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Abstract

Historically, method-oriented middleware, such as Sun RPC, DCE, Java RMI, COM,
and CORBA, has provided synchronous method invocation (SMI) models to applica-
tions. Although SMI works well for conventional client/server applications, it is not
well-suited for high-performance or real-time applications due to its lack of scalability.
To address this problem, the OMG has recently standardized an asynchronous method
invocation (AMI) model for CORBA. AMI provides CORBA with many of the capabil-
ities associated traditionally with message-oriented middleware, without incurring the
key drawbacks of message-oriented middleware.

This paper provides two contributions to research on asynchronous invocation mod-
els for method-oriented middleware. First, we outline the key design challenges faced
when developing the CORBA AMI model and describe how we resolved these chal-
lenges in TAO, which is our high-performance, real-time CORBA-compliant ORB. Sec-
ond, we present the results of empirical benchmarks that demonstrate the performance
benefits of AMI compared with alternative CORBA invocation models. In general, AMI
based CORBA clients are more scalable than equivalent SMI based designs, with only
a moderate increase in programming complexity.

1 Introduction

Motivation:

Historically, applications based on the standard CORBA [1] distributed object comput-
ing model have had to choose between thneecation modetsone-way operations,
synchronous two-way operations, and deferred synchronous operations using the dy-
namic invocation interface (DIl). Unfortunately, these alternatives are often inappropri-
ate for applications with stringent quality of service (QoS) requirements. For instance,
one-way operations lack well-defined semantics [2], which reduces their portability
and suitability for applications with non-trivial reliability requirements. Likewise, syn-
chronous two-way operations are not scalable because they require a client thread for
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each pending request/response invocation. Finally, the deferred synchronous model is
inefficient and tedious to program due to its reliance on the DIl [3], which allocates
memory and copies data excessively.

To address these limitations, the OMG adopted a Messaging specification [4] for
the CORBA standard. One of the key features in the CORBA Messaging specification
is support for asynchronous method invocations (AMI).

Overview of CORBA AMI:

The CORBA AMI specification definesolling model and acallbackmodel, as de-
scribed below:

¢ Polling model: In this model, each two-way AMI operation return®aller va-

luetype [5], which is very much like a C++ or Java class in that it has both data
members and methods. Operations ¢toller  are just local C++ method calls rather
than remote CORBA operation invocations. The polling model is illustrated in Figure 1.
The client can use thBoller methods to check the status of the request so it can
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Fig. 1. Polling Model for CORBA Asynchronous Twoway Operations

obtain the server’s reply. If the server hasn't replied yet, the client can either (1) block
awaiting its arrival or (2) return to the calling thread immediately and check back on
thePoller to obtain thevaluetype s when it's convenient.

¢ Callback model:In this model, when a client invokes a two-way asynchronous op-
eration on an object, it passes an object reference feplg handlerservant as a pa-
rameter. The reply handler object reference is not passed to the server, but instead is
stored locally by the client ORB. When the server replies, the client ORB receives the
response, and dispatches it to the appropriate callback operation on the reply handler
servant provided by the client application, as shown in Figure 2.
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Fig. 2. Callback Model for CORBA Asynchronous Twoway Operations




Reply handler servants are accessed through normal object references. Therefore,
it is possible for a client application to obtain an object reference for a remote reply
handler servant and use that object reference to make AMI calls. In this case, replies
for the asynchronous invocations will be handled in processes other than the client or
the server involved in the original invocations. The most common use-case, however, is
for the original client to process the response. In this case, therefore, client application
developers must obtain, initialize, and activate reply handlers on a POA, which makes
the application behave effectively as both a client and a server.

In general, the callback model is more efficient than the polling model because
the client need not invoke method calls owauetype repeatedly to poll for re-
sults. Moreover, compared with CORBA's original invocation alternatives, the new AMI
models provide the following benefits:

¢ Simplified asynchronous programming mod€ORBA AMI allows operations to

be invoked asynchronously using thttic invocation interfac€Sll). Using SlI for

AMI eliminates much of the tedium, complexity, and inefficiency inherent in DII. In
particular, DIl requires programmers to allocate a i&eguest object explicitly and

insert the operation parameters into a list of name value parsanNVList pseudo-
object. Conversely, in Sll the IDL compiler can use an ORB’s internal mechanisms to
avoid extra memory allocations and data copies. Although deferred synchronous request
implementations can exploit many AMI optimizations, such as better utilization of the
network resources and improved parallelism, those improvements are hindered by DIlI's
extra overhead, which often makes AMI a more attractive alternative.

