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Abstract. This paper describes an extension to the GAMMA formal-
ism, which we name AspectGAMMA, and we show how non-computational
aspects can be expressed separately from the computation in this frame-
work. Examples of such aspects include real-time constraints, location/
distribution, behavioral requirements, fault-tolerance, power requirements,
and many other aspects. The idea is to abstract the emerging idea of
aspect-oriented programming (AOP) into a formal framework, thereby
facilitating specification-driven design, enabling formal validation, and
design reuse at the requirement specification level. The main goal of
this position paper is to outline the way towards a formal foundation of
aspect-oriented specification and refinement towards implementation.

1 Introduction

Separation of concerns is one of the concepts at the core of modern software
design and evolution. It has been advocated as a key principle for reducing the
complexity of developing large-scale software systems [13]. Different techniques
and methods have been proposed that help to separate concerns, but some types
of concerns, such as timing and distribution, remain hard to separate. These
concerns usually crosscut the responsibility of several encapsulation units, such
as classes in the context of object-oriented programming languages like Java or
C++.

One of the fundamental tenets of aspect-oriented programming (AOP)[10] is
that complexity in the design of computer programs arises from the fact that
many individual concerns (aspects) from the (user) requirements domain are
ultimately scattered across multiple locations in the solution (the program). At
the same time, however, these parts must be mutually consistent/compatible,



and evolve consistently during further changes [6]. Experience has shown that
separating these different concerns explicitly in the software design helps devel-
opers manage software complexity more effectively than tangling the concerns
into tightly coupled programs. AOP languages, such as AspectJ [15], provide
linguistic support for advanced separation of concerns by modeling criteria that
correspond to different requirement/design concerns [6].

However, linguistic mechanisms in an implementation language do not help
in using the aspect orientation in requirement capturing and other phases of the
software engineering lifecycle that precede implementation. As a result, there
must be a formal modeling framework that allows requirements to be specified
in a formal way that enables the separation of different aspects. To enhance
reusablity of components, aspect specifications should be independent of each
other. The computation itself might also be decomposed into different aspects.
This is a basic principle in aspect orientation, the so-called obliviousness prop-
erty [6]. This property suggests that an aspect modeling language should not
be aware of other (independent) aspects present in a software architecture. As
a result, it should not address the issues of other aspects, to the greatest possi-
ble extent. Starting from this assumption, we can deduce that an ideal aspect
model would be a simple and tailor-made model that only focuses on a particular
well-defined aspect domain. Most of the current requirement specification lan-
guage/formalism paradigms, such as Object Z [7], however, contain a complex
and entangled mixture of different aspects.

This paper discusses the main characteristics of an aspect-oriented formal
specification framework, which is based on a multiset transformation language
called GAMMA, a formalism based on multiset rewriting [3, 2]. We illustrate
how having a tailor-made formalism for each aspect that is abstracted from
other aspects is a key benefit of such a formal design framework. To clarify
our discussions, we sketch an architecture specification and design method for
reactive distributed real-time embedded systems.

In the approach we describe in this paper, we propose separating the concerns
of computation, coordination, timing, and distribution, through different simple
and abstract notations for these aspects. We also describe a weaving process that
maps all these different aspects to a single semantic domain. The method is based
on a formal semantics that should ultimately enable automated reasoning about
designs. The idea exploited in this method can be extended to other aspects,
and extended with more complex weaving criteria.

The remainder of this paper is organized as follows: Section 2 discusses com-
putation, coordination, timing, and distribution as different aspects of a software
design and suggests languages/notations to specify them. Section 3 contains a
simple model of weaving the functional and non-functional aspects in a single se-
mantic model. Section 4 proceeds with previous and related work, and Section 5
provides concluding remarks and research directions.



2 Exploring Aspects

This section focuses on the specification of computation and the three aspects co-
ordination, timing, and distribution. We use a subset of GAMMA for specifying
basic component functionalities (computations) and present its distinguishing
features. We then present some ideas about specifying other aspects.

2.1 Modeling Computation with GAMMA

GAMMA is an abstract language, based on multiset rewriting on a shared data-
space, designed to support parallel execution of a program on parallel and/or
distributed architectures [3, 2]. The basic and atomic piece of functionality in
GAMMA is the rule. The calculus of GAMMA [8] contains some composition
operators to compose rules into programs. In [3], some patterns of rule compo-
sition (called tropes) are suggested to give hints for a program designer on how
to compose/decompose functionalities to construct specific programs.

