parameter to repngee: During stream establishmemegistry objects will
sent the list of protocols is straightforwarde., the default first check the flow factory for the configured flow protocol.
registry simply examines this list and links the services inkdter thelisten orconnect operation has been performed
the address-space of the application, using the ACE Senfimea particular data flow, thRegistry will check if the flow
Configurator implementation [Schmidt and Suda, 1994]. AG&ctory has a control factory. If so, it will perform the same
provides a rich set of reusable and efficient components fiwocessing for the control factory, except the network endpoint
high-performance, real-time communication, and forms thert will be one value higher than the data endpoint. Since the
portability layer of TAO’s A/V Streaming Service. Figure 1520ORBA A/V Streaming Service specification does not define
depicts the connector registry and its relation to the ACE Sarportable way to specify control flow endpoint information,
vice Configurator framework, which is an implementation efe followed this approach as a temporary solution until the
the Component Configurator pattern [Schmidt et al., 2000].OMG comes up with a portable solution.

The RTCP implementation in TAO’s A/V Streaming Ser-
vice uses the same interfaces that RTP does, including
the Flow _Protocol _Factory andProtocol _Object

e Context: RTP has a control protocol — RTCP — ass@{asses. Thus, RTP will call tHeandle _control _input
ciated with it. Every RTP participant must transmit RTCRyethod on the RTCProtocol _Object whenaRTP frame
frames that provide control information, such as the namejgfreceived. This method enables the RTCP object to extract

the participant and the tool being used. Moreover, RTCP sefgs necessary control information, such as the sequence num-
reception reports for each of its sources. ber of the last frame.

Control protocols:

e Problem: Certain flow protocols, such as SFP, use Al\terface for variations in flow protocols:
interfaces to exchange control interfaces. The use of RTP for
a flow necessitates it to transmit RTCP information. RTCP €X-y context: Above. we explained how TAO's pluggable

tracts this control i.nformati.on from RTP .packets. The'refo'rglv protocol framework factors out different flow protocols
TAO's AV Streaming Service must provide an extensible iy hrovides a uniform flow protocol interface. In certain

terface for these control protocols, as well as provide a megRses however, there are inherent variations in such protocols.
for interacting between the data and control protocols.

12

For example, RTP must transmit the payload tyge,the for- 3.1 Case Study 1: an MPEG A/V Streaming

mat of the flow in each frame, whereas SFP uses the control Application

and management interface in TAO’s A/V Streaming Service to

set and get the format values for a flow. This application is an enhanced version of a non-CORBA
Similarly, the RTP control protocol, RTCP, periodicalfMPEG player developed at the Oregon Graduate Insti-

transmits participant information, such as the senders ndt€ [Chen etal., 1995]. Our application plays movies using

and email address, whereas SFP does not transmit such ifftMPEG-1video format [ISO, 1993] and the SWLAWau-

mation. Such information does not changed with every frané9 format [SUN Microsystems, 1992]. Figure 16 shows the

however. For example, the name and email address of a pagf€hitecture of our A/V streaming application.

ipantin a conference will not change for a session. In addition

the properties of the transfer may need to be controlled by ap

plications. For instance, a conferencing application may no

want to have multicast loopback. - Media

. . DP

e Problem: An A/V Streaming Service should allow end- (UDP) Py —

users to set protocol-specific variations, while still providing omov | =
O B)| ot Controly,

a single interface for different flow protocols. Moreover, this (Media = _
interface should be open to changes with the addition of ney Controller) | MMDevice

flow protocol and data transfer protocols. Resolve Register
¢ Solution: The solution to the above problem is to apply

the CORBA Policyframework defined in the CORBA specifi-_)) .
cation [Object Management Group, 1999]. The CORBA pdrigure 16: Architecture of the MPEG A/V Streaming Appli-
icy framework allows the protocol component developer to deation

fine policy objects that control the behavior of the protocol o)
component. The policy object is derived from the CORBA The MPEG player application uses a supplier/consumer de-

Policy interface [Object Management Group, 1999] whi&ign implemented using TAO. The consumer locates the sup-

stores the Policy Type [Object Management Group, 1999] afr using the CORBA Naming Service [OMG, 1997b] or the
the associated values. Trading Service [OMG, 1997b] to find suppliers that match

) . o] the consumer’s requirements. For instance, a consumer might
_* Applying this solution in TAO's A/V Streaming Ser- want to locate a supplier that has a particular movie or a sup-
vice: By defining a policy framework, which is extensiblier with the least number of consumers currently connected
and follows the CORBA Policy model, the users will havg, j;.
shorter learning curve to the API and be able to add newgnce a consumer obtains the suppliéMiDevice object
flow protogols flexibly. We have defined different policy typesserence it requests the supplier to establish two streiaeys,
used by different flow protocols that can be accessed by Dgjgeo stream and an audio stream, for a particular movie.

specific transport and flow protocol components during fraffiese streams are established using the protocol described in
creation and dispatching. For example we have defined §1&.tion 0.2.3. The consumer then usesNtegiaCtrl to
TAO.AV _PAYLOAD TYPE POLICY which allows the RTP ,nro] the stream, as described in Section 0.2.3.

protocol to specify the payload type.

Movies

The supplier is responsible for sending A/V packets via
UDP to the consumer. For each consumer, the supplier trans-
. ; ; _ mits two streams, one for the MPEG video packets and one for
3 C_ase St_Udy_' Deve.loplng I\{Iult|me the Sun ULAW audio packets. The consumer decodes these
dia Applications using TAO’s A/V streams and plays these packets in a viewer, as shown in Fig-

i i ure 17.
Streamlng Service This section describes the various components of the con-

. sumer and supplier. The following table illustrates the number
To evaluate the capabilities of the CORBA-based A/V Streagy|ines of C++ source required to develop this system and ap-

ing Service, we have developed several multimedia appligfication.
tions that use the components and interfaces described in Sec-

tion 0.2. Thus, this section describes the design of two di§- Component Lines of code
tributed multimedia applications that use TAO’s A/V Stream{ TAO CORBA ORB 61,524
ing Service and pluggable A/V protocol framework to estaby TAO Audio/Video (A/V) Streaming Service 3,208
lish and control MPEG and interactive audio/video streams. || TAO MPEG video application 47,782

13

Tl belpisg Plorsor

Godn missk s ocazy

Bt | irfo | Pern| Prog| Fie]

0l e <1 Of] B]

&0 [18] ik 1}
I er—d | T B = —=
Ml W 1 i Play Spessil Posil isn

Figure 17: A TAO-enabled Audio/Video player

The main supplier process containddiDevice endpoint
factory described in Section 0.2.3. TH#MDevice creates
connection handlers in response to consumer connections, us-
ing process-based concurrency stratefach connection trig-
gers the creation of one audio process and one video process.
These processes respond to multiple events. For instance, the
video supplier process responds to CORBA operations, such
asplay andrewind , and sends video frames periodically in
response to timer events.

Each componentin the supplier architecture is described be-
low:

The Media controller component: This component in the
supplier process is a servant that implements the Media Con-
troller interface MediaCtrl) described in Section 0.2.3.
The Media Controller responds to CORBA operations from
the consumer. The interface exported by MediaCtrl
component represents the various operations supported by the
supplier, such aplay , rewind , andstop .

At any point in time, the supplier can be in several states,
such asPLAYING, REWINDING, or STOPPED Depending on
the supplier’s state, its behavior may change in response to

Using the ORB and the A/V Streaming Service greatly réonsumer operations. For instance, the supplier ignores a
duced the amount of software that otherwise would have b&&hsumer'splay operation when the supplier is already in

written manually.

3.1.1 Supplier Architecture

The supplier in the A/V streaming application is responsibieentingMediaCtrl

the PLAYING state. Conversely, when the supplier is in the
STOPPEDState, a consumeewind operation transitions the
supplier to theREWINDING state.

