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Abstract

Recent advances in network bandwidth and processing power
of CPUs has led to the emergence of multimedia stream-
ing frameworks, such as NetShow, Realvideo and Vxtreme.
These frameworks typically rely on proprietary stream estab-
lishment and control mechanisms to access multimedia con-
text. To facilitate the development of standards-based dis-
tributed multimedia streaming applications, the OMG has de-
fined a CORBA-based specification that stipulates the key in-
terfaces and semantics needed to control and manage au-
dio/video streams.

This paper makes two contributions to the study of CORBA-
based distributed multimedia streaming frameworks. First,
it describes the design and performance of an implementa-
tion of the OMG audio/video (A/V) streaming model based on
TAO, which is a real-time CORBA ORB. Second, it describes
the design and performance of a distributed application that
uses TAO’s A/V streaming framework to establish and con-
trol MPEG video streams. Our experience with TAO’s A/V
streaming framework indicates that CORBA defines a flexible
and efficient model for developing standards-based multime-
dia streaming applications.
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1 Introduction

1.1 Motivation

Traditional distributed object computing (DOC) middle-
ware such as CORBA, DCOM, and Java RMI support re-
quest/response semantics for distributed applications. How-
ever, an increasingly important class of applications require
transfer of continuous media data streams. For instance, pop-
ular Internet-based streaming mechanisms, such as Realvideo
[1] and Vxtreme [2], allow suppliers to transmit continuous
streams of audio and video packets to consumers. Likewise,
non-continuous media applications, such as medical imag-
ing servers [3] and network management agents [4], employ
streaming to transfer bulk data efficiently from suppliers to
consumers.

Stringent performance requirements for streaming data of-
ten preclude DOC middleware from being used as the trans-
port mechanism for multimedia applications [5]. For instance,
inefficient CORBA Internet Inter-ORB Protocol (IIOP) [6]
implementations often perform excessive data-copying and
memory allocationper-request, which increases packet la-
tency [7]. Likewise, inefficient marshaling/demarshaling in
DOC middleware decreases streaming data throughput [8].

If the design and performance of DOC middleware can
be improved, however, the stream establishment and control
components of distributed multimedia applications can benefit
greatly from the portability and flexibility provided by middle-
ware. To address these issues, the Object Management Group
(OMG) has defined a specification for the control and man-
agement of A/V streams [9], based on the CORBA reference
model [10].

The CORBA A/V streaming specification defines a model
for implementing an open distributed multimedia streaming
framework. This model integrates (1) well-defined modules,
interfaces, and semantics for stream establishment and control
with (2) efficient transport-level mechanisms for data trans-
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mission. In addition to defining standard stream establish-
ment and control mechanisms, the OMG specification allows
distributed multimedia applications to leverage the portability
and flexibility provided by DOC middleware.

Our prior research on CORBA middleware has explored
several dimensions of real-time ORB endsystem design in-
cluding static [11] and dynamic [12] real-time scheduling,
real-time request demultiplexing [13], real-time event pro-
cessing [14], real-time I/O subsystem integration [15], and
the real-time performance of various commercial and research
ORBs [16] over ATM networks. This paper focuses on a previ-
ously unexamined point in the real-time ORB endsystem de-
sign space:the design and performance of the CORBA A/V
streaming service specification.

1.2 Design Challenges

We have developed the first freely available implementation
of the OMG A/V streaming model using TAO [11], which is a
real-time CORBA ORB that has been ported to most OS plat-
forms. In addition to implementing the components defined
by the OMG specification, TAO’s A/V streaming service uses
patterns [17] to resolve the following key design challenges
that arise when developing distributed multimedia streaming
frameworks:

Flexibility in stream endpoint creation strategies: The
OMG specification defines the interfaces and roles of stream
components. Many performance-sensitive multimedia appli-
cations require fine-grained control over the strategies govern-
ing the creation of stream components. For instance, our past
studies of Web server performance [18, 3] motivate the need
to supportadaptiveconcurrency strategies to develop efficient
and scalable streaming applications.

In the context of our A/V streaming service, we determined
that the supplier-side of our MPEG application described in
Section 3 required a process-based concurrency strategy to
maximize stream throughput by allowing parallel processing
of separate streams. Other types of applications required dif-
ferent implementations, however. For example, the consumer-
side of our MPEG application benefited from the creation of
reactive [19] suppliers that contain all related endpoints within
a single process.

To achieve a high degree of flexibility, therefore, our A/V
streaming service design decouples thebehaviorof stream
components from the strategies governing theircreation. We
achieved this decoupling via theFactory MethodandAbstract
Factorypatterns [17], as described in Section 2.2.1.

Flexibility in transport protocol: A streaming service may
need to select from a variety of transport protocols. For in-
stance, an Internet-based streaming application like Realvideo

[1] may use the UDP protocol, whereas a local intranet video-
conferencing tool [20] might prefer the QoS features offered
by native high-speed ATM protocols. Thus, it is essential that
a streaming service support a range of transport protocols.

The OMG streaming service makes no assumptions about
the transport protocol used for data streaming. Consequently,
the stream establishment components in our A/V streaming
service framework provide flexible mechanisms that allow ap-
plications to define and use multiple transport endpoints, such
as sockets and TLI, and multiple protocols, such as TCP, UDP,
or ATM.

Another design challenge, therefore, is to define stream es-
tablishment components that can work with a variety of trans-
port endpoints. To resolve this challenge, we applied theStrat-
egypattern [17], as explained in Section 2.2.5.

Flexibility in stream control interfaces: An A/V stream-
ing framework must provide flexible mechanisms that allow
developers to define and use different operations for different
streams. For instance, a video application typically supports
a variety ofoperations, such asplay , stop and rewind .
Conversely, a stream in a stock quote application might sup-
port operations likestart andstop . Because the operations
provided by the stream are application-defined, it is useful for
the control logic component in a streaming service to be very
flexible.

Therefore, another design challenge facing designers of
streaming services is to allow applications the flexibility to de-
fine their own stream control interfaces.

Flexibility in managing states of stream supplier and con-
sumers: The transport component of a streaming application
often needs to change behavior depending on the currentstate
of the system. For instance, invoking theplay operation on
the stream control interface of a video supplier may cause it to
enter into aPLAYING state. Likewise, subsequently sending it
thestop operation may cause it to transition to theSTOPPED

state. More complex state machines can result due to addi-
tional operations, such asrewind andfast forward op-
erations.

Thus, an important design challenge for developers is de-
signing flexible applications whose states can be extended.
In addition, the behavior of supplier/consumer applications,
and the A/V streaming framework itself, in each state must be
well-defined, To address this issue we applied theState Pattern
[17], as described in Section 3.1.

