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Abstract

Product-line architectures (PLAs) are an effective mech-
anism for facilitating the reuse of software components on
different mobile devices. Mobile applications are typically
delivered to devices using over-the-air provisioning ser-
vices that allow a mobile phone to download and install
software over a cellular network connection. Current tech-
niques for automating product-line variant selection do not
address the unique requirements (such as the need to con-
sider resource constraints) of dynamically selecting a vari-
ant for over-the-air provisioning.

This paper presents the following contributions to
product-line variant selection for mobile devices: (1) it
describes how a constraint solver can be used to dynam-
ically select a product-line variant while adhering to re-
source constraints, (2) it presents architectures for automat-
ically discovering device capabilities and mapping them to
product-line feature models, (3) it includes results from ex-
periments and field tests with an automated variant selec-
tor, and (4) it describes PLA design rules that can be used
to increase the performance of automated constraint-based
variant selection. Our empirical results show that fast au-
tomated variant selection from a feature model is possible
if certain product-line design guidelines are followed.

Keywords: Methods, Processes, Tools and Experiences
in Software Product Lines, Automation

1 Introduction

A recent trend in mobile devices that makes pervasive
computing more realistic is the proliferation of services
that allow mobile devices to download software on-demand
across a mobile network. Services that allow software to
be downloaded over cellular networks are called Over The
Air Provisioning (OTAP) services [19, 29, 3, 4]. For exam-
ple, mobile phones can now access web-based applications,
such as google mail, or download custom applications from
services, such as Verizon’s “Get It Now.” Nokia estimated

that in 2003 the 2.2 billion mobile phone subscribers down-
loaded 10,000,000 Java 2 Micro Edition (J2ME) gamesper
month[32]. In 2007, there are now over 3.3 billion [38]
subscribers and significantly more downloads.

Despite the advances in middleware and deployment
technologies, however, there are still significant variabili-
ties between devices in terms of hardware resources (such
as CPU power, RAM, and display size), middleware ver-
sions (such as Java Virtual Machine versions), hardware ca-
pabilities (such as Bluetooth support), and service provider
restrictions (such as required use of provider-specific APIs).
Developing software that can handle all of these diverse re-
strictions and be deployed on a large number of heteroge-
neous devices is hard [5]. In some cases, due to large differ-
ences in non-functional device properties like display size,
separate variants of the same Java application must be de-
veloped for each device despite the presence of a virtual
machine [2].

Product-line architectures (PLAs) [12] are a promis-
ing approach to help developers reduce the high cost of
mobile application development by facilitating software
reuse [6, 42, 31]. A product-line architecture (PLA) [12]
leverages a set of reusable software components that can be
composed in different configurations (variants) for different
requirement sets. Constructing a product-line variant con-
sists of finding a way of reusing and composing the product-
line’s components to create a functional application. The
design of a PLA is typically guided by scope, commonal-
ity, and variability (SCV) analysis [15]. SCV captures key
characteristics of software product-lines, including their (1)
scope, which defines the domains and context of the PLA,
(2) commonalities, which describe the attributes that recur
across all members of the family of products, and (3)vari-
abilities, which describe the attributes unique to the differ-
ent members of the family of products.

A product-line documents the rules that a developer must
follow when assembling existing reusable software compo-
nents into an application for a new mobile device. It is hard
to manually retarget mobile applications using product-line
components, however, due to the large number of mobile



devices, limited device capabilities, complex product-line
constraints, and the rapid development rate of new devices.
Moreover, in a pervasive environment, software reuse must
happen on-demand. When a device enters a particular con-
text, such as a retail store, the provisioning server must very
quickly deduce and create a variant for the device, regard-
less of whether or not the device type and its capabilities
have been previously encountered.

Current automated software reuse techniques, such as
those presented in [8, 25, 30, 33, 36], do not sufficiently
address various challenges of designing and implementing
an automated approach to selecting a product variant for a
mobile device. One common capability lacking in each ap-
proach is the ability to consider resource consumption con-
straints, such as the total available memory consumed by
the features selected for the variant must be less than 64
kilobytes. Another missing detail of these automatic reuse
approaches is the architecture for how an autonomous vari-
ant selection mechanism can be the integrated into an over-
the-air provisioning server.

To address these gaps in online mobile software variant
selection engines, we have developed a tool calledScat-
ter that first captures the requirements of a PLA and the
resources of a mobile device and then quickly constructs
a custom variant from a PLA for the device. This paper
presents the architecture and functionality of Scatter and
provides the following contributions to research on software
reuse for mobile devices:

• We show how Scatter enables and disables fea-
tures/components in product-line models based on the
sets of device capabilities it receives from the provi-
sioning server

• We describe the automated variant selection engine,
based on a Constraint Logic Programming Finite Do-
main (CLP(FD)) solver [21, 37], that can dynamically
derive a valid configuration of reusable software com-
ponents suitable for a target device’s capabilities and
resource constraints

• We present data from experiments that show how
PLA constraints impact variant selection time for a
constraint-based variant selection engine

• We describe PLA design rules gleaned from our ex-
periments that help to improve variant selection time
when using a constraint-based software reuse ap-
proach.

This paper builds on our previous work on software reuse
that involved automatically deriving product-variants for
mobile devices with a constraint solver [40]. In particu-
lar, this paper enhances previous work by describing the
design and functionality of a Scatter-integrated server for
performing over-the-air provisioning of mobile devices. We

also offer new empirical results obtained from field testing
the Scatter-integrated provisioning server with both realand
emulated mobile devices. The new results show that despite
the apparent complexity of product-line composition rules
and non-functional requirements, a constraint solver can be
used to derive a product variant quickly enough to support
over-the-air provisioning.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the train food services application that we
use as an example product-line throughout the paper; Sec-
tion 3 describes the challenges of dynamically composing
reusable software components for different mobile devices
and the unresolved problems of using current techniques;
Section 4 presents architectures for integrating an auto-
mated variant selection mechanism into an over-the-air pro-
visioning server; Section 5 shows how Scatter automatically
transforms PLA requirements and mobile device resources
into a model that can be operated on by the CLP(FD) based
variant selector; Section 6 analyzes the results of field tests
and simulations of using Scatter for over-the-air provision-
ing; Section 7 summarizes product-line design rules that
we have learned from our results that improve the speed at
which a product variant can be selected; Section 8 compares
our work on Scatter with related research; and Section 9
presents lessons learned and concluding remarks.
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2 Motivating Example

To motivate the need for—and capabilities of—Scatter,
we use an application throughout this paper that allows train
passengers to order food from their mobile phones. This
application is downloaded by passengers to their phones
upon entering a train. The application allows passengers to
choose menu items from either a first class or second class
menu (depending on the traveler’s ticket class).

The food services product-line has been described using
feature models. Feature modeling [7, 16] characterizes and
application based on function and non-functional variabili-
ties. The feature models are designed to show the composi-
tion rules for the variable application components and how
device capabilities affect what application components can
be deployed.

The food services application is implemented using a va-
riety of components, such as the Open Device Monitoring
and Tracking Protocol (OpenDMTP) Java MIDlet1. This
application can be reconfigured for devices that support dif-
ferent Java JVM Mobile Information Device Profile (MIDP)

1A Java application for an embedded Java 2 MicroEdition JVM.

versions, JVM configurations (e.g. CDC 1.0, CLDC 1.0,
and CLDC 1.1), and optional Java APIs (e.g.JSR 135 Mo-
bile Media API, JSR 229 Payment API, etc.). Figures 1
through 6 show feature models capturing the SCV of the
food service application. Figures 7 through 9, show the
key points of variability in the target devices that deter-
mine which food services application components are cho-
sen when selecting a variant for a mobile device. For exam-
ple, if theTextAndImagesUIfeature from the feature model
in Figure 3 is chosen, the target device must have theJSR
135 Mobile Media APIfeature (Figure 8) enabled.

