The Design and Performance of an Adaptive Middleware
Load Balancing and Monitoring Service

Ossama Othman and Jaiganesh Balasubramanian Douglas C. Schmidt

{ossama,jdi@doc.ece.uci.edu d.schmidt@vanderbilt.edu
Dept. of Electrical Institute for Software
and Computer Engineering Integrated Systems
University of California Vanderbilt University
608 Engineering Tower 2015 Terrace Place
Irvine, CA 92697, USA Nashville, TN 37203, USA
Abstract able to redistribute requests dynamically. Otherwise, one or

more backend servers may potentially become overloaded,
Middleware is increasingly used as the infrastructure for aprhereas others will be underutilized. In other words, the sys-
plications with stringent quality of service (QoS) requireaem mustadaptto changing load conditions. In theory, apply-
ments, including scalability. One way to improve the scaling adaptability in conjunction with multiple backend servers
bility of distributed applications is to use adaptive middlewargan

to balance system processing load dynamically among mulg ajjow the system to scale up gracefully to handle more

tiple servers. Adaptive middleware load balancing can help cjients and processing workload in larger configurations.
improve overall system performance by ensuring that client, poqyce the initial investment when the number of clients
application requests are distributed and processed equitably s small and
across groups of servers. _ - e Increase the reliability of the overall systeeng, by redi-
This paper presents the following contributions to research o ting requests to replicated servers when failures occur.
on adaptive middleware load balancing techniques: (1) itde- -
scribes deficiencies with common load-balancing techniqﬁgh'ev'ng th|s degrge of scalab|llty requires a sophisticated
such as introducing unnecessary overhead or not adapting d balancmg' service. Ideally, thls service should be trans-
namically to changing load conditions, (2) it describes the cBe renF t.o eX|s't|ng distributed gpphcaﬂon’ components. More-
pabilities of Cygnus, which is an adaptive load balancing séver if incoming requests arrive dynamically, a load balanc-

vice, and (3) it presents the results of empirical benchmafR§ S€rvice may not benefit from priori QoS specifications,

that systematically evaluate different load balancing stratg® eduling, or admission control and must therefore adapt dy-

gies provided in Cygnus by measuring their scalability Sho\wpmicallly to charllges in run—.time conditions. .
ing how well each strategy balances system load. The findifig@/uating candidate solutions. Load balancing can be
in this paper show that adaptive middleware load balanciftyformed at the network, operating system, middleware, or

is a viable solution for improving the scalability of distribute@PPlication layers, as shown in Figure 1. Network-level load
applications. balancing is often provided by routers and domain name

servers [5]. OS-level load balancing is generally provided by

clustering software [19]. Application-level load balancing is
1 Introduction performed by the application itself [1]. A layer may take ad-

vantage of load balancing in layers below it when balancing

Motivation. As the demands of resource-intensive difads atits level. For instance, application-level load balanc-
tributed applications have grown, the need for improved ov&}9 may employ load balancing facilities supplied by the OS.

all scalability has also grown. For example, client reques_t:sWhile load balancing can be perform.ed ir! the layers out-
may arrive dynamically—not deterministically—in many didined above, these layers have the following disadvantages that

tributed applications, such as automated stock trading, 8N Make them unsuitable for use in distributed applications
commerce transactions, and total ship computing envir¢h@t require dynamic adjustment to runtime load conditions:
ments. Moreover, the amount of load incurred by each requedt The inability to take into account client request content
may not be known in advance. 2. Lack of transparency and

These conditions require that a distributed application b&. High maintenance lifecycle costs.

e From the load balancing service implementation perspec-
- tive, since a single load balancing service can be used for
aobleaien many types of applications, the effort needed to develop
a load balancing service for a specific application is re-
duced. This generally allows for simpler and better load
balancing service implementations.

e Itis possible to concentrate on the load balancing service
in general, rather than a particular aspect geared solely to
one application, which can improve the quality of opti-

Operating System mizations used in the load balancing service.

Middleware

Il

Server Unfortunately, first-generation adaptive middleware load

balancing services [13, 10], including our own earlier
Network work [18, 17] on the topic, do not provide solutions for key
dimensions of the problem space. In particular, they provided

insufficient functionality to satisfy advanced distributed ap-
Figure 1: Load Balancing Layers plication requirements, such as the ability to tolerate faults,
install new load balancing algorithms at run-time, and create
group members on-demand to handle bursty clients. The lack
In particular, network- and OS-based load balancing sufférsupport for this advanced functionality in first-generation
from the first disadvantagéee., they cannot take into accounadaptive middleware load balancers has impeded distributed
client request content because that information is necessagjligtem scalability. Moreover, the lack standardizednter-
application-specific. Application-based load balancing sufféases and policies have precluded reuse of interoperable off-
from the last two disadvantages., transparency is lost sincethe-shelf adaptive middleware load balancing services. This
the application itself must be modified to support load bataper therefore explores a previously unexamined dimension
ancing, which can complicate code development and mairitethe middleware spacethe design and performance of a
nance. scalable adaptive load balancing service based on the OMG
Given these deficiencies, a cost-effective way to address @{éRBA standard
application demands listed above is to employ load balancOur work in this paper is presented in the context of one
ing services based on distributioniddleware[20], such as of the OMG Load Balancing and MonitorindLB/M) ser-
CORBA [16] or Java RMI [23]. These load balancing servicege specification proposals [15] and our Cygnus implemen-
distribute client workload equitably among various backetation of this service that guided the proposal effort. Though
servers to obtain improved response times and scalability. CORBA has standardized solutions for many distributed sys-
Earlier generations of middleware load balancing servidegn challenges, such as predictability, security, transactions,
largely supported simple, centralized distributed applicatiénd fault tolerance, it does not yet have specify how to tackle
configurations. For example, stateless distributed applicatié®@d balancing capabilities required by distributed systems ar-
that require load balancing often integrate their load balasitects and developers. Cygnus is available Witie ACE
ing service with a naming service [3, 11]. In this approach QRB(TAO) [21] version 5.3, which implements the CORBA
naming service returns a reference to a different object e&@® specification [16]. The software, documentation, exam-
time it is accessed by a client. Implementing a load balanciplgs, and benchmarking tests for TAO and Cygnus are open-
service via a haming service can be @erly static e.g, if source and can be downloaded fradeuce.doc.wustl.
the naming service does not consider dynamic load conditi@a/Download.html
when returning an object reference to its clients and/oin2)
efficienf e.g, due to the extra (and ultimately unnecessar
levels of indirection and round-trip latencies.
In contrast,adaptivemiddleware load balancing service
that consider dynamic load conditions when making decisi
can yield the following benefits:

T inmEE

Router

Paper organization. The remaining sections of this pa-
B r are organized as follows: Section 2 describes the pro-
gosed CORBA Load Balancing and Monitoring (LB/M) ser-
Vice specification and the architecture of Cygnus, which is our
TB/M service implementation; Section 3 presents benchmarks
that quantitatively evaluate how the Cygnus adaptive middle-
¢ An adaptive load balancing service can support a largeaire LB/M architecture improves distributed application scal-
range of distributed systems since it need not be desigrility; Section 4 describes other R&D efforts that are related
for a specific application,e., it is more flexible. to load balancing; and Section 5 presents concluding remarks.

2 Cygnus: An Adaptive Middleware

) o Sidebar 1: Key Load Balancing Concepts
Load Balancing and Monitoring Ser-

The key load balancing concepts and components used in

vVice this paper are defined below:
e Load balancer, which is a component that attempts to
This section motivates and describes the key components ensure application load is balanced across groups of
capabilities of Cygnus, which is the open-source middlewsd servers. It is sometimes referred to as a “load balanc-
framework integrated with TAO that guided the design ing agent,” or a “load balancing service." A load bal-
our proposed OMG CORBA Load Balancing and Monitorir ancer may consist of a single centralized server or mul-

tiple decentralized servers that collectively form a single

logical load balancer.
e Member, which is a duplicate instance of a particular

object on a server that is managed by a load balancer. It

(LB/M) service specification [15]. Sidebar 1 defines and
lustrates the load balancing concepts and compohestd
throughout this paper and the OMG LB/M proposal. TAO af

Cygnus implement all the components shown in the figure performs the same tasks as the original object. A mem-
Sidebar 1. TAO facilitates location-transparent communid ber can either retain state (i.e., be stateful) or retain no
tion between (1) clients and instances of the Cygnus load | state at all (i.e., be stateless).

ancer, (2) a load balancer and the object group members,| ® Object group, which is actually a group of members
(3) clients and the object group members. Cygnus also ke| across which loads are balanced. Members in such

groups implement the same remote operations.
e Session which in the context of distribution middleware

defines the period of time that a client is connected to a

21 Overview of the Cygnus Load Balancing| 9y server orthe purpose of inoking emote opera:

Model The following figure illustrates the relationships between
these components:

track of which members belong to each object group.

In contrast to load balancing models that are process-orier|

Object Groups

(where loads are balanced between processes) or obj Members
oriented (where loads are balanced between objects), the

balancing model employed by Cygnuslacation-oriented g o]
For non-adaptive Cygnus load balancing strategies, the m o

ber to receive the next client request is based oridbation
where a specific member of an object group resides. The aq
tive Cygnus load balancing case differs in that member sel
tion is performed based on the loads at a gil@ration In
both cases, neither process nor object characteristics are
essarily used when making load balancing decisions.
Although hosts are often associated with locations, t
location-oriented model used in Cygnus makes no assul
tions about the application’s interpretation of what a “loc
tion” is. For example, an application could decide to associ
a process with a location instead of a host. The load balang Clients
model would still be location-oriented in this case, howevs
since the load balancer would not be aware that the location
was actually a process. _ - o
The deployed structure of the location-oriented load balaf@lancing approaches [13, 10, 18, 17]. Additional flexibil-
ing service is shown in Figure 2. The Cygnus load balancilfy can be found in Cygnus’ support for object group-specific
model allows members from different object groups to resi@éopPerties, such as the load balancing strategy in use.
at the same location. For instance, a member f@nmoup 1
and a member frorsroup N can each reside at a single loc
tion. This flexibility is one of the strengths of the Cygnus lo
balancing model when compared with earlier adaptive load

1in this paper, the terrmomponents used genericallyi,e., an identifiable Flgure 3 illustrates the relatlonShlps among the components

entity in a program, rather than more specificatiyg, a component in the N the Cygnys- As Shown_ in this f'igure: the Cygnus adap-
CORBA Component Model [14]. tive LB/M middleware service consists of the (lbad man-

Load
Balancer

Session

Z%.Z Resolving Load Balancing Challenges with
Cygnus

workloads in a middleware context and (2) how load balanc-
Load Balancer Host Location ing and monitoring is implemented in Cygnus. Our primary
LoadMonitor focus is on the use of adaptivity to enhance scalalfilitys
\%,:\ : discussed below, the Cygnus load manager enables clients and
@ servers to participate in load balancing decisions without un-
@’ duly exposing them to tasks that can and should remain inter-
@ nal to the load balancing service. The member locator allows
a load balancer ttransparentlyinform a client that it should

issue requests to a chosen object group member.
Figure 2: Deployed Structure of the Location-Oriented Other LB/M implementations, such as the one found in Or-
CORBA Load Balancing Service. bix 2000 [11], employ concepts similar to the ones described
below. Those implementations are less flexible than the ap-
proach employed by Cygnus, however, and do not separate
* | Client concerns as cleanly.