The key design forces that must be resolved while imple-
s for A/V streaming are (1) allowing the

for streamingPEG-1video frames antlLAWaudio samples same object to respond differently, based on its current state,
to the consumer. The files can be stored in a filesystem ac¢@¥providing hooks to add new states, and (3) providing ex-
sible to the supplier process. Alternately, the video frames agflsible operations to change the current state.
the audio packets can be sent by live source, such as a videm provide a flexible design that meet these requirements,
camera. Our experience with the supplier indicates that it @ae control component of our MPEG player application is im-
support~10 concurrent consumers simultaneously on a duplemented using th8tatepattern [Gamma et al., 1995]. This
CPU 187 Mhz Sun Ultrasparc-Il with 256 MB of RAM over dmplementation is shown in
155 mbps ATM network. Figure 19. TheMediaCtrl
The role of the supplier is to read audio and video frames

has astate object pointer.

from a file, encode them, and transmit them to the consumes=— state .
across the network. Figure 18 depicts the key components M‘Td'a Cclnt_m”er O N/lsd'z ?tgFe
the supplier architecture. feiv);n(()j 0 : femi;nd;) =0
stop () I stop () = 0;
VIDEO Aupio e : | |
W% m—% cre PROCESS state->play (); | |_Playing State || Stopped State
DATA DATA I_ﬁ =_ Ej play () play ()
\|_CoNNECTION HANDLERS = o rewind () rewind ()
] stop () stop ()

Figure 18: TAO Audio/Video Supplier Architecture

Figure 19: State Pattern Implementation of the Media Con-
troller

The object being pointed to by the Media Controllestate
pointer represents the current state. For simplicity, the fig-

14

ure shows th®laying State andtheStopped State , ORB Reactor . One is a signal handler for the video frame
which are subclasses of thdedia State abstract basetimer events. The other is a UDP socket event handler for
class. Additional states, such as tRewinding State , feedback events coming from the consumer. The frames sent
can be added by subclassing frdtedia State . by the data component correspond to the current state of the
The diagram lists three operationplay , rewind and MediaCtrl object, as outlined above. Thus, in theayING
stop . When the consumer invokes an operation on th&ate, the data component plays the audio and video frames in
Media Controller , this class delegates the operation thronological order.
the state object A state object implements the response to Future implementations of the data transfer component in
each operation in a particular state. For instancergihwéind our MPEG player application will support multiple encoding
operation in thePlaying State contains the response ofprotocols via the simple flow protocol (SFP) [OMG, 1997a].
the media controller to theewind operation when it is in the SFP encoding encapsulates frames of various protocols within
PLAYING state. State transitions can be made by changing #me SFP frame. It provides standard framing and sequence
object being pointed to by th&tate pointer of theMedia numbering mechanisms. SFP uses the CORBA CDR encoding
Controller . mechanism to encode frame headers and uses a Sineolie-
In response to consumer operations, the cuseté ob- basedlow control mechanism described in [OMG, 1997a].
ject instructs the data transfer component discussed in Sec-
tion 0.3.1 to modify the str_eam flow. _For instance,. whef)1 5 consumer Architecture
the consumer invokes threwind operation on theMedia
Controller while in thesToPPEDstate, theewind oper- The role of the consumer is to read audio and video frames off
ation in theStopped State object instructs the data comthe network, decode them, and play them synchronously. The
ponent to play frames in reverse chronological order. audio and video servers stream the frames separately. A/V

The Data transfer component: The data component is re_frame synchronization is performed on consumer. Figure 21

sponsible for transferring data to the consumer. Our MPIg@p'CtS the key components in the consumer architecture:
supplier application reads video frames frorM®EG-1file
and audio frames from a SwiLAWaudio file. It sends these DECODED MPEG_| GUI/VIDEO
) . | Vipeo (— I >
frames to the consumer, fragmenting long frames if necessa VIDEO PACKETS

The current implementation of the data component uses PECODE CoNTROL/AUDIO
UDP protocol to send A/V frames. "RAw" égg

A key design challenge related to data transfer is to have the éPACKETSé , ”))))

application respond to CORBA operations for the stream cq VIDIEO AU;)IO - @
trol objects,e.g theMediaCtrl , as well as the data transfer Video Control

events,e.g, video frame timer events. An effective way t ‘Audio Control|L_Commands
do this is to use th®eactorpattern [Schmidt et al., 2000], as), (udio L-on m) B
Figure 21: TAO Audio/Video Consumer Architecture

shown in Figure 20. Th&eactor pattern is described in
Appendix .1.

The original non-CORBA MPEG con-
sumer [Chen et al., 1995] used a process-based concurrency
architecture. Our CORBA-based consumer maintain this
architecture to minimize changes to the code. Separate pro-
! cesses are used to do the buffering, decoding, and playback,

ORB Timer Data (UDP) as explained below:
Descriptor

- Reactor 1. Video buffer: The video buffering process is responsi-
ble for reading UDP packets from the network and enqueueing
them in shared memory. The Video Decoder process dequeues
these packets and performs MPEG decoding operations on
them.

| OS EVENT DEMULTIPLEXING INTERFACE |

2. Audio buffer: Similarly, the audio buffering process
is responsible for reading UDP packets of the network and
The video supplier registers two event handlers with TAC&queueing them in shared memory. The Control/Audio

15

Playback process dequeues these packets and sends thafit tallows rapid prototyping and reconfiguration of its
/dev/audio . encode/decode paths.
One design challenge we faced while adapting Vic to use
ég)'s A/V Streaming Service was to integrate both the GUI
id ORB event loops. This was solved using the Reactor
ggtern [Schmidt et al., 2000]. In particular, we developed a
eactor wrapper facade [Schmidt et al., 2000] that unified the
GUI and ORB into a single event loop.
4. GUI/Video process: The GUI/Video process is responsi-
ble for the following two tasks:

3. Video decoder: The video decoding process reads t
raw packets sent to it by the Video Buffer process and deco
them according to the MPEG-1 video specification. These

coded packets are sent to the GUI/Video process, which

plays them.

3.2.2 Implementing Vic using TAO’s A/V Streaming Ser-
e GUI: It provides a GUI to the user, where the user can vice
select operations likplay , stop , andrewind . These op-
erations are sent to the Control/Audio process via a UNIX ddelow, we discuss the steps we followed to adapt Vic to use
main socket [Stevens, 1998]. TAO’s A/V Streaming Service.

e Video: This component is responsible for displaying. Structuring of conferencing protocols: In this step, we
video frames to the user. The decoded video frames are st@f@sbmposed the flow, control and data transfer protocols us-
in a shared memory queue. ing TAO’s pluggable A/V protocol framework. The original
5. Control/Audio playback process: The Control/Audio .Vic application was highly coupled with RTP. For instance,
process is responsible for the following tasks: its encoders and decoders were aware of the RTP headers.

We decoupled the dependencies of the encoders/decoders from

e Control: This component receives control messagey P-specific details by using tieame _info structure and
from the GUI process and sends the appropriate CORBA @ging TAO’s A/V Streaming Serviderotocol _Object in-
eration to theMediaCtrl ~ servant in the supplier process. terface. The modified Vic still preserves the application-level

« Audio playback: The audio playback component is re.f_raming (ALF) [Clark and Tennenhouse, 1990] model embod-

sponsible for dequeueing audio packets from the Audio Buﬂgp n R.TP' I\/Ioreov,er, Vic's RTCP functionality was ab-
process and playing them back using the multimedia so racted into the TAO's pluggable A/V protocol framework, so

hardware. Decoding is unnecessary because the supplierhl gamework automatically defines a RTCP flow for a RTP

the ULAW format. Therefore, the data received can be directl) W. The modified Vic is independent from the network spe-

written to the sound port, which iseviaudio on Solaris. cific details of opening connections and 1/0 handling since
' it uses the pluggable A/V protocol framework provided by

o ~ TAO's A/V Streaming Service.
3.2 Case Study 2: The Vic Video-Conferencing vic uses the multipoint-to-multipoint binding provided by
Application TAO’s A/V Streaming Service, which is described in Ap-

i . . pendix .3. Thus, our first step when integrating into TAO
Vic [McCanne and Jacobson, 1995] is a video-conferenciigq 1, determine the proper abstraction for the conference

application developed at the University of California, Berkep,ice A video-conferencing application like Vic serves as
ley. We have adapted Vic to use TAO's A/V Streaming S 4 source and sink: thus, we needed a source and sink

RTP/RTCP as its flow and data transfer protocols. i.e., video is considered as a flow within the conference stream.

Since Vat runs in a separate address space, its flow interfaces
3.2.1 Architecture of Vic must be exposed using TAO’s full profile flow interfaces,,

Vic provides a video-conferencing application. Audio colepey, FlowProducer , andFlowConsumer .
ferencing is done with another tool, Vat [NRG, LBNL, 1995].