Figure 10: Alternate Variant Selection Based on Cabin
Class

Context data also determines which application compo-
nents can be delivered to a device, as seen in Figure 10.
Second class passengers can pre-order food from a second
class menu from their mobile devices but must go to the
restaurant car of the train to pickup the food. First class
passengers, however, order from a more extensive first class
menu and can have the food delivered to either their seat
or directly to their current location on the train. The food
services application uses the OpenDMTP Java client imple-
mentation to report the location of a first class passenger
with a Global Positioning System (GPS) capable phone. If
a first class passenger does not have a phone with a con-
nected GPS device, an application variant is delivered to
the device that replaces the OpenDMTP tracking MIDlet
with a form for the user to enter their current seat number.
There are certainly numerous technical challenges to accu-
rately predicting a passenger’s location via GPS on a train,
but this paper focuses on the software variability aspects of
including such a capability if it was developed.

Finally, non-functional characteristics of the device dic-
tate certain key features of the selected variant. The food
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services application can be delivered with either high reso-
lution images of the entrees (requires 64 kilobytes of storage
space), low resolution images (12 kilobytes), or no entree
images (0 kilobytes). The available memory and storage
space on the device determines which of these image sets
is appropriate. The OpenDMTP client is the largest of the
other application components and requires approximately 2
kilobytes of storage space. The remaining application com-
ponents consume another∼2 kilobytes. The total combined
resource consumption of all of the application components
must be considered when choosing image sets.

For a phone with at least 66 kilobytes of remaining stor-
age space, a number of variants are possible. If the owner of
the device has a first class ticket and a GPS capable phone, a
variant with the OpenDMTP library and low resolution im-
ages is suitable. If the user does not have a first class ticket
or a GPS capable phone, then the high resolution images
may fit. To choose an appropriate variant, therefore, the
variant selection must account for the tradeoffs in resource
consumption of different configurations.

3 Challenges of Automated Variant Selection
for Mobile Devices

Applications for mobile devices must be carefully
matched to the capabilities of each individual device due
to resource constraints. Developers must therefore con-
sider both functional capabilities (such as the optional li-
braries installed on the device) and non-functional capabil-
ities (such as total memory) when reusing software compo-
nents. Due to the large and highly differing array of device
capabilities, however, it is difficult to determine which soft-
ware components can function with each device’s unique
limitations and how an entire application can be assembled
by reusing these viable components. For example, reusing
product-line components for a mobile device involves:

1. Capturing the rules for composing the reusable
product-line components or features (the application
model)

2. Specifying what capabilities the target mobile device
must have to support each application component or
feature (the target infrastructure model)

3. Identifying the target mobile device and mapping its
capabilities onto the target infrastructure model by en-
abling or disabling features in the model

4. Disabling application components that cannot be sup-
ported by the functional and non-functional capabili-
ties of the device

5. Selecting and assembling a product variant from the
remaining enabled components and features that ad-
heres to the product-line’s composition rules and the
resource constraints of the device.

For example, with the food services application pre-
sented in Section 2, the rules for composing the appli-
cation’s components were first documented in the feature
models presented in Figures 1 through 6. Next, the impor-
tant features of the target infrastructure that govern which
application components can be supported by a device were
documented in Figures 7 through 9.

The dependencies between the application components
and target device capabilities were specified with feature
references [17]. Any feature can exclude, require, or apply
a cardinality constraint to the selection of another feature
through a feature reference. The reference is specified as a
constraint on another named feature that is not a direct child
of the feature declaring the constraint.

For example, theSMS_Msgcomponent (Figure 4) for
submitting orders contains a reference to the target infras-
tructure featureJSR 120 Wireless Messaging(Figure 8).
This reference indicates that the JSR 120 Wireless Mes-
saging feature must be enabled on the target device if the
SMS_Msg component will be deployed to it.

To find a way of reusing existing software components
to assemble a variant of the food services application for
a Blackberry Pearl 8100 mobile phone, a developer would
enable and disable the appropriate features in the target de-
vice feature model (Figures 7 through 9). TheCDC feature
of the JVM Configurationand the GPS features would be
disabled while theCLDC 1.1feature would be enabled (the
Blackberry 8100 supports MIDP 2.0, CLDC 1.1, and no
GPS). Since the Blackberry 8100 does not support GPS in
its stock configuration, this would preclude deploying the
OpenDMTP feature to the phone and thus it would be dis-
abled. Finally, an appropriate set of features, would be se-
lected from the remaining points of variability (e.g., Tex-
tUI or TextAndImagesUI, SMS_Msg order submission or
HTTPS_Post, etc.).

Traditional processes of reusing software components
involve developers manually evaluating a mobile device and
determining the software components that must be in an ap-
plication variant, the components to configure, and how to
compose and deploy the components. In addition to being
infeasible in a pervasive environment (where the target de-
vice signatures are not known ahead of time and variant se-
lection must be done on demand), such manual approaches
are tedious and error-prone, and are thus a significant source
of system downtime [18]. Manual reuse approaches also do
not scale well and become impractical with the large solu-
tion spaces typical of PLAs.
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1. There is no clear architecture for automatically dis-
covering and mapping device capabilities to product-
line models. Numerous tools and approaches have been
developed [9, 10, 7] to capture the rules for composing a
product variant. For example,Pure::variants [9] is a com-
mercial tool that provides feature modeling capabilities,al-
lows developers to specify features and feature constraints,
and derives required unconfigured features for a partially
configured variant. All these tools, however, are designed
for a priori product variant selection and assume that a hu-
man modeler enables/disables features and uses the tool to
derive any required additional features. To select a variant
for a mobile device, therefore, developers must manually
enable/disable model features to reflect the capabilities of a
target device.

An over-the-air provisioning request begins by a mobile
device sending a request to a provisioning server that in-
cludes a unique identifier for the device type, as seen in
Figure 11. From this unique identifier, the provisioning

Figure 11: Selecting a Food Services Variant for a Black-
berry 8100 Mobile Phone

server must be able to find the capabilities associated with
the device and automatically map these capabilities into the
model of the target infrastructure. Existing tools do not ad-
dress how a human is removed from the modeling loop and
a single device identifier is mapped into a complex set of
infrastructure model capabilities. In Section 4, we present
three different architectures that can be used to automati-
cally discover device capabilities and map them to product-
line models.

2. There is no documented architecture for handling
incomplete context information and unknown device
types. Many research efforts [30, 8, 26] have produced
models for transforming a feature model or other SCV cap-
turing mechanism into a formal model that can be reasoned
with automatically. For example, [8] presents a method
for transforming feature models into Constraint Satisfaction
Problems (CSPs). A solver, such as a Constraint Logic Pro-
gramming (CLP) solver, can then be used to automatically
derive product variants for a set of device capabilities.

The key assumption with these techniques is that values
for all relevant device capabilities are known. Although de-
vices may share common communication protocols and re-
source description schemas, a variant selection service will
not know all device signatures at design time. In many
cases, information, such as the exact set of optional libraries
installed on a device or ticket class of the owner may not be
able to be determined based on the unique device identi-
fier associated with the provisioning request. In other situa-
tions, a provisioning server may encounter a newly released
device with completely unknown capabilities.

To address the more dynamic information needs of PLAs
for mobile applications, therefore, either a strategy for se-
lecting a variant with incomplete information or an auto-
mated method for obtaining missing capability information
is needed. Current research does not address this open prob-
lem. Section 4 presents ouron-demand probingapproach
that allows a provisioning server to help guarantee it has
complete device information when selecting a variant.