Challenge 1: Extensible Load Analysis and Shedding

LoadManager .,
________ - Context. The same load balancing service is used to balance

1 . : X e .
X next_member { _@' loads for multiple (potentially different) distributed applica-
tions.

Problem. Load balancing multiple distributed applications
with different resource requirements can be done in at least
two ways:

¢ Create a differentload balancing service instance for each
type of distribute application. This solution, however, is
hard to maintain. For example, when a new distributed
application is deployed, a new load balancing service
must be started and configured, which is logistically com-
plex and costly.

e Use a single shared load balancing service instance to
manage loads for multiple applications with different re-
Figure 3: Components in the Cygnus LB/M Service source requirements. This solution requires that the load
balancing service be extensible enough to allow run-time
configuration of the load analysis and shedding mecha-
nism on a per-object group basis, which is one of the re-

quirements set forth in [17].

Location/Node

+ LoadMonitor
requests —

| member. | |'|4'la"1‘5|‘3";L I—O"alert

*

ager, which is the application entry point for all load balancing
tasks, (2member locatgrwhich is the load balancing compo-
nent responsible for binding a client to a member)day an-
alyzer which analyses load conditions and triggers load sheghtion —; Load analyzer. Define a load analyzer compo-
ding when necessary, (#)ad monitor which makes load re- hont that decides which member will receive the next client re-
ports available to the load manager, andl@@d alert which et The load analyzer also allows a load balancing strategy
is a component through which load shedding is performed. i pe selected explicitly at run-time, while still maintaining a
Although the preceding discussion and Figure 3 outline §i&,nje and flexible design. Since the load balancing strategy
elements of the Cygnus, they do not motivate what these &l e chosen at run-time, member selection can be tailored to
ements do or more importantlyhy they are important. Thej; the dynamics of a system that is being load balanced. An
remainder of this sgcuon therefore justifies the need for th%%ﬁjitional task the load analyzer performs is to initiate load
elements by explaining the key challenges they address, Whigjding at locations where deemed necessary. This task only

include: . _ _ occurs when using an adaptive load balancing strategy.
1. Extensible load analysis and shedding Implementing the load analyzer in Cygnus. Cygnus im-
2. Flexible load reporting and plements the load analyzer component as a logical engty,

For each challenge, we describe (1) how a particular COMPO2portapility and transparency issues addressed by the load manager and
nent of Cygnus resolves problems that arise when balancifgnber locator components are beyond the scope of this paper.

Cygnus functions as if one did exist. In particular, the tasks Pull
performed by the load analyzer are handled by objects that
implement load balancing algorithms and are registered with
Cygnus. Cygnus uses an implementation of the Strategy [7]
design pattern to achieve this functionality. Load balancing LoadManager
strategies are registered with Cygnus as CORBA object refer- —
ences, meaning that load balancing strategy implementations

Monitoring
loads —»

may actually reside at remote locations. Push
Load balancing strategies can invoke adaptive load balanc- Monitoring

ing methods on the Cygnus load balancer to perform load <4—push_loads

shedding operations. To maximize scalability and throughput,

CORBA asynchronous method invocations (AMI) [2] are used

to minimize the amount of time other operations are blocked

waiting for the adaptive load balancing operations to complete. Figure 4: Load Reporting Policies

Challenge 2: Flexible Load Reporting
Implementing the load monitor in Cygnus. Load moni-

Context. A distributed application must be adaptively loaghrs are generally application-defined objects. Consequently,
balanced. Cygnus is designed to be load-metric neutral. For conve-
Problem. Adaptive load balancing requires feedback on apience, Cygnus is shipped withL@adMonitor utility that
plication load conditions. Suppose the number of client reimplifies registration of custom load monitors with its load
quests per second is used as load metric. Request countsnaifager. This utility also supplies a convenient means to
typically tallied by the load balancer in a per-request archjse built-in load monitors that monitor common types of load,

tecture (see [18]), a very common load balancing architegrch as CPU load, disk load, network load, memory load, and
ture. However, such an architecture may not be suitable &pyplication workload.

