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ABSTRACT

Software is increasingly deployed in vehicles as demand for
new functionality increases and cheaper and more power-
ful hardware becomes available. Likewise, emerging wireless
communication protocols allow the integration of new soft-
ware into vehicles, thereby enabling time-bounded adaptive
response to changes that occur in mobile environments. Ex-
amples of time-bounded adaptation include adaptive cruise
control and the dynamic integration of location-aware ser-
vices within fixed time bounds.

This paper provides three contributions to the study of
time-bounded adaptation for automotive system software.
First, we categorise automotive systems with respect to re-
quirements for dynamic software adaptation. Second, we
define a taxonomy that captures various dimensions of dy-
namic adaptation in emerging automotive system software.
Third, we use this taxonomy to characterise existing re-
search projects in the automotive domain and identify pro-
mising areas of needed research in this field.

Categories and Subject Descriptors

D11 [Software/Software Engineering]: Software Archi-
tectures; A1 [Introductory and Survey]: Survey

Keywords

Dynamic Adaptation, Automotive Software Systems, Tax-
onomy

1. INTRODUCTION
The amount and complexity of automotive software has

risen dramatically during the past several decades due to de-
creasing hardware costs, increasing computing/communica-
tion power, and growing demand for new vehicle functional-
ity [15]. Modern vehicles contain more than 2,000 individual
functions, such as airbag control software, X-by wire applica-
tions, and infotainment applications [35]. Software has thus
become a dominant factor of the automotive industry [6].
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Moreover, emerging wireless communication protocols, e.g.,
dedicated short range communications (DSRC) [4], enable
vehicles to interact with each other and with their surround-
ing environment. These protocols allow the integration of
applications and data into vehicles from vehicular and/or
infrastructure networks. Automotive services and systems
that were traditionally vehicle-centric are thus becoming
inter-vehicle and vehicle-to-infrastructure-centric [9].

Next-generation automotive systems (e.g., computer-as-
sisted vehicles) will run in highly dynamic environments
(e.g., inter-vehicle coordination) and will need to adapt their
behaviour during runtime (e.g., in response to frequent chan-
ges in their environment). Possible software-related adapta-
tions include the dynamic allocation of resources, adaptation
of (multimedia) content, and the adaptation of software it-
self. Resource adaptation is concerned with the proactive al-
location of resources for better quality of service (QoS) [13],
whereas content adaptation involves transforming content
to adapt to device capabilities (e.g., transcoding of content
based on display resolution and processing capabilities [21]).
Software adaptation, in contrast, involves the dynamic intro-
duction of software modules and reconfiguration of software
architectures, as well as changing parameters that affect au-
tomotive system software [23].

In general, the goal of software adaptation is to make au-
tomotive systems more evolvable, intelligent, and useful to
drivers [11]. For example, a driver information system can
dynamically integrate software modules, such as a location-
and price-aware lodging discovery service based on driver
preferences. Likewise, new software versions can be inte-
grated into a system, e.g., a new a digital signature algo-
rithm can be integrated while a car is waiting at a tollgate.
Other software adaptation use cases include reconfiguring a
vehicle control system to operate through partial failures.

In automotive systems, software adaptations must often
be time-bounded since stale information could trigger im-
proper driver reactions. For example, a driver information
system should update a display within a bounded time to
ensure drivers are not informed about traffic jams that no
longer exist. Likewise, adaptations should minimise soft-
ware update time to ensure that software applications and
data are fully integrated into vehicles before they are used.

Next-generation automotive systems differ in their need
for dynamic adaptation support. This paper identifies the
software adaptation requirements of the following four clas-
ses of automotive systems:

• Vehicle-centric systems, whose dynamic adapta-
tion needs are limited, e.g., handling error conditions



[37].

• Driver information systems, which require the dy-
namic adaptation of content, as well as periodic up-
date of vehicle software to better reflect the current
environmental conditions.

• Cooperative driving systems, which adapt their
behaviour according to the surrounding vehicles and
road conditions.

• Vehicular sharing systems, which use the process-
ing power and data transmission of multiple vehicles
to perform distribute computations.

After discussing the software adaptation requirements of
these four classes of systems we define a taxonomy that
characterises various dimensions of their dynamic adapta-
tion, including binding time, constraints and type of adap-
tation, timeliness requirements, and adaptation trigger. We
then use this taxonomy to classify existing research projects
and reveal gaps in existing approaches with respect to time-
bounded integration of software modules. We conclude the
paper by identifying promising areas of needed research in
this field to address these gaps.