¢ Improved quality of serviceWhen implemented properly, AMI can improve the scal-
ability of CORBA applications. For instance, it allows “pipelining” of two-way opera-
tions and minimizes the number of client threads that are otherwise required to perform
two-way synchronous method invocations (SMI). In addition, AMI is important for
real-time CORBA applications [6] because it helps to bound the amount of time a client
spends blocking on two-way requests.

Synopsis of research contributions:

Our previous research has examined many dimensions of high-performance and real-
time ORB endsystem design, including static [7] and dynamic [8] scheduling, event
processing [9], I/O subsystem [10] and pluggable protocol [11] integration, ORB Core
architectures [12], systematic benchmarking of multiple ORBs [13], patterns for ORB
extensibility [14] and ORB performance [15]. This paper focuses on a previously unex-
plored dimension in the high-performance and real-time ORB endsystem design space:
the design and optimizations used to implement the standard CORBA asynchronous
method invocation (AMI) callback model

The vehicle for our research on high-performance and real-time CORBA is TAO [7].
TAO is an open-souréegCORBA-compliant ORB designed to address applications with
stringent quality of service (QoS) requirements. In addition to being the first ORB with
a standard Portable Object Adapter [15], TAO was the first ORB to implement the

standard-CORBA AMI callback model.
The source code and documentation for TAO can be downloaded from

www.cs.wustl.edu/ ~schmidt/TAO.html



Related work:

The AMI polling model stems from research on programming language support for dis-
tributed computing. For instance, Futures [16] and Promises [17] are language mecha-
nisms that decouple method invocation from method return values passed back to the
caller when a method finishes executing. As with ARbller s, calls are invoked
asynchronously, clients can rendezvous with a Future/Promise to obtain reply values
when they become available.

Previous research anethod-oriented middlewaf®, 18, 19] has examined how the
CORBA Event Service can be used to perform asynchronous communication between
CORBA applications. However, the CORBA AMI specification provides a different
programming model than the CORBA Event Service. For instance, since the CORBA
Event Service allows single-point-to-multi-point and anonymous communication mod-
els, application developers must devise their own means to send replies from event
consumers back to event suppliers. In contrast, AMI applications can receive replies
that include multiple IDL types. Moreover, CORBA Event Service participants com-
municate using a singlany argument. Although Anys can send all IDL types, they
incur significant marshaling and message footprint overhead. In contrast, AMI clients
can send and receive multiple IDL types and IDL compilers [20] can generate efficient
marshaling and demarshaling code for them.

Message-oriented middlewa@®OM), such as the Isis [21] Message Distribution
System, TIBCO Information Bus, and IBM's MQSeries, provide mechanisms that al-
low suppliers to reliably transmit messages asynchronously to one or more consumers.
MOM systems typically consist of additional “router” processes that store and forward
messages on behalf of application processes. If a consumer happens to be unavailable
due to scheduled downtime, a site crash, or a network partition, the router will attempt
to deliver the message periodically until the consumer becomes available. The OMG
Message specification defines similar routing capabilities via its Time-Independent In-
vocation (TII) feature [22, 4]. Both the TIl and MOM asynchrony mechanisms are too
heavyweight, however, for many high-performance and real-time applications. More-
over, the message-oriented invocation mechanisms of MOM systems can be harder to
program correctly due to the lack of strong typechecking.

The remainder of this paper is organized as follows: Section 2 outlines the general
structure and dynamics an ORB requires to support AMI callbacks; Section 3 describes
key design challenges faced when implementing the CORBA AMI callback model and
explains how TAO resolves these challenges; Section 4 empirically analyzes the perfor-
mance of AMI callbacks in TAO [7] and compares it with alternative communication
models; and Section 5 presents concluding remarks that summarize the lessons learned
from implementing AMI callbacks in TAO.

2 ORB Architectural Support for AMI Callbacks

This section outlines the general structure and dynamics an ORB requires to support
AMI callbacks.



2.1 AMI Callback Features
To support AMI callbacks, an ORB should implement the following functionality:

1. AMI stubs: For each two-way operation in the IDL interface, an ORB'’s IDL com-
piler [20] should generate M| stubthat applications can use to issue asynchronous
operations. Each AMI stub is responsible for (1) setting up state in the ORB to receive
the reply and dispatch it to the appropriate reply handler, (2) marshalinig ttend

inout arguments provided by the application, and (3) using the ORB Core to send
the message to a remote ORB. High-quality IDL compilers should provide an option to
suppress the generation of AMI stubs to reduce the footprint of applications that do not
use them.

2. Manage pending invocations:The client ORB must store reply handler object ref-
erences for all asynchronous invocations. If the reply handler servant is collocated with
the client, the application developer must activate the reply handlerimplementation with
the client's ORB POA. When a reply returns, the client ORB locates the reply handler
servant and invokes the callback method on it. The client ORB delivers this new request
to the reply handler servant using its regular invocation path, which allows an ORB'’s
collocation optimizations [23] to be used to minimize dispatching overhead.