other load metrics. Furthermore, per-request load balancing
ar.chit_ectures incur a great deal of overhead in_distribut_ed & llenge 3: Facilitate Transparent and Scalable Load
plications. Now suppose, an on-demand architecture is u dding
to reduce network and application overhead. Request counts
can no longer be tallied by the load balancer. Furthermo@mntext. A load balancer decides that it must shed load at
making the load balancer acquire request counts, or more ggivien a location.
erally load samples, unnecessarily restricts the types of lo&dsblem. Adaptive load balancing requires the ability to
that can be handled by the load balancer. These deficiensiesd load at a given location. It also requires a server to redi-
can adversely affect the applicability of the adaptive load baéct client requests sent to its location back to the load bal-
ancing support provided by a load balancer to a distributadcer for reassignment to another location. To achieve this
application. level of control, the load balancer must communicate with the
Solution — Load monitor. Define a load monitor compo-application server(s) at a given location. However, communi-
nent that tracks the load at a given location and reports tfaion with the application server(s) violates server-side trans-
location load to a load balancer. As depicted in Figure 4parency [17].
load monitor can be configured with either of the followin§olution — Load alert. Define a component that facilitates
two policies: load shedding and delegate all load shedding communication
e Pull policy — In this mode, a load balancer can query!g this component, rather than the application server(s). This
given location load on-demanice., “pull” loads from the 10ad alert component respondsétert conditions set by the
load monitor. load analyzer component described in Challenge 1. If the load
e Push policy— In this mode, a load monitor can upushanalyzer reguires reduction in Ioadg(, it.must shed load)
load reports to the load balancer. from an object group member location, it enables an “alert”
condition on the load alert component residing at that same
The sole task of a load monitor component is to collect atatation. After the alert is enabled, the load alert component
report loads to the load balancing service. This separati@jects client requests. Requests are rejected by a server re-
of concerns greatly simplifies potential load balancing servigeest interceptor that throwsZORBA:: TRANSIENTexcep-
designs and implementations, with the added benefits of itien. When a client ORB receives that exception, it will trans-
proving flexibility of load reporting and reducing load sanmparently reissue the request to the original targes,the load
pling and reporting overhead.

balancer. The load balancer will then transparently reass
the client’s request to another member in the object group.

Implementing load alerts in Cygnus. Applications may
register load alert objects with Cygnus. Cygnus maps load
alert objects to object group members using an efficient hash
map. This design minimizes load alert object lookup, which
enhances the overall scalability of Cygnus itself.

Cygnus invokes the application-defined load alert objects to
enable or disable load shedding on a given object group mem-
ber. It uses AMI to improve overall throughput in Cygnus, as
outlined in Challenge 1. The use of AMI reduces the overhead
of Cygnus by minimizing blocking time.

A load alert object consists of (1) a servant that the lo
balancer can invoke requests on and (2) a server request i
ceptor that performs the actual load shedding by intercepting
client requests and determining whether or not they should bg
rejected. The amount of overhead incurred by the interception
of client requests depends largely on the efficiency of TAO'’s
Portable Interceptéimplementation. For example, when an
alert is not enabled an interception can be reduced to an in;:
stantiation of a small object and a simple atomic boolean flag"
check.

3.
2.3 Dynamic Interactions in the Proposed
OMG Load Balancing and Monitoring Ser-

vice

4.

5.
Section 2.2 describes the static relationships among the com-

ponents in Cygnus. This section augments this discussion
by describing the dynamic interactions among these compo-
nents. Although the following discussion is not comprehen-

sive, the scenario focuses on the case where the location an

object group member resides at has become overloaded, cays-

ing requests to be redirected. This scenario was chosen since
it illustrates all interactions that occur between a client, adap-
tive load balancing service, and a group of objects or servers
comprising an object group.

Selecting a target member using a non-adaptive balancing
policy can yield non-uniform loads across group members. |
contrast, selecting a member adaptively for each request can
incur excessive overhead and latency. To avoid either extremg,
Cygnus therefore provides a hybrid solution [18], whose inter-"
actions are shown in Figure 5. Each interaction in Figure 5 is
outlined below.

SA Portable Interceptor is an instance of the Interceptor design pat-
tern [22], with an interface defined by the OMG, designed to be registered
with an application’s ORB and invoked at various request processing points
with the intention of either examining the contents of the request or preventing
the request from continuing.

4Since the non-adaptive case is a subset of the adaptive case, we omit such

scenarios, such as the interactions that occur between a clieot;adaptive
load balancing service, and group of objects or servers.

Client
an:
T
1 send_request’j
2: send_request

Load

r
o
5]
<%

Member
Locator

>

Manager

Member

il

¥ I
’-LG: push_loads J_‘
> 7:is_overloaded

5: send_request

9: LOCATION_FORWARD

m————

Member and LoadAlert
object are at same
location.

r%ttljgrgre 5: Cygnus Load Balancing and Monitoring Interactions

A client obtains an object reference to what it believes to
be a CORBA object and invokes an operation. In actual-
ity, however, the client transparently invokes the request
on the load manager itself.

After the request is received from the client, the load
manager’'s POA dispatches the request to its servant lo-
cator,i.e., the member locator component.

Next, the member locator queries the load analyzer for an
appropriate group member.

The member locator then transparently redirects the
client to the chosen member.

Requests will continue to be setiitectly to the chosen
member until the load analyzer detects a high load at the
location the member resides. The additional indirection
and overhead incurred by per-request load balancing ar-
chitectures (see [18]) is eliminated since the client com-
municates with the member directly.

The load monitor monitors a location’s load. Depending
on the load reporting policy (sé@ad monitordescription

in Section 2.2) that is configured, the load monitor will
either report the load(s) to the load analyzer (via the load
manager) or the load manager will query the load monitor
for the load(s) at a given location.

As loads are collected by the load manager, the load ana-
lyzer analyzes the load at all known locations.

To fulfill the transparency requirements, the load man-
ager does not communicate with the client application
when forwarding it to another member after it has been
bound to a member. Instead, the load manager issues an
“alert” to theLoadAlert object residing at the location
the member resides at. Depending on the contents of the
alert issued by the load manager, tteadAlert object

will either cause request be accepted or redirected.
When instructed by the load analyzer, ttmadAlert

object uses the GIOPOCATION_FORWARD message to

dynamically and transparently redirect subsequent re- - -
guests sent by one or more clients back to the load man- ——
ager. < lessssmerscy”
@ 100 MBps [
After all these steps, the load balancing cycle begins again. Client1 Network Switch Server 1
Note that this hybrid approach does mat perform load bal- . .

ancing on a per-request basis. It performs load balancing on-
demand, thus avoiding a major bottleneck found in many other
load balancing implementations.