The remainder of this paper is organised as follows: Sec-
tion 2 motivates software adaptation in automotive systems
via a managed highway scenario; Section 3 summarises re-
lated work on classifying adaptive automotive systems; Sec-
tion 4 identifies four automotive system classes and their
characteristics with regards to dynamic adaptation; Sec-
tion 5 defines a taxonomy of the identified characteristics;
Section 6 categorises existing research projects in terms of
this taxonomy; and Section 7 presents concluding remarks.

2. MOTIVATING EXAMPLE FOR TIME--

BOUNDED ADAPTATION
Managed highway scenario. To make our software adap-
tation discussions concrete, consider the following example
from the domain of intelligent lane reservation system for
managed highways. The goal of a managed highway is to
reduce congestion, enable vehicles to maintain safe speeds,
and allow emergency vehicles to arrive safely and faster at
accidents [33]. One way to schedule and enforce vehicle QoS
on a managed highway is to allow drivers to reserve lanes
“slots”. Moreover, lanes can be partitioned (e.g., low vs.
high priority QoS) and can be priced differently. For ex-
ample, travellers could reserve slots on low priority lanes
cheaper than travellers willing to pay extra for slots in a
high priority lane that allow them to drive faster and reach
their destination sooner.

In this managed highway scenario, vehicles indicate their
destination and potential constraints or desires on their way
points. To ensure proper admission control, vehicles wait in
a queueing lane for their reserved slot to become available
before entering the highway (c.f. Figure 1) A highway en-
trance assistance system (e.g., a tollgate) uses short-range
communication and relays between queued vehicles to en-
sure the vehicles have proper software versions and neces-
sary hardware before allowing them to enter the highway.
Example software could include warning applications, secure
payment and communication algorithms, as well as infotain-
ment applications, such as hotel and restaurant finder or car-
to-car gaming; hardware could include road condition and

Figure 1: Managed Highway Scenario

vehicle motion sensors and sufficiently powerful on-board
computers.
Software adaptation mechanisms. The managed high-
way scenario described above motivates the need for various
software adaptation mechanisms. For example, the assis-
tance system could use an adaptation scheduling mechanism
to determine which modules to download and integrate dy-
namically into vehicles based on adaptation policies. These
policies specify the actions (e.g., integration, upgrade, down-
grade or deinstallation of software modules) to execute on
the vehicle, as well as the properties with which (e.g., version
numbers or priorities) these modules must comply.

An example adaptation policy is the integration of all
high-priority modules, e.g., warning and security applica-
tions have higher priorities than infotainment applications
and hence must be integrated before a vehicle enters the
highway, whereas lower-priority modules are optional. An-
other adaptation policy is the dynamic update of an exist-
ing module to a newer version that is located at the assis-
tance system, e.g., updating a secure payment algorithm.
Yet other adaptation policies include the downgrading and
deinstallation of modules due to expirations of licences or
the change of vehicle ownership [3].

The adaption process itself is time-bounded since the de-
cision process of which modules to download and integrate
and the actual download of the modules itself must be exe-
cuted before the can vehicle enter the highway. These adap-
tation policies can be influenced by (1) the available memory
on a vehicle platform, (2) module interdependencies and (3)
versioning of the modules. For example, all necessary high-
priority modules may not be downloadable due to timing or
memory constraints. In this case, a new time slot may be
needed for the vehicle. Likewise, the integration of a secure
payment algorithm might trigger an additional integration
of digital signature algorithms and secure communication
modules that increase the overall adaptation time and might
cause an overrun on the overall time bound.

3. RELATEDWORKONCLASSIFICATION

OFADAPTIVEAUTOMOTIVE SYSTEMS
Relatively little prior work has classified software for au-

tomotive systems and existing classifications focus mainly
on embedded systems. For example, Karjalainen classified
embedded control systems into six different classes, rang-
ing from microcontrollers to special purpose control sys-
tems [18]. Each class within this taxonomy is identified by
eight characteristic groups, e.g., hardware architecture and
processor capabilities.

Many automotive systems have stringent real-time require-
ments that can be classified according to their time con-



straints, i.e., process execution behaviour, timing constraints,
and degree of timeliness that they provide [5]. This classi-
fication focuses largely on developing integrated schedulers.
Other classifications target coarse-grained distributed sys-
tems and their characteristics [34]. These characteristics are
based on an explicit model of the time constraints as a path
(the so-called path-based paradigm) and comprise granular-
ity, triggering causes, and classes of data streams.