3. There is no method for incorporating resource con-
straints in variant selection. Although multiple models
and tools are available [30, 8, 26, 9, 10, 7] for deriving
ways of reusing and assembling components for a set of
device capabilities, none of these techniques or tools ad-
dress how resource constraints are considered in the selec-
tion process. For mobile devices, resource constraints area
major concern and must be considered carefully. Without a
mechanism for adhering to resource constraints, no reliable
component selection automation can be performed. For ex-
ample, deploying a set of components that requires more
JVM stack capacity than is available on the target device
will result in a non-functioning variant.

Different configurations of reusable components may
have different costs associated with them. There may be
many valid variants that can be deployed and the selector
must possess the ability to choose the best configuration
based on a cost formula. For example, if the variant selected
is deployed to a device across a GPRS connection that is
billed for the total data transferred, it is crucial that this
cost/benefit tradeoff be analyzed when determining which
variant to deploy. If one variant minimizes the amount of
data transferred over thousands or hundreds of thousands
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of devices deployments, it can provide significant cost sav-
ings. In Section 5, we describe a modified constraint-based
variant selection approach that can take resource constraints
into account.

4. It is unclear if automated variant selection can be
performed fast enough to support on-demand software
reuse. Determing which components to reuse and how to
assemble them must happen rapidly. For instance, in the
train example from Section 2 a variant selection engine may
have tens of minutes or hours before the device exits (al-
though the traveler may become irritated if variant selection
takes this long). In a retail store, conversely, if customers
cannot get a variant of a sales application quickly, they may
become frustrated and leave. To provide a truly seamless
pervasive environment, automated variant selection must
happen rapidly. When combined with the challenge of not
knowing device signaturesa priori and the need for opti-
mization, achieving quick selection times is even harder.

Many methods and tools [8, 9, 10] for automating vari-
ant selection are used for design-time selection of vari-
ants. It is still unclear, however, whether the current ap-
proaches and tools provide sufficient performance to sup-
port dynamic software reuse for over-the-air mobile soft-
ware provisioning. Design-time selection with a human in-
volves processing a single request at a time. An over-the-
air provisioning server could potentially receive hundreds,
thousands, or more simultaneous requests. Empirical eval-
uation is needed to determine if current automation tech-
niques are sufficiently fast in practice. Section 6 presents
the results from field and performance tests we performed
using automated and constraint-based variant selection.

5. There are no documented design rules for facili-
tating variant selection automation. Although the tools
and related papers cited above cover the basics of building a
product-line, they do not systematically capture best design
practices to facilitate automation. Many constraint solvers
and theorem proving algorithms—particularly ones that
incorporate resource constraints—have exponential worst
case performance. For developers of product-lines that
will leverage an automated variant selector, therefore, it
is important to have guidelines for designing a product-
line’s composition rules to avoid these worst case scenarios
and improve automated selection speed. Few—if any—of
these types of rules have yet been documented for product-
lines. Section 7, describes product-line design rules we de-
rived from our empirical results to help improve the speed
at which a variant can be automatically derived using a
constraint-based approach.

4 An Architecture for Over-the-air Provi-
sioning from a Product-line

In previous work [40], we developed Scatter, which is a
graphical modeling tool for capturing the SCV of a product-
line, compiling the product-line rules into a constraint sat-
isfaction problem (CSP), and using a constraint solver to
derive a valid product variant for a mobile device. This
initial research began to address challenges 4 and 5 from
Section 3, which involved showing that constraint-based
approaches to variant selection provide good performance
and deriving PLA design rules to facilitate automation.
We found that model-driven development could be used to
transform a high-level specification of a product-line, such
as a feature model, into a constraint satisfaction problem.
We also found that a constraint solver could be given a CSP
and a set of device capabilities and derive an optimal variant
in a reasonable time-frame.

Our initial results, however, also showed that care was
needed when designing a product-line to achieve good con-
straint solving performance. Depending on the constraints
governing the product-line, solving performance for a 50
feature model varied from a low of∼1 second to a high of
over 30 seconds. We found that several widely applicable
rules, such as grouping components into sets based on limi-
tations in packaging variability, could help ensure best-case
solving performance.

4.1 Obtaining the Device Information Re-
quired to Make Reuse Decisions

The first step in determining how to fulfill a provisioning
request using existing software components is to character-
ize the unique capabilities of the requesting mobile device.
After these capabilities are known, compatible components
can be selected and reused in a product variant. Below, we
present three different architectures for dynamically discov-
ering device capabilities and mapping them to product-line
models. These architectures can be used to help address
Challenge 1 of Section 3, which is that no clear architectures
have been developed for integrating an automated variant
selector and an over-the-air provisioning server.

Over-the-air provisioning is typically initiated by a mo-
bile user dialing a specified mobile number or sending an
HTTP request to a provisioning server. In most scenarios,
the provisioning request includes an identifier that the server
uses to determine the type of device issuing the provision-
ing request and the requesting device’s capabilities. The
capabilities of the device are used to help determine what
components are compatible with the device and should be
used to assemble a variant to fulfill the request. The high-
level architecture for issuing a provisioning request and de-
riving a variant for a mobile device with Scatter is shown in
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Figure 12.
Once a mobile device has initiated a provisioning re-

quest, the device’s functional properties (such as op-
tional Java libraries that are installed) and non-functional
properties (such asJVMCon f iguration, Memory, and
CabinClass2) must be obtained and mapped to the target
infrastructure model of the product-line. In our experience,
we found that device capabilities can be returned as a set of
name/value pairs.

Each reusable component can have an expression associ-
ated with it based on these name/value pairs that determines
if it can be reused in a particular device. For example, after
a set of device capabilities is collected, the JSR 135 feature
(Figure 9) can be enabled or disabled based on whether or
not theJSR135 device capability variable is equal to true.
If the JSR 135 feature is disabled, the TextAndImagesUI
component will not be considered for reuse.

The values for these variables are typically determined
using either a push or pull architecture. With a pull archi-
tecture the device sends its unique identifier and the pro-
visioning server queries either a device description reposi-
tory [41, 24] (a database of device identifiers and their as-
sociated capabilities) or the device itself for the capabili-
ties of the device. A push model may also be used where
the mobile device sends its device type information and ca-
pabilities to the server as part of its provisioning request.
For example, if a user is presented with a set of HTML
links to variants for a Java MIDP 1.0/CLDC 1.0 phone or
an MIDP 2.0/CLDC 1.1 phone, when the user clicks on a
specific link, the device is sending a request that is pushing
the needed device capability information.

We next describe the push and pull models in more detail
and show how neither is ideally suited for obtaining the in-
formation required for deriving a configuration of reusable
software components for a product variant. We then present
an alternative approach, calledon-demand probing, that at-
tempts to address the limitations of the push and pull mod-
els. Scatter uses this on-demand probing approach to gather
missing device capability information and ensure that all
needed capability values are known when reusable compo-
nents are selected and assembled for a device.

4.2 Pull Models for Discovering Device
Capabilities

A pull model extracts device capabilities from a device
description repository and can provide detailed information
with regard to static device capabilities ranging from sup-
ported APIs to hardware specifications. A mobile device
may not be able to introspectively determine all of the in-

2CabinClassis a boolean indicating if the traveler has a first or second
class ticket. Although it would be possible to modelCabinClassoutside
the target infrastructure model, we include it there for simplicity.

Figure 12: Scatter Integration with a Discovery Service

formation available in a device description repository nor
may it be efficient to send this large amount of data across
a cellular network. Pull models are also desirable since
they place the burden of the work on the server and de-
couple the device from the capability discovery mechanism.
Moreover, a pull model does not require error-prone user-
interaction.

Numerous open-source and commercial projects are
available that offer databases of device capabilities. With a
pull model, the provisioning server’s main task is to identify
the identifier for the type of device issuing the request and
then query the appropriate device description repository for
its capabilities. Although having a large database of device
capabilities may appear to make it possible to build vari-
ants for devices ahead of time, a device description reposi-
tory only containsstaticcapability information and cannot
leverage context (e.g. CabinClass) or dynamic information
(e.g.remaining storage space) about a device.