Load Manager
and

3 Empirical ReSU“:S Client M Name Service Host Server N

To improve overall application performance significantly, a Figure 6: Load Balancing Experiment Testbed
load balancing service itself must incur minimal overhead. A

key contribution of the Cygnus load balancing and monitoring

(LB/M) service described in Section 2.2 is its ability to intributed with the TAO open-source software releds@nly

crease overall system scalability. The Cygnus LB/M servigtateless objects are used as targets in this test. All benchmarks

achieves scalability by distributing requests across multigere configured to run 200,000 iterations and to generate the

back-end servers (object group members). It is also desighafe load. The figure in Sidebar 1 illustrates the basic de-

to avoid increasing round-trip latency and jitter significantlysign of this performance test. All benchmarks use one of the

This section describes the design and results of severalf8{owing variations of thd_atency test:

periments performed to empirically quantify the benefits of thel. Latency test with Round Robin load balancing strat-

Cygnus adaptive on-demand load balancing support, as well €gy. In this benchmark, theéatency test was config-

as to demonstrate the limitations with the alternative load bal- ured to employ the Round Robin load balancing strat-

ancing strategies outlined in [18]. Section 3.1 outlines the €gy to improve scalability. As defined, by the proposed

hardware and software platform used to benchmark Cygnus. CORBA LB/M specification, the Round Robin strategy

Section 3.2 presents the results from a set of experiments is non-adaptivei(e, it does not consider dynamic load

that illustrate the improved scalability attained by introducing ~conditions) and simply chooses object group members to

Cygnus’ adaptive load balancing capabilities into a represen- forward client requests to by rotating through the list of

tative distributed application. members in a given object group. In other words, all the
requests from the clients are equally distributed among

) the servers.
3.1 Hardware/Software Benchmarking Plat- 2. Latency test with Random load balancing strategyln

form this benchmark, the Random load balancing strategy is
) used to improve scalability. It is a non-adaptive load bal-
Benchmarks performed for this paper were run on Entulab ancing and selects a member at random from the list of

ing between 2 and 49 single CPU Intel Pentium Il 850 MHz embersin a given object group.

workstations, all running RedHat Linux 7.1. The Linux kernel 3. Latency test with Least Loaded load balancing strat-

is open-source and supports kernel-level multi-tasking, multi- egy. This final benchmark configuration uses Cygnus’

threading, and symmetric multiprocessing. All workstations | aast Loaded load balancing strategy to improve scala-
were connected over a 100 Mbps LAN. This testbed is de- pjjity. Unlike the Round Robin and Random tests, it uses
picted in Figure 6. All benchmarks were run in the POSIX 5, adaptive load balancing strategy. As its name implies,

real-time thread scheduling class [12]. This scheduling class it chooses the object group member with the lowest load,
enhances the consistency of our results by ensuring the threads,yhich is computed dynamically.

created during the experiment were not preempted arbitrarily
during their execution. .

The core CORBA benchmarking software is based on ﬂ?fe2 Scalability Results
single-threaded form of the_atency " performance test dis- The primary use of a load balancer is to improve scalability.

_ ~As such, it is important to demonstrate that a particular load
SEmulab (www.emulab.net) is an NSF-sponsored testbed that facili-

tates simulation and emulation of different network topologies for use in ex- STAO_ROOT/performance-tests/Latency/Single_

periments that require a large number of nodes. Threaded in the TAO release contains the source code for this benchmark.

balancer configuration actually improves distributed applici
tion scalability. Three sets of benchmarks are shown belo
one for each load balancing strategy defined by the propos
CORBA LB/M specification: (1) Round Robin, (2) Random,
and (3) Least Loaded. Each set of benchmarks shows h
throughput and latency vary as the number of clients is il
creased between 1 and 16 clients, and the number of sen
is increased between 1 and 16 servers. In general, only t
or three server data sets are shown to illustrate trends with:
cluttering the benchmark graphs.

3.2.1 Round Robin Strategy Benchmarks

Figure 7 shows how client request throughput varies as t
number of clients and servers are increased when using
Round Robin load balancing strategy. This figure shows hc

Round Robin Strategy

Throughput
4000————F——————

3000—

2000 —

Throughput (Events/Second

Latency (microseconds)

1000

Round Robin Strategy

Latency

— 2 Serve
—— 4 Servel
— 8 Serve

.
2 4 6 8 10 12 14 16
Clients

Figure 8: Round Robin Strategy Latency

servers improved the latency. For example, the latency for the
16 clientand 2 server case is approximately 750 microseconds.
Increasing the number of servers to 8 reduced the roundtrip la-
tency to about 300 microseconds. This decrease in latency
in turn increased the throughput as the number of servers in-
creased.