1.3 Paper Organization

The remainder of this paper is organized as follows: Sec-
tion 2 describes our implementation of the OMG A/V stream-
ing service specification using TAO [11], which is a real-time
CORBA ORB; Section 3 outlines the design of an MPEG
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streaming application that uses TAO’s A/V streaming service;
Section 4 analyzes the performance results of TAO’s A/V
streaming service over a high-speed ATM network; Section 5
summarizes related work; and Section 6 presents concluding
remarks. For completeness, Appendix A outlines the OMG
CORBA reference model and Appendix B presents a brief
overview of the CORBA Property Service, which is used to
transfer QoS information between consumers and suppliers in
the A/V streaming service.

2 The Design of TAO’s Audio/Video
Streaming Service

This section presents an overview of the key architectural
components in the OMG A/V streaming model. It also de-
scribes the design challenges facing developers of A/V stream-
ing frameworks and explains how TAO’s A/V streaming ser-
vice resolves these challenges.

2.1 Overview of the OMG Audio/Video
Streaming Specification

The OMG A/V streams specification [9] presents an architec-
tural model and OMG IDL interfaces for building distributed
multimedia streaming frameworks. The goals of the OMG
A/V streaming model are the following:

Standardized stream establishment and control mecha-
nisms: Using these mechanisms, consumers and suppliers
can be developed independently, while still being able to es-
tablish streams with one another.

Support multiple transport protocols: To avoid unneces-
sary overhead, the A/V streaming model separates control sig-
naling from the data transfer protocol, such as TCP, UDP, or
ATM.

Support various types of sources and sinks: Common
stream sources include a video-on-demand server, a video
camera attached to the network, or a stock quote server. Com-
mon sinks include a video-on-demand client, a display device
attached to a network, or a stock quote client.

Figure 1 shows amultimedia stream, which is represented
as a flow between twoflow data endpoints. One endpoint acts
as a source of the data and the other endpoint acts as a sink.
Note that the control and signaling operations pass through the
GIOP/IIOP-path of the ORB, demarcated by the dashed box.
In contrast, the data stream usesout-of-bandstream(s), which
can be implemented using protocols that are more suitable for
multimedia streaming than IIOP. Maintaining this separation
of concerns is crucial to achieve high performance.
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Figure 1:OMG Streams Architecture

Each stream endpoint consists of three logical entities: (1) a
stream interface control objectthat exports an IDL interface,
(2) adata source or sink, and (3) astream adaptorthat is re-
sponsible for sending and receiving frames over a network.

Control and Management objectsare responsible for the es-
tablishment and control of streams. The OMG A/V specifica-
tion defines the interfaces and interactions of theStream In-
terface Control Objectsand the Control and Management ob-
jects. Section 2.2 describes the various components in Figure 1
in detail.

2.2 OMG A/V Streaming Service Components

The OMG A/V streaming specification defines a set of stan-
dard IDL interfaces that can be implemented to provide a
distributed multimedia streaming framework. Figure 2 illus-
trates the key components of the CORBA streaming frame-
work. This subsection describes the TAO’s implementation of
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Figure 2:A/V Streaming Service Components

the A/V streaming service framework components shown in
Figure 2. The corresponding OMG interface name for each
role is provided in brackets. In addition, we discuss how TAO
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provides solutions to the design challenges outlined in Sec-
tion 1.2. Readers who are already familiar with the OMG A/V
streaming specification may want to skip to Section 3, which
describes how we developed an MPEG player application us-
ing TAO’s implementation of this service.

2.2.1 Multimedia Device Factory (MMDevice)

The MMDevice component abstracts the behavior of a mul-
timedia device. The actual device can bephysical, such as a
video microphone or speaker. Likewise, a device can belog-
ical, such as a program that reads video clips from a file or a
database that contains information about stock prices. There
is typically oneMMDevice per physical or logical device.

The MMDevice encapsulates the device-specific parame-
ters of a multimedia device, as shown in Figure 3. For in-

MMDeviceMMDevice
PropertiesProperties

Name (String)Name (String) Value (CORBA "Any" type)Value (CORBA "Any" type)

PropertySetPropertySet"Video_Format" "MPEG", "JPEG", "AVI"

"Movies" "Gandhi", "Star wars" ....

"Connections" 4

define_property ();

get_property_value ()

delete_property ();

Figure 3:Multimedia Device Factory

stance, a particular device might supportMPEG-1[21] com-
pression orULAWaudio [22]. Such parameters are termed
“properties” of theMMDevice. Properties can be associated
with theMMDevice using the CORBA Property Service [23],
which is described in Appendix B.

The MMDevice is an endpoint factory,i.e., it is responsi-
ble for creating new endpoints for new stream connections.
Each endpoint consists of a pair of objects: (1) a virtual device
(VDev), which encapsulates the device-specific parameters of
the connection and (2) theStreamEndpoint , which en-
capsulates the transport-specific parameters of the connection.
The roles ofVDev andStreamEndpoint are described in
Section 2.2.2 and Section 2.2.5, respectively.

The MMDevice component also encapsulates the imple-
mentation ofstrategiesthat govern the creation of theVDev
andStreamEndpoint objects. For instance, the implemen-
tation ofMMDevice in TAO’s A/V streaming service frame-
work provides the following two concurrency strategies:

Process-based strategy: The process-based concurrency
strategy creates new virtual devices and stream endpoints in
a new process, as shown in Figure 4. This strategy is useful
for applications that create a separate process to handle each
new endpoint. For instance, the supplier in our MPEG player
application described in Section 3.1 creates separate processes

Connection

requested

creates

VDev MediaCtrl

StreamEndpoint
Child
Process

Server Process

MMDevice

Figure 4:MMDevice Process-based Concurrency Strategy

to stream the audio and video data to the consumer concur-
rently.

Reactive strategy: In this strategy, endpoint objects for each
new stream are created in the same process as the factory, as
shown in Figure 5. This means that a single process handles

VDev MediaCtrl

StreamEndpoint

Connection

requested

creates

Server
Process

MMDevice

Figure 5:MMDevice Reactive Concurrency Strategy

all the simultaneous connectionsreactively[19]. This strategy
is useful for applications that dedicate one process to control
multiple streams. For instance, the consumer of the MPEG
A/V player application described in Section 3.2 creates the
video and audio endpoints in the same process using this strat-
egy to minimize synchronization overhead.

We are enhancing TAO’s A/V streaming framework to
support otherMMDevice concurrency strategies, such as a
thread-based strategy that creates new stream endpoints to run
in separate threads within the same process.

In TAO’s A/V streaming service, theMMDevice uses the
Abstract Factorypattern [17] to decouple (1) the creation strat-
egy of the stream endpoint and virtual device from (2) the
concrete classes that define it. Thus, applications that use the
MMDevice can subclass both the strategies described above,
as well as theStreamEndpoint and theVDev that are cre-
ated.

Subclassing allows applications to customize the concur-
rency strategies to suit their needs. For instance, by default,
the reactive strategy creates new stream endpoints using dy-
namic allocation,e.g., via thenew operator in C++. Appli-
cations can override this behavior via subclassing so they can
allocate stream endpoints using other allocation techniques,
such as thread-specific storage [24] or special framebuffers.
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2.2.2 Virtual Device (VDev)

The virtual device (VDev) component is created by the
MMDevice factory in response to a request for a new stream
connection. There is oneVDev per stream. TheVDev is used
by the application to define its response toconfigure re-
quests. For instance, if a consumer of a stream wants to use
the MPEG video format, it can invoke theconfigure oper-
ation on the supplierVDev, as shown in Figure 6.