A diagram of a request for a MIDP application (MIDlet)
product variant using the pull model is shown in Figure 13.
Initially, the device sends an HTTP request to the provision-
ing server for the MIDlet and includes the device’sUser-
Agent, an identifier of the requesting device type or browser
type, in the request headers. The provisioning server uses
the User-Agent name to query a device description reposi-
tory and identify the device’s capabilities. Once the device’s
unique signature is known, Scatter is executed to determine
the appropriate product variant to fulfill the provisioningre-
quest.

The key disadvantage of pull models is that they limit
the information that can be used to guide variant construc-
tion since they rely on pre-compiled device information
databases. New devices are released frequently and thus
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Figure 13: An HTTP Provisioning Request for a J2ME Mi-
dlet Product Variant

a repository may not know the capabilities of the latest
products. Pre-compiled databases also cannot use dynamic
information, such as CabinClass, specific to an individual
user’s device. In situations where not all required device
information is available, the variant selection process faces
Challenge 2 of Section 3, which involves handling missing
capability information.

4.3 Push Models for Discovering Device
Capabilities

Push models offer an apparent solution to the deficien-
cies of pull models. With a push model, the mobile device
encodes all required capabilities and context informationfor
deriving a product variant into its provisioning request. This
architecture avoids Challenge 2 from 3 by ensuring that all
needed device information is submitted with the request.
For example, a device can issue an HTTP request with re-
quest parameters for the device memory, JVM stack size,
display dimensions, JVM profiles/configurations, and a list
of available optional Java libraries.

A push model can also incorporate context-dependent
data. For example, a user can be presented with an HTML
form to capture the traveler’s ticket number. The form can
then be sent to the provisioning server via an HTTP POST
and the server can obtain the device user’s cabin-class, seat
assignment, name, and other reservation attributes before
invoking Scatter and deriving a variant. This form-based
architecture is shown in Figure 14.

The push model, however, has its own drawbacks. First,
the push model relies on the user to supply critical infor-
mation that is used to select a product variant. A user can
easily make mistakes (e.g. provide the wrong CLDC ver-
sion) and cause incorrect software variants to be delivered
to the device. Users may not know all of the required plat-
form information, such as JVM stack size, required by the
provisioning server. The push model also requires sending
device capabilities, such as CPU megahertz, across the net-
work even though they do not vary across a particular device

Figure 14: An HTTP Provisioning Request with a Push
Model for a J2ME Midlet Product Variant

model.

4.4 On-demand Probing: A Hybrid Capa-
bility Discovery Model

Integrating Scatter with a provisioning server created the
unique challenge that the device information required to
perform variant selection could vary depending on the con-
straints of the product-line. For example, for some prod-
ucts, a pull model is appropriate since the product-line
constraints only depend on device capabilities that do not
vary across a model. For other product-lines, such as the
train food service application, context information, suchas
cabin-class, is needed, motivating a push model.

The Scatter integration needed to support context infor-
mation that would not be available with a pull model. Since
selecting product variants using partial information is not
a well-understood area of research, we decided our solu-
tion had to ensure that all required device information was
available. Instead of opting for a push model and requiring
error-prone interaction with the user to obtain all required
capabilities, Scatter’s integration with JVending uses a hy-
brid push/pull model, which we callon-demand probing.

On-demand probing uses a device description repository
to obtain static capabilities. If a product-line includes con-
straints on capabilities that are unavailable from the reposi-
tory, Scatter returns a small MIDlet to the device. The MI-
Dlet programmatically probes the user’s device for the miss-
ing capability information and may also prompt the user for
context information (e.gticket number). After obtaining the
needed capabilities the probe sends the information back to
the server to obtain the originally requested product variant.
This on-demand probing architecture is shown in Figure 15.

On-demand probing combines the best attributes of both
the push and pull models. When only static device capabil-
ities are needed by the product-line constraints, on-demand
probing obtains the required information from a device de-
scription repository. When context or other information that
is unavailable in the repository is needed, Scatter addresses
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Figure 15: An HTTP Provisioning Request with a On-
demand Probing Model for a J2ME Midlet Product Variant

Challenge 2 by reverting to a push model. To help reduce
user interaction and improve the reliability of the capabil-
ity information received through a push, Scatter delivers a
small executable probe to the device to obtain missing ca-
pability information.

When a new device is encountered, a probe can pro-
grammatically determine display size, JVM configura-
tion/profile, and other information through Java APIs. Typ-
ically, a probe is sent that uses API interfaces that are
constant across JVM versions and configurations, such as
querying the JVM for the “microedition.profiles” property
to determine the profiles supported by the JVM. This ca-
pabilities information can be cached for future encounters
with the same device type. For context-specific information,
the same probe can prompt the user for reservation num-
bers and other required attributes. The on-demand probing
approach minimizes human interaction and can obtain dy-
namic context information for product variant derivation.

5 Scatter’s Resource-aware Variant Selection
Engine

Finding a way to configure and reuse existing software
components on an arbitrary mobile device is hard. The
complex requirements and composition constraints of the
product-line must be used to derive a component configu-
ration that will function properly on the limited resources
of the device. Developers may therefore need to consider a
combination of context, resource, software dependency, UI,
and cost constraints when selecting which components to
reuse and how to configure them.

It is particularly important to respect resource constraints
when reusing software components on different mobile de-
vices. As discussed in Section 3, current approaches do not
account for resource constraints when deriving a product
variant. Likewise, they also do not provide optimization
mechanisms to selectively reuse components that consume

less bandwidth and hence incur smaller cellular air time
charges. To address this deficiency, this section describes
how we extended the CSP approach presented in [8] to in-
clude both resource constraints and a simple variant cost
optimization.

Scatter provides an automated variant selector that lever-
ages Prolog’s inferencing engine and the Java Choco
CLP(FD) constraint solver [1]. The Scatter solver uses a
layered solving approach to reduce the combinatorial com-
plexity of satisfying the resource constraints. Scatter prunes
the solution space using the PLA composition rules and the
local non-functional requirements so only variants that can
run on the target infrastructure are considered. The resource
constraints are a form of theknapsack probleman NP-Hard
problem [13]. Scatter’s layered pruning helps improve se-
lection speed and enables more efficient solving. As shown
in the Section 6, this layered pruning can significantly im-
prove variant selection performance.

5.1 Layered Solution Space Pruning

Initially, the variant solution space may contain many
millions or more possible component or feature composi-
tions. Solving the resource constraints is thus time con-
suming since it is a higly combinatorial problem. To op-
timize this search, Scatter first prunes the solution space by
eliminating components that cannot be reused on the device
because their non-functional requirements, such a JVMVer-
sion or CabinClass, are not met. After pruning away these
components, Scatter evaluates the PLA composition rules
to see if any components can no longer be reused because
one of their dependencies has been pruned in the previous
step. This layered pruning process is shown in Figure 16

After pruning the solution space using the PLA compo-
sition rules, Scatter considers resource requirements. After
solving the resource constraints, Scatter is left with a drasti-
cally reduced number of reusable component configurations
to select from. At this point, if there is more than one valid
variant remaining, Scatter uses a branch and bound algo-
rithm to iteratively try and optimize a developer-supplied
cost function by searching the remaining valid solutions.

The first two phases of Scatter’s solution space pruning
use a constraint solver based on Prolog inferencing. A rule
is specified that only allows a component to be reused on a
device, if for every local non-functional requirement on the
component, a capability is present that satisfies the require-
ment. For example, if a component requires a JVMVersion
greater than 1.2, the target device must contain a capabil-
ity named JVMVersion with a value greater that 1.2 or the
component is pruned from the solution space and not con-
sidered.

