
Automating Deployment Planning with an Aspect Weaver

Jules White and Douglas C. Schmidt

Vanderbilt University

{jules,schmidt}@dre.vanderbilt.edu

Abstract

Deployment has emerged as a major challenge in distributed real-time

and embedded (DRE) systems. Application deployment planners must

integrate numerous functional and non-functional constraints, such as se-

curity and performance, to produce correct deployment plans. The numer-

ous deployment constraints and their complex interactions make manually

deducing correct/efficient deployments hard.

This paper presents four contributions to the study of automated de-

ployment processes. First, it shows that a deployment planner and an as-

pect weaver accomplish the same abstract problem—i.e., mapping items

from a source set (advice or components) to items in a target set (join-

points or nodes) according to a set of rules—and uses this abstract def-

inition of deployment planning to automate it with an aspect weaver.

Second, this paper describes how the ScatterML domain-specific aspect

language incorporates complex global constraints for specifying deploy-

ment pointcuts. Third, we show how aspect weaving can be reduced to a

constraint satisfaction problem and a constraint solver used to deduce a

correct weaving. Fourth, we show that phrasing weaving as a constraint

satisfaction problem and automating deployment through a constraint

solver based weaver yields several key benefits, ranging from guaranteed

deployment plan correctness to bounds on worst case solution quality.

1

1 Introduction

Deployment planning is the process of building an architecture to associate soft-

ware components with computational nodes. This process has emerged as a key

challenge in both modern enterprise and distributed real-time and embedded

(DRE) systems [11]. Enterprise and DRE systems are increasing developed

using component-based software that allows the assembly and deployment of

reusable software artifacts into distributed applications. The intricate details of

communicating between components is encapsulated by the middleware layers

underlying the component-based application. By automatically handling the

low-level communication details of wiring components together, middleware al-

lows developers to deploy their components onto multiple physical nodes and

in many different configurations without changing application functionality or

rewriting code.

A challenging dimension of deployment, however, is that certain non-functional

concerns, such as performance and security, pull the deployment solution (de-

ployment plan) in different directions, as shown in Figure 1. For example, given

Figure 1: Complex Opposing Concerns in Deployment Planning

two components to deploy, if one component must be placed in a de-militarized

zone outside the protection of a firewall and the other component is collocated

2

with it, the application’s throughput may improve at the cost of increasing its

attack surface [24]. In this example, deploying to meet performance concerns

can compromise security. As shown in Section 3, it is hard to manually deploy a

group of components that meets a complex set of non-functional requirements.

A key goal of an aspect weaver is to map items from a source set (the set

of crosscutting advice) to elements in a target set (the set of joinpoints in an

application) [2, 21]. The aspect weaver produces this mapping via a series of

rules (e.g., patterns matching the names of invoked methods) that determine

which source item (advice) should be mapped to which target item (joinpoint).

This paper shows how the problem of matching items from a source set to a

target set appears in the domain of deployment planning.

In most aspect weaving domains, the aspect weaver must map the source

items to an extremely large set of target items (the numerous method and con-

structor calls in an application). Moreover, applications often use late-binding

and the aspect weaver does not know the exact items in the target set until

runtime. Finally, the aspect weaver may never know the entire set of target

items, only the items that have been encountered (e.g., the set of methods, etc.

that have been invoked). Since the aspect weaver does not know the contents

(and may never know them) before runtime, it is extremely hard to honor global

constraints and nearly impossible to perform optimization. Most weavers use

patterns, such as regular expressions, to match advice to joinpoints on the fly.

This paper shows how an aspect weaver can be used as a deployment planner

by building a domain-specific aspect language (DSAL) [27, 13, 28] for specify-

ing deployment rules as pointcuts. Existing pointcut languages, however, are

not well-suited for specifying the complex global constraints, such as resource

constraints, that are typical in deployment since they are designed for mapping

advice to an indefinite set of joinpoints. In the domain of deployment planning,

3

there is a known and finite set of target joinpoints.

This paper shows how aspect weaving can be mapped to a constraint sat-

isfaction problem (CSP) [8, 30, 25] and how a constraint solver can be used to

derive a correct—and in some cases optimal—association of advice to joinpoints.

We have used this CSP reduction of weaving to create a constraint solver-based

aspect weaver, called Scatter, that can incorporate complex global constraints.

Scatter takes an instance of a DSAL for specifying crosscutting deployment con-

cerns as input and outputs a deployment plan that is guaranteed to be correct

with respect to both global and local deployment rules (and may be optimal).

Building an aspect weaver based on a constraint solver is hard since it re-

quires performing a complex transformation of the pointcuts into a format, such

as a system of linear equations, used by a constraint solver. A key attribute

of our solution that simplifies its use by domain-experts is our DSAL, called

ScatterML, that can specify pointcuts and overall global weaving constraints.

We have also developed a series of model transformations that reformulate Scat-

terML pointcuts as a CSP. ScatterML helps bridge the semantic gap between

the existing pointcut terminology familiar to domain experts and the CSP nota-

tion of a constraint solver. In particular, ScatterML provides a general-purpose

set of language primitives that allow it to capture a wide variety of pointcut

types.

The solution presented in this paper significantly extends our previous work

developing constraint solver weaving and configuration solutions, which focused

on techniques and tools for deploying software components to electronic con-

trol units (ECUs) in automobiles [26, 32], Enterprise Java Beans to application

servers [31], and Java 2 MicroEdition (J2ME) components to mobile devices [33].

The experience we gained from developing model-driven and aspect-oriented de-

ployment tools for these domains enabled us to identify the similarities between

4

aspect weaving and deployment planning. We have leveraged these similarities

to model deployment constraints as pointcuts and automate deployment plan-

ning with a constraint solver-based aspect weaver. This paper generalizes our

prior experience and shows

• The challenges of developing a DSAL for specifying deployment concerns,

• How the ScatterML DSAL addresses these language design challenges,

• The challenges of weaving using an instance of ScatterML,

• How aspect weaving can be mapped tod to a CSP, and

• How our weaving engine uses a constraint solver to tackle the combinato-

rial problems of aspect weaving when global constraints are present.

Throughout the paper, we refer to our constraint-based weaver as Scatter and

our DSAL as ScatterML.