Video_VDevVideo_VDev
configure ();configure ();

VDevVDev

configureconfigure

configure (string name, Any value)

{

   if (name == "video_format")

       switch (value)

           case "MPEG": use_mpeg ();

           default: return Exception;

......

}

configure () = 0;configure () = 0;

("video_format",("video_format",
"MPEG");"MPEG");

Figure 6:Virtual Device

Stream establishmentis a mechanism defined by the OMG
A/V streaming specification to permit the negotiation of QoS
parameters viaproperties. Properties arename-valuepairs,
i.e., they have astring name and a corresponding value.
The properties used by the A/V streaming framework are im-
plemented using the CORBA Property Service, described in
Appendix B.

The OMG A/V streaming specification specifies the names
of the common properties used by theVDev objects. For in-
stance, the propertycurrformat is a string that contains the
current encoding formate.g., “MPEG.” During the stream es-
tablishment, eachVDev can use theget property value
operation on its peerVDev to ensure that the peer uses the
same encoding format.

When a new pair ofVDev objects are created, eachVDev
uses theconfigure operation on its peer to set the stream
configuration parameters. If the negotiation fails the stream
can be torn down and resources released immediately.

Section 2.3.1 describes the OMG A/V streaming service
stream establishment mechanism in detail.

2.2.3 Media Controller (MediaCtrl )

The Media Controller (MediaCtrl ) is an IDL interface that
defines operations for controlling a stream. TheMediaCtrl
interface isnot defined by the OMG A/V streaming service
specification. Instead, it is defined by application developers to
support operations for a specific stream, such as the following
OMG IDL for a video service:

interface video_media_control

{
void select_video (string name_of_movie);
void play ();
void rewind (short num_frames);
void pause ();
void stop ();

};

The OMG A/V streaming service provides developers with
the flexibility to associate an application-definedMediaCtrl
interface with a stream. Thus, the A/V streaming service can
be used with an infinitely extensible variety of streams, such
as audio and video, as well as non-multimedia streams, such
as a stream of stock quotes.

The VDev object represented device-specific parameters,
such as compression format or frame rate. Likewise, the
MediaCtrl interface is device-specific since different de-
vices support different control interfaces. Therefore, the
MediaCtrl is associated with theVDev object using the
Property Service [23].

There is typically oneMediaCtrl per stream. In some
cases, however, application developers may choose to control
multiple streams using the sameMediaCtrl . For instance,
the video and audio streams for a movie might have a common
MediaCtrl to enable a single CORBA operation, such as
play , to start both audio and video playback simultaneously.

2.2.4 Stream Controller (StreamCtrl )

The Stream Controller (StreamCtrl ) interface abstracts a
continuous media transfer between virtual devices (VDevs). It
supports operations to bind twoMMDevice objects together
using a stream. Thus, theStreamCtrl component binds the
supplier and consumer of a stream,e.g., a video-camera and a
display. It is the key participant in theStream Establishment
protocol described in Section 2.3.1.

TheStreamCtrl object is generally instantiated by an ap-
plication developer. There is oneStreamCtrl per stream,
i.e., per consumer/supplier pair.

2.2.5 Stream Endpoint (StreamEndpoint )

TheStreamEndpoint object is created by theMMDevice
in response to a request for a new stream. There is one
StreamEndpoint per stream. AStreamEndpoint en-
capsulates the transport-specific parameters of a stream. For
instance, a stream that uses UDP as the transport proto-
col will use a host name and a port number to identify its
StreamEndpoint .

TAO’s A/V streaming service implementation of the
StreamEndpoint uses patterns, such as Double Dispatch-
ing and Template Method [17], to allow applications to define
and exchange transport-level parameters flexibly. This inter-
action is shown in Figure 7 and occurs as follows:
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ConnectionConnection
RequestedRequested

returnreturn

"TCP=tango:8455""TCP=tango:8455"

connection_requested (..)
{
  handle_connection_requested ();
  return flowspec;
}

handle_connection_requested (..)
{
    create transport endpoint;
    return "TCP=tango:8455";
} TCP_StreamEndpointTCP_StreamEndpoint

StreamEndpointStreamEndpoint

Figure 7:Interaction BetweenStreamEndpoint and the
Application

Step 1: An A/V streaming application can inherit from
the StreamEndpoint class and override the operation
handle connection requested in the new subclass
TCP StreamEndpoint .

Step 2: While binding twoMMDevices, theStreamCtrl
invokesconnect on oneStreamEndpoint with the peer
TCP StreamEndpoint as a parameter.

Step 3: The StreamEndpoint then requests the
TCP StreamEndpoint to establish the connection for this
stream using the transport addresses it is listening on.

Step 4: The virtualhandle connection requested
operation of theTCP StreamEndpoint is invoked and
connects with the listening transport address on the peer side.

Thus, theStreamEndpoint design uses patterns that al-
low each application to configure its own transport protocol,
while reusing the generic stream establishment control logic
in TAO’s A/V streaming service framework.

2.3 Interaction Between Components in the
OMG Audio/Video Streams Model

Section 2.2 described the structure of components that consti-
tute the OMG A/V streaming model. The remainder of this
section describes how these componentsinteract to provide
two key A/V streaming service features: stream establishment
and flexible stream controls.

2.3.1 Stream Establishment

An important feature provided by the OMG A/V streaming
specification is a standard mechanism to establish a binding
between streams. Stream establishment is the process of bind-
ing two peers who need to communicate via astream. Stan-
dardizing this binding mechanism is important because it al-
lows suppliers and consumers to be developed independently,

yet still be able to establish streams with one another via a
common protocol.

Several components are involved in the stream establish-
ment. A key motivation for providing an elaborate stream
establishment protocol is to allow components to be config-
ured independently of one another. This allows the stream es-
tablishment mechanism to remain standard, and yet provide
sufficient hooks for framework developers to customize this
process for a specific set of requirements. For instance, the
MMDevice can be configured to use one of several concur-
rency strategies to create stream endpoints. Thus, at each stage
of the stream establishment process, individual components
can be configured to implement the desired policies.

The OMG A/V specification identifies the two peers in
stream establishment as theA party and theB party. These
terms define complimentary relationships,i.e., a stream al-
ways has anA party at one end and aB party at the other. The
A party may be thesink, i.e., the consumer, of a video stream,
whereas theB party may be thesource, i.e., the supplier, of a
video stream and vice versa.

Note that the OMG A/V streaming specification defines two
distinct IDL interfaces for theA andB type endpoint. Hence,
for a given stream, there will be two distinct types for the
supplier and the consumer. Thus, the OMG A/V streaming
specification ensures that the complimentary relationship be-
tween suppliers and consumers is typesafe. An exception will
be raised if a supplier accidentally tries to establish a stream
with another supplier.