The simple Prolog rules for performing this pruning are
listed below:
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Figure 16: Scatter’s Layered Deployment Solving Ap-
proach

comparevalue(V1,V2,’>’) :- V1 > V2.
comparevalue(V1,V2,’<’) :- V1 < V2.
comparevalue(V1,V2,’=’) :- V1 == V2.
comparevalue(V1,V2,’-’) :- V1 >= V2.

matchesResource(Req,Resources) :-
member(Res,Resources),
self_name(Req,RName),
self_name(Res,RName),
self_resourcetype(Req,Type),
self_value(Req,Rqv),
self_value(Res,Rsv),
comparevalue(Rsv,Rqv,Type).

canReuseOn(Componentid,Device) :-
self_type(Componentid,component),
self_type(Device,node),
self_requires(Componentid,Requirements),
self_dependencies(Componentid,Depends),
self_provides(Device,Resources),
forall(member(Req,Requirements),

matchesResource(Req,Resources)),
forall(member(D,Depends),canReuseOn(D,Device)).

For each component, the rule ’canReuseOn’ is invoked
to determine reuse feasibility. This rule also simultaneously
tests the feasibility of reusing a component based on its de-
pendencies. The last invocation in the rule checks to ensure
that all of the components that the current component de-

pends on can also be reused on the device. If any of the
dependencies cannot be reused, the component cannot be
reused. The rule also throws out components with a re-
source requirement exceeding what is available on the de-
vice, which helps to eliminate the size of the search space
for the resource solver.

5.2 Using CLP(FD) to Solve Resource
Constraints

After performing this initial pruning of the solution
space, the resource and PLA composition constraints are
turned into an input for a CLP(FD) solver. The transforma-
tion is an extension of the model proposed in [8] to include
resource consumption constraints. The model is also ex-
tended to allow for feature references.

A Constraint Satisfaction Problem (CSP) is a problem
that involves finding a labeling (a set of values) for a set of
variables that adheres to a set of labeling rules (constraints).
For example, given the constraint "X < Y" thenX = 3 and
Y = 4 is a correct labeling of the values forX andY. The
more variables and constraints that are involved in a CSP,
the more complex it typically is to find a correct labeling of
the variables.

Selecting a product variant can be reduced to a CSP.
Scatter constructs a set of variablesDC0 . . .DCn, with do-
main [0,1], to indicate whether or not the ith component is
present in a variant. A variant therefore becomes a binary
string where theith position represents if theith component
(or feature) is present. Satisfying the CSP for variant selec-
tion is devising a labeling ofDC0 . . .DCn that adheres to the
composition rules of the feature model.

Resource consumption constraints are created
by ensuring that the sum of the resource de-
mands of a binary string representing a variant
do not exceed any resource bound on the device
(e.g., ∑variant_component_resource_demands <
device_resources). For eachComponent Ci that is de-
ployable in the PLA, a presence variableDCi , with domain
[0,1] is created to indicate whether or not theComponentis
present in the chosen variant. For every resource type in the
model, such as CPU, the individualComponentdemands
on that resource,Ci(R), when multiplied by their presence
variables and summed cannot exceed the available amount
of that resource,Dvc(R), on theDevice.

If the presence variable is assigned 0 (which indicates
the component is not in the variant) the resource demand
contributed by that component to the sum falls to zero. The
constraint∑Ci(R)∗DCi < Dvc(R) is created to enforce this
rule. Components that are not selected by the solver, there-
fore, will haveDCi = 0 and will not add to the resource
demands of the variant.

The solver supports multiple types of composition rela-
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tionships betweenComponents. For eachComponent Cj
that Ci depends on, Scatter creates the constraint:Ci >
0 → Cj = 1. Scatter also supports a cardinality composi-
tion constraint that allows at leastMin and at mostMax
components from the dependencies to be present. The car-
dinality operator creates the constraint:Ci > 0 → ∑Cj >
Min,∑Cj < Max. The standard XOR dependencies from
the metamodel are modeled as a special case of cardinality
whereMin/Max= 1.

The Scatter solver also supports component exclusion.
For eachComponent Cn that cannot be present withCi , the
constraintCi > 0→Cn = 0 is created. The variables that can
be referred to by the constraints need not be direct children
of a component or feature and thus are references.

To support optimization, a variableCost(V) is de-
fined using the user supplied cost function. For exam-
ple, Cost(V) = DC1 ∗ GPRSC1 + DC2 ∗ GPRSC2 + DC3 ∗

GPRSC3 . . .DCn∗GPRSCn could be used to specify the cost
of a variant as the sum of the costs of transferring each com-
ponent to the target device using a GPRS cellular data con-
nection. This cost function would attempt to minimize the
size of the variant deployed within the resource and PLA
composition limits.

After the product-line rules have been translated into
CLP(FD) constraints, Scatter asks the CLP solver for a la-
beling of the variables that maximizes or minimizes the
variableCost(V). This approach allows Scatter’s variant
selector to choose components that not only adhere to the
compositional and resource constraints but that maximize
the value of the variant. Users therefore supply a fitness
criteria for selecting the best variant from the populationof
valid solutions.

6 Scatter Performance Results

A key question discussed in Challenge 4 of Section 3 is
whether or not automated techniques for dynamically com-
posing and reusing software components are fast enough to
support over-the-air provisioning of mobile devices. To de-
termine the feasibility of timely on-demand software reuse
using a constraint solver, we devised the following series
of tests of the Scatter-integrated over-the-air provisioning
server:

• Synthetic experiments, which are simulated product-
line models and device configurations designed to test
specific scenarios for variant selection and product-
line design hypotheses.

• Field and stress tests, which use actual J2ME appli-
cation requirements, device identifiers, device capa-
bilities, and HTTP provisioning requests to determine
how fast variants can be derived in a realistic provi-
sioning scenario.

6.1 Synthetic Variant Selection Experi-
ments

To test Scatter’s performance, we developed a series of
progressively larger PLA models to evaluate solution time.
The tests focused solely on the time taken by Scatter to de-
rive a solution and did not involve deploying components.
We also tested how various properties of PLA composition
and local non-functional constraints affected the solution
speed. Our tests were performed on an IBM T43 laptop,
with a 1.86ghz Pentium M CPU and 1 gigabyte of memory.

Note that optimization and satisfaction of resource con-
straints is an NP-Hard problem, where it is always possible
to play the role of an adversary and craft a problem instance
that provides exponential performance [13]. Constraint sat-
isfaction and optimization algorithms often perform well
in practice, however, despite their theoretical worst-case
performance. One challenge when developing a PLA that
needs to support online variant selection is ensuring that the
PLA does not induce worst-case performance of the selec-
tor. We therefore attempted to model realistic PLAs and to
test Scatter’s performance and better understand the effects
of PLA design decisions.

6.2 Pure Resource Constraints

We first tested the brute force speed of Scatter when con-
fronting PLAs with no local non-functional or PLA compo-
sition requirements that could prune the solution space. We
created models with 18, 21, 26, 30, 40, and 50 components.
Our models were built incrementally, so each successively
larger model contained all of the components from the pre-
vious model. In each model, we ensured that not all of the
components could be simultaneously supported by the de-
vice’s resources.

Product-lines for industrial or enterprise applications of-
ten contain thousands of features. The significant resource
constraints on a mobile device make mobile applications
much smaller and consequently less variable. Feature mod-
eling, of course, relies on the level of abstraction chosen by
the developer and thus two different developers can create
feature models of wildly different sizes for the same appli-
cation. end-user mobile applications, not OS or other infras-
tructure software, we feel that 50 features is a realistic size
for documenting the variable parts of a mobile application.