3. Explicit event loop methods: An ORB must implement the standard CORBA
work _pending andperform _work operations. Clients can use these operations to
invoke the CORBA event loop in a client explicitly. In addition, if asynchronous replies
arrive while a client is blocked waiting for a synchronous reply, the ORB can use the
blocked thread to dispatch the asynchronous reply.

2.2 Collaborations Between ORB Components for Asynchronous Invocation

After an OMG IDL compiler generates the AMI callback stubs, the generated code
must collaborate with internal ORB components to send and receive asynchronous in-
vocations. To demonstrate how this works, Figure 3 depicts the general sequence of
steps involved when an asynchronous two-vg@y _quote operation is executed.

As shown in this figure, the interactions between client ORB components for an asyn-
chronous invocation consist of the following steps:

— The client application invokes treendc _get _quote method on thé&tub to is-
sue the asynchronous operat{@h The client passes th&MI_QuoterHandler
object reference, along with the name of the stock we're interestedgnlBM.

— TheStub marshals its string argument into a buffer and instantiatda\aca-
tion (2), which is a facade that delegates to internal ORB components that estab-
lish connectiong3) & (4) with a remote server (if necessary), the ORB stores the
AMI_QuoterHandler  object(5), and send the requeg®) & (7) to the server.

— After the request is senlmvocation returns control to thé&tub (8), which
itself returns control to the clier®).

2 The names of certain objects in this discussion are specific to TAO, though the general flow of
control and behavior should generalize to other ORBs that implement AMI callbacks.



Fig. 3. Interactions Between Client ORB Components for Asynchronous Invocation

— When aclient application is prepared to handle callbacks, it calls the QiRBlks_pending
andperform _work (10)methods to receive and dispatch replies associated with
asynchronous invocations.

— When the reply arrives, the ORB demarshals the reply and demultiplexes it to the
callback method on the reply handler servant that was passed in by the application
when the AMI method was invoked original{(§1).

Section 3.2 revisits these steps in more detail after we've explained the components in
TAO’s ORB architecture.

3 The Design of TAO’s AMI Callback Architecture

To make the discussion of ORB architectural support for AMI in Section 2 more con-
crete, this section describes our resolutions to key design challenges encountered when
implementing TAO's AMI-enabled ORB architecture. Section 4 then illustrates the per-
formance characteristics of TAO’s AMI implementation compared to alternative SMI
and DIl deferred synchronous communication models.

3.1 Design Challenges and Resolutions

To assist developers of distributed object systems in making informed choices among
alternative ORB middleware solutions, they should understand how the ORBs are im-
plemented. Below, we (1) outline the key design challenges we faced when implement-
ing AMI in TAO and (2) explain the patterns and components we used to resolve these
challenges.

Challenge: How to Process Asynchronous Replies Efficiently

Context: Early TAO implementations supported only the Synchronous Method In-
vocation (SMI) model. In SMI, the calling thread that makes a two-way invocation
blocks awaiting the server’s reply. The client ORB can use the calling thread to pro-
cess the response. For example, considel¢iaeler/Followerghread pool concurrency
model [12] illustrated in Figure 4. TAO uses this concurrency model to support multi-
threaded client applications efficiently, as follows:



APPLICATION

1: invoke_twoway()

P e
7: return()

ORB CORE

LEADER FOLLOWERS
4: wait (

SAVAIHL daMouA0d

BORROWED THREAD

5: signal(

3: select(

PR =1=1=

I/0 SUBSYSTEM

Fig. 4. Processing Synchronous Two-way Client Invocations using the Leader/Followers Concur-
rency Model

— Each calling thread that invokes a two-way synchronous medthagses a connec-
tion to send the reque&?).

— The client ORB designates one of the waiting threadsleaeerand the other
threads as théollowers The leader thread blocks on tkelect operation(3);
the follower threads block on semapho(é4s

— When areply arrives on a connection, the leader thread returnsgtatt . If the
reply belongs to the leader, it continues to process the reply after first promoting the
next follower to become the new leader. If the reply belongs to one of the followers,
however, the leader signals the corresponding semaphore to wake up the follower
thread(5).

— The awakened follower thread reads the regly completes the two-way invoca-
tion (7), and returns to its caller.