Dynamic adaptation of general (i.e., non-automotive) soft-
ware systems is discussed extensively in the literature. An
overview is presented in [23], which focuses on compositional
adaptation (i.e., the reconfiguration of the software architec-
ture itself) and classifies existing projects with regards to
their support of compositional adaptation. This taxonomy
comprises three dimensions: (1) where to compose, (2) the
point in time of composition, and (3) the techniques used.
The authors also highlight challenges, such as assurance and
decision making, that must be taken into consideration by
an adaptation technique.

Aksit and Choukair summarise approaches for deploying
and dynamically adapting applications and software plat-
forms [1]. They distinguish between approaches that deal
with the dynamic reconfiguration of component architec-
tures (i.e., introduction and deletion of components) and
dynamic adaptability (i.e., the fast adaptation of applica-
tion behaviour without reconfiguration). They list many
technical challenges and solutions (such as maintaining ap-
plication consistency) to address both approaches.

Although time-bounded adaptation is key to automotive
system software this topic is largely absent from existing sur-
veys and taxonomies. The remainder of this paper therefore
presents a taxonomy of adaptive automotive systems with
regards to time-bounded adaptation and compares this tax-
onomy with existing research projects.

4. CLASSIFICATIONOFADAPTATIONRE-

QUIREMENTS FORAUTOMOTIVE SYS-

TEMS
This section presents the results of an extensive domain

analysis of existing and emerging automotive systems aimed
at classifying these systems in terms of their level of support
for and characteristics of dynamic adaptation.

4.1 Vehicle-centric Systems
Vehicle-centric systems assist in the control of a vehicle’s

behaviour, such as braking or steering. This category con-
tains all safety-critical systems, such as electronic braking
systems (EBS) and X-By-Wire [10]. These systems have
stringent safety and reliability requirements since they di-
rectly or indirectly affect vehicle behaviour.

In the case of a component failure in one of those systems,
(safety) critical functionality must continue to operate. One
way to ensure continued operation is to downgrade a system
configuration to a fail-safe state while disabling non-critical
functionality [37]. For example, critical functionality, such
as a vehicle dynamics controller, can be degraded to a less
sophisticated version, whereas climate control can be dis-
abled. In this context, adaptation can be viewed as an error
handling technique.

All component variants should exist at design time to en-
sure validity and safety of overall system behaviour. Adapta-
tion should then choose a suitable configuration at runtime.

Since components can have different importance levels the
decision process may need to take their priorities into ac-
count, i.e., the adaptation of the vehicle dynamics controller
should be performed before disabling the climate control.

Adaptation timeliness is also important since adaptations
should be executed quickly to ensure the safe operation of
the application, e.g., disabling climate control in a best-
effort time bound. Safety-critical applications may even re-
quire adaptation to be performed in hard real-time bounds,
e.g., downgrading the vehicle dynamics controller within
milli-seconds.

4.2 Driver Information Systems
Driver information systems provide information about the

vehicle’s surrounding environment and the vehicle itself, us-
ing internal and external sources. This category comprises
a wide range of applications, including navigation guidance,
warning about approaching emergency vehicles, and provid-
ing information about the vehicle’s state. We categorise
these systems into the three following sub-classes:

• In-vehicle entertainment systems, which deliver to
passengers audio and video data obtained from other vehi-
cles (e.g. via DSRC [4])) or the infrastructure (via 802.11p
[22] or GSM [29]). Due to the instability of connections in
vehicular ad hoc networks and the heterogeneity of in-vehicle
entertainment systems, different data resolutions are needed
to suit device and network capabilities [21]. In this context,
adaptation is concerned with the changing video data reso-
lution and modifying compression rates of audio and video
data based on the current network conditions.

• Warning applications, which expand a driver’s hori-
zon by providing information about future hazardous road
conditions, erratic drivers, and prioritised vehicles (such as
emergency vehicles). These systems use information ob-
tained from internal sensors, such as engine temperature
sensors, as well as information obtained from other vehicles
or the infrastructure, such as the number of neighbouring
cars or current weather conditions. Since these systems exe-
cute in a mobile environment, information changes continu-
ously, so applications must adapt the displayed information
dynamically to better reflect the current conditions. In this
context, adaptation involves executing actions depending on
the current situation.

• Travel information systems, which perform naviga-
tion tasks, such as helping drivers locate optimal routes.
Other value-added services, such as hotel, restaurant, and
parking space locators, are in this category. These services
are location-based and display information based on the cur-
rent geographic location of a vehicle. Like warning appli-
cations, the software execution in these systems is directly
affected by the external environment. In this context, adap-
tation involves the change of software parameters, by using
either rule-based approaches or the strategy pattern [12].