In this section, we focus on a subset of GAMMA involving the specification
of basic rules. We thus factor out structuring decisions and make them a sepa-
rate aspect model, namely the coordination model. The high level of abstraction
proposed here follows from our basic assumption that a functionality specifica-
tion model should only address essential computation for achieving the required
computational functionalities. The other requirements which are non-functional,
such as distribution, timing, etc., should be kept independent from functional
requirements, as well as others so that change and evolution of it is localized
and does not influence other parts of this or other aspects. The separation of
basic functionality from coordination can also enhance reusability since a single
functionality model may be reused with different coordination models to con-
struct different programs or versions of a single program with different levels of
efficiency [4]. For example, in expressing the requirements for an elevator control,
the basic computation aspect includes the various signals and how they should
behave with respect to a clock. The coordination aspect describes how the basic
functionalities are composed to guarantee a correct functional behaviour. The
distribution will localize some of the signals into different locations, and dis-
tribute the corresponding signal value computations. If signal values are shared
across locations, the distribution aspect might express protocols for such shared
accesses. The timing aspect, will describe constraints on signal behaviors.

Henceforth, the GAMMA model is only concerned with basic functionalities
in the form of a simple input-computation-output pattern that abstracts from
the following details:

1. Relative ordering of actions (coordination). Basic functionalities (rules) are
specified independently of each other. Hence, no special ordering of actions
(control structure) is imposed on this particular specification.

2. Timing. The basic GAMMA model does not include any information about
timing. Since it abstracts from ordering of actions, even a qualitative (causal)
notion of time is not present in the GAMMA model.



3. Distribution. For any distributed system, the shared data-space is an ab-
straction that eases the programming, yet must be distributed in the imple-
mentation.

4. Fault tolerance. The GAMMA execution model requires programs to be de-
signed in such a way that duplicated execution of atomic actions of a program
cannot affect the functionality. Hence, replication of actions can be added
transparently to the functional model.

The abstract nature of GAMMA in exploiting independent rewrite rules makes
it suitable for definition of basic functionalities of software components. This
does not mean that any of the above concerns are unimportant in system design
and could be neglected completely. On the contrary, this abstractness provides
the desired orthogonality, so that any of the above items can be specified and
maintained as a separate aspect.

The syntax of a simple GAMMA program is given in Figure 1. A GAMMA

Program ::= ProgramName = {Rules}
Rules ::= Rule | Rule,Rules
Rule ::= RuleName = MultisetExp 7→ MultisetExp ⇐ Condition
MultisetExp ::= ε | BasicExp | BasicExp,MultisetExp
BasicExp ::= Variable | Constant | (Variable,BasicExp) | (Constant ,BasicExp)

Fig. 1. Basic GAMMA Syntax

program consists of a non-empty set of rules, each rewriting the content of the
shared multiset of data items. Execution of a program consists of applying rules
to the multiset in arbitrary orders (sequential or parallel). Each rule consists
of a set of terms valuated by multiset content values (this replacement is not
necessarily unique for a specific rule and multiset). If a certain valuation of
variables satisfies the condition in a rule, applying the rule results in removing the
left-hand side valuations from the multiset and replacing them by the valuation
of the right-hand side expression. We do not present the exact syntax of logical
formulas in this paper – allowing them to be defined by selecting an appropriate
underlying logic. However, we use the syntax and semantics of predicate logic
formulas throughout this paper.

In [12], a formal operational semantics for GAMMA is given in the style
of Plotkin [14]. Execution of a GAMMA program is based on execution of its
individual rules. Hence, the main observable events in the semantics of such
a program are changes in the shared multiset (multiset substitutions) and the
termination of rules in case there are no enabling values to be found in the shared
multiset.

The formal semantics defines the rules for executing single rules. It does not,
however, suggest any order of rules to execute a program and therefore abstracts



away from the behavioral aspect of design. This suggests that execution of a naive
GAMMA program allows any chaotic order on its rule executions.