Stream establishment in TAO’s A/V streaming service oc-
curs in several steps, as illustrated in Figure 8. This fig-

1) bind_devs (aMMDev,
bMMDev);

aMMDev
bMMDev

B_EndPointA_EndPoint

aVDev bVDev

aStreamCtrl

2.1) create_A

2.2) A_Endpoint, A_Vdev 2.4) B_EndPoint, B_VDev

2.3) create_B 

4) connect

5) request_connection

3) configure

Figure 8:Stream Establishment Steps in the A/V Stream-
ing Service

ure shows a stream controller (aStreamCtrl ) binding the
A party together with theB party of a stream. The stream
controller need not be co-located with either end of a stream.
To simplify the example, however, we assume that the con-
troller is co-located with theA party, and is called the
aStreamCtrl . Each step shown in Figure 8 is explained
below:
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1. The aStreamCtrl binds two Multimedia Device
(MMDevice) objects together: Application developers in-
voke thebind devs operation onaStreamCtrl . They
provide the controller with the object references of two
MMDevice objects. These objects are factories that create
the twoStreamEndpoint s of the new stream.

2. Stream Endpoint creation: In this step,aStreamCtrl
requests theMMDevice objects, i.e., aMMDevice and
bMMDevice , to create theStreamEndpoint s andVDev
objects. The aStreamCtrl invokes create A and
create B operations on the twoMMDevice objects.
These operations request them to createA Endpoint and
B Endpoint endpoints, respectively.

3. VDev configuration: After the two peerVDev objects
have been created, they can use theconfigure operation to
exchange device-level configuration parameters. For instance,
these parameters can be used to designate the video format and
compression technique used for subsequent stream transfers.

4. Stream setup: In this step,aStreamCtrl invokes the
connect operation on theA Endpoint . This operation
instructs theA Endpoint to initiate a connection with its
peer. TheA Endpoint initializes its transport endpoints in
response to this operation. In TAO’s A/V streaming frame-
work, applications can customize this behavior using theDou-
ble Dispatchpattern described in Section 2.2.5.

5. Stream Establishment: In this step, theA Endpoint
invokes therequest connection operation on its peer
endpoint. TheA Endpoint passes its transport endpoint
parameters,e.g., hostname and port number, as parame-
ters to this operation. When theB Endpoint receives the
request connection operation, it initializes its end of
the transport layer connection. It subsequently connects to the
transport endpoint passed to it by theA Endpoint .

After these five steps are complete, a transport-level stream
has been established between the two endpoints of the
stream. Section 2.3.2 describes how theMedia Controller
(MediaCtrl ) can control an established stream,e.g., by
starting or stopping the stream.

2.3.2 Stream Control

Each MMDevice endpoint factory can be configured with
an application-definedMediaCtrl interface, as described in
Section 2.2.3. Each stream has oneMediaCtrl and every
MediaCtrl controls one stream. Thus, if a particular movie
has two streams, one for audio and the other for video, it will
have twoMediaCtrl s.

After a stream has been established by the stream con-
troller, applications can obtain object references to their

MediaCtrl s from theirVDev. These object references con-
trol the flow of data through the stream. For instance, a video
stream might support operations likeplay , rewind , and
stop and be used as shown below:

// The Audio/Video streaming service invokes this
// application-defined operation to give the
// application a reference to the media controller
// for the stream.
Video_Client_VDev::set_media_ctrl

(CORBA::Object_ptr media_ctrl,
CORBA::Environment &env)

{
// "Narrow" the CORBA::Object pointer into
// a media controller for the video stream.
this->video_control_ =

Video_Control::_narrow (media_ctrl);
}

The video control interface can be used to control the stream,
as follows:

// Select the video to watch.
this->video_control_->select_video ("gandhi");

// Start playing the video stream.
this->video_control_->play ();

// Pause the video.
this->video_control_->stop ();

// Rewind the video 100 frames.
this->video_control_->rewind (100);

3 Design and Implementation of an
Audio/Video Streaming Application

We have developed a CORBA-based A/V streaming applica-
tion that uses the components and interfaces described in Sec-
tion 2.2. This application is an enhanced version of a non-
CORBA MPEG player developed at the Oregon Graduate In-
stitute [25]. Our application plays movies using theMPEG-1
video format [21] and the SunULAWaudio format [22]. Fig-
ure 9 shows the architecture of our A/V streaming application.

The MPEG player application uses a supplier/consumer de-
sign implemented using TAO. The consumer locates the sup-
plier using the CORBA Naming Service [26]. Future versions
of our MPEG application will use the Trading Service [26] to
find suppliers that match the consumer’s requirements. For in-
stance, a consumer might want to locate a supplier that has a
particular movie or a supplier with the least number of con-
sumers currently connected to it.

Once the consumer obtains the supplier’sMMDevice ob-
ject reference it requests the supplier to establish two streams,
i.e., a video stream and an audio stream, for a particular movie.
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Figure 9:Architecture of the A/V Streaming Application

The streams are established as described in Section 2.3.1. The
consumer then uses theMediaCtrl to control the stream, as
described in Section 2.2.3.

The supplier is responsible for sending A/V packets via
UDP to the consumer. For each consumer, the supplier sends
two streams, one each for the MPEG video packets and the
Sun ULAW audio packets. The consumer decodes these
streams and plays these packets in a viewer, as shown in Fig-
ure 10.

Figure 10:The TAO Audio/Video player

This section describes the various components of the con-
sumer and supplier in detail. The following table illustrates
the number of lines of C++ source required to develop this
system and application.

Component Lines of code
TAO CORBA ORB 61,524
TAO Audio/Video (A/V) streaming service 3,208
TAO MPEG video application 47,782

Using the ORB and the A/V streaming service greatly re-
duced the amount of software that otherwise would have been
written from scratch.

3.1 Supplier Architecture

The supplier in the A/V streaming application is responsible
for streamingMPEG-1video frames andULAWaudio samples
to the consumer. The files can be stored in a filesystem ac-
cessible to the supplier process. Alternately, the video frames
and the audio packets can be sent by live source, such as a
video camera. Our experience with the supplier indicates that
it can support�10 concurrent consumers simultaneously on a
Sun Ultrasparc-II with 256MB of RAM over a 155 mbps ATM
network.

The role of the supplier is to read audio and video frames
from a file, encode them, and transmit them to the consumer
across the network. Figure 11 depicts the key components in
the supplier architecture.

MMOVIESOVIES

CCONTROLONTROL

DDATAATA

CCONTROLONTROL

DDATAATA

VVIDEOIDEO AAUDIOUDIO

CCONNECTION ONNECTION HHANDLERSANDLERS

createscreates
SSERVERERVER

PPROCESSROCESS

Figure 11:TAO Audio/Video Supplier Architecture

The main supplier process contains theMMDevice end-
point factory described in Section 2.2.1. TheMMDevice cre-
ates connection handlers in response to consumer connections,
using process-based concurrency strategy. Each connection
triggers the creation of one audio process and one video pro-
cess. These processes respond to multiple events. For in-
stance, the video supplier process responds to CORBA oper-
ations, such asplay and rewind , and sends video frames
periodically in response to timer events.