The Vic family of tools synchronize media streams usingza Define callback objects: In this step, we de-
conference bus mechanism, which is the “localhost” synchfimmed Callback objects for all the source and sink

nization mechanisms used via loopback sockets. FlowEndPoint s. TheSource _Callback uses the timer
The Architecture of Vic is driven largely by thefunctionality to schedule timer events to send the frames. Fig-
TclObject interface [McCanne and Jacobson, 1995)re 22 illustrates the sequence of events that trigger the send-

TclObject provides operations so that operations on tlireg of frames. When the input becomes ready on the video
object can be invoked from a Tcl script. By using Tckard, the grabber reads it and gives it to tremsmitter

16

4 Performance Results

RENDERER

X Frame Roady This section describes the design and results of three perfor-
DECODERS mance experiments we conducted using TAO's A/V Streaming
| H261 | [JpeG | [ceLs] Servi
ervice.
f
RTP RTCP
CALLBACK CALLBACK
ENCODERS f f 4.1 CORBA/ATM Testbed
[Hae1 |[sPEG | [cELB] RTP 30 Rrcp
OBJTECT OB:ECT o The experiments in this section were conducted using a
— S Seecr | FORE systems ASX-1000 ATM switch connected to two

eI ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Each
[UltraSPARC-2 contains a 300 MHz Super SPARC CPUs with
a 1 Megabyte cache per-CPU. The Solaris 2.5.1 TCP/IP proto-
col stack is implemented using the STREAMS communication
framework [Ritchie, 1984].
Each UltraSPARC-2 has 256 Mbytes of RAM and an ENI-
NETWORK 155s-MF ATM adaptor card, which supports 155 Megabits
per-sec (Mbps) SONET multimode fiber. The Maximum
Transmission Unit (MTU) on the ENI ATM adaptor is 9,180
) .) ~ bytes. Each ENI card has 512 Kbytes of on-board memory.
Figure 22: Architecture of Vic using TAO's A/V Streaminga maximum of 32 Kbytes is allotted per ATM virtual circuit
Service connection for receiving and transmitting frames (for a total of
64 Kb). This allows up to eight switched virtual connections
per card. The CORBA/ATM hardware platform is shown in
Figure 23.

Trawsort e dual-processor UltraSPARC-2s running Solaris 2.5.1. The
e — - TRANSPORT
g o

REACTOR

TRANSPORT

The transmitter then uses th&ource _Callback ob-
ject to schedule a timer to send the frames at the requested bit
rate using a bitrate buffer. By

On the sink-side, when a packet arrives on the network the [E
receive _frame upcall is done on th&ink _Callback
object which using thérame _info structure gives it to the
right Source object , which then passes it to the right de-

coder. To implement RTCP functionality, Vic implements a FORE SYSTEMS
RTCPCallback to provide Vic-specific source objects. x ASX 200Bx
wo ATM SWITCH
[t (16 port, OC3
155MBPS/PORT,
. -) 9,180
3. Select a centralized or distributed conference config- ULTRA 180 MT0)
uration: In this step, we have ensured that Vic can func- SPARC 2 -
tion both as a participant in a centralized conference, as well ~ (FORE ATM L'H =]
as a loosely-coupled distributed conference. This flexibil- ~ APAPTORS : —
ity is achieved by checking for &treamCtrl object in AND ETHERNET)

the Naming Service and creating n&treamCtrl if one

is not found in the Naming Service. Thus, by running a
StreamCtrl control process that registers itself with the
Naming Service, all Vic participants will become part of a
centralized conference, which can be controlled fromthe copo cpy Usage of the MPEG decoder

trol process. Conversely, when no such process is run, Vic

reverts to the loosely controlled model by creating its owrhe aim of this experiment is to determine the CPU overhead
Streamctrl and transmitting on the multicast address. associated with decoding and playing MPEG-1 frames in soft-

Figure 23: Hardware for the CORBA/ATM Testbed

17

ware. To measure this, we used the MPEG/ULAW A/V player We measured the throughput., the number of bytes per
application described in Section 0.3.

We used the application to view two movies, one of sizgreaming application. We then compared this throughput with
128x96 pixels and the other of size 352x240 pixels. We mehe following two configurations:

sured the percentage CPU usage for diffefemhe rates The

second sent by the supplier to the consumer, obtained by this

frame rate is the number of video frames displayed by thes TCP transfer-i.e., by a pair of application processes that

viewer per second.

The results are shown in Figure 24. These results indicate

100

90

pd

—-128x96 frame size

-=-352x240 frame size

80 /
70

ol /

50

40

Percentage CPU used

30

20 /
10

9

12 15 18 24 30
Frames per second

do not use the CORBA A/V Streaming Service stream es-
tablishment protocol. In this case, Sockets and TCP were
the network programming API and data transfer proto-
col, respectively. This is the “ideal” case since there is no
additional ORB-related or presentation layer overhead.

e ORB transfer— i.e, the throughput obtained by a
stream that used anctet streampassed through the
TAO [Schmidt et al., 1998a] CORBA ORB. In this case,
the IIOP data path was the data transfer mechanism.

We measured the throughput obtained by varying the buffer
size of the sendetge., the number of bytes written by the sup-
plier in onewrite system call. In each stream, the supplier
sent 64 megabytes of data to the consumer.

The results shown in Figure 25 indicate that, as expected,
the A/V Streaming Service does not introduce any appre-
ciable overhead to streaming the data. In the case of us-

140

ETCP "ideal" case
W A/V Stream (via TCP)
[0 Octet Stream (via ORB)

120 4

Figure 24: CPU Usage of the MPEG Decoder

that for large frame sizes (352x240), MPEG decoding in soft-
ware becomes expensive, and the CPU usage becomes 100%
while playing 12 frames per second, or higher. However, for
smaller frame sizes (128x96), MPEG decoding in software
does not cause heavy CPU utilization. At 30 frames per sec-
ond, CPU utilization is~38%.

4.3 A/V Stream Throughput

The aim of this experiment is to illustrate that TAO’s A/V
Streaming Service does not introduce appreciable overhead in
transporting data. To demonstrate this, we wrote a TCP-based
data streaming component and integrated it with TAO’s A/V
service. The producer in this application establishes a stream
with the consumer, using the stream establishment mechanism
discussed in Section 0.2.3. Once the stream is established, it
streams data via TCP to the consumer.

18

Throughput in Megabits/sec

=

o

o
I

[¢5)
o
[

D
o
I

40 H —

20 H —

1 2 4 8 16 32 64

Sender buffer size in Kbytes

128

Figure 25: Throughput Results

ing IIOP as the data transfer layer, the benchmark incurs ad-
ditional performance overhead. This overhead arises from
the dynamic memory allocation, data-copying, and mar- 25
Shaling/demarshaling performed by the ORB’s IIOP prOtO- - Process-based concurrency strategy
col engine [Gokhale and Schmidt, 1996]. In general, how- —=- Reactive concurrency strategy
ever, a well-designed ORB can achieve performance equiv-
alent to sockets for higher buffer sizes due to various opti-
mizations, such as eliding (de)marshaling overhead for octet
data [Gokhale and Schmidt, 1999]

The largest disparity occurred for smaller buffer sizes,
where the performance of the ORB was approximately half
that of the TCP and A/V streaming implementations. As
the buffer size increases, however, the ORB performance im-
proves considerably and attains nearly the same throughput as
TCP and A/V streaming. Clearly, there is a fixed amount of
overhead in the ORB that is amortized and minimized as the
size of the data payload increases.

15

Stream establishment time in seconds

0.5

4.4 Stream Establishment Latency W//

This experiment measures the time required to establish a 1 2 3 4 5 6 7 8 910
stream using TAO's implementation of the CORBA A/ Number of concurrent bind operations
stream establishment protocol described in Section 0.2.3. We
measured the stream establishment latency for the two concur-
rency strategies, process-based strategy and reactive strategy,
described in Section 0.2.3.