The remainder of this paper is organized as follows: Section 2 shows how

aspect weaving and deployment planning can be mapped to the same abstract

problem; Section 3 describes the challenges of developing a DSAL to specify

crosscutting deployment concerns and how ScatterML addresses them; Section 4

analyzes empirical results that compare a manual deployment planning process

to a Scatter-based planning process; Section 5 compares our work on ScatterML

with related research; and Section 6 presents concluding remarks.

2 Aspect Weaving for Deployment

This section evaluates the process of aspect weaving [2] and shows how the

process of associating advice with joinpoints is similar to deriving a deployment

of components to nodes (a deployment plan). By describing the similarities

between the two processes we show how deployment planning can be automated

5

with an aspect weaver, which enables developers to leverage aspect-oriented

programming [22] techniques to simplify deployment planning. The section also

motivates why conventional pointcut languages are not sufficient to specify all

the rules needed to guide a deployment planning process.

2.1 Comparing Deployment to Aspect Weaving

Aspect-oriented programming (AOP) associates reusable crosscutting software

logic (advice) with joinpoints (execution points in a program), as shown on

the right-hand side of Figure 2). Advice is associated with a joinpoint through

Figure 2: Overview of Aspect Weaving

a pointcut specification (left-hand side of Figure 2). The pointcut specifies

rules or patterns to match a set of advice to joinpoints. The goal of an aspect

weaver is to merge the pointcut specification, advice, and application code into

an executable program that invokes the correct advice (based on the pointcut

specifications) when it reaches a given joinpoint.

At an abstract level, the goal of an aspect weaver is to take two sets (the set

6

of advice and the set of joinpoints) and produce a mapping of elements from the

source set (the advice) to elements in the target set (the joinpoints). Developers

guide the aspect weaver by providing it with a set of rules to determine if an

element in the source set can be associated with an element in the target set.

The association rules are specified as pointcuts or assertions that must hold true

for the target joinpoint.

Pointcuts use assertions (typically patterns, such as regular expressions) that

are checked against the properties of a joinpoint. For example, a typical pointcut

will match a pattern against the name of a Java method. For example, the

AspectJ [21] pointcut specification:

pointcut os() : call(void Node.setOS(String))

before() : os() {

//do something

}

would match against any method call to a Node class’ setOS method. This

rule specifies a type to match against Node and a method to match setOS. The

basic format is to specify a pattern that can be matched against the properties

or attributes of a joinpoint to determine if a specific set of advice should be

executed. In this case, the pointcut specification is being matched against the

class name and method signature of the joinpoint.

The goal of deployment planning is to derive a valid mapping of software

components to nodes, as shown in Figure 3. A deployment plan must meet

functional constraints, such as having the appropriate OS for each component

on its hosting node, and non-functional constraints, such as being able to pro-

cess a minimum number of requests per second. Whereas aspect weaving is an

automated process, deployment planning has historically been a manual pro-

7

Figure 3: Overview of Deployment

cess [10].

Deployment planning also fits into the abstract problem definition of finding

a valid association of items in a source set with items in a target set based on a set

of rules. With deployment, the source set contains the software components, the

target set contains the available nodes, and the rules are specified as assertions

on the functional and non-functional properties of the nodes. For example, in

Enterprise Java Beans (EJBs) [29], a deployment planning process assigns beans

to nodes and specifies which EJBs, servlets, and other related resources should

be placed on which servers (left-hand side of Figure 3).

In AOP, an aspect weaver automates the process of associating advice with

joinpoints based on a set of pointcut pattern expressions. With deployment

planning, however, an application deployer manually derives the correct place-

ment of components on nodes to satisfy the various crosscutting concerns of the

application, such as security and performance. Planning the deployment of com-

ponents manually is tedious and error-prone and has been shown to be a major

8

source of mistakes leading to system failure and down-time [10]. In particular,

manual deployment planning creates a number of significant problems:

• The correctness of manually planned deployments is not guaranteed with

respect to deployment constraints, e.g., a developer may assign one or

more components to nodes that have the wrong supporting libraries or

insufficient memory.

• Manual planned deployment provides no guarantee of the deployment op-

timality, e.g., a deployment planner may create a solution that uses far

more nodes than is acutally necessary.

• Manual deployment is time-consuming and expensive due to the high com-

plexity of deducing a deployment plan that adheres to the numerous cross-

cutting concerns of an application.

By viewing deployment planning as a process for associating items from a

source set with items in a target set, an aspect weaver can be used to automate

the process of assigning components to nodes. Automating deployment plan-

ning with an aspect weaver helps address the three challenges outlined above.

First, as we show in Section 3.3, a constraint solver can be used by a weaver

to guarantee that a weaving solution respects the deployment constraints (ad-

dressing Challenge 1). Second, as discussed in Section 3.3, a constraint-solver

based weaver can use different optimization and approximation algorithms to

achieve different lower bounds on the solution optimality and upper bounds on

the time spent weaving (addressing Challenge 2). Finally, automation eliminates

considerable manual planning effort [31] (addressing Challenge 3).

9

2.2 Using Pointcuts to Specify Deployment Rules

Pointcut expressions can be used to specify some types of deployment rules. For

a simple local constraint on a component’s deployment, a pattern can be used

to match components to nodes based on attribute patterns:

pointcut os() : at(Node OS==Windows)

at() : os() {

//specify some Windows components to deploy

}

In this example, we created a pattern that matches when a node is encoun-

tered (at(Node...)) and the node has a Windows OS at(...OS == Windows).

Later, we define a group of components that should be deployed to the node

if the pattern matches at() : os().... Using this simple pattern matching strat-

egy, an aspect weaver can automatically choose components for nodes to satisfy

numerous crosscutting deployment constraints. For example:

pointcut os() : at(Node OS==Windows && Firewalled=true && CPUModel=Xeon)

at() : os() {

//specify some sensitive computationally intensive

//components to deploy

}

In this case, the rule is associating some security-sensitive components with

nodes that are firewalled, have a Windows OS, and have a powerful Intel Xeon

processor. As this pointcut pseudo-code shows, pointcuts can capture deploy-

ment rules.

10

3 Challenge - Developing a DSAL for Specifying

Crosscutting Deployment Concerns

Although it may appear that a slight modification of an existing pointcut lan-

guage will suffice to allow deployment planners to express deployment rules and

automate deployment planning with a aspect weaver, there are the following

challenges to building a custom pointcut language for deployment:

Challenge 1 - Existing pointcut languages are designed to express

mapping rules specifically for Java, C++, or other third generation

programming languages. One goal of building a DSAL to specify deploy-

ment planning concerns is to provide a series of language abstractions that can

be reused across application domains. Each domain, however, typically is con-

cerned with different types of elements.