Future driver information systems will leverage communi-
cation with the transportation infrastructure and other ve-
hicles to allow the dynamic integration of new features into
vehicles or the update of older features. For example, at a
national border crossing vehicle manufacturers could install
a specific type of a module in the driver assistance systems
of all vehicles that displays additional information about the
current country, e.g., maximum allowed speed and specific
road signs. In this context, adaptation involves structural
and functional software changes. It can be triggered by the



user explicitly, e.g., when connected to a 3G network, or trig-
gered by short range communication between other vehicles
and the transportation infrastructure.

Most of the software adaptations in the driver informa-
tion systems described above should execute in a bounded
amount of time to ensure the validity of the information.
Adaptations may also depend on priorities between various
systems. In the case of software integration, memory con-
straints and inter-dependencies between modules should be
considered.

4.3 Cooperative Driving Systems
Cooperative driving systems require vehicles to coordinate

their actual behaviour among themselves or with the infras-
tructure. Examples include adaptive cruise control, platoon-
ing, and adaptive steering. Whenever there is a change to a
system parameter, such as the distance to the leading car,
cooperative driver systems must react accordingly by chang-
ing their behaviour, e.g., accelerating or braking. Adaptive
cruise control involves maintaining a safe time-headway dis-
tance between vehicles to ensure emergency braking does not
cause collisions between cars. The headway calculation sys-
tem adapts a vehicle’s headway by accounting for changed
environmental conditions, vehicle dynamics, and safety con-
siderations [17].

In this context, adaptation involves a change in behav-
ioural parameters of a single car to ensure the coordinated
behaviour of the group of vehicles to which it belongs. The
behaviours of the collaborating vehicles should respond to
constraints imposed from other vehicles and from the en-
vironment (such as the weather) [16]. This type of adap-
tation is considered semi-dynamic since the system adjusts
its behaviour (i.e., the actions to take) by changing system
parameters (e.g., the longitudinal control is determined by
the distance and the time gap to the next vehicle).

4.4 Vehicular Sharing Systems
Vehicular sharing systems distribute data or computations

on vehicles and are comprised of all inter-vehicle sharing
systems. For example, an environmentally-conscious (i.e.,
“green”) vehicular sharing system could measure the aggre-
gate carbon footprint of a road or region in real-time using
distributed computing resources in the vehicles. If the foot-
print reached a critical threshold, vehicles could adapt their
behaviour to reduce the pollution level, e.g., by switching off
their climatisation system, reducing their speed, or shutting
down their engine if they are stuck in traffic congestion. In
this sense, a vehicular network serves as a closed-loop control
system, where disseminated messages trigger a correspond-
ing response.

Data can also be distributed and shared amongst vehi-
cles. In this context, the vehicular network can be viewed
as a sensing and relaying network. For example, the delivery
of audio or video data to passengers who want amusement
along long journeys. These types of systems implement re-
source adaptation, i.e., they provide facilities for monitoring
and controlling dynamic resource usage of activities within
a system [13].

5. A TAXONOMY OF AUTOMOTIVE SYS-

TEM ADAPTATIONS
Based on an extensive literature survey we defined a tax-

onomy that divides the dynamic adaptation requirements of
automotive systems into five dimensions: (1) binding time,
(2) adaptation timeliness requirements, (3) adaptation type,
(4) adaptation constraints, and (5) adaptation trigger. Each
dimension can take a finite number of values, which we refer
to as characteristics. This section uses Kiviat diagrams [20]
to visualise the different dimensions of our taxonomy and
their possible characteristics and depict the adaptation re-
quirements of the four classes of automotive systems pre-
sented in Section 4.

5.1 Taxonomy Dimensions

5.1.1 Binding Time

Binding time is defined as the point in time when the
adaptive behaviour is composed with the business logic of an
application [23]. Static binding time is used when all forms
of adaptability are hardwired with the application, i.e., all
possible configurations and resource allocations are deter-
mined at design time of the application. A change in the
adaptive behaviour triggers application reengineering and
recompilation.

In semi-dynamic adaptations, all possible configurations
of an application are determined at design-time. Depending
on the current situation, however, a configuration can be dy-
namically chosen at runtime. In contrast, dynamic binding
is the most flexible approach since it allows the introduction
and alteration of software modules and the reconfiguration
of the existing software architecture during runtime without
stopping/restarting the application.

5.1.2 Type of Adaptation

The type of adaptation defines what is being adapted.
Resource adaptation dynamically allocates resources based
on the current conditions. Content adaptation determines
the actions to take to adapt content to better suit device
and network capabilities.