3.2.2 Random Strategy Benchmarks

1000

B Figure 9 depicts how the Random load balancing strategy im-

plemented in Cygnus behaved when varying the number of
clients and servers. This figure shows how the throughput

I | I | I | I | I | I | I |
0 8
Clients

Figure 7: Round Robin Strategy Throughput

throughput decreased as the number of clients were increast
beyond the same number of servers. For example, througt
put remained essentially unchanged as long as the number
clients was less than the number of servers. These resul
demonstrate that the Round Robin load balancing strategy im
plemented by Cygnus incurs no overhead beyond the first re
quest. In particular, Cygnus no longer participates in subse
guent client requests after it binds a client to a given object
group member via the Round Robin load balancing strategy.
Figure 7 also shows that as the number of servers increase
throughput also increased when the number of clients sur

passed the number of servers. For example, when the number

of clients is 8, the throughput with 4 servers is more than the
throughput with 2 servers.

Throughput (Events/Second)

4000

Random Strategy
Throughput

3000

2000

1000

Clients

Figure 9: Random Strategy Throughput

of the Random load balancing strategy behaved basically the

Figure 8 illustrates how request latency varied as the nusame as the Round Robin load balancing strategy presented
ber of clients and servers were increased. This figure shawSection 3.2.1. Both strategies exhibit similar overhead and
how employing Cygnus in thieatency performance test im- scalability characteristics due to the fact that they are non-
proved both throughput and latency. Increasing the numbeadgptive and have fairly simple member selection algorithms.

The results in Figure 9 do not mean, however, that all non-With this configuration, Cygnus queried the server load
adaptive strategies will have the same throughput charactemsnitor every 5 seconds (the Cygnus default). Moreover,
tics. It simply happens that in this case, client requests waigh load conditions caused Cygnus to either reject object
distributed fairly equitably among the object group membeagsoup members when selecting members to bind request to,
chosen at random. Other cases could potentially result in marlcaused Cygnus to request that servers shed load.
tiple clients being bound to the same randomly chosen objecFigure 11 illustrates how Cygnus’ Least Loaded load bal-
group member. In those cases, and assuming that loads geoing strategy reacts as the number of clients and servers in-
erated by all clients are uniform (as is the case in this testieased. This figure illustrates how Cygnus’ Least Loaded
throughput would be less than the Round Robin case.

Figure 10 shows roundtrip latency for the Random load bal-
ancing strategy case increases when the number of clients e 400
ceeds the number of servers. This behavior occurs becaus
the random strategy continues to bind certain client request
to the same server, even though other less loaded servers ¢
available. As shown in this figure, latency improvéee.(de-

Least Loaded Strategy
Throughput

3000

Random Strategy 2000~

Latency
1000—— : : e —

Throughput (Events/Second)

— 2 Servel] 1000
—— 4 Serve
— 8 Servel

750~

I | I | I | I | I | I | I |
0 8 10
Clients

Latency (Microseconds)

Figure 11: Least Loaded Strategy Throughput

strategy incurs certain overhead compared with the Round
Robin and Random strategies. This overhead included (1) tak-
ing into account member loads, (2) rejecting some members

oz 4 6 C“gms‘ TR during member selection, and (3) shedding loads when some
servers become overloaded.
Figure 10: Random Strategy Latency ¢ Additional periodic requests on the server emanating
from Cygnus when querying the server for its current load
creased) as the number of servers increased. e Delays in client request binding as Cygnus waits for
member loads to fall under a suitable value, the reject
3.2.3 Least Loaded Strategy Benchmarks threshold, and

Request redirection incurred when servers forward re-
guests back to Cygnus when their current load is over the
configured critical threshold.

The Least Loaded load balancing strategy used for this test
configuration was designed to explicitly exercise the adaptive
load balancing support in Cygnus. In particular, the following
configuration was used: Despite the additional overhead, Figure 11 illustrates that
e A load monitor process that measured the number of sgalability still improved. In particular, increasing the number
guests per second and residing within the server was refjservers showed further improvements in scalability. When
istered with the Cygnus the number of clients is 8 and the number of servers is 2 there
e A reject thresholdof 10,000 events/second was seis a good difference between the throughput obtained from
which is the threshold at which Cygnus will avoid selecthe Random strategy and the throughput obtained from Least-
ing a member with that load. Loaded strategy. This behavior occurs because the Random
e A critical threshold of 30,000 events/second was sestrategy tries to bind the client to the same server even though
which is the threshold at which Cygnus informs serveagher less loaded servers are available. In contrast, Cygnus’
to shed loads by redirecting requests back to Cygnus. adaptive load balancer balances the load accordingly, which
e A dampeningf 0.2 was set, which is the value that detherefore increases throughput.
termines what fraction of a newly reported load is con- The latency results shown in Figure 12 illustrate reductions
sidered when making load balancing decisions. in roundtrip latency as the number of servers are increased.

There are certain cases when the latency is more than theia- Related Work

This section compares and contrasts our work on middleware
Least Loaded Strategy

Latency load balancing and Cygnus with representative related work.

1000 A w w Middleware load balancing provides the most flexibility in
— 2Senve | terms of influencing how a load balancing service makes de-

— 8Sene cisions, and in terms of applicability to different types of dis-

-
a
=}
T
|

tributed applications [6, 8]. Load balancing at this level, as
depicted in Figure 13, provides for straightforward selection
of load metrics, in addition to the ability to make load balanc-
ing decisions based on the content of a request.

Latency (Microseconds)
Ul
o
o
T
|

N
a
=}
T
|

Client —'

— S—
Middleware /) Load Balancer
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ Y a—
0 2 4 6 8 10 12 14 16

Application

Figure 12: Least Loaded Strategy Latency A

Middleware

y 7
Middleware

tency for the Round Robin and the Random strategy cases.
These results can also be attributed to the additional overhead
caused by Cygnus’ adaptive load balancing mechanisms.