Most existing AOP pointcut languages, such as the Josh pointcut language [6],

operate on a single type of source and input set (an advice set and a set of ex-

ecution points in an application). AspectJ associates advice with points in

the control flow of a Java application(e.g., method invocations, constructor in-

vocations, etc.). With deployment, the application domain varies and what

constitutes the source set and the target set varies.

Automotive systems are focused on associating micro-controller code to

ECUs, while enterprise Java systems are concerned with mapping EJBs to appli-

cation servers. Designing a DSAL on a per-application domain basis to handle

the variations in set types is both expensive and time consuming. At the same

time, however, DSAL designers do not want to expose automotive developers

to concepts, such as application servers, that are irrelevant to their domain.

Developing a flexible set of language elements is tricky.

11

Challenge 2 - Existing pointcut languages allow patterns and other

matching constraints based on the properties of the elements of a

single type of target set. The constraints or concerns that guide the de-

ployment of components vary greatly across domains. Again, in most pointcut

languages, such as AspectJ’s, the attributes of the joinpoints are fixed to the

domain of Java execution flows and are limited to concepts such as the contain-

ing class type, signature of the method invoked, etc. Regardless of the type of

Java application being developed, the AspectJ attributes are relevant. In the

domain of deployment, the attributes that are important to each domain vary

and thus a fixed set of attributes (like AspectJ uses) will not suffice.

For example, when deploying Java Midlets to mobile devices, screen size,

JVM stack size, device memory, and installed JRE libraries are important to

consider. For enterprise Java applications, firewalls, external library versions,

and application server configuration are examined to derive a deployment. In

the automotive domain, domain experts analyze the ECU memory, safety prop-

erties (such as distance from the perimeter of the car), and connected busses.

Producing a language that allows domain experts to capture a wide variety of

requirement types in a meaningful format across application domains is hard.

Challenge 3 - Existing pointcut languages do not provide facilities

for specifying global constraints governing the matching of advice to

joinpoints. Deployment involves many concerns, such as performance, that

typically involve global constraints that are not addressed by current pointcut

languages. For example, if two components are collocated on the same node, the

latency on calls between the components is reduced. At the same time, however,

placing the components on the same node increases the amount of memory that

is consumed on the node. A typical constraint on a deployment would be that

for all nodes, the memory requirements of the components deployed to a given

12

node do not exceed its available RAM. The various global constraints pull the

solution in different directions and make it hard to find a valid solution.

Most pointcut languages are not designed to specify these types of global con-

straints because they must quickly match items against an indefinite target set at

runtime. For example, even though some poincut languages may offer generic

pointcut specification mechanisms such as queries [12] across the target set,

these still have the potential for reasonable execution time at runtime against

an arbitrary sized target set. Some pointcut languages, such as FOAL [23], have

explored adding time-based constraints to pointcuts (e.g., pointcut A is applied

after pointcut B), but these languages do allow for global constraints on the of

mapping source and target items – only on when the mapping occurs.

In deployment, if a component is matched to a node, it may subtract from

the memory available on the node and change the future matches that can be

made to the node. Matching a pointcut may also affect component placement

due to safety concerns, such as “the anti-lock braking system and the steering

control cannot be deployed to the same ECU.” Although components may be

functionally oblivious to where they and other components are deployed, they

are often non-functionally affected by deployment locations.

3.1 ScatterML

Traditional pointcut languages are geared towards specifying methods for match-

ing advice to joinpoints in a program’s execution flow. We have developed

a DSAL for capturing crosscutting deployment constraints as pointcuts. The

pointcut specification is then used by our deployment weaver, called Scatter, to

determine how to associate items from a source set (advice, components, etc.)

with items in a target set (joinpoints, nodes, etc). We call our DSAL ScatterML.

ScatterML leverages the existing pattern matching pointcut approach for

13

specifying the typical local deployment constraints on a component, such as the

OS it requires, application server vendor, and available database connections.

For global constraints that do not fit into the pattern matching paradigm, Scat-

terML provides an extended pointcut specification mechanism that is used by

a constraint solver. This extended mechanism is discussed in Section 3.3 and

addresses Challenge 3 from Section 3.

The ScatterML language allows developers to associate mapping rules (point-

cuts) with components, advice, or other source set items. The pointcuts are

represented as constraints that must be matched by the node, joinpoint, or

other target element type that a source item is mapped to. ScatterML has

been implemented both as a textual DSAL (which we use for the examples

provided) and as a graphical modeling language built on top of the Generic

Eclipse Modeling System (GEMS) [34], a part of the Eclipse GMT project. The

graphical modeling language uses feature modeling [19, 9] notations and model

transformation [5] to compile the graphical specifications into ScatterML tex-

tual specifications that can be leveraged by the Scatter deployment engine. A

screenshot from the graphical binding of ScatterML is shown in Figure 4.

Figure 4: The Graphical Implementation of ScatterML in GEMS

14

ScatterML allows each target item to have an arbitrary set of attributes.

For example, a node may have OS, RAM Amount, and CPU Type attributes.

Pointcut rules are specified as constraints on the attributes of a node. For

example, the following ScatterML pointcut specification creates a pointcut that

matches target items with the attributes OS and InternetAccessible and with

attribute values of ”SELinux” and ”false”, respectively:

SecureLinuxComponents {

OS=Linux;

InternetAccesible=false;

}

When the SecureLinuxComponents pointcut is matched against a node, that

node is added to the list of acceptable deployment locations for the components

associated with SecureLinuxComponents.

3.2 Addressing the Challenges of Developing a DSAL for

Deployment Pointcuts

The ScatterML DSAL example for specifying crosscutting deployment concerns

addresses the challenges from Section 3 in the following ways:

Challenge 1 → Solution: Allow arbitrary sets of source/target element

types through flexible naming and a pluggable association mechanism.

The SecureLinuxComponents group can be a single component or set of com-

ponents that are associated with the crosscutting constraints. The specifics

of what constitutes the SecureLinuxComponents group is application domain

dependent. In the domain of deploying components to mobile devices, the Se-

cureLinuxComponents could resolve to a set of Java Midlets. If the domain is

Enterprise Java, the components could resolve to EJBs and their associated En-

15

terprise Archive Resource files. ScatterML does not specify what the names of

different deployment groups map to. The association of names to artifacts (e.g.,

AspectJ advice, Java Midlets, or EJBs) is built for each application domain by

creating a small adapter component for the Scatter mapper that associates the

appropriate artifacts to deploy with the named group.