The timer starts when the consumer gets the object refgr- Concluding Remarks
ence for the supplierMMDevice servant from the Naming

Serwce. The timer stops yvhenthe stream ha; been establispgd: yemand for high quality multimedia streaming is grow-
i.e, when a TCP connection has been established between{iepq gver the Internet and for intranets. Distributed object
consumer and the supplier. computing is also maturing at a rapid rate due to middleware
We measured the stream establishment time as the nwohnologies like CORBA. The flexibility and adaptability of-
ber of concurrent consumers establishs connections with féaed by CORBA makes it very attractive for use in stream-
supplier increased from 1 to 10. The results are showniigy technologies, as long as the requirements of performance-
Figure 26. When the supplierfdMDevice is configured to sensitive multimedia applications can be met.This chapter il-
use the process-based concurrency strategy (described in lGstrates an approach to building standards-based, flexible,
tion 0.2.3), the time taken to establish the stream is highadaptive, multimedia streaming applications using CORBA.
due to the overhead of process creation. For instance, when 1urthermore, there is a lot of activity in the codec commu-
concurrent consumers establish a stream with the producenfi; in designing new formats for audio and video transmis-
multaneously, the average latency observed is about 2.25 sgh. Active research is also being done in designing new flow
onds with the process-based concurrency strategy. With ##@| data transfer protocols for multimedia. In such situations,
reactive concurrency strategy, the latency is only about 0.4 sggtexible framework which makes use of the A/V interfaces
onds. and also abstracts the network/protocol details is needed to
The process-based strategy is well-suited for supplier @elapt to the new developments. In this chapter we have pre-
vices that have multiple streams,g, a video camera thatsented a pluggable A/V protocol framework which provides
broadcasts a live feed to many clients. In contrast, the retite capability to rapidly adapt to new flow and data transfer
tive concurrency strategy is well-suited for consumer devigetocols.
that have few streams,g, a display device that has only one With growing demand for real-time multimedia streaming
or two streams. and conferencing with increase in network bandwidth and the

Figure 26: Stream Establishment Latency Results

19

spread of the Internet, TAO provides the first freely-avaiIabIRefel‘enceS

open-squrce |rr.1plement'a't|or'1. of the .CORBA AUdI.ONIde&rulanthu et al., 2000] Arulanthu, A. B., O’'Ryan, C., Schmidt, D. C.,
Streaming Service specificatioe., flow interfaces, point-to- ~ kircher, M., and Parsons, J. (2000). The Design and Performance of a
multipoint binding and multipoint-to-multipoint binding for Scalable ORB Architecture for CORBA Asynchronous Messaging. In
conferencing applications. Our experience with TAQ's A/y Proceedings of the Middieware 2000 Conferent@M/IFIP. _
implementation indicates that the standard CORBA specifi¢@ax, 1997] Box, D. (1997)Essential COM Addison-Wesley, Reading,

. Massachusetts.

tion defines a flexible and efficient model for developing flexi-

L : ; : P schmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H.,
ble and high-performance multimedia streaming appllcatlor%‘fSOmmerlad‘ P.’and Stal, M. (199@attern-Oriented Software

While designing and implementing the CORBA A/V Architecture — A System of Patterri&filey and Sons, New York.
Streaming Service, we learned a number of lessons: [Chen et al., 1995] Chen, S., Pu, C., Staehli, R., Cowan, C., and Walpole, J.

(1995). A Distributed Real-Time MPEG Video Audio Player.Hifth

. ; e International Workshop on Network and Operating System Support of
1: We found that CORBA simplifies a number of common %gital Audio and Video

network_programmlng tasks, SL.jCh as parsing untyped data[%?ark and Tennenhouse, 1990] Clark, D. D. and Tennenhouse, D. L.

performing byte-order conversions. (1990). Architectural Considerations for a New Generation of Protocols.
In Proceedings of the Symposium on Communications Architectures and

2: We found that using CORBA to define the operations sup-Protocols (SIGCOMM)pages 200-208, Philadelphia, PA. ACM.

ported by a supplier in an IDL interface made it much easi®eering and Cheriton, 1990] Deering, S. E. and Cheriton, D. R. (May

e C : - 1990). Multicast routing in datagram internetworks and extended LANS.
tSo eigpregsztge capabilities of the application, as described ik oy Transactions on Computer Syste®(@):85-110.
ection 0.2.3.

[Eide et al., 1997] Eide, E., Frei, K., Ford, B., Lepreau, J., and Lindstrom,
)) G. (1997). Flick: A Flexible, Optimizing IDL Compiler. IRroceedings
3: Our measurements presented in Section 0.4 revealed that ACM SIGPLAN '97 Conference on Programming Language Design
while CORBA provides solutions to many recurring problems and Implementation (PLDILas Vegas, NV. ACM.

in network programming, using CORBA for data transfer igtal-, 1996] etal., D.D. (1996). Vaudeville: A High Performance, Voice
bandwidth-int . licati . t fficient . Activated Teleconferencing Application. Department of Computer
anawidtn-intensive applications IS not as efricient as uSmgScience, Technical Report WUCS-96-18, Washington University, St.

lower-level protocols like TCP, UDP, or ATM directly. Thus, Louis.

an important benefit of the TAO A/V Streaming Service is {Ban etal., 1998] Fan, L., Cao, P., Almeida, J., and Broder, A. (1998).
provide applications the advantages of using CORBA IIOP inSummary Cache: A Scalable Wide-Area Web Cache Sharing Protocol. In
their stream establishment and control modules, while allow->'¢¢OMM 98pages 254-265. SIGS.

ina th f more efficien ransfer pr Is for multgamma et aI.,_ 1995] Gamma, E., Helm, R.,Johnson_, R., ar_1d Vlissides, J.
g the use of more efficie tdata transfe protocols fo u E; (1995). Design Patterns: Elements of Reusable Object-Oriented

media streaming. Software Addison-Wesley, Reading, Massachusetts.

. L . . . [Gill et al., 2001] Gill, C. D., Levine, D. L., and Schmidt, D. C. (2001). The
4: Enhancing an existing A/V streaming application to use Design and Performance of a Real-Time CORBA Scheduling Service.
CORBA was a key design Cha"enge_ By app|y|ng patternS,ReaFTime Systems, The International Journal of Time-Critical

such as theState Strategy [Gamma etal.. 1995] anReac- Computing Systems, special issue on Real-Time Middle®a(g).

tor [Schmidt et al., 2000], we found it was much easier to alfekhale and Schmidt, 1996] Gokhale, A. and Schmidt, D. C. (1996).
o ’ Measuring the Performance of Communication Middleware on

dress these design issues. Thus, the use of patterns helped igh-speed Networks. IRroceedings of SIGCOMM '9@ages
rework the architecture of an existing MPEG A/V player and 306-317, Stanford, CA. ACM.
make it more amenable to distributed object computing midokhale and Schmidt, 1998] Gokhale, A. and Schmidt, D. C. (1998).

dleware. such as CORBA. Measuring and Optimizing CORBA Latency and Scalability Over
’ High-speed NetworksTransactions on Computing7(4).

. HRH ; ; okhale and Schmidt, 1999] Gokhale, A. and Schmidt, D. C. (1999).
5. Building the CORBA A/V Streaming Service also helpe@ Optimizing a CORBA IIOP Protocol Engine for Minimal Footprint

us improve TAO, the CORBA ORB used to implement the multimedia SystemsJournal on Selected Areas in Communications
service. An important feature added to TAO was support forspecial issue on Service Enabling Platforms for Networked Multimedia
nested upcallsThis feature allows a CORBA-enabled appli- SYS€mMs7()

; ; ; ; ila it [Harrison et al., 1997] Harrison, T. H., Levine, D. L., and Schmidt, D. C.
cathn to rESpond to mcommg CORBA opera.tlons, Wh.lle it E (1997). The Design and Performance of a Real-time CORBA Event
making a CORBA operation on a remOt? object. During t'heService. InProceedings of OOPSLA '9pages 184-199, Atlanta, GA.
development of the A/V Streaming Service, we also appliedACM.
many optimizations to TAO and its IDL compiler, particularlyHenning and Vinoski, 1999] Henning, M. and Vinoski, S. (1999).

for sequences ajctet s and theCORBA::Any type. Advanced CORBA Programming With C+Addison-Wesley, Reading,
Massachusetts.

All the C++ source code, documentation, and bencnh etal., 1998] Hu, J., Mungee, S., and Schmidt, D. C. (1998). Principles
marks for TAO and its A/V Streaming Service Is available &t for Developing and Measuring High-performance Web Servers over
www.cs.wustl.edu/ ~schmidt/TAO.html . ATM. In Proceedings of INFOCOM '98

20

[Hu etal., 1997] Hu, J., Pyarali, |., and Schmidt, D. C. (1997). Measuring[Pyarali et al., 1999] Pyarali, I., O’'Ryan, C., Schmidt, D. C., Wang, N.,
the Impact of Event Dispatching and Concurrency Models on Web Server Kachroo, V., and Gokhale, A. (1999). Applying Optimization Patterns to

Performance Over High-speed Networks Pimceedings of themd the Design of Real-time ORBs. Froceedings of thgt" Conference on
Global Internet ConferenceEEE. Object-Oriented Technologies and SysteSan Diego, CA. USENIX.