Figure 13: Middleware-level Load Balancing

Some middleware implementations integrate load balanc-
ing functionality into the ORB middleware [13] itself, whereas
others implement load balancing support at the service level.
The latter is the approach taken by Cygnus upon which the
content of this paper is based.

CORBA load balancing. An increasing number of projects
Section 3.2 showed that the proposed non-adaptive and a@f'f‘@"focusing on CORBA load balancing, which can be imple-
tive CORBA LB/M strategiesi(e., Round RobipRandomand mented at the following levels in the OMG reference architec-
Least Loadejisupported by Cygnus can be quite effective igye.

increasing overall scalability of CORBA-based distributed ap-, orB-level. Load balancing can be implemented inside

plications. The strategy configuration§ used in these' bengls ORB itself. For example, a load balancing implemen-
marks caused the Least Loaded adaptive load balancing sffgfsn can take direct advantage of request invocation infor-
egy benchmark to have similar throughput and latency as thgifiion available within the POA when it makes load balanc-
non-adaptive counterparts when the clients generate unifgrm qecisions. Moreover, middleware resources used by each
loads. .These resglts also demonstrate that the load mo%ﬁﬂbct can also be monitored directly via this design, as de-
added in the 'adaptlve load balgncer does not gdd any overheaflod in [13]. For example, Inprise’s VisiBroker implements
compared with the non-adaptive Round Robin and the Ransimijar strategy, where Visibroker's object adapter [10] cre-
dom strategies. ates object references that point to Visibroker's Implementa-
Given a test configuration with clients generating notien Repository, called the OSAgent, that plays both the role
uniform loads, the benefits of adaptive load balancing wowflan activation daemon and a load balancer.
be more evident. However, results and discussions showin@RB-level techniques have the advantage that the amount
these benefits are beyond the scope of this paper (see our pifigmdirection involved when balancing loads can be reduced
work on adaptive load balancing [18, 17] for concrete resuliscause load balancing mechanisms are closely coupled with
based on an earlier prototype of Cygnus). The goal of tthee ORBe.g, the length of communication paths is shortened.
experiments in this paper was to show the extent to which efewever, ORB-level load balancing has the disadvantage that
ploying a CORBA-compliant LB/M implementation, such ai requires modifications to the ORB itself. Unless or until
Cygnus, can improve distributed application scalability. Asich modifications are adopted by the OMG, they will be pro-
our results show, scalability was indeed improved in all tgstietary, which reduces their portability and interoperability.
cases. The Cygnus load balancing service therefore does not rely on

3.3 Summary of Results

10

ORB-level extensions or non-standard featueeg, it does from lack of transparency, increased code complexity, and in-
not require any modifications to TAO’'s ORB core or objecreased maintenance burden.

adapter. Instead, it takes advantage of standard mechanisme address these limitations, we have devised an adaptive
in CORBA 3.0 to implement adaptive load balancing. Likeiddleware load balancing architecture — called Cygnus — to
the Visibroker implementation and the strategies describmgercome the limitations with network-based and OS-based
in [13], Cygnus’ approach is transparent to clients. Unlikead balancing mechanisms outlined above. This paper mo-
the ORB-based approaches, however, Cygnus only uses gdiaates and describes the design and performance of Cygnus,
dard CORBA features. It can therefore be ported to any Cwhich is an implementation of a CORBA Load Balancing and
CORBA ORB thatimplements the CORBA 2.2 or newer speltonitoring (LB/M) service proposal developed using the stan-
ification. dard CORBA features provided by the TAO ORB [21].

e Service-level. Load balancing can also be implemented The results in this paper illustrate how Cygnus allows dis-
as a CORBA service. For example, the research reported intf@juted applications to be load balanced adaptively and effi-
extends the CORBA Event Service to support both load beiently. Cygnus increases the scalability of distributed applica-
ancing and fault tolerance. Their system builds a hierarchytioins by distributing requests across multiple back-end server
event channelthat fan out from event soursaippliersto the members without increasing round-trip latency substantially
event sinkconsumers Each event consumer is assigned to@ assuming predictable, or homogeneous loads. For example,
different leaf in the event channel hierarchy, and both fixed alii¢ empirical results in Section 3 show that introducing LB/M
adaptive load balancing is performed to distribute consumigte distributed applications can substantially improve scala-
evenly. In contrast, TAO’s load balancing service can be udstity with minimal run-time overhead. As a result, developers
for application defined objects, as well as event services. can concentrate on their core application behavior, rather than

Various commercial CORBA implementations also providerestling with complex infrastructure mechanisms needed to
service-level load balancing. For example, IONAs Orbix [11Dake their application distributed and scalable.
can perform load balancing using the CORBA Naming Ser-The Cygnus LB/M service implementation is based entirely
vice. Different group members are returned to different cliers standard CORBA features, such as location forwarding,
when they resolve an object. This design represents a typggiivant locators and asynchronous method invocation (AMI),
non-adaptive per-session load balancer, which suffers fromigich demonstrates that CORBA technology has matured to
disadvantages described in [18]. BEA's WebLogic [4] usedhke point where many higher-level services can be imple-
per-request load balancing strategy, also described in [18]manted efficiently without requiring extensions to the ORB or
contrast, TAO's load balancing service Cygnus does not indisrcommunication protocols. Exploiting the rich set of primi-
the per-request network overhead of the BEA strategy, yet ¢&@s available in CORBA still requires specialized skills, how-
still adapt to dynamic changes in the load, unlike Orbix’s lo@&yer, along with the use of somewhat poorly documented fea-
balancing service. tures. Further research and documentation of the effective ar-