Example 1. An elevator system, functionality aspect. Our elevator system con-
sists of an elevator moving up and down between floors of a building (numbered
from 0 to MaxFloor) to service requests. On each floor there is a push button
to announce a request for an elevator when turned on. When an elevator arrives
on a floor, the request flag is turned off automatically. The same setting works
for the push buttons inside the elevator, which indicate the requested stops for
passengers inside.

To model this distributed real-time system we propose a multiset contain-
ing events requesting an elevator stop represented by ((inStop, i), status) and
((extStop, i), status) that show the status of the request button for the i’th floor,
inside and outside the elevator, respectively. The tuple (cf , i), shows where the
elevator currently resides. The GAMMA program for the elevator system is given
in Figure 2.

ElevatorSystem = { inRequest = ((inStop, i), off ) 7→ ((inStop, i), on),
extRequest = ((extStop, i), off ) 7→ ((extStop, i), on),
moveUp = (cf , i) 7→ (cf , i + 1) ⇐

∃j; i < j ∧ ((extStop, i), off ) ∈ State ∧ ((inStop, i), off ) ∈ State,
moveDown = (cf , i) 7→ (cf , i − 1) ⇐

∃j; j < i ∧ ((extStop, i), off ) ∈ State ∧ ((inStop, i), off ) ∈ State,
load = ((extStop, i), on) 7→ ((extStop, i), off ) ⇐ (cf , i) ∈ State,
unload = ((inStop, i), on) 7→ ((inStop, i), off ) ⇐ (cf , i) ∈ State

}

Fig. 2. GAMMA Program for the Elevator System

The initial multiset for this system is defined as:

State =[ ((inStop, 0), off ), . . . , ((inStop,MaxFloor), off ),
((extStop, 0), off ), . . . , ((extStop,MaxFloor), off ),
(cf , 0)

],

which shows that the elevator is at the ground floor initially and that there are
no requests for the elevator.

2.2 Coordination

The functionalities described by GAMMA programs allow for many nonsensical
executions of the system. In the elevator system, for example, the elevator can
repeatedly move up and down between two floors without servicing any of the
pending requests.



Regarding the model of separation of concerns proposed in this paper, we
note that behaviour (both basic computations and coordination) is itself a com-
plicated set of aspects that has been the main topic of discussion in the aspect-
oriented community. As before, the abstractness of GAMMA is an elegant feature
that allows us to define different composition, restriction, and ordering operators
on basic rules.

To present our ideas about non-functional aspects, however, we present a
simple and abstract model of basic functionalities in the GAMMA formalism, and
do not discuss coordination in detail. The coordination of GAMMA programs is
treated in [5] and for coordination of GAMMA programs including the timing
aspect we refer to [12].

2.3 Timing

Timing constraints can be added to a specification to provide assertions regard-
ing the execution time of GAMMA rules. This time is relative to the point from
which the rule is selected for execution (when the previous rule execution is
finished). We propose to add the timing aspect to a GAMMA specification by
associating an interval to each rule name. This timing representation keeps the
syntactic specification of timing separate from rule definitions, and hence allows
independent change of both aspects. This method also allows a rule to have
no timing assertion, which will be replaced by a default interval ([0,∞]) in the
weaving process.

Since GAMMA rules assume a shared access to data, the timing aspect does
not specify any assumptions about the cost of accessing the data items in a
distributed setting. The above estimation is therefore only related to the com-
putation time for each functionality. In the next section, we investigate the effects
of putting constraints on the sharing/distribution policy.

Example 2. The elevator system, timing aspect. Suppose that the following tim-
ing information is given about the elevator system in Example 1:

– Pushing an internal or external button does not take time at all:

TinRequest = TExtRequest = [0, 0].

– Going up and down between floors takes StepTime for each floor:

TmoveUp = TmoveDown = [StepTime,StepTime].

– The elevator will be loaded/unloaded within MinService and MaxService
amount of time, depending on the number of people and goods waiting for
it:

Tload = Tunload = [MinService,MaxService].

The timing information allows us to verify the timeliness of a functional
specification, possibly for a given coordination, assuming the aspects are appro-
priately weaved together. In Section 3, we explain how this timing information
can be weaved together with the functional specification into a single semantic
framework.