Software adaptation is a category that comprises param-
eter adaptation, functional adaptation, and structural adap-
tation. Parameter adaptation involves the modification of
variable values that determine program behaviour. Func-
tional adaptation allows application interfaces to remain con-
stant and changes only the implementation parts, e.g., up-
dating of an existing software module to a newer version,
whereas structural adaptation changes the actual architec-
tural parts of an application, e.g., by replicating objects or
introducing new software modules.

5.1.3 Timeliness Requirements

The timeliness requirements of an adaptation characterise
the time constraints under which the adaptation is executed.
Hard real-time constraints require the execution of adapta-
tion within a firm execution deadline. Adaptations executed
under soft real-time constraints minimise the adaptation ex-
ecution and blackout time. Unbounded adaptations are exe-
cuted without any time bounds.

5.1.4 Constraints of Adaptation

This dimension comprises the various constraints that might
affect an adaptation. Memory constraints impose a limit on
the size of software modules that can be integrated and is
especially a limiting factor in embedded systems. Priorities
between modules implies an ordering of adaptations since



high-priority modules should be adapted before low-priority
modules. Likewise, dependencies between software modules
can affect the adaptation since the adaptation of one module
can trigger an update of other modules.

5.1.5 Adaptation Trigger

These characteristics describe what triggers an adapta-
tion. Internal triggers occur inside the system itself, e.g.,
fault occurrence. External triggers, such as vehicle-to-infra-
structure or vehicle-to-vehicle, are based on external infor-
mation, either obtained by sensors or communication events
with other vehicles or the infrastructure.

5.2 Automotive Systems Diagrams
To present the requirements of the four automotive sys-

tem classes on adaptation in a visual way, we use Kiviat
diagrams [20]. Dimensions of the taxonomy represent axes
of the Kiviat diagrams and characteristics of the dimensions
represent the set of differentiating characteristics. Since each
class has different requirements, they all exhibit different
Kiviat profiles and can therefore be compared easily. Kiviat
diagrams also allow developers of automotive software to vi-
sually map the characteristics of their applications to one
of the diagrams, which helps identify dynamic adaptation
requirements.

Below, we present the representations in Kiviat diagrams
of the four classes of automotive systems from Section 4 and
describe their corresponding characteristics in terms of the
taxonomy dimensions from Section 5.1. If a resulting dia-
gram supports more than one characteristic in a dimension,
the outermost characteristic defines the diagram.

5.2.1 Vehicle-Centric Systems

Figure 2 depicts the Kiviat diagram for vehicle-centric sys-
tems. These systems require functional adaptation, e.g.,

Figure 2: Kiviat Diagram of Vehicle-Centric Sys-
tems

downgrading and switching off functionality, when a fault
occurs. Hence, the adaptation trigger is internal. More-
over, since these systems are safety-critical, a static or semi-
dynamic approach for dynamic adaptation is appropriate
and the adaptation actions should be executed with a bou-

nded amount of time. Priorities and dependencies between
modules affect the adaptation in these systems.

5.2.2 Driver Information Systems

Since driver information systems comprise a wide range
of applications, we divided them with regards to their adap-
tation type. In-vehicle entertainment systems support con-
tent adaptation and the Kiviat diagram for these systems
is shown in Figure 3. Since the resulting actions are deter-

Figure 3: Kiviat Diagram of In-Vehicle Entertain-
ment Systems

mined at design-time of a system (e.g., using event-condition-
action rules) the adaptation is semi-dynamic. The execution
time of the adaptation should be minimised to ensure the
freshness of the displayed information. Adaptation is con-
strained by the available capabilities of the display device
and current network conditions.

Warning applications and travel information systems sup-
port the whole range of software adaptation, i.e., adaptation
of parameters and also the integration of new services from
the infrastructure and other vehicles. The profile of these
systems is depicted in Figure 4. This adaptation can be
triggered internally by drivers, as well as by inter-vehicle
or vehicle-infrastructure communication as software mod-
ules are downloaded and integrated via established commu-
nication links. The binding time of this adaptation is dy-
namic since new configurations are determined at runtime
of the system. The duration of the adaptation should be
executed in soft real-time, i.e., best effort adaptation within
time bounds. Adaptation itself can be influenced by the
available memory space on the vehicle’s software platform.
Dependencies between modules and priorities can also in-
fluence the scheduling and determination of which and how
modules are integrated into the system.

5.2.3 Cooperative Driving Systems

The Kiviat diagram of cooperate driving systems is de-
picted in Figure 5. This adaptation concerns the change of
parameters, such as speed, acceleration, and distance. It is
triggered mainly by inter-vehicle and vehicle-to-infrastructure
communication and the internal sensing of the current state
of the vehicle.