The names of the groups can vary to match whatever application domain

the mapping concerns are being modeled for. The mapping engine only needs

to have a mechanism for retrieving the correct deployment artifacts for a given

name. Moreover, what the components are being associated with is not specified

in the mapping. The mapping specifies the properties of the target item but

not whether it is a mobile device, EJB application server, or automotive ECU.

Again, an adapter is used to perform the actual mapping function (e.g., inserting

a piece of advice into a Java application, adding an EJB to a deployment descrip-

tor). The terminology of the ScatterML DSAL therefore supports application

domain-specific concepts through the use of arbitrary attribute and component

group names. The implementation of the mapping is provided through the user

of domain-specific adapters.

The following four examples show the application domain-independence of

ScatterML:

//Example 1. Java Advice to Joinpoints

TransactionPointcut {

ContainingClass=com.my.bank.Account;

InvokedMethod=transfer;

Amount > 100;

}

// Exampe 2. EJB Applications

AccountEJB {

16

ApplicationServerVendor = JBoss;

JVM_Version > 1.5;

HasAccountDatasource = true;

}

// Example 3. Mobile Devices

FoodServicesMidlet {

JVM_Configuration = CDC;

JVM_Profile = MIDP;

MIDP_Version >= 1.1;

Device_Display_Width >= 128;

Device_Display_Height >= 256;

}

// Example 4. Automotive Software to ECUs

AntiLockBrakingControl {

DistanceFromCarPerimeter >= 0.75m;

ConnectedToBrakeActuator = true;

}

Example 1 creates a pointcut for Java advice that matches the invocation of

an Account class’ transfer method when it is called with an Amount param-

eter greater than 100 dollars. Example 2 associates an EJB with crosscutting

concerns related to the version of the Java Virtual Machine (JVM) and vendor

of the application server on the target node, as well as whether or not the tar-

get has a connection to the Account datasource. Example 3 specifies concerns

relating to the configuration and profile of a JVM on a mobile device, as well

as its display size. Example 4 shows a simple safety concern for the distance

of a target ECU from the perimeter of the car. Moreover, the ECU must be

connected to the brake actuators.

17

Although domain-specific terminology is used in each example, the applica-

tion domains are shielded from each other. Ordinarily, these pointcuts would

be in separate files for each application domain and are shown together only for

comparison. Domain experts would only work with the files and notations for

their associated domain. Instead, existing approaches would need to develop a

DSAL for each domain to shield developers from the concerns of other domains.

Challenge 2 → Solution: Allow for constraints on arbitrary attribute/-

value pairs but require application domain-specific mechanisms for

obtaining attribute values. Pointcuts are built by specifying constraints on

the attributes of the items they are matched against. Constraints are specified

as an attribute name, a comparison (e.g. <,=), and a comparison value. The

attribute name can be an arbitrary name that has meaning in the target domain.

Similarly, the comparison value can be any value for which there is a known way

of applying the comparison operator to the value. This flexible attribute/value

architecture allows the creation of domain-specific constraints through the use

of domain-specific attribute names and values.

If there are a small number of target items, the values of attributes can be

assigned manually. If there are a large number of target items, automated probes

can be used to evaluate the target nodes and produce attribute/value pairs for

each node [31]. The only restriction on the names and types of attributes is

that there exist a method for applying the comparison operator to the type.

For example, the < operator should not be applied to strings since the mean-

ing is not well defined. Since ScatterML can handle arbitrary attributes and

attribute types, it allows domain experts to leverage the key domain-specific at-

tributes from their application domain. New operation types, such as matching

against regular expressions, can be plugged into Scatter and associated with a

new operator.

18

Challenge 3 → Solution: Create global constraint operators. As shown

in Section 2.2, existing pointcut models can be used to handle types of concerns,

such as security. Deployment, however, involves many concerns, such as per-

formance, that typically involve global constraints that are not addressed by

current pointcut languages.

For example, if two components are collocated on the same node, the latency

on calls between the components is reduced. At the same time, however, placing

the components on the same node increases the amount of memory that is

consumed on the node. A typical constraint on a deployment would be that

for all nodes, the memory requirements of the components deployed to a given

node do not exceed its available RAM. The various global constraints pull the

solution in different directions and make it hard to find a valid solution.

To address the limitations of applying existing pointcut languages to de-

ployment planning, ScatterML includes four new global constraint operators

commonly needed in deployment (and may useful in weaving for other domains

too) that are summarized in Table 1. The operators are: Requires, Excludes,

Select, and ”−”. The Requires, Excludes, and Select operators are used to

govern the mapping of two source items to the same target item. For exam-

ple, the following pointcut uses the Excludes operator to implement a safety

constraint and ensure that the AntiLockBrakingSystem components are not de-

ployed on the same node (ECU) as the SteeringControlSystem components:

AntiLockBrakingSystem {

DistanceFromPerimiterOfCar > 0.75;

Excludes: SteeringControlSystem;

}

The Requires operator can be used to guarantee the opposite, i.e., that two

items are always placed together. The Select operator is used for constraints

19

Operator Applied To Description
Requires one or more other source items Ensures that all of the

specified source items are
mappedto the same target
item

Excludes one or more other source items Ensures that none of the
specified source items are
mappedto the same target
item

Select[MIN..MAX] a cardinality expression and
one or more other source items Ensures that at least MIN

and at most MAX of the
specified source items are
mapped to the same
target item

”−” an integer value and
an attribute name Ensures that the sum of the

”−” values on a given
attribute by a matched
set of pointcuts does
not exceed the attribute
value on the
target item

Table 1: ScatterML Global Pointcut Constraints

involving the cardinality of a set of items placed with each other. For example,

this pointcut allows either the SteeringControlSystem or the TractionControl-

System to be deployed with the AntiLockBrakingSystem:

AntiLockBrakingSystem {

DistanceFromPerimiterOfCar > 0.75;

Select: [0..1],SteeringControlSystem,TractionControlSystem;

}

The Select operator takes a cardinality expression (MIN...MAX) and tells

the weaver that in order to match the source item to a target item, that at least

MIN and at most MAX of the source items from the select statement must

also be mapped to the target item.