[Huard and Lazar, 1998] Huard, J.-F. and Lazar, A. (1998). A [RealNetworks, 1998] RealNetworks (1998). Realvideo player.
Programmable Transport Architecture with QOS GuarantiégsE www.real.com.

icati M i 10):54-62. o o
Communications Magazin86(10):54-6 [Ritchie, 1984] Ritchie, D. (1984). A Stream Input—Output Systém&T

[Internet Engineering Task Force, 2000a] Internet Engineering Task Force Bell Labs Technical Journab3(8):311-324.

(2000a). Differentiated Services Working Group (diffserv) Charter.)) .)
www.ietf.org/html.charters/diffserv-charter.html. [Schmidt, 1995] Schmidt, D. C. (1995). Reactor: An Object Behavioral

)))) Pattern for Concurrent Event Demultiplexing and Event Handler
[Internet Engineering Task Force, 2000b] Internet Engineering Task Force Dispatching. In Coplien, J. O. and Schmidt, D. C., edit®atern

(2000b). Integrated Services Working Group (intserv) Charter. Languages of Program Desigpages 529-545. Addison-Wesley,
www.ietf.org/html.charters/intserv-charter.html. Reading, Massachusetts.

[|SO, 1993] 1ISO (1993)Coding Of MOViI’]g Pictures And Audio For Digital [Schmidt et al., 1998a] Schmidt, D. C., Levine, D.L., and Mungee, S.

Storage Media At Up To About 1.5 Mbit/iternational Organisation for ~(1998a). The Design and Performance of Real-Time Object Request
Standardisation. Brokers. Computer Communication@1(4):294-324.

[Kuhns etal., 1999] Kuhns, F., Schmidt, D. C., and Levine, D. L. (1999). |gchmidt et al., 1998b] Schmidt, D. C., Mungee, S., Flores-Gaitan, S., and
The Design and Petr}formance of a Real-time 1/O Subsystem. In Gokhale, A. (1998b). Alleviating Priority Inversion and Non-determinism
Proceed_mgs of the"* IEEE Real-Time Techr_lology and _Appllcatlons in Real-time CORBA ORB Core Architectures. Rioceedings of thét/
Symposiumpages 154-163, Vancouver, British Columbia, CanagBE. IEEE Real-Time Technology and Applications Symposenver, CO.

[Kuhns et al., 2000] Kuhns, F., Schmidt, D. C., O'Ryan, C., and Levine, D. |IEEE.

(2000). Supporting High-performance 1/0 in QoS-enabled ORB . . .
) h chmidt et al., 2001] Schmidt, D. C., Mungee, S., Flores-Gaitan, S., and
Middleware. Cluster Computing: the Journal on Networks, Software, an@ Gokhale, A. (200:3). Software Architectu?es for Reducing Priority

Applications 3(3). Inversion and Non-determinism in Real-time Object Request Brokers.
[McCanne and Jacobson, 1995] McCanne, S. and Jacobson, V. (1995). VicJournal of Real-time Systems, special issue on Real-time Computing in

A Flexible Framework for Packet Video. RCM Multimedia 95pages the Age of the Web and the Intern21(2).
511522, New York. ACM Press. ~ [Schmidt etal., 2000] Schmidt, D. C., Stal, M., Rohnert, H., and

[Meyer, 1989] Meyer, B. (1989)0bject Oriented Software Construction Buschmann, F. (2000pRattern-Oriented Software Architecture: Patterns
Prentice Hall, Englewood Cliffs, NJ. for Concurrent and Networked Objects, Volumeé/gley & Sons, New

[Mungee et al., 1999] Mungee, S., Surendran, N., and Schmidt, D. C. York.

(1999). The Design and Performance of a CORBA Audio/Video [Schmidt and Suda, 1994] Schmidt, D. C. and Suda, T. (1994). An
Streaming Service. IRroceedings of the Hawaiian International Object-Oriented Framework for Dynamically Configuring Extensible
Conference on System Sciences Distributed Communication Systemi&E/BCS Distributed Systems

[NRG, LBNL, 1995] NRG, LBNL (1995). LBNL Audio Conferencing Tool ~ Engineering Journal (Special Issue on Configurable Distributed Systems)
(vat). ftp:/fitp.ee.lbl.gov/conferencing/vat/. 2:280-293.

[Object Management Group, 1999] Object Management Group (199@). [Schulzrinne et al., 1994] Schulzrinne, H., Casner, S., Frederick, R., and
Common Object Request Broker: Architecture and Specifica@inject Jacobson, V. (1994). RTP: A Transport Protocol for Real-Time
Management Group, 2.3 edition. Applications. Internet-Draft

[Object Management Group, 2000] Object Management Group (200@). [Stevens, 1993] Stevens, W. R. (1998LCP/IP lllustrated, Volume.1
Common Object Request Broker: Architecture and Specifica@inect Addison-Wesley, Reading, Massachusetts.

Management Group, 2.4 edition. [Stevens, 1998] Stevens, W. R. (1998NIX Network Programming,
[Object Management Group, 2001] Object Management Group (200iE). Volume 1: Networking APIs: Sockets and XTI, Second Edition

Common Object Request Bl_'c_)ker: Architecture and Specifica@dnject Prentice-Hall, Englewood Cliffs, NJ.
Management Group, 2.6 edition. [SUN Microsystems, 1992] SUN Microsystems, I. (1998jin Audio File
[OMG, 1996] OMG (1996).Property Service Specificatio®bject Format Sun Microsystems, Inc.

Management Group, 1.0 edition. [Vxtreme, 1998] Vxtreme (1998). Vxtreme player.

[OMG, 1997a] OMG (1997a)Control and Management of A/V Streams WWW.microsoft.com/netshow/vxtreme/.
specification Object Management Group, OMG Document)
telecom/97-05-07 edition. [Wollrath et al., 1996] Wollrath, A., Riggs, R., and Waldo, J. (1996). A

))) Distributed Object Model for the Java Systet'SENIX Computing
[OMG, 1997b] OMG (1997b)CORBAServices: Common Object Services gystemso(4).

Specification, Revised Editio@bject Management Group, 97-12-02
edition.

[O'Ryan et al., 2000] O'Ryan, C., Kuhns, F., Schmidt, D. C., Othman, O., H .
and Parsons, J. (2000). The Design and Performance of a Pluggable A DeS|gn Patterns Used In the TAO

Protocols Framework for Real-time Distributed Object Computing . .
Middleware. InProceedings of the Middleware 2000 Conference A/V Streamlng Se rvice
ACM/IFIP.

[Pyarali et al., 1996] Pyarali, I., Harrison, T. H., and Schmidt, D. C. (1996)T his section outlines the intents of all the patterns used in
Design and Performance of an Object-Oriented Framework for TAO'’s A/V Streaming Service and its pluggable A/V proto-
g;%?:;g?j;”ame Electronic Medical ImagingSENIX Computing | framework. The references explore each pattern in greater

' depth.

21

Abstract Factory pattern [Gamma et al., 1995]: This pat- Template Method [Gamma et al., 1995]: This pattern de-
tern provides an interface for creating families of related fines the skeleton of an algorithm in an operation, deferring
dependent objects without specifying their concrete classegertain steps to subclasses.

Acceptor-Connector pattern [Schmidt et al., 2000]: This

pattern decouples the connection and initialization of coopgs- :

ating peer services in a distributed system from the process%g Overview of the CORBA Reference
performed by these peer services once they are connected and Model

initialized.

Adapter [Gamma etal., 1995]: This pattern allows two CORBA Object Request Brokers (ORBs) allow clients

classes to collaborate that were not designed originallytowg?k'nVOke qperatlons on d'St”bUteq objects without con-
together. cern for object location, programming language, OS plat-

form, communication protocols and interconnects, and
Component Configurator [Schmidtetal., 2000]: This hardware [Henningand Vinoski, 1999]. Figure 27 il-
pattern decouples the implementation of services from ttrates the key components in the CORBA reference
time when they are configured. model [Object Management Group, 2001] that collaborate to
Double Dispatching [Gamma et al., 1995]: In this pattern, Provide this degree of portability, interoperability, and trans-
when a call is dispatched to a method on a target object fréaency: Each component in the CORBA reference model is
a parent object, the target object in turn makes method c
on the parent object to access certain attributes in the par{
object.

in args
operation()

out args + return value

CLIENT

Extension Interface [Schmidt et al., 2000]: This pattern T
prevents bloating of interfaces and breaking of client cog=~—"—_ ___ | IDL | ___ | L A

when developers add or modify functionality to existing corj oL o [SKELETON] OBJECT
ponents. Multiple extensions can be attached to the same comr= ADATTER

pongnt, each defining a contract between the component { %]
its clients.