Each component in the supplier architecture is described be-
low.

3.1.1 The Media Controller Component

This component in the supplier process is a servant that im-
plements the Media Controller interface (MediaCtrl ) de-
scribed in Section 2.2.3. The Media Controller responds to
CORBA operations from the consumer. The interface ex-
ported by theMediaCtrl component represents the various
operations supported by the supplier, such asplay , rewind ,
andstop .
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At any point in time, the supplier can be in several states,
such asPLAYING, REWINDING, or STOPPED. Depending on
the supplier’s state, its behavior may change in response to
consumer operations. For instance, the supplier ignores a
consumer’splay operation when the supplier is already in
the PLAYING state. Conversely, when the supplier is in the
STOPPEDstate, a consumerrewind operation transitions the
supplier to theREWINDING state.

The key design forces that must be resolved while imple-
mentingMediaCtrl s for A/V streaming are (1) allowing the
same object to respond differently, based on its current state,
(2) providing hooks to add new states, and (3) providing ex-
tensible operations to change the current state.

To provide a flexible design that meet these requirements,
the control component is implemented using theStatepat-
tern [17]. This implementation is shown in Figure 12. The

Media Controller

play ()
rewind ()
stop ()

Media State

play () = 0;
rewind () = 0;
stop () = 0;

Playing State

play ()
rewind ()
stop ()

Stopped State

play ()
rewind ()
stop ()

state

state->play ();

Figure 12:State pattern implementation of the Media Con-
troller

MediaCtrl has astate object pointer. The object be-
ing pointed to by the Media Controller’sstate pointer rep-
resents the current state. For simplicity, the figure shows
thePlaying State and theStopped State , which are
subclasses of theMedia State abstract base class. Addi-
tional states, such as theRewinding State , can be added
by subclassing fromMedia State .

The diagram lists three operations:play , rewind and
stop . When the consumer invokes an operation on the
Media Controller , this class delegates the operation to
the state object. A state object implements the response to
each operation in a particular state. For instance, therewind
operation in thePlaying State contains the response of
the media controller to therewind operation when it is in the
PLAYING state. State transitions can be made by changing the
object being pointed to by thestate pointer of theMedia
Controller .

In response to consumer operations, the currentstate ob-
ject instructs the data transfer component discussed in Sec-
tion 3.1.2 to modify the stream flow. For instance, when
the consumer invokes therewind operation on theMedia
Controller while in theSTOPPEDstate, therewind oper-

ation in theStopped State object instructs the data com-
ponent to play frames in reverse chronological order.

3.1.2 The Data Transfer Component

The data component is responsible for transferring data to the
consumer. Our MPEG supplier application reads video frames
from aMPEG-1file and audio frames from a SunULAWaudio
file. It sends these frames to the consumer, fragmenting long
frames if necessary. The current implementation of the data
component uses the UDP protocol to send A/V frames.

A key design challenge related to data transfer is to have the
application respond to CORBA operations for the stream con-
trol objects,e.g, theMediaCtrl , as well as the data transfer
events,e.g., video frame timer events. An effective way to do
this is to use theReactorpattern, as shown in Figure 13.

ORBORB
DescriptorDescriptor

TimerTimer Data (UDP)Data (UDP)

OS  EVENT  DEMULTIPLEXING  INTERFACE

: Periodic: Periodic
Video frameVideo frame
transmittertransmitter

: Reactor: Reactor

: Feedback: Feedback
HandlerHandler

CORBA ORBCORBA ORB

: Media: Media
ControllerController

Figure 13:Reactive Architecture of the Video Supplier

The video supplier registers two event handlers with TAO’s
ORB Reactor . One is a signal handler for the video frame
timer events. The other is a UDP socket event handler for
feedback events coming from the consumer. The frames sent
by the data component correspond to the current state of the
MediaCtrl object, as outlined above. Thus, in thePLAYING

state, the data component plays the audio and video frames in
chronological order.

Future implementations of the data transfer component in
our MPEG player application will support multiple encoding
protocols via the simple flow protocol (SFP) [9]. SFP encod-
ing encapsulates frames of various protocols within an SFP
frame. It provides standard framing and sequence numbering
mechanisms. SFP uses the CORBA CDR encoding mecha-
nism to encode frame headers and uses a simplecredit-based
flow control mechanism described in [9].

3.2 Consumer Architecture

The role of the consumer is to read audio and video frames off
the network, decode them, and play them synchronously. The
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audio and video servers stream the frames separately. A/V
frame synchronization is performed on consumer. Figure 14
depicts the key components in the consumer architecture:

VVIDEOIDEO

BBUFFERUFFER

AAUDIOUDIO

BBUFFERUFFER

VVIDEOIDEO

DDECODEECODE

"R"RAWAW""

PPACKETSACKETS

DDECODED ECODED MMPEGPEG

VVIDEO IDEO PPACKETSACKETS

Video ControlVideo Control

Audio ControlAudio Control

CCONTROLONTROL/A/AUDIOUDIO

GUI/VGUI/VIDEOIDEO

CommandsCommands

Figure 14:TAO Audio/Video Consumer Architecture

The original non-CORBA MPEG consumer [25] used a
process-based concurrency architecture. Our CORBA-based
consumer maintain this architecture to minimize changes to
the code. Separate processes are used to do the buffering, de-
coding, and playback, as explained below:

1. Video Buffer: The video buffering process is responsi-
ble for reading UDP packets from the network and enqueueing
them in shared memory. The Video Decoder process dequeues
these packets and performs MPEG decoding operations on
them.

2. Audio Buffer: Similarly, the audio buffering process
is responsible for reading UDP packets of the network and
enqueueing them in shared memory. The Control/Audio
Playback process dequeues these packets and sends them to
/dev/audio .

3. Video Decoder: The video decoding process reads the
raw packets sent to it by the Video Buffer process and decodes
them according to the MPEG-1 video specification. These de-
coded packets are sent to the GUI/Video process, which dis-
plays them.

4. GUI/Video process: The GUI/Video process is responsi-
ble for the following two tasks:

� GUI – It provides a GUI to the user, where the user can
select operations likeplay , stop , andrewind . These
operations are sent to the Control/Audio process via a
UNIX domain socket [27].

� Video – This component is responsible for displaying
video frames to the user. The decoded video frames are
stored in a shared memory queue.

5. Control/Audio Playback process: The Control/Audio
process is responsible for the following tasks:

� Control – This component receives control messages
from the GUI process and sends the appropriate CORBA
operation to theMediaCtrl servant in the supplier pro-
cess.

� Audio playback– The audio playback component is re-
sponsible for dequeueing audio packets from the Audio
Buffer process and playing them back using the multime-
dia sound hardware. Decoding is unnecessary because
the supplier uses the ULAW format. Therefore, the data
received can be directly written to the sound port, which
is /dev/audio on Solaris.