The ”−” operator is used to specify resource consumption values for items

and enforce resource constraints. Given a set of pointcuts matched to a node,

the sum of the ”−” attribute constraints of the matched pointcuts cannot exceed

the value of that attribute on the target item. The ”−” operator can be used to

20

specify constraints, such as the sum of the memory consumed by the components

deployed to a node cannot exceed 10 MB. For example, the following ScatterML

rule ensures that if both the AntiLockBrakingSystem and BrakeActuators are

deployed to the same node, the node will have at least Memory ≥ 10:

AntiLockBrakingSystem {

DistanceFromPerimiterOfCar > 0.75;

Memory - 5;

}

BrakeAcuators {

Memory - 2;

}

3.3 Weaving with ScatterML Pointcuts

Adding new operators to specify global constraints is not in itself sufficient to

address the problems of applying existing weaving techniques to deployment.

Most existing weavers do not honor global constraints since they use a pattern

matching based approach to pair advice with joinpoints at runtime. Solving

complex global constraints is time-consuming and usually not feasible (nor de-

sired) at runtime. Using a runtime pattern matching approach makes sense

in most applications where there is either not an enumeration of all joinpoints

ahead of time (you don’t know what components will be loaded) or there are too

many joinpoints to consider (an application usually has a significant number of

method and constructor invocations).

With deployment planning, there is a known and limited set of joinpoints

that are being matched against. This allows global constraints to be incor-

porated and dealt with at design-time. To make it possible to use an aspect

weaver as a deployer, we implemented a new weaving technique that adheres

to not only local pattern-based pointcuts but global constraints as well. The

21

weaving technique uses a constraint solver to derive a solution to the abstract

mapping problem (outlined in Section 2.1) that meets both the local and global

mapping constraints. The solution produced is a pre-calculated table that can

be used at runtime to lookup the target items that a source item should be

mapped to. The weaver can be used to map components to nodes, match ad-

vice to joinpoints, and other set types.

Our prior work [26] on using an aspect weaver for deployment focused on the

use of Prolog as an aspect weaver. This paper examines a previously unexplored

aspect of weaving that uses a Java-based constraint solver called Choco [1] to

perform weaving while honoring global constraints. Below, we present our for-

mulation of constraint-aware aspect weaving as a Constraint Satisfaction Prob-

lem (CSP). The mapping also incorporates an adaptation of our techniques for

handling resource constraints on feature models that we outlined in [31].

3.4 Mapping Aspect Weaving to a CSP

A CSP is a set of variables and a set of constraints over these variables. A con-

straint solver derives a labeling (set of values) for the variables that simultane-

ously satisfies the set of constraints. For example, ”a+b < c” is a CSP involving

the variables a, b, and c. A correct labeling of the CSP is a = 1, b = 1, c = 3.

To map aspect weaving to a CSP, we create a matrix of variables where

the columns are the items in the target set (e.g., joinpoints) and the rows are

the source items (e.g.,advice). We call this matrix the weaving matrix. The

value at a position < i, j > is 1 if the ith item should be mapped to the jth

joinpoint and zero otherwise. For deployment weaving, the rows represent the

component groups and the columns represent the nodes. Each value in the

matrix is represented by the variable Wij . The weaving matrix is shown in the

bottom of Figure 5.

22

Figure 5: Reducing Aspect Weaving to a CSP and Generating a Weaving with
a Constraint Solver

The weaving matrix is supplemented with an attribute matrix. The rows of

the attribute matrix represent the different attributes that can be present on a

target item. The columns represent the target items. The value at a position <

i, j > is the attribute value of the ith attribute at the jth joinpoint. For example,

if the “RAM” attribute is the 2nd attribute in the matrix and “WindowsNode1”

is the 3rd target item, the value at < 2, 3 > is the value of WindowsNode1’s

RAM attribute. Each cell of the attribute matrix is represented by a variable

Aij . The attribute matrix is shown in the middle of Figure 5.

3.5 Mapping ScatterML to a CSP

The ScatterML pointcut specification is transformed into a set of constraints

over the W and A variables for the matrix cells. For example, the following

ScatterML fragment can be translated into a CSP for deriving a deployment

over two different ECUs (weaving matrix columns 0 and 1):

23

AntiLockBrakingSystem {

DistanceFromPerimiterOfCar > 0.75;

Excludes: SteeringControlSystem;

}

Assume that the DistanceFromPerimeterofCar attribute is the 0th attribute.

Moreover, assume that the AntiLockBrakingSystem is row 0 and the Steering-

ControlSystem is row 1. The ScatterML fragment is translated as follows:

(W00 = 1 → A00 > 0.75)∧ (W00 = 1 → W10 = 0)∧ (W01 = 1 → A01 >

0.75)∧ (W01 = 1 → W11 = 0)∧ (W00 + W01 = 1)

The (W00 = 1 → A00 > 0.75) specifies that if the AntiLockBrakingSystem

is deployed to ECU0, the DistanceFromThePerimeterOfCar attribute for ECU0

must be greater than 0.75. The constraint (W00 = 1 → W10 = 0) specifies that if

the AntiLockBrakingSystem is deployed to ECU0, then the SteeringControlSys-

tem is not deployed there as well. The next two constraints can be mapped back

to the original ScatterML in a similar fashion. The final constraint ensures that

the AntiLockBrakingSystem is never deployed in two locations. This constraint

can easily be removed or turned into a range to specify the minimum/maximum

number of joinpoints the component group can be matched against.

3.6 Solving the Weaving CSP

To solve for a valid labeling of the CSP, values must be filled in for the attributes

A00 and A01. These values can either be specified through and auxiliary input

file to Scatter that provides values for each ECU’s attributes, through static

analysis of the classes and methods of an application, or through probes that

evaluate the ECUs and extract their attribute values. This initial step of filling

in values for the attributes of the joinpoints is shown in the top of Figure 5.

Once the CSP has been produced and the values of the Aij variables set,

24

a constraint solver can be used to derive a labeling for the Wij variables. The

result of labeling the CSP will be a matrix that can be used to determine if

the ith source item should be mapped into the jth target item. The weaving

matrix can then be used to statically associate advice with joinpoints at com-

pilation, dynamically associate advice with joinpoints at runtime, or to assign

components to nodes during deployment.

3.7 Benefits of a CSP Weaving Model

Using a constraint solver to calculate a table for matching advice to joinpoints

provides several benefits. For example, the solution produced by the solver

(if one is found) is guaranteed to be correct with respect to both local and

global weaving constraints. Moreover, a solver can handle many complex global

constraints and large CSPs that would be infeasible to manage manually or with

a strictly pattern matching type approach. Solvers can also be used to produce

CSP labelings that maximize or minimize a function.