Problem: Although the Leader/Followers thread pool model described above works
well for SMI, it does not work without modification for AMI. The problem stems from

the fact that the calling stub goes out of scope as soon as the request is sent and control
returns to client application code. Thus, the ORB must be prepared to process an asyn-
chronous reply in another context, possibly within another client thread. Moreover, to
complete the processing of server replies to asynchronous invocations, the ORB must
maintain certain state information, such as reply handler object reference and a function
to demarshal the reply (the so-callegly-stul).

Forces: The mechanisms provided to support AMI replies should add no significant
run-time overhead to the existing SMI mechanisms.

Solution— Strategizing the reply dispatching mechanisrbe problem of processing
asynchronous replies can be solvedsbytegizinghe reply processing and dispatching
mechanisms used for AMI and SMI calls. Figure 5 illustrates the components in TAO'’s
Reply Dispatcher hierarchy. ASynchronous Reply Dispatcher is cre-

ated by aninvocation  object during a synchronous invocation on the local stack
activation record. When the reply is received, the reply buifer, TAO'’s InputCDR
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Fig. 5. Reply Dispatching Strategy

object, is placed in the dispatcher and control returns first tdritaecation ob-

ject and then to th&tub . At this point, theStub obtains the reply buffer from the
Invocation  object, demarshals the reply, and completes the invocation.Feully
Dispatcher  object maintains aeply _received flag that indicates if the reply

has been received. This flag is set when the reply is dispatched to this object and the
thread waiting for the reply returns to tisub .

During an AMI call, aninvocation  object creates aAsynchronous Reply
Dispatcher  on the heap because the activation record where theocation
object is created is exited before the reply is received. The AMI seipthesendc _*
operation, stores the reply handler object reference provided by the clientAsyhe
chronous Reply Dispatcher object. In addition, the AMI stub stores the pointer
to the appropriate reply-stub method in this object.

A Leader/Followers implementation using TAQReply Dispatcher architec-
ture is illustrated in Figure 6 and behaves as follows:

APPLICATION

1: invoke_twoway()

REPLY DISPATCHERS
L L P IC I I

7: dispatch (
LEADER FOLLOWERS

5: wait (
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Fig. 6. TAO’s AMI-enabled Leader/Followers Implementation

— When application threads make two-way invocati@ijsaReply Dispatcher
object is created for each invocati{®) and the request is sef8).

3 As an optimization, an ORB could use a pre-allocated pool to allocate these objects, thereby
alleviating heap fragmentation [15].



— The leader thread then blocks on thelect call (4) and the follower threads
block on the semaphorégs).

— When a reply arrives on a connection, the leader thread itself reads the complete
reply (6) and calls theReply Dispatcher object that was created for that in-
vocation to dispatch the rep(y).

— For SMI calls, theSynchronous Reply Dispatcher signals(8s)the thread
waiting for that reply and completes the invocati@®). For AMI calls, however,
the Asynchronous Reply Dispatcher object invokes the callback method
in the reply handler serva(a).

Challenge: How to Minimize Connection Utilization

Context: Early implementations of TAO supported onlyhan-multiplexeadtonnection
model [12], which is well-suited for hard real-time applications whose QoS require-
ments include highly predictable response times. In this model, a connection cannot be
reused for another two-way request until the reply for the previous request is received.
Figure 7 illustrates TAO’s non-multiplexed connection model, where five threads make
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Fig. 7. One Outstanding Request Per-Connection

two-way invocations to the same server, which creates five connections. TAO repre-
sents connections usinglaansport  object that provides a uniform interface to the
TAO's pluggable protocols framework [11], this framework abstracts vari-

ous underlying transport mechanisms, such as TCP, UNIX-domain sockets, and VME,
implemented by TAO. TAO’s pluggable protocols framework uses key patterns and
components provided by ACE [24].

Problem: Non-multiplexed connection models are inefficient for CORBA AMI be-
cause client applications can issue hundreds or thousands of asynchronous requests
before waiting for the replies. Thus, a non-multiplexed connection model would use a
correspondingly large number of connections.

Forces:

1. An ORB should implement connection multiplexing so that multiple outstanding
requests required to support the AMI model can be processed efficiently.



2. When multiple threads access a connection simultaneously, they should be synchro-
nized so that requests are sent one-by-one and not corrupted through intermingled
I/O calls.

3. To accommodate various use-cases and QoS requirements, applications should be
able to configure multiplexed and non-multiplexed connection behavior both stati-
cally anddynamically.

Solution— Strategize the transport multiplexing mechanisris: overcome the scal-
ability limitations of a non-multiplexed connection architecture, we extended TAO to
support a multiplexed connection option for both SMI and AMI. In this design, many
requests can be sent simultaneously over the same connection, even when replies are
pending for earlier requests. In general, multiplexing yields better use of connections
and other limited OS resources [12], such as memory buffers.