4 Performance Results

This section describes the design and results of three perfor-
mance experiments we conducted using TAO’s A/V streaming
service.

4.1 CORBA/ATM Testbed

The experiments in this section were conducted using a
FORE systems ASX-1000 ATM switch connected to two
dual-processor UltraSPARC-2s running Solaris 2.5.1. The
ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Each
UltraSPARC-2 contains a 300 MHz Super SPARC CPUs with
a 1 Megabyte cache per-CPU. The Solaris 2.5.1 TCP/IP proto-
col stack is implemented using the STREAMS communication
framework [28].

Each UltraSPARC-2 has 256 Mbytes of RAM and an ENI-
155s-MF ATM adaptor card, which supports 155 Megabits
per-sec (Mbps) SONET multimode fiber. The Maximum
Transmission Unit (MTU) on the ENI ATM adaptor is 9,180
bytes. Each ENI card has 512 Kbytes of on-board memory.
A maximum of 32 Kbytes is allotted per ATM virtual circuit
connection for receiving and transmitting frames (for a total of
64 Kb). This allows up to eight switched virtual connections
per card. The CORBA/ATM hardware platform is shown in
Figure 15.

4.2 CPU Usage of the MPEG decoder

The aim of this experiment is to determine the CPU overhead
associated with decoding and playing MPEG-1 frames in soft-
ware. To measure this, we used the MPEG/ULAW A/V player
application described in Section 3.

We used the application to view two movies, one of size
128x96 pixels and the other of size 352x240 pixels. We mea-
sured the percentage CPU usage for differentframe rates. The
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Figure 15: Hardware for the CORBA/ATM Testbed

frame rate is the number of video frames displayed by the
viewer per second.

The results are shown in Figure 16. These results indicate
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Figure 16:CPU Usage of the MPEG Decoder

that for large frame sizes (352x240), MPEG decoding in soft-
ware becomes expensive, and the CPU usage becomes 100%

while playing 12 frames per second, or higher. However, for
smaller frame sizes (128x96), MPEG decoding in software
does not cause heavy CPU utilization. At 30 frames per sec-
ond, CPU utilization is�38%.

4.3 A/V Stream Throughput

The aim of this experiment is to illustrate that TAO’s A/V
streaming service does not introduce appreciable overhead in
transporting data. To demonstrate this, we wrote a TCP-based
data streaming component and integrated it with TAO’s A/V
service. The producer in this application establishes a stream
with the consumer, using the stream establishment mechanism
discussed in Section 2.3.1. Once the stream is established, it
streams data via TCP to the consumer.

We measured the throughput,i.e., the number of bytes per
second sent by the supplier to the consumer, obtained by this
streaming application. We then compared this throughput with
the following two configurations:

� TCP transfer– i.e., by a pair of application processes that
do not use the OMG stream establishment mechanism. In
this case, sockets and TCP were the transport mechanism.
This is the “ideal” case since there is no additional ORB-
related or presentation layer overhead.

� ORB transfer– i.e., the throughput obtained by a stream
that used anoctet streampassed through the TAO [11]
CORBA ORB. In this case, the IIOP data path was the
transport mechanism.

We measured the throughput obtained by varying the buffer
size of the sender,i.e., the number of bytes written by the sup-
plier in onewrite system call. In each stream, the supplier
sent 64 megabytes of data to the consumer.

The results shown in Figure 17 indicate that, as expected,
the A/V streaming service does not introduce any apprecia-
ble overhead to streaming the data. In the case of using the
IIOP path through the ORB as the transport layer can incur
more performance overhead. This overhead could arise from
the dynamic memory allocation, data-copying, and marshal-
ing/demarshaling performed by the ORB’s IIOP protocol en-
gine [8].But TAO could achieve almost the socket performance
at higher buffer sizes due to its optimizations, in particular for
octet data [29]

The largest disparity occurred for smaller buffer sizes,
where the performance of the ORB was approximately half
that of the TCP and A/V streaming implementations. As
the buffer size increases, however, the ORB performance im-
proves considerably and attains nearly the same throughput as
TCP and A/V streaming. Clearly, there is a fixed amount of
overhead in the ORB that is amortized and minimized as the
size of the data payload increases.
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4.4 Stream Establishment Latency

This experiment measures the time required to establish a
stream using TAO’s implementation of the OMG CORBA A/V
stream establishment protocol described in Section 2.3.1. We
measured the stream establishment latency for the two concur-
rency strategies, process-based strategy and reactive strategy,
described in Section 2.2.1.

The timer starts when the consumer gets the object refer-
ence for the supplier’sMMDevice servant from the Naming
Service. The timer stops when the stream has been established,
i.e., when a transport-layer TCP connection has been estab-
lished between the consumer and the supplier.

We measured the stream establishment time as the num-
ber of concurrent consumers establishs connections with the
supplier increased from 1 to 10. The results are shown in
Figure 18. When the supplier’sMMDevice is configured to
use the process-based concurrency strategy (described in Sec-
tion 2.2.1), the time taken to establish the stream is higher,
due to the overhead of process creation. For instance, when 10
concurrent consumers establish a stream with the producer si-
multaneously, the average latency observed is about 2.25 sec-
onds with the process-based concurrency strategy. With the

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

Number of concurrent bind operations

S
tr

ea
m

 e
st

ab
lis

hm
en

t t
im

e 
in

 s
ec

on
ds

Process-based concurrency strategy

Reactive concurrency strategy

Figure 18:Stream Establishment Latency Results

reactive concurrency strategy, the latency is only about 0.4 sec-
onds.

The process-based strategy is well-suited for supplier de-
vices that have multiple streams,e.g., a video camera that
broadcasts a live feed to many clients. In contrast, the reac-
tive concurrency strategy is well-suited for consumer devices
that have few streams,e.g., a display device that has only one
or two streams.

5 Related Work

Distributed multimedia streaming frameworks have received
increasing focus in the R&D community. A popular Internet-
based streaming mechanism is Realvideo [1], from Real Net-
works. Like the MPEG application described in Section 3, the
Realvideo system uses the UDP protocol to send A/V packets
from the supplier to the consumer. However, the Realvideo
application uses proprietary stream establishment and control
protocols, as well as a proprietary audio and video format. Mi-
crosoft’s Vxtreme [2] is another popular streaming mechanism
that is similar to Realvideo.

IONA Inc. has developedOrbix MX [30], which is an im-
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plementation of the CORBA A/V streaming specification. The
key features of Orbix MX are similar to TAO’s implementation
of the A/V Streaming service,i.e., support for multiple trans-
port protocols, flexible stream controls, and support for multi-
ple concurrency strategies while creating stream endpoints.

The NEC C&C Laboratories have implemented a pre-
liminary prototype of the A/V streaming specification [31].
Their prototype has been implemented with Orbix2.2 and Or-
bixWeb2.0.1. TheflowAdapters in their implementation
are similar to theStreamEndpoint of the A/V specifica-
tion, i.e., they deal with the network specific aspects of aflow
within a stream.Flows are a forthcoming extension to TAO’s
A/V implementation.