In the AntiLockBrakingSystem example from Section 3.5, the solver could

be asked to maximize the sum W00A00 + W01A01, which would have the effect

of placing the AntiLockBrakingSystem as far from the perimeter of the car as

possible. In cases where only a certain percentage of optimality is required, the

solver can use different approximation techniques to trade solution quality for

increased solving speed. The tradeoff, however, can be performed in a manner

to still guarantee a worst case bound on solution quality.

A key motivation for creating ScatterML was to provide a high-level domain-

specific language to specify constraints. Directly using the CSP formulation

shown in this section is tedious and error-prone. ScatterML raises the level

of abstraction used to specify mapping constraints and allows domain experts

to leverage the automated CSP approach to weaving. The Scatter deployment

25

engine automatically performs the transformation from ScatterML models to

CSPs.

An interesting effect of viewing aspect weaving as a specialized instance of

our abstract set mapping problem is that it can be used to show that product [7,

17] configuration from feature models can be viewed as a weaving activity. The

reduction of product configuration to CSP labeling provided by Benavides [4]

and the CSP model of deployment we have produced in other work is identical to

the CSP model for weaving. Advances in aspect weaving techniques using this

view of matching components or advice to joinpoints can therefore be applied

to both the domains of deployment and product configuration.

4 Empirical Results

Experimental design. To evaluate the benefits of using an aspect weaver

as a deployment planner, we developed a deployment scenario in the automo-

tive domain to apply both a manual and ScatterML-based deployment planning

process to. The automotive scenario encompasses the deployment of five compo-

nents to a set of three ECUs. The components and their associated constraints

are shown in the ScatterML pointcuts below:

ABS{

Memory - 1;

Requires:BrakeActuators;

}

BrakeActutators{

Memory 10;

FirmwareVendor = Z;

Firmware Version > 1.2;

}

26

SteeringControl{

Excludes: ABS;

Firmware Version > 1.6;

}

Infotainment{

Memory - 3;

}

GPSNavSystem{

Memory - 5

}

The ScatterML specification includes a set of pointcut rules. For example,

the ABS component must be deployed with the BrakeActuators component.

The SteeringControl component cannot be placed on the same ECU as the

ABS component. The components consume 1, 10, 0, 3, and 5 memory units

respectively. The components can be deployed to three ECUs with the following

capabilities:

ECU1

Memory = 9

Cost = 10

FirmwareVendor = Z

Firmware Version = 1.5

ECU2

Memory = 12

Cost = 16

FirmwareVendor = Z

Firmware Version = 1.9

ECU3

27

Memory = 15

Cost = 19

FirmwareVendor = Z

Firmware Version = 1.9

As can be seen from the listing of ECUs, each ECU has a cost associated

with it. The goal of the deployment planning process is to produce the minimum

cost deployment plan.

Analysis of manual deployment planning. First, we applied a manual

process to derive an optimal deployment plan. The steps required to perform

the deployment planning process are shown in Figure 6. In the first 16 steps,

each component is analyzed and a list of feasible hosting ECUs is produced. In

step 7, the feasible ECU lists for the ABS and BrakeAcutators are merged,

since they must be deployed together. In steps 19-36, the valid hosting ECUs for

the ABS+BrakeAcutators and the SteeringControl are used to enumerate and

check all remaining possibly valid deployment combinations for the components

(the deployment plans are specified as strings X,Y,Z,A,B that indicate the ABS

is deployed to ECUX, the BrakeActuators are deployed to ECUY, etc.). In

steps 37-46, the cost is calculated for each feasible deployment plan. Finally, in

step 47, the optimal cost deployment plan is chosen for each of the remaining

valid deployment scenarios.

Analysis of scatter deployment planning. After conducting the analysis

of manually deriving a deployment plan for the example application, we per-

formed the same analysis using Scatter. The set of steps to find an optimal

deployment plan with Scatter is shown in Figure 7. In steps 1-5, the pointcuts

for capturing the deployment rules for the five components are created. In steps

6-8, the attribute values of the target ECUs are specified. In step 9, the cost

28

Figure 6: Steps Required for Manual Deployment Planning

Figure 7: Steps Required for Scatter Deployment Planning

29

function to optimize is specified. Finally, in step 10, Scatter is invoked to de-

rive an optimal mapping of components to nodes based on the specified cost

function.

Analysis of results. Comparing the steps for the manual deployment plan-

ning process in Figure 6 and the Scatter process in Figure 7 shows that the

Scatter-based process requires 78.7% fewer steps. Scatter has a total of 9 steps

in which errors that are not guaranteed to be detected can be made (invok-

ing Scatter incorrectly will be flagged as an error). All 47 steps of the manual

process, in contrast, can potentially create errors that will not be detected.

To test the running time of Scatter on the example problem, we invoked

the Scatter weaver 1,000 times and recorded the average, worst, and best case

execution times. The average execution time of Scatter was 16ms. The worst

case execution time of Scatter was 34ms. The best case execution time of Scatter

was 1ms. To out perform Scatter, a human would need to perform the 47 steps,

outlined in Figure 6, in at most 34ms.

In summary, not only does Scatter save a large amount of deployment plan-

ning steps, but it also reduces the number of points at which errors can be

made. As the number of components and nodes increases, the savings produced

by Scatter will become even more significant. There will be componentsnodes

possible deployments to check with a manual process. Scatter sorts through

these possible deployments on the deployment planner’s behalf.

5 Related Work

This section compares our work on Scatter with related work on aspect-oriented

weaving and deployment planning.

30

5.1 AOP-based Related Work

The idea of using modeling and aspect weaving to weave deployment aspects

into Domain-specific Modeling Languages (DSMLS) is presented by Balasubra-

manian [3]. That work focuses on a different problem from Scatter, namely how

to improve the comprehensibility and help automate modeling tasks related to

the specification of a component-based system’s functional structure and and

the artifacts associated with the structures. Balasubramanian’s work helps to

automate the determination of what comprises the source and target sets that

must be woven in a deployment. In contrast, Scatter focuses on the complex

task of finding a way of mapping the source and target sets to each other. More-

over, their approach relies on a weaving engine, called C-Saw that does not have

Scatter’s ability to capture or solve global weaving constraints. Scatter and Bal-

asubramanian’s work are complementary in that Balasubramanian’s work can

be used to specify and manage the source and target sets through models and

C-Saw aspect weaving, while Scatter can be used to specify mapping rules and

deduce complex mappings for the source and target sets.

