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Abstract

Distributed real-time and embedded (DRE) applications
often possess stringent quality of service (QoS) require-
ments. Designing middleware for DRE applications poses
several challenges to object request broker (ORB) develop-
ers. This paper provides the following contributions to the
study of middleware for DRE applications. First, we outline
the challenges present in one of the principal ORB compo-
nents – the portable object adapter (POA) – focusing on pre-
dictable and scalable demultiplexing. Second, we describe
how these challenges are addressed in ZEN, which is an im-
plementation of Real-time CORBA that runs atop jRate, an
ahead-of-time compiler that implements most of the Real-
Time Specification for Java (RTSJ). Third, we qualitatively
and quantitatively compare ZEN’s demultiplexing strategies
with those of other popular Java ORBs, including JacORB,
Sun JDK ORB, and ORBacus. Our results show that ZEN
and jRate incorporate the strategies necessary to enable pre-
dictability using standards-based middleware and also pro-
vide a baseline for what can be achieved by combining
Real-time CORBA and RTSJ.

1. Introduction
Emerging trends in DRE middleware. Distributed, real-
time, and embedded (DRE) applications and middleware
have been traditionally developed in C and C++. Conven-
tional Java middleware has historically been unsuitable for
DRE applications due to the under-specified scheduling se-
mantics of Java threads and the ability of the Java Garbage
Collector (GC) to preempt any other Java thread, leading to
unbounded preemption latency. To address these problems,
the Real-time Java Experts Group has defined the RTSJ [1],
which extends Java by providing new memory management
models that allow access to physical memory and can be
used in lieu of garbage collection, and stronger guarantees
on thread semantics than in regular Java. The Real-time

CORBA (RT-CORBA) specification [11] is rapidly matur-
ing technology standardized by the OMG that can simplify
many challenges present in developing middleware for DRE
applications. It allows DRE applications to configure and
control processor resourcesvia thread pools and priority
mechanisms,communication resourcesvia protocol proper-
ties, andmemory resourcevia request buffering and bound-
ing size of thread pools.

Overview of ZEN. ZEN [10] is open-source RT-CORBA
middleware inspired by many of the patterns, techniques,
and lessons learned in The ACE ORB (TAO) [15]. In ZEN,
the challenge of implementing RT-CORBA using RTSJ to
achieve the predictability required for DRE applications is
divided into two levels: (1)Applying optimization prin-
ciples at the algorithmic and data structure level to en-
sure predictability. These optimizations are independent
of the virtual machine. (2)Applying RTSJ features effec-
tively within an RT-CORBA ORB. This paper focuses on
optimizing a key element of the first level,i.e., the CORBA
Portable Object Adapter (POA). In addition, this paper
shows that optimizations at only the first level are insuf-
ficient to achieve necessary real-time predictability; some
real-time features of RTSJ must also be used.

Our earlier work on ZEN focused on the extensible com-
ponent architecture of its POA [9]. This paper extends our
earlier work on ZEN, as well as predictable demultiplex-
ing techniques [13], by (1) adding real-time capabilities to
the ZEN POA, (2) comparing the performance of ZEN’s
POA with other Java ORBs to show the predictability en-
abled by its demultiplexing strategies, and (3) illustrating
how ZEN behaves when combined with jRate [3], an open-
source ahead-of-time compiler that supports most of the
RTSJ. jRate extends the open-source GNU Compiler for
Java (GCJ) runtime system [4] to provide an ahead-of-time
compiled platform. The Java and RTSJ services, such as
garbage collection, real-time threads, and scheduling, are
accessible via the GCJ andjRate runtime systems, respec-
tively.

Paper organization. The remainder of this paper is or-
ganized as follows: Section 2 describes the RT-CORBA
challenge of ensuring predictable and scalable demultiplex-



ing and explains optimizations applied in ZEN to addresses
these challenges; Section 3 qualitatively and quantitatively
compares the optimizations in ZEN with those in other pop-
ular Java ORBs; Section 4 compares our research on ZEN
with related work; and Section 5 presents concluding re-
marks.

2. Optimizing Demultiplexing Predictability
and Scalability

The POA is the CORBA component that enables server
developers to manage object implementations (known as
“servants”) portably across ORB implementations [7]. Al-
though the POA provides many powerful and flexible fea-
tures, its richness complicates the request demultiplexing
path through a real-time server ORB. Naive implemen-
tations of POA request demultiplexing can increase non-
determinism and priority inversions [13], which are prob-
lematic for DRE applications. This section therefore de-
scribes solutions to key challenges in optimizing POA im-
plementations to support real-time features. We focus on
achieving predictability in ZEN, through scalable and pre-
dictable demultiplexing strategies. Section 3 then quanti-
tatively and qualitatively compares the approaches used in
ZEN with those in other Java ORBs.
Context. A CORBA-compliant ORB endsystem must
perform the demultiplexing steps shown in Figure 1 and de-
scribed below:
� (Steps 1-2) OS kernel demultiplexing. The OS pro-