To implement this design in TAO, we applied the Strategy pattern [25] and defined
a new strategy calle@iransport Mux Strategy that supports both multiplexed
and the non-multiplexed connections. The components in this design are illustrated in
Figure 8.
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Fig. 8. Transport Mux Strategy

TheExclusive Transport Strategy implements the non-multiplexed con-
nection strategy by holding a reference to a sifRgply Dispatcher object. This
strategy is “exclusive” because only one outstanding request at a time can pend on each

connection. In contrast, tHduxed Transport Strategy uses a hash table that
stores multipleReply Dispatchers , each representing a request sent on the con-
nection. As shown in Figure 8, tAgansport Mux Strategy base class provides

a common interface for these two differentimplementations. TAO uses the Service Con-
figurator pattern [26] to allow applications to select between these two strategies and
thereby configure TAO'Sransport Mux Strategy either statically or dynami-
cally.



To synchronize access to a multiplexed connection among multiple threads, the
Transport  object for that connection is marked as “busy” while one thread is send-
ing a request. If during that time another thread tries to send a request, either a cached
connection is recycled or a new connection is created. After the request is sent, the
Transport  object is marked as “idle” and is cached so it can be reused to send sub-
sequent requests.

Challenge: How to Implement Scalable Reply Processing Mechanisms

Context: High-quality CORBA implementations should support “nested upcalls”, in
which an ORB processes incoming requests while it waits for replies. This support can
be implemented usingelect to wait for both the reply and any incoming requests.
This implementation can add unnecessary overhead, however, to “pure” clients that do
not receive any incoming requests from servers. Therefore, TAO provides the following
three reply processing strategies that allow developers to select the most appropriate
mechanism for their application QoS requirements:

— Wait-on-Read: In this strategy, the calling thread blocksead to receive the
reply. This is a very efficient strategy for pure clients that need not receive requests
or nested upcalls while waiting for server replies.

— Wait-on-Reactor: The Reactor [27] is a framework implemented in ACE [24] that
provides event demultiplexing and event handler dispatching. In this strategy, a
single-threade®eactor is used to dispatch events, such as reply arrivals and up-
calls. This strategy supports single-threaded client applications efficiently by hav-
ing the waiting thread run the event loop of the Reactor to check for server replies.
When there is input on a connection, thieansport  object is notified and it
reads the input message and dispatches the reply. The Wait-on-Reactor strategy
also works with multi-threaded applications that use a Reactor-per-thread to mini-
mize contention and locking overhead [12].

— Wait-on-Leader/Followers: If the application is multi-threaded and several threads
are sharing the same Reactor, only one of them can run the Reactor’s event loop at a
time. Therefore, this strategy uses the Leader/Followers pattern [12] to synchronize
access to the Reactor. In this pattern, the leader thread runs the event loop of the
Reactor. All other threads wait on a semaphore. When a reply is available, the
leader thread reads and dispatches the complete reply. If the reply is for an AMI
request, it is dispatched to the callback method in the reply handler servant. For
synchronous replies, the reply buffer is transferred tdjpechronous Reply
Dispatcher fromtheTransport object. If areply belongsto the leader thread,
it selects another thread as the leader and returns from the event loop. If the reply
belongs to another thread, however, it signals this thread so it can wake up from the
semaphore, return to its stub, and process the reply.

Problem: Pre-AMI-enabled versions of TAO implemented the three reply processing
strategies described above@annection Handlers within TAO'’s pluggable pro-
tocols framework, as shown in Figure 9. However, evérgnsport mechanism,
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Fig. 9. Initial Design of TAO’s Reply Processing Mechanisms

such as IIOP and UNIX-domain sockets (UIOP), in TAO'’s pluggable protocols frame-
work [11] required thre€onnection Handler implementations to support all the
reply wait strategies in itSransport  implementation. Not surprisingly, this approach

did not scale up effectively when TAO incorporated additional transport mechanisms,
such as VME, Fibrechannel, or TP4. TAO's original design also complicated the inte-
gration of the AMI callback model because changes to the reply wait mechanisms were
necessary foeachTransport  implementation.

Forces: The semantics of the existing wait mechanisms, as well as the existing op-
timizations, must be maintained while integrating the AMI callback model. Moreover,
applications should be able to configure TAO'’s reply wait mechanism according to their
particular needs.

Solution— Refactor reply wait strategiesAs part of our enhancement to TAO, we
moved the reply wait mechanisms from t@ennection Handlers to the new
Wait Strategy  and decoupleditfrom the underlyiigansport andtheConnec-
tion Handler objects. TAO's new Wait Strategy architecture is illustrated in the
UML class diagram in Figure 10. In TAO’s enhanced architecture, @aahsport

Fig. 10. Enhanced Design of TAO's Reply Processing Strategies

implements only on&Connection Handler . Due to the patterns-based OO de-



sign [11] used in TAQO, this modification required changes only tdiigsport and
Connection Handler implementations; no other ORB components were affected.