The Distributed Multimedia Research Group at the Univer-
sity of Lancaster is working on standardization of Open Dis-
tributed Systems using CORBA middleware. Towards this
goal, they propose theexplicit open bindingsconcept [32],
which is a mechanism using which application developers can
explicitly set up an additional transport connection between
two CORBA objects. This connection can then be used for
streaming data.

The H.323 standards specified byITU ensures interoper-
ability between heterogeneous multimedia devices over het-
erogeneous networks. The H.323 document defines stan-
dards for video/audio coding/decoding, signalling and con-
trol and also provides facilities for network and bandwidth
management. The A/V streaming service can interoper-
ate with H.323 clients/servers using anH.323-Adapter .
The H.323-Adapter is a CORBA object that converts
the H.323 control messages into appropriate Audio/Video
CORBA control messages.

6 Concluding Remarks

The demand for high quality multimedia streaming is grow-
ing, both over the Internet and for intranets. Distributed object
computing is also maturing at a rapid rate due to middleware
technologies like CORBA. The flexibility and adaptability of-
fered by CORBA makes it very attractive for use in stream-
ing technologies, as long as the requirements of performance-
sensitive multimedia applications can be met.

This paper illustrates an approach to building standards-
based, flexible, adaptive, multimedia streaming applica-
tions using CORBA. While designing and implementing the
CORBA A/V streaming service, we learned a number of
lessons. First, we found that CORBA simplifies a number
of common network programming tasks, such as parsing un-
typed data and performing byte-order conversions. Second,
we found that using CORBA to define the operations sup-
ported by a supplier in an IDL interface made it much easier
to express the capabilities of the application, as described in

Section 2.2.3.
However, our measurements described in Section 4 revealed

that while CORBA provides solutions to many recurring prob-
lems in network programming, using CORBA for data transfer
in bandwidth-intensive applications is not as efficient as using
lower-level protocols like TCP, UDP, or ATM directly. Thus,
an important benefit of the TAO A/V Streaming service is to
provide applications the advantages of using CORBA IIOP in
their stream establishment and control modules, while allow-
ing the use of more efficient transport-layer protocols for data
streaming.

Enhancing an existing A/V streaming application to use
CORBA was a key design challenge. By applying patterns,
such as theState, Strategy, [17] andReactor[19], we found
it was much easier to address these design issues. Thus, the
use of patterns helped us rework the architecture of an existing
MPEG A/V player and make it more amenable to a distributed
technology such as CORBA.

Building the CORBA A/V streaming service also helped us
improve TAO, the CORBA ORB used to implement the ser-
vice. An important feature added to TAO was support for
nested upcalls. This feature allows a CORBA-enabled appli-
cation to respond to incoming CORBA operations, while it is
making a CORBA operation on a remote object. During the
development of the A/V streaming service, we also applied
many optimization to TAO and its IDL compiler, particularly
for sequences ofoctet s and theCORBA::Any type.

All the C++ source code, documentation, and bench-
marks for TAO and its A/V streaming service is available at
www.cs.wustl.edu/ �schmidt/TAO.html .
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A Overview of the CORBA Reference
Model

CORBA Object Request Brokers (ORBs) [10] allow clients to
invoke operations on distributed objects without concern for
the following issues [33]:

Object location: CORBA objects can be collocated with the
client or distributed on a remote server, without affecting their
implementation or use.

Programming language: The languages supported by
CORBA include C, C++, Java, Ada95, COBOL, and
Smalltalk, among others.

OS platform: CORBA runs on many OS platforms, includ-
ing Win32, UNIX, MVS, and real-time embedded systems like
VxWorks, Chorus, and LynxOS.

Communication protocols and interconnects: The com-
munication protocols and interconnects that CORBA can run
on include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Eth-
ernet, embedded system backplanes, and shared memory.

Hardware: CORBA shields applications from side-effects
stemming from differences in hardware such as storage layout
and data type sizes/ranges.

Figure 19 illustrates the components in the CORBA 2.x ref-
erence model, all of which collaborate to provide the porta-
bility, interoperability, and transparency outlined above. Each
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Figure 19: Components in the CORBA 2.x Reference Model

component in the CORBA reference model is outlined below:

Client: This program entity performs application tasks by
obtaining object references to objects and invoking opera-
tions on them. Objects can be remote or collocated rela-
tive to the client. Ideally, accessing a remote object should
be as simple as calling an operation on a local object,i.e.,

object !operation(args) . Figure 19 shows the un-
derlying components described below that ORBs use to trans-
mit remote operation requests transparently from client to ob-
ject.

Object: In CORBA, an object is an instance of an Interface
Definition Language (IDL) interface. The object is identified
by an object reference, which uniquely names that instance
across servers. AnObjectIdassociates an object with its ser-
vant implementation, and is unique within the scope of an Ob-
ject Adapter. Over its lifetime, an object has one or more ser-
vants associated with it that implement its interface.

Servant: This component implements the operations de-
fined by an OMG Interface Definition Language (IDL) in-
terface. In languages like C++ and Java that support object-
oriented (OO) programming, servants are implemented us-
ing one or more class instances. In non-OO languages, like
C, servants are typically implemented using functions and
struct s. A client never interacts with a servant directly, but
always through an object.

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request to
the object and returning a response, if any, to the client. For
objects executing remotely, a CORBA-compliant ORB Core
communicates via a version of the General Inter-ORB Proto-
col (GIOP), most commonly the Internet Inter-ORB Protocol
(IIOP), which runs atop the TCP transport protocol. An ORB
Core is typically implemented as a run-time library linked into
both client and server applications.

ORB Interface: An ORB is an abstraction that can be im-
plemented various ways,e.g., one or more processes or a set
of libraries. To decouple applications from implementation
details, the CORBA specification defines an interface to an
ORB. This ORB interface provides standard operations that
(1) initialize and shutdown the ORB, (2) convert object ref-
erences to strings and back, and (3) create argument lists for
requests made through thedynamic invocation interface(DII).

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs provide a strongly-typed,static invoca-
tion interface(SII) that marshals application parameters into a
common data-level representation. Conversely, skeletons de-
marshal the data-level representation back into typed parame-
ters that are meaningful to an application.

IDL Compiler: An IDL compiler automatically transforms
OMG IDL definitions into an application programming lan-
guage like C++ or Java. In addition to providing program-
ming language transparency, IDL compilers eliminate com-
mon sources of network programming errors and provide op-
portunities for automated compiler optimizations [34].
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Dynamic Invocation Interface (DII): The DII allows
clients to generate requests at run-time. This flexibility is
useful when an application has no compile-time knowledge
of the interface it accesses. The DII also allows clients to
makedeferred synchronouscalls, which decouple the request
and response portions of twoway operations to avoid blocking
the client until the servant responds. In contrast, in CORBA
2.x, SII stubs only supporttwoway, i.e., request/response, and
oneway, i.e., request-only operations.1

Dynamic Skeleton Interface (DSI): The DSI is the server’s
analogue to the client’s DII. The DSI allows an ORB to deliver
requests to servants that have no compile-time knowledge of
the IDL interface they implement. Clients making requests
need not know whether the server ORB uses static skeletons or
dynamic skeletons. Likewise, servers need not know if clients
use the DII or SII to invoke requests.