tocol stack demultiplexes the request from the network in-
terface through the data link, network, and transport layers,
and up to the user/kernel boundary. It is here that the data is
passed to the ORB core running in a server process.
� (Steps 3-4) ORB demultiplexing. The ORB core

uses the addressing information in an object key of the client
request to locate the appropriate POA. Since a POA hierar-
chy may be nested, locating the POA that contains the ser-
vant can involve several demultiplexing steps. The target
POA then uses theobject id, which is part of theobject key,
to locate the associated servant.
� (Steps 5-6) Operation demultiplexing. The POA

uses the operation name to locate the appropriate IDL skele-
ton, which (1) demarshals the request for the operation pa-
rameters, and (2) performs the upcall to the method imple-
menting the object’s operations.
Problem. Conventional ORBs spend a significant – and
unpredictable – amount of the total server time demulti-
plexing requests [5]. Request demultiplexing becomes un-
predictable because of these three server properties: 1) the
POA hierarchy can have any number of levels, 2) an indi-
vidual POA may have a large number of servants to manage,
and 3) each servant may have a large number of operations
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Figure 1. Demultiplexing Steps in CORBA Re-
quest Processing

as defined by their IDL interface. A naive demultiplexing
implementation of the layered steps shown in Figure 1 may
cause a variable number of iterations over the POA hierar-
chy to locate the POA, locate the servant, and then locate the
appropriate method to perform the upcall. Since predictable
and scalable demultiplexing is necessary for real-time appli-
cations that possess stringent QoS guarantees, the algorithm
used to locate a specific method in a specific servant within
a specific POA must be predictable and efficient.

An additional problem, in a layered demultiplexing im-
plementation, is that servant-level QoS information is not
available to the lower layers present in an ORB endsys-
tem. An object adapter demultiplexing requests in FIFO or-
der can inadvertently allow higher priority requests to wait
while lower priority requests are serviced.

Solution! Active demultiplexing with perfect hash-
ing. A variety of strategies can be applied to implement
demultiplexing in an ORB, including linear search, binary
search, perfect hashing [14], and active demultiplexing [5].
A comprehensive discussion of the implementation and
measurements of each of these strategies used in TAO can
be found in [6]. Building on these strategies, we outline
below good solutions for ORB request demultiplexing, ref-
erencing the steps shown in Figure 1:

� (Step 3)! Active demultiplexing. The number of
POAs in a CORBA server application can change with time,
since POAs can be activated/deactivated dynamically. An
efficient way to find the POA corresponding to a request is
to apply anactive demultiplexingstrategy, which uses the
POA ID stored in a request’s object key to index directly
into a table managed by the object adapter. The index itself
is encoded into the object key as anasynchronous comple-
tion token(ACT) [16] and then passed to clients as part of
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the object reference. When a server ORB receives a request
from a client, the ORB uses the ACT encoded in the object
key to access the corresponding POA in a singleO(1) table
lookup.

� (Step 4)! Active demultiplexing. Servants within
a POA can also be activated/deactivated dynamically. As
with POA lookup, active demultiplexing can be used to lo-
cate a servant efficiently. In this case, the object id stored
within the object key can be used as an ACT to index di-
rectly into a table managed by its enclosing POA. A POA
servicing a client request uses the ACT to locate the servant
in a singleO(1) table lookup.

� (Step 5)! Perfect hashing. Unlike POAs and ser-
vants, the names of operations in the IDL interface are
knowna priori and do not change dynamically. A perfect
hash function [14] can therefore be computed by the IDL
compiler. A demultiplexing strategy based on perfect hash-
ing executes in constant time and space, regardless of the
number of operations in an IDL interface.

ZEN implements the optimal active demultiplexing and
perfect hashing strategies discussed above. Not only are
these strategies optimal, they are also compliant with the
CORBA specification. Section 3 presents a qualitative and
quantitative comparison of ZEN’s demultiplexing strategies
with those of other popular Java ORBs.

3. Comparing ZEN’s Demultiplexing Strate-
gies with Other CORBA ORBs

This section quantitatively and qualitatively compares
the approaches used in ZEN for the ORB-level demulti-
plexing (steps 3–5 in Figure 1) with those in other ORBs,
including JacORB [2], the Sun JDK 1.4.1 ORB [17], and
ORBacus [12]. Although each ORB supports a variety of
options, we make the following assumptions for this analy-
sis:

1. The child POAs have the same policies as the Root
POA.

2. Portable interceptors are not considered in request pro-
cessing.

3. The sequence of steps analyzed is for a remote client
request, not a collocated request.

4. All POAs are created during initialization. The com-
plexity of dynamic activations of POAs using adapter
activators is not considered.