Our device was initially allocated 100 units of CPU and
16 megabytes of memory. Scatter’s performance results on
this model can be seen in Figure 17. This figure shows a
large jump for the time to select a variant from 40 to 50
components, which indicates that solving for a variant does
not scale well if resource constraints alone are considered.
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Figure 17: Scatter Performance on Pure Resource Con-
straints

6.3 Testing the Effect of Limited Re-
sources

We next investigated how the tightness of the resource
constraints affected solution time. We incrementally in-
creased the available CPU on the modeled device from 100
to 2,500 units for the 50 component model. We chose the
50 component model since it yielded the worst performance
from Scatter. The results can be seen in Figure 18. As

Figure 18: Scatter Performance as CPU Resources Expand
on Device

shown in Figure 18, expanding the CPU units from 100 to
500 units dramatically decreased the time required to solve
for a variant. Moreover, after increasing the CPU units to
2,500, there was no increase in performance indicating that
the tightness of the CPU resource constraints were no longer
the limiting bottleneck.

We then proceeded to increase the memory on the de-
vice while keeping 2,500 units of CPU. The results are
shown in Figure 19. Doubling the memory immediately

Figure 19: Scatter Performance as Memory Resources Ex-
pand on Device

halved the solution time. Doubling the memory again to 128
megabytes provided little benefit since the initial doubling
to 64 megabytes deployed all of the components possible.
As we hypothesized initially, the solution speed when pure
resource constraints are considered is highly dependent on
the tightness of the resource constraints.

6.4 Testing the Effect of PLA Composi-
tion Constraints

Our next set of experiments evaluated how well the de-
pendency constraints within a PLA could filter the solution
space and reduce solution time. We modified our models
so that the components composed sets of applications that
should be deployed together. For example, ourTrainTicke-
tReservationServicewas paired with theTrainScheduleSer-
viceand other complementary components.

As with the first experiment from Section 6.2, we used
our 50 component model as the initial baseline. We first
constructed a tree of dependencies that tied 10 components
into an application set that led the root of the tree, the train
service, to only be deployed if all children where deployed.
Each level in the tree depended on the deployment of the
layer beneath it. The max depth of the tree was 5. We con-
tinued to create new dependencies between the components
to produce trees and see the effect. The results are shown in
Figure 20.

As shown in Figure 20, adding dependencies between
components and creating a dependency tree decreased se-
lection time. This decrease occurs because the tree reduces
the number of possible combinations of the components that
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Figure 20: Scatter Performance as PLA Dependency Trees
are Introduced

must be considered for a variant. Adding more dependen-
cies to the model to add other trees provided only a very
small gain over the original large performance increase.

6.5 Field and Stress Testing Scatter

We conducted a series of field tests with real mobile
phones and a series of stress tests to determine how on-
demand variant selection would scale with Scatter. We in-
tegrated Scatter with an open-source over-the-air provision-
ing server called JVending. JVending delivers mobile appli-
cations to devices via HTTP.

Our tests used a mix of real hardware and synthetically
created requests. The actual hardware used was a Black-
berry 8100, Motorola Razr V3, and Treo 650 mobile phone.
The stress tests were performed using Apache JMeter to
send high numbers of synthetic mobile phone provision-
ing requests. JMeter is an application for stress testing web
applications by sending varying numbers, types, and con-
figurations of HTTP requests. We used JMeter to simulate
requests since it was infeasible to manually produce large
numbers and rates of requests using real mobile phone hard-
ware. The goals of these tests was to (1) ensure that real
hardware could be provisioned correctly by Scatter and (2)
determine the number of provisioning requests per second
that could be handled by Scatter.

The product-line used for testing was the train food ser-
vices application presented in Section 2. The product-line’s
feature models comprise a total of 56 features. For the field
tests, we selected hardware for a commodity x86 server.
The testbed was a Windows XP machine with a 2.6 giga-
hertz Intel Core DUO CPU, 3 gigabytes of DDR2 6400
RAM, a 10,000 rpm SATA harddrive, and dual gigabit-

ethernet network cards. The JVending provisioning web-
application was run in Apache Tomcat 6.1.0 using a Java
1.5 JVM in server mode. The Tomcat server and JVending
application were configured with all logging disabled.

We used the Wireless Universal Resource File version
2.1.0.1 and its associated Java querying libraries to match
static device capabilities to device types using theUserA-
gentheader parameter included with requests. The WURFL
database contains information on roughly 400 capabilities
for approximately 5,000 devices. We do not include the
WURFL querying time in our results (although it was typi-
cally no more than 3-4ms).

Typical web servers may receive hundreds, thousands, or
more requests per second. Although we do not expect a typ-
ical provisioning server to receive such high request rates,
constraint-solver based software reuse must still provide
relatively high performance. To test Scatter’s variant se-
lection throughput, we used JMeter to generate a 1,000 syn-
thetic provisioning requests from 3 different mobile phone
types. The synthetic request formats were derived by send-
ing real HTTP provisioning requests from the phones to
the provisioning server and capturing the included request
headers. From the point of view of the provisioning server,
there was no difference between the requests produced by
JMeter and the actual device.

We measured the average variant selection time for both
each individual mobile phone type and overall for all phone
types. The results shown in Figure 21 present the time re-
quired by Scatter to derive a first class food services variant
for each device. The times shown in this figure do not in-

Figure 21: First Class Food Services Variant Selection Time
Over 1,000 Provisioning Requests

clude the time to send the requests across a cellular network
or download the selected variant since these attributes of
provisioning are outside the scope of this paper.

As shown in Figure 21, Scatter averaged under∼120ms
for all device types. Scatter could reasonably support ap-
proximately 9 requests per second. One interesting obser-
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vation from this data is that the selection times for our 56
feature train food service application models were signifi-
cantly faster than those of our 50 component model in the
synthetic experiments.

When comparing the synthetic and train food service
feature models, we found that properly specified real feature
models tend to have large numbers of constraints between
features. Our synthetic feature models were significantly
less constrained (had a higher degree of variability) than
our food services application. Less constrained models typ-
ically have far more features/components that are not dis-
abled by target device characteristics and must be included
in the resource constraint solving. We expect that this result
will apply to other mobile applications since they are often
carefully matched for the features of the target device.

We repeated the same test with Scatter to select a second
class variant for each device. The results from the second
test are shown in Figure 22. There was little difference in se-

Figure 22: Second Class Food Services Variant Selection
Time Over 1,000 Provisioning Requests

lection time for a second class versus a first class variant. If
Figures 21 and 22 are compared, the average selection time
differs by approximately∼2ms less per device for second
class variants. We attribute this difference to the slightly
higher variability of first class variants. First class variants
can select between two different customer locators whereas
the second class variants cannot.

7 Results Analysis: Mobile PLA Design
Strategies

Although Scatter achieved a throughput of∼9 requests
a second, Product-line designers still must be careful when
building a PLA for automated software reuse and real world
dynamic over-the-air provisioning. Clustering, hardware,
and constraint solver improvements can increase variant se-
lection throughput. Product-line designers can also help

increase performance by designing their product-line mod-
els for automated software reuse. Based on the results we
collected from the experiments, we devised a set of mobile
PLA design rules to help improve variant selection perfor-
mance and address Challenge 5 of Section 3.

The first design strategy focuses on making it easier to
cache the results of variant selection and apply them as
widely as possible. The remaining strategies are vantage
points for observing a product-line’s design and exploiting
domain information to constraint the solution space. Al-
though resource constraints and some other constraint types
make solving more difficult, simple feature modeling rules,
such as requires, subfeature, and excludes are easy to solve
and can help to significantly bound the size of the potential
solution space. The remainder of this section presents the
design rules we gleaned from our results that can be used
to improve solution caching and bound the solution space
size.