Q STANDARD INTERFACE QSTANDARD LANGUAGE MAPPING

Q ORB-SPECIFIC INTERFACE QSTANDARD PROTOCOL

Facade pattern [Gamma et al., 1995] : This pattern pro-
vides a unified higher-level interface to a set of interfaces in

subsystem that makes the subsystem easier to use. . .
y y Figure 27: Key components in the CORBA 2.x reference

Factory Method pattern [Gamma et al., 1995]: This de- model
fines an interface for creating objects, but lets subclasses de-
cide which class to instantiate. outlined below:

Leader/Follower pattern [Schmidt et al., 2000]: This pat- Client: A client is arole that obtains references to objects
tern provides a concurrency model where multiple threads gfrd invokes operations on them to perform application tasks.
flClently demultlplex events received on I/0O handles Sharedhycﬁent has no know|edge of the imp|ementation of the ob-
the threads and dispatch event handlers that process the eveRisbut does know its logical structure according to its inter-

Layer pattern [Buschmann etal., 1996]: This pattern face. It also doesn’t know of the object’s location - objects
helps to structure applications that can be decomposed ##@ be remote or collocated relative to the client. Ideally, a
groups of subtasks in which each group of subtasks is at a |§4nt can access a remote object just like a local objef,
ticular level of abstraction. object —operation(args) . Figure 27 shows how the

.) . underlying ORB components described below transmit remote
Reactor pattern [Schmidt etal., 2000]: This pattern de- 0 Ezration requests transparently from client to object.

multiplexes and dispatches requests that are delivered conc
rently to an application by one or more clients. Object: In CORBA, an object is an instance of an OMG

State pattern [Gamma et al., 1995]: This pattern allows an !nterface Definition Language (IDL) interface. Each object

object to alter its behavior when its internal state changes. mofsntgiﬁg t?%oimﬁj\fe}/ﬁiJﬁfgriﬁgﬁrv:;zhaiizzgaatr?sé)t?'re]f:toc:n a
object will appear to change its class. P 9 |

Strategy pattern [Gamma et al., 1995]: This pattern de- ‘This overview only focuses on the CORBA components relevant

fines and encapsulates a family of algorithms and makes thl% ngjsgpﬁgnag eFr?]Ln? Gcrganplgt()eOOTynopsus of CORBAs components
interchangeable. '

22

server. Anobject ID associates an object with its implemerC ~ Supporting Multiple Endpoint Bind-
tatlpn, called a servanF, and is unique vylthm the scope of an ing Semantics in TAO’s A/V Stream-
Object Adapter. Over its lifetime, an object has one or more)

servants associated with it that implement its interface. Ing Service

Servant: This component implements the operations d¢he CORBA A/V Streaming Service can construct differ-
fined by an OMG IDL interface. In object-oriented (OO) lanent topologies for establishing streams between stream end-
guages, such as C++ and Java, servants are implemente@aiits. For instance, one-to-one, one-to-many, many-to-one,
ing one or more class instances. In non-OO0 languages, sykh many-to-many sources and sinks may need to be con-
as C, servants are typically implemented using functions afflired in the same stream binding. The need for certain
struct s. A client never interacts with servants directly, buream endpoint bindings is dictated by the multimedia ap-
always through objects identified by object references. pjications. For example, a video-on-demand application may
require a point-to-point binding when sources and sinks are

.ORtB tﬁorg:RBV\g]en a client |nv%k|esf an dorl).era_tlontﬁn an Ore_selected. However, a video-conferencing application may
Ject, the ore 1S responsibie for defivering the requ Ehuire a multipoint-to-multipoint binding to receive from and

to the object and returning a response, if any, to the C”eﬁ'&nsmit to various sources and sinks simultaneously.

An ORB Core is implemented as a run-time library linked _, . L . .

; : L) . This section illustrates the various stream and flow endpoint
into client and server applications. For objects executing [hdinas that have been imolemented in TAO'S AN Stream-
motely, a CORBA-compliant ORB Core communicates via.a 9 P

version of the General Inter-ORB Protocol (GIOP), such ing Service and shows how stream endpoints are created and

the Internet Inter-ORB Protocol (IIOP) that runs atop the TCE connecuon; A b _Streammg Ser-
" : .vice, we have implemented the standard point-to-point and
transport protocol. In addition, custom Envwonment-Specﬁfc.

Inter-ORB protocols (ESIOPs) can also be defined point-to-multipoint bindings of the stream endpoints. In ad-
P ' dition, we have used these configurations as building blocks

OMG IDL Stubs and Skeletons: IDL stubs and skele- for multipoint-to-multipoint bindings.

tons serve as a “glue” between the client and servants, re-

spectively, and the ORB. Stubs implement tAmxy pat- CL o o
tern [Gamma et al., 1995] and marshal application paran%—l Point-to-Point Binding

ters into a common message-level representation. Conversgly,, we describe the sequence of steps during a point-to-
skeletons implement thédapterpattern [Gamma et al., 1995]55int stream establishment, as defined by the CORBA AV
and demarshal the message-level representation back if@ification and implemented in TAO's A/V Streaming Ser-
typed parameters that are meaningful to an application. yice. In our example, we consider the stream establishment

in a video-on-demand (VoD) application that is similar to

IDL Compiler: An IDL compiler transforms OMG IDL LN . ; .
definitions into stubs and skeletons that are generated autortﬁ?t-MPEG player application described in Section 0.3.1. As

. . S ; own in Figure 28, the VoD server and VoD client device
ically in an application programming language, such as C++ ;

I S . with two audio and video flows. The audio flow is carried
or Java. In addition to providing programming language trans-
parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automat

compiler optimizations [Eide et al., 1997].

Object Adapter: An Object Adapter is a composite compo- WUGS HIGH. SPEED <«O'N:U:A>ER

nent that associates servants with objects, creates object refer5os enssien ors

TAO QOS-ENABLED ORB

ences, demultiplexes incoming requests to servants, and cat 555 0o 8
laborates with the IDL skeleton to dispatch the appropria = |

operation upcall on a servant. Object Adapters enable ORBg" ST RIO SuBSYSTEM
to support various types of servants that possess similar re-
guirements. This design results in a smaller and simpler ORB
that can support a wide range of object granularities, lifetimes,
policies, implementation styles, and other properties. Evawer TCP and video over UDP. The client must first locate the
though different types of Object Adapters may be used by @arverMMDevice reference and then pass 8Device as
ORB, the only Object Adapter defined in the CORBA specifihie A party and the ServdviMDevice as theB party to the
cation is the Portable Object Adapter (POA). StreamCtrl

Figure 28: Video-on-Demand Consumer and Supplier

23

Endpoint creation: At this point, the VDev and and

StreamEndpoint are created for this stream from the *“video\in\MIME:video/mpeg \UDP=ace.cs.wustl.edu;8080”
MMDevices. The client and server applications can choogethese flow specs, the client is offering to listen for a TCP
eitherProcess _Strategy ,where the endpoints are createdonnection and the server will connect to the client. This
in a separate process, oRaactive _Strategy ,where the configuration might be useful if the server is behind a fire-
endpoints are created in the same process. The pluggable %l. The StreamCirl calls connect on one of the
protocol framework in TAO’s A/V Streaming Service proStreamEndpoints passing the othétreamEndpoint
vides flexible Concurrency StrategiefMungee et al., 1999] QoS, and the flow spec.

to create the endpoints, as described in Section 0.2.3. o))
Stream QoS negotiation: The StreamEndpoint will

Creation of flowendpoints: To create a full profile, anfirst check if the the otheBtreamEndpoint has a nego-
MMDevice can act as a container fdfDevs. In this tiator property defined. If it doesStreamEndpoint calls
case, theMMDevice will create a FlowProducer or negotiate on the negotiator and the client and server can
FlowConsumer from theFDev, depending on the directionnegotiate the QoS. TAO’s A/V Streaming Service provides a
of the flow specified in the flow specification parameter. Thigfault implementation that can be overridden by the appli-
flow direction is always with respect to thfeside. Thus, the cations. TheStreamEndpoint then queries the “Avail-
direction “out” means that the flow originates from thside ableProtocols” property on the othBtreamEndpoint . If
to theB side, whereas “in” means that the flow originates frothere is no common protocol the Stream setup will fail and the
the B side to theA side. exceptionStreamOpDenied will be thrown.