2.4 Distribution

As expressed in Section 2.1, GAMMA abstracts from distribution of data and
processing and assumes a shared multiset. Moreover, the timing aspect does
not refer directly to the distribution model and accepts any distribution policy.
Distribution is a major issue in complex systems, however, and should be taken
into account and specified during software development. In this section, we study
distribution as a separate concern.

To specify distribution, we need to specify the location of processes and data
objects. Hence, we assume a set R containing rule names and a set T containing
data types. Data types are used to categorize data items used/produced by
different rules. We do not specify how to assign this typing to variables and
constants but assume that there is a function from the sets of variables and
constants to types (type : V ar ∪ Con → T ). The set of locations is denoted
by P . Static distribution is defined as a function StaticDist : R ∪ T → P(P ),
representing the locations of the data objects and rules of each type. Note that
we did not restrict locations to contain both data and processing (rules) and
hence, a location may represent a storage node or processing unit, or both.

This general specification of distribution can be used to model more specific
distribution policies, such as push and pull models. For example in a push model,
the function StaticDist should map any data type to its consumer side. In a pull
model, however, the data type remains on the producer side and should be
accessed (fetched) from the producer by the consumer.

We should note that preventing inconsistencies in accessing shared data items
is still provided in the basic GAMMA semantics and need not be considered here.
Nevertheless, if an application calls for its own dedicated consistency control
algorithm, it should be specified in the form of stronger conditions in rules or
an extension of the GAMMA model to a new aspect (by defining a notion of
(in)dependence for parallel execution).

Example 3. The elevator system, distribution aspect. Suppose that sensors for
request buttons on each floor are connected to the elevator via a fieldbus network.
In this case, accessing the distributed locations will take some time from the
elevator. To specify this model of distribution, we assume a location for the
elevator and its internal buttons and a location for each external button. The
distribution function for the elevator system then looks like the following:

StaticDist(type((extStop, i), status)) = {floori}
StaticDist(type((inStop, i), status)) = {elevator}
StaticDist(type(cf , i)) = {elevator}
StaticDist(extRequest) = {floori | 0 ≤ i ≤ MaxFloor}

and for each rule rule other than extRequest :

StaticDist(rule) = {elevator}
This distribution policy defines where the GAMMA rules moveDown and moveUp
must look for remote copies of external request values from distributed locations.



This distribution model should be further combined with the functionality and
timing model in one semantics in order to verify that the system satisfies prop-
erties that depend on the combination of several aspects.

3 Weaving Aspects

The idea of weaving is composing different aspects of design. In our case, we have
to relate functionality, (coordination,) timing, and distribution, and present them
in one semantic model. The orthogonality of non-functional aspects allows the
designer of each aspect to neglect the other. As a result, the weaving process
reflects change or even absence of one aspect in the whole semantics.

A GAMMA specification presents functionality in the form of independent
rules. The timing specification aspect relates a rule to an interval representing
duration of execution time. The distribution aspect defines the distribution of
rules and data items over locations.

If there is no timing estimation specified for a rule (as it is the general
case for un-timed specifications), it is assumed to be [0,∞], i.e., an arbitrary
execution time. If the distribution aspect is absent, a single location is assumed.
Our proposal for a formal semantics of weaving consists of a timed transition
system [9] with transitions of a GAMMA program and timing consisting of
computation time plus communication time.

We denote the computation time of a rule r by comp(r). As mentioned be-
fore, if there is no interval defined for a rule r, comp(r) results in [0,∞]. This
function induces a by-name weaving method to relate GAMMA rules and their
respective timing estimations. In this paper, we assume that comp(r) works as a
function returning the execution time estimation of a rule, if available, or other-
wise [0,∞]. Nevertheless, this assumption could be relaxed by allowing several
intervals associated to a rule, and hence letting comp(r) return one of the in-
tervals non-deterministically (or a set of intervals). This could be used to model
the situation where a rule has multiple possible execution times, depending e.g.
on varying implementation environments.

To represent communication costs resulting from the distribution policy, we
use the function comm(r), which returns the time cost for making local copies
of the data items needed for the execution of rule r. For a rule r, comm(r) is
computed by taking the maximum of communication costs for all variables (of
data items) v present in rule r, that reside in a different location than r. If all
the data needed for the execution of a rule is available at the location of the rule
itself, we assume the communication cost to be 0.