Maximize variant selection result caching. If a product-
line is designed carefully, a provisioning server can cache
the results of variant selection requests to greatly improve
the performance of provisioning. Scatter need only be in-
voked when a variant must be found for a new device/-
context/capabilities signature. For example, two identical
Blackberry 8100 mobile phones in first class can reuse the
same application components in the same configuration.
The majority of requests will be for previously encountered
device/context combinations, so previous component reuse
decisions will still apply.

Context dependent decisions make caching harder.
Product-lines can limit the number of contexts that a pro-
visioning server is interested in. For example, the train food
services application is interested in differentiating devices
owned by first and second class passengers. The Cabin-
Class context effectively doubles the number of device/-
capability/context signatures that the server must cache.
The number of unique values for CabinClass acts as a multi-
plier for the number of configurations that the provisioning
server may need to cache. In this example, the provisioning
server needs to cache separate variant selection decisions
for devices in first class and second class cabins. Designers
should attempt to use as coarse-grained context information
as possible to limit this multiplier effect.

Limit the situations where resource constraints must be
considered. Resource constraints also can limit what the
server can cache and are the most time consuming com-
ponent of variant selection. For example, if two identical
Blackberry 8100 devices are encountered in first class, one
device having 72K of remaining storage capacity and the
other with 2mb of remaining storage capacity, the selection
results from the first device will not be applicable to the sec-
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ond device. Either Scatter must be reinvoked for each new
storage space value or a method is needed to identify when
differing storage values will still produce identical results
and thus can be cached.

One strategy is to broadly categorize devices based on
remaining storage capacity. For example, a feature for stor-
age capacity can be created with three subfeatures for de-
vices with more than 70K of remaining storage capacity,
devices with 14K to 70K, and devices with less than 12K.
Any device with 70K can host any combination of the com-
ponents and features of the food services application, and
thus resource constraints do not need to be considered. For
devices with 12K to 70K, constraint solving is necessary
since multiple but not all configurations are valid. Finally,
with less than 12K, no menu images can be deployed to the
device but any combination of the application components
are possible.

The disadvantage of broadly categorizing device re-
sources in this manner is that it can lead to sub-optimal
feature selections. For example, the optimal feature selec-
tion for a device with 15K and 69K may be very different
even though they would be categorized the same and hence
receive the same configuration. The tradeoff for the less op-
timal feature selection is that the solver only needs to be run
once per unique device configuration with the correspond-
ing resource feature.

Filter out non-essential resource consumptive compo-
nents. Due to the increased cost of finding a variant for
small devices where resources are more limited, we devel-
oped another design rule. To decrease the difficulty of find-
ing a deployment on small devices, PLA developers should
provide local non-functional constraints to immediately fil-
ter out unessential resource consumptive components when
the resource requirements of the deployable components
greatly exceed the available resources on the device. Al-
though the cost function can be used to perform this tradeoff
analysis and filter these components during optimization,
this method is time consuming.

The solver can only filter out solutions ahead of time if
a developer explicitly provides rules to do so. The more
rules that are provided, the better the solver typically per-
forms. Filtering some components out ahead of time may
lead to less optimal solutions but it can greatly improve so-
lution speed. Even by selecting only the least valued com-
ponents to exclude from consideration, performance can be
increased significantly.

Exploit non-functional requirements. Non-functional
requirements can be used to further increase the perfor-
mance of Scatter. Each component with an unmet non-
functional requirement is completely eliminated from con-
sideration. When PLA dependency trees are present, this

pruning can have a cascading effect that completely elimi-
nates large numbers of components. One PLA construction
rule based on non-functional requirements that was particu-
larly powerful and natural to implement in Scatter exploited
the relative lack of variation in packaging of a PLA vari-
ant. The solver relies on the developer to provide the non-
functional constraints used for pruning. If developers do not
provide these constraints, the solver is much less efficient.

Prune using low-granularity requirements. The re-
quirements with the lowest granularity filter the largest
numbers of variants. For example, when deploying vari-
ants, especially from a PLA with high configuration-based
variability, such as varying input parameters, the disk foot-
print of various classes of variants can be used to greatly
prune the solution space. If a PLA with 50 components
is composed of 5 Java Archive Resource (JAR) files, there
are relatively fewvalid combinations of the JAR files, even
though there are a large number ofpossibleways the PLA
can be composed.

Many variants may also require common sets of these
JAR files with various footprints. These variants can be
grouped based on their JAR configurations. For each group,
a non-functional requirement can be added to the compo-
nents to ensure that a target Device provide sufficient disk
space or communication bandwidth to receive the JARs. For
small devices that usually have little available disk space,
where resource constraints are tighter and solving takes
more time, large numbers of components can be pruned
solely due to the lack of packaging variability and need for
disk space. This footprint-based strategy works even if there
are few functional PLA dependencies between components.

Create service classes. Another effective mechanism for
pruning the solution space with non-functional require-
ments is to provide various classes of service that divide
the components into broad categories. In our train example,
for instance, by annotating numerous components with the
CabinClassand other similar context-based requirements,
the solution space can be quickly pruned to only search the
correct class of service for the target device. In general,
the more non-functional requirements that can be specified,
the quicker Scatter can prune away invalid solutions and
hone in on the correct configuration. Moreover, each non-
functional requirement gives the solver more insight into
how components are meant to be used and thus reduces the
likelihood of unanticipated variants that fail. As we pointed
out earlier, however, it is important that service classes are
course-grained since they can adversely affect caching.
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8 Related Work

This section compares our research on Scatter with other
tools and techniques that can be used to help automate the
selection of reusable software components for a mobile de-
vice. We first compare our work to other theoretical tech-
niques for using product-line models to derive which com-
ponents should be reused for a device. Next we compare
Scatter to frameworks for adapting applications and content
to the capabilities of a mobile device. Finally, we evalu-
ate Scatter against other tools that allow developers to build
product-line models and derive valid variant configurations.

Product-variant derivation techniques. In [25], Man-
nion et al present a method for specifying PLA compo-
sitional requirements using first-order logic. The valid-
ity of a variant can then be checked by determining if a
PLA satisfies a logical statement. Although Scatter’s ap-
proach to PLA composition also checks variant validity, it
extends the work in [25] by including the evaluation of non-
functional requirements not related to composition. In par-
ticular, Scatter automates the variant selection process us-
ing these boolean expressions and augments the selection
process to take into account resource constraints, as well as
optimization criteria. Although the idea of automated the-
orem proving is enhanced in [26], this approach does not
provide a requirements-driven optimal variant selection en-
gine like Scatter. Additional discussion of the differences
between constraint-based variant selection and Mannion’s
logic-based approach is available in [8].

A mapping from feature selection to a CSP is provided
by Benavides et al. [8]. Scatter uses this same reduction
but also extends it with the capability to handle references
and resource constraints. Resource constraints are a key re-
quirement type in mobile devices with limited capabilities.
Moreover, the approach presented by Benavides does not
show how this constraint-based mechanism could utilize a
mobile device discovery service as Scatter does. Finally,
unlike this paper, Benavides et al. do not address how PLA
design decisions can be used to improve constraint solver
performance.

Männistö et al. [27] have developed modeling concepts
for including additional constraints to specify the correct
configurations of a product-line. These concepts include
descriptions for how to capture resource constraints on a
configuration process. Scatter provides a key extension to
the ideas laid out by Männistö– Scatter has the capability
to autonomously select configurations that respect these re-
source constraints. Männistö et al. have laid out the model-
ing foundations for describing resource constraints on con-
figurations but not the mechanics of how they are leveraged.
Scatter provides this next step in the use of resource con-
straints on configurations.