chitectures and patterns used in the implementation of higher-

] level CORBA services is therefore needed to advance the state

5 Concludlng Remarks of the practice and to allow application developers to make

better decisions when designing their systems.
As networks become more pervasive and applications becom®AO and Cygnus have been applied to a wide range of dis-
more distributed, the demand for greater scalability is increasbuted applications domains. Chief among these domains
ing. Distributed system scalability can degrade significantliiclude telecommunications, aerospace, defense, online fi-
however, when servers become overloaded by the volumenghcial trading, medical, and manufacturing process control.
client requests. To alleviate such bottlenecks, adaptive I@gsmTechnologies has developed a Java implementation of
balancing mechanisms can be used to distribute system lgadproposed OMG CORBA LB/M that interoperates with the

across object group members residing on multiple servers.Cygnus C++ implementation provided with TAO.

Load can be balanced at several layers, including the net-
work, OS, middleware, and application. Network-level a
OS-level load balancing architectures are generally inflexiu%eeferences
since they cannot suppapplication-definednetrics at run- [1] Monhit Aron, Darren Sanders, Peter Druschel, and Willy Zwaenepoel.
time when making load balancing decisions. They also lack Scalable content-aware request distribution in cluster-based network
adaptability due to the absence of load-related feedback from jﬁ:}‘;erz%o'ép roceedings of the USENIX Summer ConfereiSENIX,
a given set of object group members, as well as the inability to ' o
control if and when a given member should accept additiongl] Alexander B. Arulanthu, Carlos O’Ryan, Douglas C. Schmidt, Michael

: - R - Kircher, and Jeff Parsons. The Design and Performance of a Scalable
requests. Likewise, application-level load balancing suffers ORB Architecture for CORBA Asynchronous Messaging. In

11

Proceedings of the Middleware 2000 Conferen®&M/IFIP, April [23] Sun Microsystems, InclJava Remote Method Invocation Specification
2000. (RMI), October 1998.

[3] Sedn Baker.CORBA Distributed Objects using OrbiAddison Wesley,
1997.

[4] BEA Systems Inc. WebLogic Administration Guide.
edoc.bea.com/wle/.

[5] Cisco Systems, Inc. High availability web services.
www.cisco.com/warp/public/cc/so/nesol/ibso/ibm/s390/mnilsmhtm,
2000.

[6] T.Ewald. Use Application Center or COM and MTS for Load
Balancing Your Component Servers.
www.microsoft.com/msj/0100/loadbal/loadbal.asp, 2000.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software
Addison-Wesley, Reading, MA, 1995.

[8] Vittorio Ghini, Fabio Panzieri, and Marco Roccetti. Client-centered
Load Distribution: A Mechanism for Constructing Responsive Web
Services. IrProceedings of the 34th Hawaii International Conference
on System Sciences - 2Q0®{awaii, USA, 2001.

[9] Key Shiu Ho and Hong Va Leong. An Extended CORBA Event Service
with Support for Load Balancing and Fault-Tolerance Pmceedings
of the International Symposium on Distributed Objects and
Applications (DOA’99) Antwerp, Belgium, September 2000. OMG.

[10] Inc. Inprise Corporation. VisiBroker for Java 4.0: Programmer’s
Guide: Using the POA.
www.inprise.com/techpubs/books/vbj/vbj40/programmers-
guide/poa.html,

1999.

[11] IONA Technologies. Orbix 2000.
http://www.iona.com/products/orbix200@ome.htm.

[12] Khanna, S.et al. Realtime Scheduling in SunOS 5.0. Pnoceedings
of the USENIX Winter Conferengeages 375-390. USENIX
Association, 1992.

[13] Markus Lindermeier. Load Management for Distributed
Object-Oriented Environments. Rroceedings of the'?
International Symposium on Distributed Objects and Applications
(DOA 2000) Antwerp, Belgium, September 2000. OMG.

[14] Object Management Grou@ORBA Component©MG Document
formal/2001-11-03 edition, November 2001.

[15] Object Management Grouroposed CORBA Load Balancing and
Monitoring SpecificationOMG Document mars/02-10-14 edition,
October 2002.

[16] Object Management Groufhe Common Object Request Broker:
Architecture and Specificatio.0 edition, June 2002.

[17] Ossama Othman, Carlos O’Ryan, and Douglas C. Schmidt. Designing
an Adaptive CORBA Load Balancing Service Using TAGEE
Distributed Systems Onlin@(4), April 2001.

[18] Ossama Othman, Carlos O’Ryan, and Douglas C. Schmidt. Strategies
for CORBA Middleware-Based Load BalancindzEE Distributed
Systems Online2(3), March 2001.

[19] Daniel Ridge, Donald Becker, Phillip Merkey, and Thomas Sterling.
Beowulf: Harnessing the Power of Parallelism in a Pile-of-PCs. In
Proceedings, IEEE Aerospad&EE, 1997.

[20] Richard E. Schantz and Douglas C. Schmidt. Middleware for
Distributed Systems: Evolving the Common Structure for
Network-centric Applications. In John Marciniak and George Telecki,
editors,Encyclopedia of Software Engineeringiley & Sons, New
York, 2002.

[21] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The
Design and Performance of Real-Time Object Request Brokers.
Computer Communication@1(4):294-324, April 1998.

[22] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
BuschmannPattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, VolumeéNiley & Sons, New
York, 2000.

12