Figure 4: Kiviat Diagram of Warning Applications
and Travel Information Systems

Figure 5: Kiviat Diagram of Cooperative Driving
Systems

In cooperative driving systems, actions are determined a
priori since they may have safety-critical effects on the adap-
tation. Hence, the binding time is semi-dynamic or even
static. All adaptations should therefore execute within a
bounded amount of time and are at least soft real-time con-
strained. In addition to coordination constraints, adaptation
can be affected by priorities of triggered actions, e.g., lon-
gitudinal control of a vehicle should be adapted before the
change lane control to avoid rear-end collisions.

5.2.4 Vehicular Sharing Systems

Figure 6 presents the Kiviat diagram of vehicular shar-
ing networks. These systems require dynamic allocation of

Figure 6: Kiviat Diagram of Vehicular Sharing Sys-
tems

resources (such as load balancing and membership mecha-
nisms) since the underlying topology of the network changes
continuously. Adaptations are triggered by messages re-
ceived from other vehicles or from the infrastructure itself.

The binding time of adaptations for vehicular sharing sys-
tems is dynamic since new memberships and data or compu-
tational loads are dependent on the current status of the net-
work. The nodes in these systems are mobile, so these adap-
tations should be performed within stringent time bounds.
Resource constraints (such as available memory, computa-
tional power and bandwidth) impose constraints on the adap-
tation decision process.

6. APPLYINGTHETAXONOMYTOCLAS-

SIFY EXISTING PROJECTS
This section investigates existing research projects and

maps them to our taxonomy from Section 5. For each au-
tomotive system class described in Section 4, we identified
a research project that supports the most suited approach
and use Kiviat diagrams to show their degree of adapta-
tion support. We also discuss gaps in these projects with
regards to their support of time-bounded dynamic software
adaptation.

6.1 Vehicle-Centric Systems



The MARS [37] research project investigates dynamic re-
configuration in embedded automotive systems, e.g., vehicle
stability control systems. The approach supports dynamic
adaptation at different levels, from coarse-grained reconfigu-
ration of service providers at the system level to fine-grained
configuration of behaviour variants. The Kiviat diagram
for this system is shown in Figure 7. The adaptation itself

Figure 7: Kiviat Diagram of Mars

is triggered by faults occurring during runtime of the sys-
tem. MARS considers inter-dependencies between software
modules by explicitly modelling and analysing all possible
configurations statically at design time of the system. This
approach focuses on developing the analysis and modelling
techniques for dynamic adaptation, however, rather than
developing further adaptation techniques.

The Dynamically Self-Configuring Automotive Systems
(DySCAS) [3] project aims at creating self-configurable em-
bedded vehicle control systems that are based on existing
middleware technologies and feedback control theories. In
addition to structural and parameter adaptations, DySCAS
supports closed reconfiguration, i.e., graceful degradation
in the presence of component failures. DySCAS is based
on policies for achieving the self-management of the system.
Policy reasoning includes the selection of the most appropri-
ate reconfiguration in terms of priorities and urgency level.
Space constraints can also be specified inside policies. The
DySCAS project is still in an early stage, however, so no
empirical results are available yet.

6.2 Driver Information Systems
There are a variety of driver assistance systems avail-

able, including navigation guidance and value-added loca-
tionbased services, as well as safety-enhancing applications,
such as emergency vehicle and road warning applications
[28].

TrafficView defines protocols and algorithms for the dis-
semination and gathering of information about vehicles on
the road [24]. The system provides the driver with a dy-
namic view of the road traffic to help drivers in difficult
conditions. The graphical user interface periodically dis-
plays all validated data sets, i.e., data that is ensured to
be neither conflicting nor outdated information. Adaptation

here involves updating the display, e.g., when a change in the
validated data sets happen. It is triggered when messages
from other vehicles are received. TrafficView only supports
static binding time, however, and does not mention any con-
sideration of constraints, such as dependencies.

The Safe speed and safe distance (Saspence) project is
designed to provide suggestions of the proper velocity and
headway based on the current driving conditions [2]. The
project uses internal sensors, such as long- and short-range
radar, as well as information obtained from the infrastruc-
ture and other vehicles, such as localisation and speed lim-
its. Saspence dynamically adapts its warning suggestions
based on the current deduced situation. The system fol-
lows a three-layered approach with (1) sensors providing in-
put data, (2) specific algorithms processing the sensor infor-
mation, and (3) human-machine-interfaces forwarding the
warning messages to the driver. The algorithm processing
should be executed within soft real-time bounds since oth-
erwise vehicle safety cannot be ensured. This project, how-
ever, is still defining functional requirements.