In addition to refactoring the wait strategies, a variation of the Leader/Followers im-
plementation has been integrated into TAO'’s Wait-on-Leader/Followers strategy. This
change was necessary because the original Leader/Followers implementation assumed
non-multiplexed connectionke., only one request at a time was sent per-connection.
Therefore, state variables, such as semaphores, were keptliratieport  and the
Connection Handler objects, which are per-connection objects. Although this
implementation works for thExclusive Transport strategy, it is unsuitable for
Muxed Transport , where multiple threads may wait simultaneously for replies on
a single connection.

To address the multiplexing problem, we enhanced the Leader/Followers model
described earlier to create a variation called Muxed-Wait-on-Leader/Followers strategy.
This new strategy uses the Thread-Specific Storage pattern [28] to store a per-ORB-per-
thread condition variable. This condition variable is created on-demand just once, by a
factory method in TAO’s ORB Core. This factory method provides a facade [25] to all
ORB strategies, helper classes, and global or thread-specific resources.

Challenge: How to Minimize Stub Footprint

Context: Earlier, we discussed the ORB components used by the client stub to set up
the connection, create tiiReply Dispatcher s, send the request, keep track of the
Reply Dispatcher s andreply-stubswait for and process replies, and deliver the
replies to target threads or reply handler servants. A stub can either invoke methods on
these ORB components directly, or it can use helper classes that can be implemented as
part of the ORB. Helper classes can interact with various ORB components on behalf

of the stub and execute all functionality outlined above.
Problem: If stubs interact with the internal ORB components directly, the code size
of the stub increases. In turn, this increases the footprint of the generated C++ code
because TAO's IDL compiler creates stubs for each operation in the IDL interface.
Forces: There is a tradeoff between code size and performance [29]. In general, stubs
could inline all the code required to complete their task [30]. However, inlining can
cause unacceptably large memory footprint. Conversely, stubs could simply pass pa-
rameter data to a shared interpreter, such as a DSI/DIl engine [31]. In this case, however,
system performance would suffer.
Solution— Optimized invocation helper facade3o reduce memory footprint, stubs
should use helper classes to factor out common code from the stubs into reusable ORB
Core components. In TAO, these helper classes are c@jlachronous Invoca-
tion andAsynchronous Invocation . They provide stubs with facades that en-
capsulate the details of various features implemented internally to the ORB to support
both AMI and SMI.

When called by a stub on behalf of a client, tBgnchronous Invocation
class establishes a connecfidn the remote host, sends the request, waits for a re-
ply, receives the reply, and returns control to the stub once the reply is received. The

4 TAO uses connection caching [12] to avoid establishing new connections if one is already open
to a particular ORB endpoint.



Asynchronous Invocation class is similar, but it returns control to the stub as
soon as it sends the request. Thus, 8ynchronous Invocation object cre-
ates theSynchronous Reply Dispatcher on its local stack activation record,
whereas thésynchronous Invocation object creates thiésynchronous Re-
ply Dispatcher on the heap.

As illustrated in Figure 11, TAO'’s synchronous and asynchronous variants inherit

Invoc ation

/4

Synch Invocation Asynch Ivacation
1 1
1 1
Synch RD Asynch RD
&semaphore &reply_handler

Sreply_received 1ag &psmart-stub

Fig. 11.Invocation Interface

from a commorinvocation  class, which provides a uniform interface to other com-
ponents in the ORB. Both classes delegate the tasks described above to other ORB
components we discussed earlier.

3.2 Collaborations Between Components in TAO’s AMI-enabled Architecture

Now that the preceding sections described TAO’s ORB architecture components that
process synchronous and asynchronous requests, we can present the overall AMI-enabled
ORB architecture of TAO, which is shown by the UML class diagram in Figure 12.
Moreover, Figure 13 reexamines the sequence of steps that occur when an application
issues an AMI or SMI call. Each of these steps is described below:

— TheClient calls theStub to invoke an operation. In the case of an AMI call, it
passes a reference to a reply handler serf@gnt

— The stubs generated by TAO's IDL compiler are different for the SMI and AMI
calls. In particular, the SMI and AMI stubs instantiate their corresponiing-
cation objects(2).

— The Invocation object creates &ynchronous or Asynchronous Re-
ply Dispatcher , depending on the type of the requé®t Thelnvocation
object then binds th&eply Dispatcher object with theTransport Mux
Strategy object @ & 5).