COVAMOF [34], developed by Sinnema et al., pro-
vides mechanisms for capturing complex dependency con-
straints that must be respected during product derivation.
These constraints can include resource constraints. Sin-
nema points out that complex runtime interactions can make
the modeled knowledge of resource consumption imprecise
and thus not ideal to use for automated product derivation
through formal mechanisms. Although Scatter could be
used to attempt to work with these types of imprecise val-
ues, it is geared towards resource constraints that do not
suffer from runtime interactions. Specifically, Scatter isde-
signed to be used with resources, such as the bandwidth or
device storage space consumed by the disk footprint of a
media file, that are not variable. Scatter also provides an
automated configuration process that can handle these con-
straints whereas COVAMOF is focused on manual model-
ing processes.

Many complex modeling tools are available for describ-
ing and solving combinatorial constraint problems, such
as those presented in [28, 14, 35, 11, 20]. These mod-
eling tools provide mechanisms for describing domain-
constraints, a set of knowledge, and finding solutions to
the constraints. These tools, however, do not provide a
high-level mechanism to capture non-functional require-
ments and PLA composition rules geared towards mobile
devices. These tools also do not provide a mechanism for
incorporating data from a device discovery service. These
papers also have not addressed how PLA design decisions
influence variant selection speed.

Adaptation frameworks for mobile devices. Chisel [22]
provides an adaptive application framework for mobile de-
vices based on policy-driven context aware adaptation. This
framework allows a running application to adapt to han-
dle resource and other context-based changes in its envi-
ronment. Although Chisel allows an application to adapt to
a particular device’s characteristics, it is not sufficientfor
PLA variant selection for the following reasons

• Chisel assumes that the core functionality of the appli-
cation does not change via adaptation, which is not the
case in the scenarios we describe, where PLA variants
may share components but function very differently.

• Chisel is based on explicit developer-provided poli-
cies that describe how to adapt to changing conditions.
These policies are produced manually and thus may
not provide optimal or even good adaptation proce-
dures to handle variant selection based on the envi-
ronment. In contrast, Scatter automates and optimizes
component selection. Automating component selec-
tion is key when hard constraints, such as resource
consumption, are present.
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• Scatter’s optimization algorithms provide guarantees
on solution quality, whereas Chisel’s manually pro-
duced policies give no guarantee of solution quality.

• Scatter does not assume that the functionality of the
variants is identical and can thus handle the selection
of multiple variants to deploy.

In [23], Lemlouma et. al, present a framework for adapt-
ing and customizing content before delivering it to a mobile
device. Their strategy takes into account device preferences
and capabilities, as does Scatter. The approaches are com-
parable in that each attempts to deliver customized data to
a device that handles its capabilities and preferences. Re-
source constraints are a key difference that makes the selec-
tion of software for a device more challenging than adapting
content. Unlike [23], Scatter not only provides adaptation
for a device, but also optimizes adaptation of the software
with respect to its provided PLA cost function.

Product-line modeling and variant derivation tools.
The Eclipse Feature Modeling Plug-in (FMP) [7] provides
feature modeling capabilities for the Eclipse platform. FMP
allows developers to build feature models to capture the
rules governing product-line configuration. FMP can also
enforce product-line constraints as developers build vari-
ants. Although FMP can automatically map from Java
code to feature models, FMP does not provide a mech-
anism for discovering and mapping mobile device capa-
bilities to product-line models or observing resource con-
straints. FMP also requires modelers to construct a configu-
ration manually, whereas Scatter automatically derives con-
figurations using a constraint solver without user interven-
tion. Scatter provides both of these missing critical capa-
bilities. We are collaborating with the FMP research group
to apply Scatter’s on-demand probing techniques to other
domains [39].

Pure::variants [9] is a commercial tool for model-
ing product-lines using feature models. Developers use
Pure::variants to describe a product-line and the constraints
between features. Given a feature model, Pure::variants
can derive values for any remaining unconfigured features
that are mandated by the product-line. Unlike Scatter, how-
ever, Pure::variants does not take into account resource con-
straints. Moreover, Pure::variants is designed to be used
at design-time by a modeler and does not provide sup-
port for automated target discovery and variant selection.
Pure::variants requires a human to manually produce a con-
figuration and Scatter performs configuration autonomously
with a constraint solver.

Big Lever Software Gears [10] is another widely used
commercial product-line modeling tool. Software Gears
posesses similar capabilities to Pure::variants. Develop-
ers describe the rules governing the variable parts of their

product-line and Software Gears can derive values for reqi-
ured but unconfigured variabilities. Software Gears does
not consider resource constraints or have a mechanism
for performing automated autonomous variant selection as
Scatter does.

9 Concluding Remarks

Product-line architectures (PLAs) can be used to de-
scribe the rules for reusing software components on differ-
ent mobile devices. Each time a new device is encountered
and an application must be assembled from existing soft-
ware components, a new application variant can be derived
from a product-line for the device’s capabilities. Mobile
software is often deployed using over-the-air provisioning,
which requires online selection of reusable components for
an application variant. As discussed in Section 3, existing
reuse approaches do not address the unique challenges of
dynamic software reuse for mobile devices.

Dynamically assembling reusable software components
into an application for a mobile device is a challenging do-
main that can benefit from automation since there are too
many complexities and unknown device characteristics to
account for all possibilities manuallya priori. Constraint-
solver based automation is a promising technique for on-
line variant selection. This paper describes how our Scatter
tool supports efficient online variant selection. By carefully
evaluating and constructing a PLA selection model based on
the design rules presented in Section 7, developers can alle-
viate the effects of worst-case solver behavior. As shown in
Section 6, a constraint-based variant selection approach that
includes resource constraint considerations can provide suf-
ficient performance to dynamically select variants for over-
the-air provisioning of mobile software.

From our experience developing and evaluating Scatter,
we learned the following lessons:

• Although push and pull capability gathering mod-
els are commonly used for over-the-air provisioning,
neither is ideal for automated software reuse from
product-lines that leverage context information. On-
demand probing—which is a hybrid of the push and
pull models described in Section 4.4—can be used to
obtain the information completeness that a push model
provides while simultaneously minimizing human in-
teraction.

• Resource constraints can be incorporated into an,
constraint-based approach to reusing software, but are
time consuming to solve as we showed in Section 6.
Product-line designers should therefore attempt to de-
sign their constraints to only consider resource con-
straints when absolutely necessary, such as when a de-
vice could support multiple possible component con-
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figurations but not all components can fit in the de-
vice’s memory.

• Although Scatter can automate variant selection, it
works best when the constraints on a PLA’s reusable
software components are crafted with performance in
mind. An arbitrary PLA may or may not allow for
rapid variant selection. PLA’s that will be used in
conjunction with an automated variant selector should
therefore be constructed carefully to avoid perfor-
mance problems. As described in Section 7, the most
valuable strategies involve exploiting points of course-
grained variability, such as packaging variability or
service classes, to allow the variant selector to prune
away large numbers of possible variants.

• Dynamically packaging reusable software components
into an application is not easy. Other research [5]
has evaluated different mechanisms to manage pack-
aging and compilation variation, however, building a
dynamic packaging mechanism still takes work. In fu-
ture work, we plan to evaluate different strategies of
dynamically packaging application variants derived by
Scatter.

• When a PLA for a mobile device is properly speci-
fied with good constraints, Scatter can solve models
involving 50 components in∼100ms, as shown in our
experiments in Section 6.5. This performance should
be adequate for many pervasive environments, partic-
ularly when device signature and variants are cached
to eliminate repetitive solving for known solutions. In
future work, we intend to test Scatter with larger mod-
els and evaluate more characteristics of PLAs that can
be used to reduce variant selection time.

• Developers normally focus on the functional variabil-
ity in a product. It is also important to evaluate non-
functional variability, such as packaging variability.
As shown in Section 7, although a product may have
high functional variability, it can be significantly less
variable with respect to the number of ways it can be
packaged and deployed or in terms of its memory foot-
print. These non-functional aspects can be exploited to
reduce the complexity of automated variant selection.

Scatter is available in open-source form fromwww.sf.
net/projects/gems.
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