The content adaptation of in-vehicle entertainment sys-
tems can be adopted from more general approaches, such
as [21], which uses a decision engine to adapt content to
fit the current capabilities of the device and network. This
engine considers the user’s preferences and devices’ capa-
bilities, provided in the format of the W3C Composite Ca-
pabilities/Preference Profile [19]. Based on the current net-
work conditions and device capabilities, the content is trans-
formed accordingly, e.g., reduction of colour, scale of images,
and use of various transcoding mechanisms.

Driver information systems not only handle adaptation of
multimedia content, but also support software adaptation.
Future use-cases for these systems require the dynamic inte-
gration of software into running systems. Application devel-
opers for these systems can leverage automotive middleware
systems, such as AUTOSAR [27] and OSGI [31], that encap-
sulate the heterogeneity of computing platforms and com-
munication protocols. These systems support the dynamic
integration and reconfiguration of software.

For example, DynamicCon builds upon OSA+ [36], which
is a scalable middleware for distributed real-time and em-
bedded systems that support the dynamic deletion, addi-
tion, and replacement of services. It minimises the “black-
out time” of an application by allowing state transfer while
the old service is still running. Their approach assumes that
the software being integrated or updated is locally avail-
able, however, and hence they do not consider fully dynamic
adaptation as required by this class of systems. Its Kiviat
diagram is illustrated in Figure 8.

The OSGI platform [31] provides a Java-based service
platform that supports the remote installation, update, and
lifecycle management of Java based applications. In this
sense, the platform supports the fully dynamic adaptation
of application components. The OSGI platform, however,
only supports the adaptation of Java-based applications and
hence does not support the integration or reconfiguration of
heterogeneous software modules.

Fully dynamic adaptation is also supported by applica-
tion and data synchronisation systems that support the re-
mote integration and update of existing software and data.
Platform-dependent approaches, such as Active Sync [25]
and LDAP content synchronisation [30], support the syn-
chronisation of information between devices. These appro-



Figure 8: Kiviat Diagram of OSA+

aches, however, only support data synchronisation, e.g., Ac-
tive Sync synchronises personal information (PIM) and LDAP
maintains a copy of a fragment of the LDAP Directory In-
formation Tree.

SyncML [32] is a platform-independent information syn-
chronisation standard that supports the integration and up-
date of data, as well as software applications and firmware.
It is based on XML protocols and provides multiple syn-
chronisation modes, e.g., client or server-side synchronisa-
tion and two-way synchronisation.

Current approaches for synchronising data and software
binaries, however, lack support for time-bounded adaptation
and do not address other adaptation constraints, such as
memory, module inter-dependencies, and priorities.

6.3 Cooperative Driving Systems
Many approaches for cooperative driving are part of the

Auto21 project that investigates fully autonomous vehicles
[26]. The authors propose a three-layered architecture to
realise decentralised coordination of (autonomous) vehicles
[16]. The lowest layer senses the state of a vehicle and is
responsible for a vehicle’s behaviour. The management and
traffic control layer determine the movement of each vehicle
under the cooperative driving constraints.

Adaptation is executed on the longitudinal and change
lane actuators, based on information obtained from the up-
per layers. The longitudinal actuator uses either distance or
time-based information to change a vehicle’s speed, whereas
the change lane actuator follows a pre-defined lane func-
tion. The behaviour of both actuators is pre-determined
and consists of static rules. The overall adaptation is exe-
cuted within soft real-time constraints. Due to adaptation
being related to parameter changes, it does not account for
any constraints, such as memory or module interdependen-
cies (c.f., Figure 9).

Adaptive cruise control systems can be realised by dis-
tance policies [17]. In this approach, vehicles move within a
safe distance to the vehicle in front of them to ensure that
no collisions occur in case the vehicle in front brakes sud-
denly. This distance must be continuously adapted to reflect
current environmental conditions, e.g., icy roads, vehicle dy-

Figure 9: Kiviat Diagram of Auto21

namics, and safety considerations.
Adaptation in an adaptive cruise control system can be ex-

ecuted by the vehicle control system, which is divided into
two parts: the upper level calculates the desired control ef-
fort based on the current conditions, whereas the lower level
computes the corresponding throttle commands. It is based
on pre-defined commands and is executed with an effort of
minimising the actual duration. The described approach is
local and decentralised, i.e. no information from other vehi-
cles or the environment is considered. Likewise, the adapta-
tion itself is executed without considering any constraints.