In the above case, the server is streaming the data to the

client. Therefore, the direction of the flow for both ads!9ht profile connection establishment: The A party
dio and video will be “in” and theMMDevice will cre- StreamEndpoint will then try to setup the stream for all

ate aFlowproducer from the audio and videdDevs its flows. For light profiles, the following steps are done for

on the server and &lowConsumer from the audio and ach flow:
videoFDevs on the client. Thes€&lowProducers and 1. TheStreamEndpoint will extract the flow protocol

FlowConsumers are then added to titreamEndpoint anq data transfer protocol information from the flow spec entry

using theadd fep call. for this flow. If a network address is not specified then a default
The advantage of using the flow interfaces is thafBevs stream endpoint is picked.

can be shared across different applications. In our VoD server _ .
example, the audio and video processes could be running & The StreamEndpoint then does the following ac-
two different processes and contain only the flow objects an#{s.

control process could add thevs from these two processes 3: It goes through the list of flow protocol factories in the

tsc;;:]ssst:;eaar?étﬁmh.rf]ltc:av;'fzg:n anc])\;v Iggn?.ontrg.lgg _tshg)l;?hct[&g/ _Core instance to find if there is any matching flow proto-
: - 'guration | u r}; I. If no flow protocol is specified, it passes the protocol as

more scalable and extensible approach than the implemepta- .) i) i
tion of a MPEG player described in Section 0.3.1, where t %?flow protocol string. TAO's AV Streaming Service pro

. . vides “no-op” implementations for all data transfer protocols
audio and video were treated as two separate streams. so that the layering of the architecture is preserved and a uni-
VDev Conﬁguration: The StreamCtrl then calls form API is presented to the application. These no-op flow
set _peer on each of thevDevs with the otherVDevs. Protocols do not process the frames — they simply pass them
For light profiles, multimedia application developers af€ the underlying data transfer protocol.
responsible for implementing treet _peer call to check if
all flows are compatible. For full profiles, théDev interface
is not used because thElowEndPoint contain these
configuration operations.

4: If a flow protocol factory matches the specified
flow protocol/transfer protocol, th&treamEndpoint then
checks for the data transfer protocol factory that matches the
protocol specified for this flow.

Stream setup: During this step the actual connections for 5: After finding a matching data transfer protocol factory,

the different flows are established. For light profiles, trffecreates a one-shot acceptor for this flow passingoe-
flows do not have any interfaces and the flow specificatigr')

should contain the transfer information for each flow. ForotocoIFactoryto the acceptor.

example, the following flow specs are typically passed to the6: If the flow protocol factory has an associated control

bind _devs call from the VoD client: protocol factory, theStreamEndpoint then tries to match
“audio\in\MIME:audio/mped \ TCP=ace.cs.wustl.edu;10000” the data transfer factory for that, as well.

24

7. If an address was not specified for this flow then

1. open(flowspec_entry)
the StreamEndpoint does the similar steps for listen-

’ACCEPTORREGISTRY‘ ing for those flows and extracts the network endpoints
3. open(owspecentry,flow_factory) and inserts it into the flowspec to be sent back to ge
2. create_acceptor() StreamE nd po i nt)
‘TRANSPORT FACTORY‘ ‘ P mm—— ‘ The A StreamEndpoint after receiving the reverse

flowspec does theonnect for all the flows for whichB
4. on accept
make_proecoLoiectenty encponranderianseory StreamEndpoint is listening and also sets the peer address
for connectionless protocols, such as UDP.

‘ FLOW FACTORY ‘

A . . .)
5. get_callback 6.callback Full profile connection establishment: In the full profile,

the flow specification does not contain the data transfer infor-
mation for each flow since the flows are represented by flow
interfaces and they need not be collocated in the same process.
Figure 29: Acceptor Registry A StreamCtrl can be used to control different flows, each

of which could reside on a different machine. In this case,

eachFlowEndPoint will need to know the network address

Figure 29 illustrates the sequence of steps outlined abqygyrmation. In the full profile stream setupind is called on
In each step, th&treamEndpoint uses base interfacesiye streamcirl passing the twStreamEndpoints

such arotocol __Factory ',Transport _Factory' and Figure 30 illustrates the sequence of steps performed for a
AV_Acceptor . Therefore, it can be extended easily to sup, profile point-to-point stream setup

port new flow and data transfer protocols. In addition, the ad-
dress information is opaque to tBéreamEndpoint and is pin(A_StrsemEndpoint 8. StraamEndFoing
passed down to thAcceptor that knows how to interpret
it. Moreover, since the flow and data transfer protocols can be
linked dynamically via the ACE Service Configurator mecha-
nisms, applications can take advantage of these protocols by
simply changing the name of the protocols in the flow spec.
After completing the preceding steps, the
StreamEndpoint then calls theequest _connection
operation on theB StreamEndpoint with the flowspec.
The StreamEndpoint B performs the following steps for
each of the flow:

‘ TAO_Base_Endpoint ‘

1: It extracts the flow and data transfer protocol informa-
tion from the flow spec entry for this flow. If a network address
is not specified then a default stream endpoint is picked.

/7
\()? X0,

(%
3.1 get_property(protocols,
FLOWENDPOINT FLOWENDPOINT
A .2 get_property(format) B

4.2 open(flow_spec_entry) 4.4 connect(flow_spec_entry)

2. TheStreamEndpoint then performs the following
actions.

3: Finds a flow protocol factory matching the flow proto-

col specified for this flow and in the absence of a flow protocol ACCEPTOR REGISTRY CONNECTOR REGISTRY
tries to match a null flow protocol for the specified data trans-
fer protocol. Figure 30: Full Profile Point to Point Stream Establishment

4: Finds a matching data transfer protocol factory and cre-
ates a connector for it. Then it calennect on the connec- 1:

o Flow endpoint matching: Th&treamCtrl obtains
tor, passing it the flow protocol factory.

the flow names in eaclstreamEndpoint by querying
5: Upon establishing a data transfer connection, the céhe “flows” property. For each flow name, it then obtains

nector creates a protocol object for this flow. the FlowEndPoint using theget fep method on the

StreamEndpoint . If the flowspec is empty all the flows

6. The flow protocol factory typically creates the e considered. Otherwise, only the specified flows are con-
application-level callback object and sets the protocol Obj%?&ered for stream establishment.

on theBase _EndPoint interface passed to it.

25

It then goes through the list dflowEndPoints try- events.
ing to find a match between tifdowEndPoints on the The FlowConnection then callsconnect _to _peer
A and B side. Two FlowEndPoints are said to match on the otheFlowEndPoint with the address returned by
if is fep _compatible returns true. This call checksthe listeningFlowEndPoint and also the flowname. In the
to make sure that the format and the protocols of the twase of connectionless protocols, such as UDP, the listening
FlowEndPoints match. Applications can override thisFlowEndPoint may need to know the reverse channel to
behavior to do more complex checks, such as checking §end the data in which case it can callgfe¢ _rev _channel
semantic nuances of device parameters. For example, dperation to get it.
FlowEndPoint may want only a French audio stream, \When FlowEndPoint calls connect _to _peer , se-
whereas the othefFlowEndPoint may support only En- quence of steps shown in Figure 31 will occur to connect to

glish. These requested semantics can be checked by qu@@/istening endpoint. With the above sequence of steps a
ing the property “devParams” and by checking the value for

“language.”
The StreamEndpoint then tries to obtain a 1 - connect
FlowConnection from the StreamCtrl . The ap- |CONNECTORREGISTRY|
plication developer can set tHeowConnection object
for each flow using th&treamCtrl . All operations on a) 3 . open(flowspec,flow_factory)
. . . . create_connector() /
stream are applied to the containBtbwConnections v get_connector()
and by setting specialize@flowConnections the user |TRANSPORT FACTORY| | CONNEGTOR |

can customize the behavior of the stream operations. If
the stream does not have FlowConnection then a
default FlowConnection is created and set for that

flow. The StreamEndpoint then callsconnect on |
the FlowConnection with the producer and consumer 5. get_callback
endpoints with the flow QoS. |

4 . make_protocol_object|
v
FLOW FACTORY |

Endpoint |

2. Flow configuration: TheFlowConnection calls
set _peer on each of theFlowEndPoints during the
connect operation and this will let thElowEndPoints to _ _ _ _ o
check and set the peBlowEndpoint's configuration. For Stream will be established in a point-to-point binding between
example, a video consumer can check @@ourModel , two multimedia devices.