— Thelnvocation  object calls théransport  object, which in turn uses TAO'’s
pluggable protocols framework [11] and ACE [24] to send the reqe&t?).



Fig. 12. AMI-enabled TAO ORB Architecture

— In the AMI model, the stub returns control to the application at this point. Later,
the Client  can wait for the server’s reply. In the SMI model, conversely, the
Invocation  object calls thfransport  to wait for the reply, which delegates
this task to théVait Strategy  (8).

— When the reply arrives, th€ransport  object is notified to read the rep(®).

It reads the complete reply and calls theansport Mux Strategy to dis-
patch the reply10). TheTransport Mux Strategy uses the corre®eply
Dispatcher  object created for that invocation and calls its dispatch mefhby

— If a Synchronous Reply Dispatcher is used, it simply stores the reply
buffer, sets the state variables within the object to indicate that the reply has been
received, and then returns. Conversely, Asgnchronous Reply Dispat-
cher invokes the reply stub stored in the object, passing in the reply handler ser-
vant and the reply buffer, and dispatches the répB).

4 Evaluating the Performance of TAO AMI Callbacks

4.1 Overview

As discussed in Section 1, AMI can help improve the scalability of CORBA applications
by minimizing the number of client threads required to perform two-way invocations.
In this section, we present empirical results that show how TAO's AMI implementation
helps to increase application scalability by minimizing the number of client threads.
We demonstrate the efficiency of the implementation by comparing both the latency
and operation throughput of SMI and AMI two-way invocations in TAO.

All experiments were performed on two 400 Mhz quad-CPU Dell 6300 computers
running Linux 2.2 and connected by a 100 Mbps Fast Ethernet. Each computer has 1
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Fig. 13. Sequence of Steps in TAO’s SMI & AMI Invocations

GB of RAM. The benchmarks were compiled using the GCC v. 2.95 compiler with the
highest level of optimization.

The server implementation is held constant in all our benchmarks. Moreover, to
minimize the overhead on the server, we use a simple interface that accepts a single
argument and returns it. The argument is a 64dbigned long  that the client
uses to send timestamps to the server to measure round-trip delays. To minimize jitter,
all client and server benchmarking processes were run in the Linux real-time scheduling
class.

4.2 Empirical Results

Two-way latency benchmarkn our first experiment, we compared the round-trip la-
tency of 10,000 two-way calls in single-threaded applications using three different in-
vocation models: (1) SMI using the SlI, (2) AMI using the SlI, and (3) deferred SMI
using the DII. For the DIl and AMI benchmarks we sent the request and immediately
waited for the asynchronous reply.

Table 1 compares the latency for the three invocation models. The best results are
obtained using AMI requests, though the difference with respect to SMI is small (3%).
This difference is within the error margins defined by the jitter measurements and is not
significant. Compared to SMI, a larger amount of jitter was observed for AMI, resulting
from the extra locking overhead required to dispatch the reply-stub. In contrast, the
worst performance is obtained using the deferred synchronous model, which averaged
20% slower than AMI because it incurs additional DIl processing overhead.



[ Test][Minimum| AveraggMaximum Jitter]]
SMI 455 497 684 [2.7%
AMI 447 479 1,859 |3.0%
DIl 499 573 2,652 |9.6%
Table 1. usecond Latency Results for Different Invocation Models

Operation throughput benchmarkn this experiment, we compared the throughput (in
number of requests per second) of the different invocation models. To simulate asyn-
chronous communication using ORBs without AMI support, applications have tradi-
tionally spawned additional threads. To compare this approach with an AMI applica-
tion, therefore, the client process creates a new thread for each two-way SMI call, up to
an OS imposed limit of 220 The benchmark sends 10,000 requests on each thread.

In contrast to the heavily threaded SMI client, the AMI client uses only two threads.
One thread sends as many two-way requests as required and the other thread runs the
ORB event loop to dispatch replies to the appropriate reply handler. To match the num-
ber of calls performed by the SMI client, therefore, the AMI client performs 2,200,000
calls. Finally, we perform the same test using DIl deferred synchronous requests.

The results of this experiment are shown in Figure 2. As shown by these results,

[Test |Average Calls/sef.
SMI (220 threads) 1914
SMI (7 threads) 7080
AMI 8524
DIl 3816

Table 2. Operation Throughput Results for Different Invocation Models

the AMI client not only provides a more scalable design than the multi-threaded SMI
client, but also shows a significant performance improvement. This improvement stems
from the fact that (1) the TCP/IP stack can send larger data packets containing multiple
AMI requests, (2) the two threads in the AMI client can overlap request invocations and
response processing, and (3) the AMI client fully utilizes the network resoureg4,

can completely fill TCP/IP windows because it can “pipeline” the two-way invocations.