Gray et al. [16] present research showing how aspect-orientation can be used

to reduce tangling and improve model quality in model-driven development.

The techniques of capturing constraints as crosscutting concerns and associat-

ing them with model components is closely related to the ideas of capturing

deployment concerns and associating them with component groups. A key dif-

ferentiator between the two approaches is that Scatter is designed to perform

constraint-aware weaving with the constraints whereas the goal of Gray’s ap-

proach is to improve model quality and reduce tangling. Gray’s approach does

not provide deployment weaving based on global constraints as Scatter does.

In [14], France et al. layout a framework for composing aspects and deter-

mining if the composition has errors. The technique proposed by France et al. is

31

not focused on deployment but has similar goals of allowing developers to create

automated mechanisms for composing and ensuring the correctness of aspects.

Scatter and Scatter allow aspects to be composed along with a model of com-

ponents and nodes to create a deployment plan. Whereas France et al. propose

using testing to check for correctness, the Scatter approach uses a constraint

solver to guarantee that the derived composition is correct. Moreover, the Scat-

ter approach is specifically designed to handle concerns related to deployment,

such as resource constraints and dependencies.

Klose et al. [23] present an aspect language called FOAL that transforms

program traces into Prolog knowledge bases and specifies pointcuts as conditions

over the traces. FOAL is focused on providing temporal constraints between

pointcuts (e.g., advice A is applied before advice B). Although FOAL allows for

a form of context-aware matching of pointcuts, the constraints are based on time.

Scatter focuses on allowing constraints based on the structure and resources of

joinpoints, which is a requirement for using an aspect weaver for deployment.

Moreover, as Klose points out in their paper, they have no known application

for their technique. In contrast, Scatter has clear application domains and also

provides the ability to perform optimization, which FOAL does not.

5.2 Deployment Planning Related Work

Ivan et al. [18] present an AI-based deployment planning engine. Ivan’s work al-

lows the specification of similar constraints to Scatter. Ivan’s planner is focused

on runtime migration of services closer to a client and thus does not perform

optimization. In contrast, Scatter is a design-time tool and can perform opti-

mization of deployments based on a complex cost function.

Kichkaylo et al. [20] present an extension of Sekitei AI planning to find opti-

mal resource-based deployment plans for components. Kichkaylo’s work labels

32

available resources, such as network bandwidth, with discrete levels and indica-

tions if they can be upgraded or downgraded. Kichkaylo’s planning techniques

are designed to improve the placement of components to nodes as resource avail-

ability changes. Whereas Kichkaylo is primarily concerned with resource-based

constraints, Scatter is designed for deriving deployments when there are a high

level of dependency, platform, security, and other hetergeneous constraint types.

Moreover, Scatter is geared towards design-time deployment planning and op-

timization whereas Kichkaylo’s work is focused on online planning. Kichkaylo’s

techniques attempt to optimize bandwidth and CPU resources whereas Scat-

ter also permits the inclusion of other arbitrary domain-specific optimization

criteria, such as hardware costs and distance from car perimeter.

Benavides et al. [4] have presented a method for reducing a feature selec-

tion problem to a CSP. This paper builds on the work of Benavides et al. by

showing how deployment and aspect weaving can be reduced to a related CSP

model. Moreover, Scatter extends Benavides’ solution with resource constraints.

Finally, Benavides does not provide a domain-specific language for capturing

crosscutting deployment concerns like Scatter.

SmartFrog [15] is a tool for specifying and automating complex deployments.

SmartFrog uses a similar view of deployment to Scatter, namely components and

nodes. SmartFrog and Scatter although seemingly similar are designed to solve

different problems of deployment. Scatter is focused on addressing the challenges

of deducing the correct allocation of components to nodes or deployment plan

whereas SmartFrog is designed to execute a deployment plan correctly. Smart-

Frog does not provide any facilities for deriving a correct deployment plan from

a model of components and their crosscutting concerns as Scatter does.

33

6 Concluding Remarks

Deployment is a complex process that involves merging the non-functional and

functional concerns of numerous components into a correct deployment plan.

Manually producing a deployment plan, however, is a tedious and error-prone

process. By viewing deployment as an process for associating items from a

source set with items from a target set, many complex and time-consuming

parts of deployment can be automated with an aspect weaver.

This paper described how deployment can be automated with an aspect

weaver. In particular, we used pointcuts to specify rules for how components

are matched to nodes and then used an aspect weaver to merge components au-

tomatically into their correct deployment locations. Deployment often relies on

global constraints, however, which are not well-supported with existing pointcut

languages. This paper therefore describes how the ScatterML DSAL specifies

deployment rules by extending their pattern matching-based syntax with ele-

ments for capturing global deployment concerns, such as dependencies between

components and resource constraints. We also showed how a constraint solver

can be used to weave crosscutting deployment concerns, specified as pointcuts,

into a deployment plan.

From our experience developing and applying ScatterML to deploy Java

Midlets to mobile devices, EJBs to application servers, and CCM applications

to servers, we learned the following lessons:

• Aspect weaving and deployment can both be reduced to the abstract prob-

lem of mapping items from a source set (advice, components) to items in

a target set (joinpoints, nodes) based on a set of rules (pointcuts, deploy-

ment constraints). Using this abstract definition of weaving allows the use

of an aspect weaver to automate deployment planning. There are other

domains, such as the configuration of product-lines, that can be viewed as

34

specializations of this same abstract problem [31].

• The abstract source → target mapping problem can be phrased as a CSP

and a constraint solver used to derive a correct mapping. It is tedious

and error-prone, however, to formulate the CSP to solve this mapping

problem. The CSP formulation of the problem can be made amenable

to developers through the use of a DSAL and automated transformation

from DSAL instances to CSP instances.

• Mistakes in global pointcut constraints are hard to debug. In future work,

we plan to investigate different techniques for debugging CSP labeling

failures.

• Although a constraint solver can produce an optimal labeling, optimiza-

tion can require large amounts of time for complex mappings. Developers

must carefully test each mapping problem to ensure that it is not too

time-consuming to optimize.

• Although pointcuts are typically associated with AOP they are a natural

way of capturing deployment constraints. For example, the feasiblity of

matching an EJB to an application server can be expressed as a pattern

that the properties of the application server must possess.