6.4 Vehicular Sharing Systems
Vehicles equipped with storage capabilities can act as a

store-and-forward mobile router for data dissemination, such
as traffic information or audio and video data [7]. For exam-
ple, next-generation vehicle entertainment systems assume
video or audio files can be stored among several vehicles [14].
Depending on their current location, only a subset of these
files are accessible for a vehicle and hence a policy frame-
work is needed that predicts the availability of a file and the
predicted time after which the file will be available.

The framework is dynamically adapted to the number of
vehicles and the available files inside a cell. This information
is continuously monitored and broadcasted to the decision
making process that resides locally on each vehicle. To the
best of our knowledge, however, the adaptation process does
not take space/time constraints into account.

Within a geographic area, vehicles equipped with process-
ing power can form an ad hoc grid computer that can au-
tonomously solve distributed traffic flow control problems,
such as lane merging. An example of such a system is
VGrid [8], which is a grid computer and is realised by a
four-layer protocol architecture in which the grid computing
interface serves as a bridge between the applications and the
network layers. This interface is responsible for the alloca-
tion of tasks based on the current network topology, e.g., a
critical task is replicated to a number of vehicles. A resource
management layer controls the access to local resources on
the vehicles. Task allocation takes computational time into
account since nodes can move out of range before their com-



putations are finished.
VMesh is a vehicular wireless mesh network that serves

as a dynamic sensor network, e.g., for monitoring and col-
lecting vehicular emissions [7]. The Kiviat diagram for this
approach is shown in Figure 10. A key design challenge in

Figure 10: Kiviat Diagram of VMesh

VMesh is determining the penetration rate, i.e., the number
of vehicles that are part of the network. This rate should
adapt dynamically to the number of vehicles available. The
author’s approach considers memory constraints at nodes to
achieve a desired data throughput rate. It is unclear, how-
ever, whether the adaptation itself supports timeliness, i.e.,
is executed within a specific time bound.

6.5 Discussion
Earlier in this section we classified existing research pro-

jects using the taxonomy from Section 5 and visualised their
characteristics with Kiviat diagrams. By comparing these
diagrams to the diagrams of the four classes of automotive
systems depicted in Section 5.2, key gaps in existing ap-
proaches can be identified.

First, as we can see in Figure 2, dynamic adaptation in
vehicle-centric systems is restricted to at most the dynamic
choice of a suitable configuration at runtime. Since hard
real-time systems must ensure the safety and consistency of
their execution behaviour at all time, the dynamic insertion
and reconfiguration of software modules is traditionally not
allowed. Existing approaches, such as MARS and DySCAS
(c.f., Section 6.1), seem suitable to provide the required run-
time adaptation as they replace software and include new
devices and software into vehicle electronic systems at run-
time.

Driver information systems (c.f., Section 6.2) require not
only adaptation of multimedia content, but they also need
support for software adaptation, e.g., dynamic integration
of software into a running system. Developers of driver in-
formation systems can leverage TrafficView and OSA+, but
these approaches assume that the software to integrate or
to update is locally available. Saspence and OSGI offer full
support for dynamic adaptation and SyncML provides data
and software binaries integration, but they do not adapt or
update software in time bounds. Moreover, these solutions

do not account for time and space constraints as required
by driver information systems.

Similarly, cooperative driving systems need time-bounded
coordination between vehicles. Existing approaches, such as
the Auto21 project [26], provide safety critical coordination.
They do not, however, support stringent constraints that
the executing platform could have on QoS, like the available
memory space.

Finally, vehicular sharing systems monitor the space stor-
age and computational power of the vehicles before dis-
tributing applications and data between vehicles (c.f., Sec-
tion 4.4). They do not, however, provide time-bounded dy-
namic allocation of resources and membership management.

7. CONCLUDING REMARKS
This paper analysed four automotive system classes and

identified their software adaptation requirements, including
degradation strategies in vehicle-centric systems and dynam-
ically inserting components into software applications. We
also defined a taxonomy to characterise various dimensions
of dynamic adaptation, including binding time, adaptation
type, timeliness requirements, adaptation trigger, and adap-
tation constraints. We used Kiviat diagrams [20] to repre-
sent this taxonomy and compared existing research projects
of automotive system software using these diagrams and cat-
egorised existing research projects in the automotive domain
in terms of this taxonomy. Our analysis showed that time-
bounded synchronisation of applications and data is a key
requirement for next-generation automotive systems that is
not adequately covered by existing work.

To address the gaps in existing work, research is needed
on techniques, tools, and platforms for composing automo-
tive software under time constraints. For example, when
deciding which modules to integrate or upgrade into vehi-
cle, time and space constraints should be considered. Our
future work is therefore defining a domain-specific modelling
language and a QoS-enabled middleware execution platform
that enables time-bounded composition of automotive sys-
tem software.
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