Example 4. Weaving of aspects of our elevator system. In Figure 3, a fragment of
the timed transition system is given that results from weaving the computation,
timing and distribution of the elevator system as described in previous examples.
The transitions are labelled by the name of the rule(s) that are executed, the
timing estimation of the execution, and the communication cost. For simplicity,
only the relevant elements of the multiset contents are represented in this figure.



It is assumed that the time cost for communicating data from one node to
another is CT .

((extStop, 3), on)

extRequest : [0, 0] ¯ [0, 0]

((inStop, 1), on)

moveUp, inRequest : [StepTime, StepTime] ¯ CT

((inStop, 2), on)

((inStop, 2), on), (cf , 1)

((inStop, 2), on), (cf , 2)

(cf , 2)

inRequest : [0, 0] ¯ [0, 0]

moveUp : [StepTime,StepTime] ¯ CTmoveDown : [StepTime,StepTime] ¯ CT

moveUp : [StepTime,StepTime] ¯ CT

unload : [MinService,MaxService] ¯ [0, 0]

Fig. 3. Fragment of the Timed Transition System after Weaving.

The simple time weaving function presented here can be extended by adding
estimations for failed attempts to execute a rule, or by defining the timing esti-
mation as a function of multiset size or contents. In GAMMA, rule implementa-
tions, computation time and failure time may depend on the time for searching
the multiset to find the appropriate valuation. These two extensions thus add to
the practical value of the proposed method. Such extensions can illustrate the
profit of the separation of concerns in the method outlined in this paper.

The timed transition system resulting from the weaving process allows the
formal analysis and verification of the design. If the design satisfies the desired
functional and non-functional properties, the aspect specifications can be used to
(semi-)automatically generate an implementation through refinement and code
generation.



4 Related Work

In [1], process algebra is suggested as a formal framework for aspect-oriented
design. In the view of the author each aspect is described by a process term.
By means of parallel composition with synchronization the aspects are com-
bined. The elimination of the synchronization from the parallel composition of
the aspects is considered the weaving of the aspects. Although there are many
similarities (especially in the weaving) between the approaches, there are also
some important differences. Firstly, the approach of Andrews does not enforce
the description of basic functionalities separately from the coordination aspect,
and secondly, we do not support the use of one and the same process algebra for
the description of the different aspects.

In [11], an extension of the GAMMA formalism (namely Structured-GAMMA)
is used as a specification language for an aspect-oriented implementation of a
distributed shared memory protocol. There, the authors mention the benefits of
abstraction from distribution in the GAMMA programs and the possibility of
formal reasoning using this specification language.

5 Conclusion and Future Research

The current trends in AOP [6] can be summarized as follows:

1. Semantic correctness of aspects and compositions.
2. Defining methods for identifying and specifying canonical models for cross-

cutting concerns, including methods for composing aspect models.
3. Defining formal models for determining functional and quality characteristics

of crosscutting concerns individually and together.

We can summarize our contribution to these challenges as follows:

1. We provided some ideas for the formal design of a small number of aspects,
mainly related to distributed real-time systems, which are kept separate and
abstract from each other.

2. These aspects are weaved together into a single semantic framework.

The main challenges in our future research are the following:

– Providing a formal syntax, weaving, and semantics of the aspects discussed
in this paper. In [12], a formal syntax and semantics are given for basic
functionality, coordination, and timing aspects.

– Extension of the method sketched in this paper to other aspects such as
power-awareness, fault-tolerance, persistency, etc.

– Developing/studying logics for expressing properties of the aspect models
and the weavings of those.

– Performing case studies to validate the method.
– Developing automated design methods and tools that support the aspect

weaving process the reasoning in the aspect models, and the refinement
towards implementation.
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2. J.-P. Banâtre, P. Fradet, and D. Le Métayer. Gamma and the chemical reac-
tion model: Fifteen years after. In C. S. Calude, G. Paun, G. Rozenberg, and
A. Salomaa, editors, Multiset Processing: Mathematical, Computer Science, and
Molecular Computing Points of View, volume 2235 of Lecture Notes in Computer
Science, pages 17–44. Springer-Verlag, Berlin, 2001.
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