ColourDepth , and VideoResolution and allocate a
window for the specified resolution and also other display re-
sourcesi.e., colormap, etc. In the case of audio, the quantiz§-'2 Point-to-Multipoint Binding
tion property can be used by the consumer to allocate ap
priate decoder resources.

Figure 31: Connector Registry

PfRo's point-to-multipoint binding support is essential to han-
dle broadcast/multicast streaming servers. With new tech-
3: Flow connection establishment: In this step, thlogies, such as Web Caching [Fan et al., 1998], multicast
FlowConnection calls go_to _listen on one of the updates of web pages and streaming media files is becom-
FlowEndPoints with the is _mcast parameter set toing common place. In addition, it has become common on
false and also passes the flow protocol that was set Vve@bsites to broadcast live events using technologies like Re-

the FlowConnection using theuse _flow _protocol alPlayer. For example, during the World Cup Cricket 99,

operation. TheFlowEndPoint can raise an exceptionmillions of people listened to the live commentaries of the

failedToListen in which case thé=lowConnection matches from the BBC website.

callsgo_to _listen on the otheFlowEndPoint . In such cases, it would be ideal for the servers to use mul-

In TAO’s implementation thego_to _listen does the ticast technologies like IP multicast to reduce server connec-
sequence of operations shown in Figure 29 to accept tams and load. TAO's point-to-multipoint binding essentially
the selected flow protocol and data transfer protocol apbvides such an interface for a source to multicast the flows
also if needed the control protocol for the flow. Since ttie multiple sinks as shown in figure 32. TAO’s A/V Streaming
FlowEndPoint also derives fromBase _EndPoint the Service implementation provides a binding based on IP multi-
Callback andProtocol _Objects willbe setonthe end- cast [Deering and Cheriton, 1990]. In this section we explain
point. In the case of th&lowProducer the gettimeout the sequence of steps that lead to a point-to-multipoint stream
will be called on theCallback object to register for timeout establishment both in the light and full profiles.

26

A . bind_devs (Mpoint_source, Nil)

LIVESTREAM ENDPOINT B . bind_devs (Nil,Mpoint_sink)

—| Light Profile

VIDEO FLOW ENGLISH SPANISH

FLOW FLOW
PRODUCER PRODUCER PRODUCER

Full Profile

o =

FLOW FLOW

CoNsuER| [conSumER CONSUMER CONSUMER{ (CONSUMER)

TV ENDPOINT RADIO ENDPOINT TV ENDPOINT
TV DEVICE TV DEVICE

Figure 32: Point-to-Multipoint Binding) : . - . o
Figure 33: Creation of Endpoints in the Point-to-Multipoint

Binding
Adding a multipoint source: A multipoint source
MMDevice must be added before any sinks can be added to
the Stream. For example, the multicast server could add its&lf -MCast_peer call. This information is conveyed to
to theStreamCtrl and expose th8treamCtrl interface the multicast sinkvDev during theset _peer call on the
through a standard CORBA object location service, suchM€astConfigif ~ when a multicast sink is added. The
Naming or Trading. If theB party MMDevice parameter to MCastConfiglf ~ performs the configuration operation us-
bind _devs is nil, the source is assumed to be a multica§ point-to-point invocation on all sinkDevs.
source. As with a point-to-point stream, the endpoints for , , . .
the source device are creatéd., the StreamEndpoint Adding multicast sinks: When a sink wants to join a stream

and VDev for light profiles, and theStreamEndpoint as a multicast sink, it can cabind _devs with a nil A
containing FlowProducers for the full profile. Un- party MMDevice. This call will create the endpoints for

like the point-to-point stream, however, there can only Ha¢ multicast sinki.e. the StreamEndpoint and the

FlowProducers in the MMDevice. Figure 33 shows the YD€V- For full profiles, theStreamEndpoint will contain
creation of endpoints in point-to-multipoint bindings. FlowConsumers . For light profiles, the/Dev is added to

. . L the MCastConfiglf
Multicast configuration interface: In the case of a mul-

tipoint binding there can be numerous sinks. TherefoMulticast connection establishment: The StreamCirl

the CORBA A/V Streaming Service specification providalen callsconnect _leaf on the multicast source endpoint

an MCastConfiglf interface, which is used instead ofor the multicast sink endpoint. In TAO, tlewnnect _leaf

using point-to-pointVDev configurations. Upon additionoperation will throw thenotSupported exception. The

of a multipoint source, theStreamCtrl creates a new StreamCtrl will then try the IP multicast model using

MCastConfiglf interface and sets it as the multicast pegfiemulticonnect call on the sourc&treamEndpoint

of the sourcé/Dev. This design allows the stream binding t@he following steps occur whenulticonnect is called on

use multicasting technologies to distribute the stream configStreamEndpoint _A for each flow in the full profile:

uration information instead of using numerous point-to-point

configurations. 1: TheStreamEndpoint makes sure that the endpoint
The MCastConfiglf interface provides operations tdS indeed &lowProducer

set the initial configuration of the stream example via .) .
the set _initial _configuration operation. This op- 2: Itthen checks to see ifElowConnection interface

eration can be called by the sourdéDev during the exists for this flow in theStreamCtrl , which is obtained
through theRelated _StreamCtrl property.

27

3: In the absence of aFlowConnection , the
StreamEndpoint _Awill create aFlowConnection and
set the multicast address to be used for this flow on the
FlowConnection . An application configure this ad-
dress by passing it to th&treamEndpoint during its
initialization. The A/V specification does not define how
multicast addresses are allocated to flows. Thus, TAO's
StreamEndpoint uses a base multicast address and assigns
different ports for the flows and sets tReowConnection
on theStreamCtrl . We ultimately plan to strategize this al- £/
location so applications can decide on the multicast addresses /&
to use for each flow. e

2.4 connect {ﬂowgspecgentry)_\

4: The StreamEndpoint then callsadd _producer ACCEPTOR \
on FlowConnection hadliad i CONNECTOR
.] o | REGISTRY
5: The call to add_producer will result in a o]
connect _mcast on theFlowProducer |, passing the mul- ‘%
ticast address with which to connect. TR®wProducer

then returns the address to which it will multicast the flow. Figure 34: Connection Establishment in the Point-to-
the return address is complete with network address, therMBltipoint Binding
Multicast is used. In contrast, if the return address specifies

only the protocol name an ATM-style multicast is used.)) . o
to provide this feature. In TAO, we provide a multipoint-to-

6: In addition, the FlowConnection creates a multipoint binding by extending the point-to-multipoint bind-
MCastConfiglf if it has not been created and sets it 8fg based on IP multicast. We assume a Leader/Follower
the multicast peer on thElowProducer . Since the same pattern [Schmidt et al., 2000] for the sources, where the first
MCastConfiglf is used for bothFlowEndPoint and source that is added to the stream will becomel¢aglerfor
VDev, the parameters tdCastConfiglf ~ are passed asthe multipoint-to-multipoint binding, and every other source
CORBA objects. Itis the responsibility MCastConfigf become dollower. This design implies that all stream proper-
to check whether the peer is/ev or aFlowEndpoint . tjes, such as format and codec, will be selected by the leader.

7: Theconnect _mcast does the actual connection to
the multicast address and results in the sequence of steps for
multicast accept using the pluggable A/V protocols.

Figure 34 illustrates these steps graphically. The steps de-
scribed above occur for each multipoint sink that is added to
the stream. TAQO'’s pluggable A/V protocol framework is con-
figured with both full profile and light profile objects. It is
also configured in the point-to-point and point-to-multipoint
bindings. Thus, the control and management implementation
objects can be closed for modifications, yet new flow and data
transfer protocols can be added flexibly to the framework with-
out modification to these interface implementations. A similar
set of steps happens whamulticonnect is called on the
StreamEndpoint _B.

C.3 Multipoint-to-Multipoint Binding

The multipoint-to-multipoint binding is important for appli-
cations, such as video-conferencing, where there are multiple
source and sink participants. The CORBA A/V Streaming Ser-
vice specification does not mandate any particular protocol for
multipoint-to-multipoint binding, leaving it to implementors

28