In future work, we plan to extend our constraint solver weaving approach

to weaving advice into Java applications. ScatterML is an open-source project

available from CVS at www.sf.net/projects/gems.

References

[1] Choco constraint programming system. http://choco.sourceforge.net/.

[2] J. Baker and W. Hsieh. Runtime aspect weaving through metaprogramming.
Proceedings of the 1st international conference on Aspect-oriented software devel-
opment, pages 86–95, 2002.

35

[3] K. Balasubramanian, A. Gokhale, Y. Lin, J. Zhang, and J. Gray. Weaving De-
ployment Aspects into Domain-specific Models. International Journal on Software
Engineering and Knowledge Engineering (IJSEKE), 16(3), 2006.

[4] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated Reasoning on Fea-
ture Models. 17th Conference on Advanced Information Systems Engineering
(CAiSE05, Proceedings), LNCS, 3520:491–503, 2005.

[5] J. Bézivin. From Object Composition to Model Transformation with the MDA.
Proceedings of TOOLS, pages 350–354, 2001.

[6] S. Chiba and K. Nakagawa. Josh: an open AspectJ-like language. Proceedings of
the 3rd international conference on Aspect-oriented software development, pages
102–111, 2004.

[7] P. C. Clements and L. Northrop. Software Product Lines Practices, and Patterns.
Addison-Wesley, 2001.

[8] J. Cohen. Constraint logic programming languages. Commun. ACM, 33(7):52–68,
1990.

[9] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration through spe-
cialization and multi-level configuration of feature models. Software Process Im-
provement and Practice, 10(2):143–169, 2005.

[10] D. P. D. Oppenheimer, A. Ganapathi. Why do Internet Services Fail, and What
can be Done about It? Proceedings of the USENIX Symposium on Internet
Technologies and Systems, March 2003.

[11] G. Deng, J. Balasubramanian, W. Otte, D. Schmidt, and A. Gokhale. DAnCE:
A QoS-enabled Component Deployment and Configuration Engine. Proceedings
of the 3rd Working Conference on Component Deployment, 2005.

[12] M. EICHBERG, M. MEZINI, and K. OSTERMANN. Pointcuts as functional
queries. Lecture notes in computer science, 3302(1):366–381.

[13] P. Fradet and M. Sudholt. An aspect language for robust programming. Proceed-
ings of the ECOOP, 99.

[14] R. France, G. Georg, and I. Ray. Supporting multi-dimensional separation of
design concerns. Proceedings of the Third International Workshop on Aspect-
Oriented Modeling, March, 2003.

[15] P. Goldsack, J. Guijarro, A. Lain, G. Mecheneau, P. Murray, and P. Toft. Smart-
Frog: Configuration and Automatic Ignition of Distributed Applications. HP
Openview University Association conference, 2003.

[16] J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling crosscutting constraints in
domain-specific modeling. Communications of the ACM, 44(10):87–93, 2001.

[17] J. Greenfield and K. Short. Software factories: assembling applications with pat-
terns, models, frameworks and tools. ACM Press New York, NY, USA, 2003.

[18] A. Ivan, J. Harman, M. Allen, and V. Karamcheti. Partitionable services: A
framework for seamlessly adapting distributed applications to heterogeneous en-
vironments. In Proceedings of the 11th IEEE International Symposium on High
performance Distributed Computing, July 2002.

[19] K. C. Kang, J. Lee, and P. Donohoe. Feature-oriented project line engineering.
IEEE Softw., 19(4):58–65, 2002.

[20] T. Kichkaylo and V. Karamcheti. Optimal Resource-aware Deployment Planning
for Component-based Distributed Applications. In Proceedings of the 13th IEEE
International Symposium on High performance Distributed Computing, June 2004.

36

[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. Lecture Notes in Computer Science, 2072:327–355, 2001.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and
J. Irwin. Aspect-Oriented Programming. in proc. 11th European Conference on
Object-Oriented Programming, pages 220–242.

[23] K. Klose and K. Ostermann. Back to the future: Pointcuts as predicates over
traces. Foundations of Aspect-Oriented Languages Workshop, March 2005.

[24] P. Manadhata and J. Wing. Measuring a System’s Attack Surface. School of
Computer Science, Carnegie Mellon University, 2004.

[25] L. Michel and P. V. Hentenryck. Comet in context. In PCK50: Proceedings of the
Paris C. Kanellakis memorial workshop on Principles of computing & knowledge,
pages 95–107, New York, NY, USA, 2003. ACM Press.

[26] A. Nechypurenko, E. Wuchner, J. White, and D. C. Schmidt. Application of
Aspect-based Modeling and Weaving for Complexity Reduction in the Develop-
ment of Automotive Distributed Realtime Embedded Systems. In Proceedings
of the Sixth International Conference on AspectOriented Software Development,
March 2007.

[27] M. Shonle, K. Lieberherr, and A. Shah.

[28] E. Tanter and J. Noye. A versatile kernel for multi-language AOP. Proceedings of
the 4th ACM SIGPLAN/SIGSOFT Conference on Generative Programming and
Component Engineering (GPCE 2005), pages 173–188, 2005.

[29] T. Valesky. Enterprise JavaBeans. Addison-Wesley Reading, MA, 1999.

[30] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press
Cambridge, MA, USA, 1989.

[31] J. White, K. Czarnecki, D. C. Schmidt, G. Lenz, C. Wienands, E. Wuchner, and
L. Fiege. Automated Model-based Configuration of Enterprise Java Applications.
In EDOC 2007, 2007 (to appear).

[32] J. White, A. Nechypurenko, E. Wuchner, and D. Schmidt. Designing Sofware-
Intensive Systems, Methods and Principles, chapter Reducing the Complexity of
Designing and Optimizing Large-scale Systems by Integrating Constraint Solvers
with Graphical Modeling Tools. Idea Group, Inc., New York, NY, 2008 (to ap-
pear).

[33] J. White, A. Nechypurenko, E. Wuchner, and D. C. Schmidt. Optimizing and
Automating Product-Line Variant Selection for Mobile Devices. In 11th Interna-
tional Software Product Line Conference, September 2007.

[34] J. White, D. C. Schmidt, and S. Mulligan. The generic eclipse modeling system.
In Model-Driven Development Tool Implementors Forum at TOOLS 2007, June
2007.

37