Object Adapter: An Object Adapter associates a servant
with objects, demultiplexes incoming requests to the servant,
and collaborates with the IDL skeleton to dispatch the appro-
priate operation upcall on that servant. CORBA 2.2 porta-
bility enhancements [10] define the Portable Object Adapter
(POA), which supports multiple nested POAs per ORB. Ob-
ject Adapters enable ORBs to support various types of ser-
vants that possess similar requirements. This design results in
a smaller and simpler ORB that can support a wide range of
object granularities, lifetimes, policies, implementation styles,
and other properties.

Interface Repository: The Interface Repository provides
run-time information about IDL interfaces. Using this infor-
mation, it is possible for a program to encounter an object
whose interface was not known when the program was com-
piled, yet, be able to determine what operations are valid on the
object and make invocations on it. In addition, the Interface
Repository provides a common location to store additional in-
formation associated with interfaces to CORBA objects, such
as type libraries for stubs and skeletons.

Implementation Repository: The Implementation Reposi-
tory [36] contains information that allows an ORB to activate
servers to process servants. Most of the information in the Im-
plementation Repository is specific to an ORB or OS environ-
ment. In addition, the Implementation Repository provides a
common location to store information associated with servers,
such as administrative control, resource allocation, security,
and activation modes.

1The OMG has standardized an asynchronous method invocation interface
in the Messaging specification [35], which will appear in CORBA 3.0.

B Overview of the CORBA Property
Service

B.1 Motivation

A CORBA object consists of (1) an identify,i.e., an object
reference, (2) an interface,i.e., defined in IDL and consisting
of operations and attributes, and (3) an implementation of the
interface,i.e., one or more servants. The operations and at-
tributes in an IDL interface arestatic, i.e., they are defineda
priori . In general, statically-typed IDL interfaces enhance ap-
plication robustness by preventing accidental violations of the
typesystem.

When building frameworks like the A/V streaming service
described in this paper, however, certain attributes cannot be
defined statically because the names, types, and values of these
attributes will vary depending on how the application uses the
framework. For example, when a video output device is repre-
sented as anMMDevice, the typical attributes ofMMDevice
might bevideo encoding formatandframe rate. In contrast, if
it is an audio output device, theMMDevice attributes might
beaudio formatandsample rate, as shown in Figure 20.

Video Out

Encoding : MPEG1

Frame Rate : 26

Audio Out

Format : au

Encoding : mu-law

MM Device

Figure 20:Properties for AV Streams

To maximize flexibility, therefore, the A/V streaming
framework requires attributes that containdynamictypes and
values. The CORBA Property Service provides this flexibility
via the following features:

Dynamic property association: The Property Service pro-
vides the ability to dynamically associate named values with
objects more flexibly than the statically defined IDL-type sys-
tem. Thus, they allow applications to associatedynamic at-
tributeswith object. By using the Property Service, applica-
tions can create and delete new properties, change the values
of properties, and associate properties with modes, such as
readonly mode.
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Dynamically typed values: The Property Service defines
operations to create and manipulate sets ofname-valueand
name-value-modetuples. Names are OMG IDL strings and
values are OMG IDLany s. The use ofany s allows a Prop-
erty Service implementation to handle any value that can be
represented in the OMG IDL-type system.

Figure 3 shows how theMMDevice interface uses the Prop-
erty Service to store properties related to the multimedia de-
vice that it represents.

B.2 Design Overview

The UML diagram in Figure 21 shows the components in the
Property Service. These components are described below.

define_property ()

get_property_value () : Any

delete_property ()
reset  ()

next_one ()  : Property Name

Properties Iterator

reset  ()

next_one ()  : Property
PropertySetDef

define_property_with_mode  ()

set_mode ()

get_mode () : Property Mode Type

Figure 21:UML for the Property Service

PropertySet: This interface supports a set of properties.
A property is a tuple consisting of<property name,
property value> . The property name is a string
that names the property. Theproperty value is a type
any that contains the value assigned to the property.

PropertySetDef: This interface is a subclass of the
PropertySet interface that exposes characteristics of each
property,e.g., readonly or read/write access. There are two
factory interfaces: one for thePropertySet interface and
the other for thePropertySetDef interface. Iterators are
defined to iterate over the property names and properties.

B.3 Associating Properties with CORBA Ob-
jects

Properties can be associated with a CORBA object in either of
the following ways:

Inheritance: The application IDL interface can inherit
directly from the PropertySet or PropertySetDef
interfaces, as shown in Figure 22. In this approach,
interface MMDevice inherits from PropertySet or
PropertySetDef interface. If it is a public inheritance,

Property Set  /

PropertySetDef

define_property ("format", MPEG)

set_mode ("format", read_only) MMDevice

Properties

Name Value

("Any" Type)
Mode

Movie "Gandhi" fixed_normal

  Format MPEG read_only

Figure 22:Using the Property Service Via Inheritance

clients of MMDevice will also have access to the Property
Service operations. For example, a client may define a new
property and associate that with a servant that implements
MMDevice.

Factory interfaces: As an alternative to inheritance,fac-
tory methods[17] can be used to createPropertySet s or
PropertySetDef s. This approach is shown in Figure 23.
In this approach, the objectAV Server obtains one or more

AV_Server
Property Set /

Property Set Def

Property Set Factory /

Property Set Def Factory

Figure 23:Using The Property Service Via Factory Meth-
ods

PropertySet or PropertySetDef objects through the
factory methods. Objects can keep properties under different
PropertySet s depending on how they are related.

Objects should use the inheritance approach, if they want to
allow the clients to access the properties with the servants. For
example,MMDevice interface of A/V streams inherits from
thePropertySet interface and hence the clients can invoke
property service operations on the servants. Factory approach
of the property service should be used when the objects want
to keep track of some properties internally. For example, as
shown in Figure 23, anAV Server object can have a se-
quence ofPropertySet s orPropertySetDef s to keep
track of the various properties of all its clients.
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B.4 Advanced Features of the Property Service

As with CORBA attributes, clients can read and write prop-
erty values. In addition, clients can use the Property Service
to dynamically create and delete properties associated with
a remote object. Clients can manipulate properties individu-
ally or in batched modeusing a sequence of the Property data
type calledProperties. For example, to define new properties,
the define properties operation can be called with a
sequence of Properties , which are a dynamically-sized
array of name-value pairs.

If objects support thePropertySetDef interface, clients
can create and manipulate properties and their character-
istics, such as the property modee.g., readonly and
fixed readonly . ThePropertySetDef interface also
provides operations for clients to retrieve constraint informa-
tion about aPropertySet , such as the list of all the property
types that are allowed in thisPropertySet or the list of all
the property names that are allowed in thisPropertySet .
This constraint information can be specified using the factory
creation operations when thePropertySet is created.

18