In addition to scalability problems, the use of hundreds of threads in the SMI client
also increases its synchronization overhead. Table 2 shows how reducing the number of
threads in the SMI client test from 220 to 7 improved performance significantly. This
solution has the adverse affect of reducing the number of simultaneous two-way calls,

5 Note that we were unable to create more than 220 threads before running out of resources
on Linux. This illustrates one of the drawbacks of using threads to simulate asynchronous
communication.



however, which increases average latency. In contrast, the AMI client do not suffer from
this tradeoff.

Finally, note that that deferred synchronous requests can sometimes achieve better
performance than a naively designed, heavily-threaded SMI client. It is unlikely, how-
ever, that the performance of deferred synchronous DIl could ever rival that of AMI,
due to the inherent overhead of memory allocation and data copying. Moreover, DIlI's
invocation model is more tedious and error-prone to program.

4.3 Summary of Results

The latency and operation throughput results presented above can be interpreted as
follows:

— For simple applications that require few request-response interactions, SMl is al-
most as effective as AMI, with an insignificant difference in latency within the
error margins. In addition, SMI has slightly less jitter because its implementation
uses fewer locks.

— For more demanding applications, AMI applications can exhibit a measurable (20%)
improvement in operation throughput compared with the best SMI results. These
performance improvements illustrate how AMI clients can leverage network re-
sources and inherent parallelism in distributed systems more effectively than SMI
clients.

5 Concluding Remarks

Asynchronous method invocations (AMI) are an important feature that has been inte-
grated into CORBA via the OMG Messaging specification [4]. A key aspect of AMI
is that operations can be invoked asynchronously, while still using the static invoca-
tion interface (SlI). The use of SllI eliminates much of the complexity and inefficiency
inherent in the dynamic invocation interface (DIl)'s deferred synchronous model.

This paper explains how ORBs can be structured to support the CORBA AMI call-
back model efficiently and scalably. The following is a synopsis of the lessons learned
developing TAO'’s AMI callback implementation:

AMI requires a scalable ORB architecturédn ORB should implement the AMI and

SMI reply handling in a flexible and scalable manner. For instance, to support many
simultaneous AMI requests efficiently, connection multiplexing optimizations should
be supported in the ORB Core.

Optimizations should be guided by empirical measuremefiddl and SMI enhance-
ments should be guided by systematic blackbox benchmarks and whitebox profiling so
that existing optimizations in the ORB are preserved, while allowing applications to
configure the ORB based on their specific QoS requirements. For example, during the
validation phase of our AMI changes, we discovered that the SMI model was perform-
ing one memory allocation more than it did before the AMI changes. The problem was
easily fixed, but it illustrates that careful, repeated whitebox analysis of the system and
application of optimization principle patterns [15] is required to ensure and maintain its
quality.



The ORB should adapt readily to different use-cadessign patterns should be applied

to configure ORBs with policies and mechanisms appropriate for particular application
use-cases, while still preserving key optimizations necessary to support stringent QoS
requirements. In particular, we repeatedly applied the Strategy pattern [25] to TAO's
AMI implementation to support scalable connection multiplexing strategies, while re-
taining configurations that ensure the determinism required for hard real-time applica-
tions. Applications can select AMI or SMI strategies using the Service Configurator
pattern [25], which makes the TAO framework dynamically configurable and therefore
highly flexible.

Both AMI and SMI are important invocation modeEnhancements needed to support
AMI should not add overhead to the ORB’s SMI processing. Patterns like Strategy
and Service Configurator can be used to make any additional overhead optional for
applications that do not require it.

Programming AMI clients requires application developers to make design decisions:
While developing our tests for the AMI implementations, we recognized that the AMI
model, while more intuitive and easier to use than the DIl deferred synchronous model,
is more complex than simple SMI applications. For instance, client developers must
decide how to handle the repliesg, by using a separate thread, waiting for replies
after a fixed number of requests, or adaptively waiting for replies. Developers must
also decide how to connect the reply with the original requeegt,by using a different

reply handler servant for each one, returning some kind of request id from the server, or
using the POA dynamic activation mechanisms to distinguish between all the requests.
Finally, client developers must be prepared to handle “inversion of control” in their
applicationsij.e., by using a callback to handle the incoming reply.

These challenges should not be viewed as insurmountable problems, however. After
developers master the appropriate patterns and idioms, AMI can be significantly easier
to program than the CORBA deferred synchronous model. Moreover, it offers signif-
icant performance improvements over both SMI and DIl calls. Thus, CORBA AMI is
an important addition to the CORBA family of features and specifications.
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