5. Servants are normal CORBA servants that inherit from
org.omg.PortableServer.Servant . We do
not consider DII and DSI.

6. No proprietary policies are used in the ORBs.

These assumptions are representative of the way in which
DRE applications commonly apply ORB middleware.

In addition to the qualitative comparisons, we also
present experimental results of quantitative comparisons
of POA-related demultiplexing. In these experiments, a
single-threaded client issues IDL operations at the fastest
possible rate using a flooding model. For each client re-
quest, high-resolution timers used within the ORB measure
thedispatch time, which is the request processing time start-
ing when the appropriate POA was found until the the re-
quest was delivered to the servant. We present a two-fold
predictability analysis using the results obtained as follows:

� Inter-ORB analysis, where we compare ZEN’s de-
multiplexing schemes with those of the other three ORBs.
These measurements were performed on a dual-CPU In-
tel Xeon 1,700 Mhz processor with 1GB of main memory.
All tests were conducted on JVM version 1.4.0 running on
Linux OS 2.4.18. ZEN version 0.8, JacORB version 1.4.1,
the Sun ORB in J2SETM v1.4.101, and ORBacus version
4.1.2 were used for the experiments. For each condition,
5,000 samples were collected. To minimize the number
of GC runs during ORB execution, the initial heap size of
the Java Virtual Machine (JVM) was set to 600M using the
-Xms option, and the maximum heap size was set to 800M
using the-Xmx option.
� jRate analysis, where we compare the improvement in
predictability by compiling ZEN using jRate [3], an ahead-
of-time compiler that supports most of the RTSJ. These ex-
periments show that combining jRate and ZEN’s demul-
tiplexing strategies can enhance the the predictability of
middleware for DRE applications. Experiments were per-
formed on an Intel Pentium III 864 Mhz processor with
256 MB of main memory. For these experiments, ZEN
was compiled using the GNUgcj [4] compiler version
3.2.1 and executed using jRate 0.3a on Linux 2.4.7-timesys-
3.1.214 kernel.

3.1. POA Demultiplexing Comparisons

Both JacORB and the Sun ORB use alinear searchstrat-
egy,i.e., iterate through each layer in the POA hierarchy to
find the target POA. Each POA, in both the ORBs, is asso-
ciated with a POA id, which is initialized to the complete
POA path name starting from the RootPOA. This POA id
is encoded in the object key portion of all CORBA objects.
After receiving a client request, the POA id is demarshaled
and parsed to obtain the names of the intermediate POAs
between the Root and the target POA. A sequential traver-
sal of the POA hierarchy starting at the Root POA leads to
the target POA being found. Since JacORB and Sun ORB’s
POAs use a linear search algorithm, their demultiplexing
incurs a worst case time bound ofO(n). This strategy is
non-scalable and unpredictable for DRE applications when
the depth of the POA hierarchy is not knowna priori.
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In ORBacus, every POA created is registered with two
entities: 1) its POA Manager and 2) the POALocator class.
Both the entities usedynamic hashing, i.e., java.util.
Hashtable, to associate the POA id with the correspond-
ing POA reference. During object creation, the POA id is
embedded in the object key portion of the CORBA object.
On receipt of a client request, the POA id present in the re-
quest is demarshalled. The internal hashtable is consulted
to locate the target POA. ORBacus’s use of dynamic hash-
ing providesO(1) lookup time only when there are no col-
lisions; performance degrades as the number of collisions
increase. The number of collisions can be controlled to
a certain extent by setting thejava.util.Hashtable
load factor , though this strategy also increases the
amount of space used by the hashtable, which may not be
appropriate for DRE applications where both predictability
and memory footprint are important.

In ZEN, we use active demultiplexing. With
active demultiplexing, the overhead of Java’s
hashtable and automatic hashtable resizing is elim-
inated. The POAServerRequestHandler
class maintains an ActiveDemuxPOATable .
Every POA created in ZEN registers with the
POAServerRequestHandler . During this registra-
tion, the ActiveDemuxPOATable.bind() operation
is invoked to create an entry in the table for the POA.

POAServerRequestHandler

+addPOA(): ActiveDemuxLoc
+findPOA(index)
+removePOA(index)

ActiveDemuxLoc
-subject: Object
-generationCount: int

ActiveDemuxPOATable
-entries: ActiveDemuxLoc[]
+bind(poa): ActiveDemuxLoc
+find(poa): ActiveDemuxLoc
+unbind(poa): boolean

<<use>>

 *  1 

Figure 2. POA Demux: Static Structure

rootPOA:POA

create_POA

destroy

hdlr:POAServerRequestHandler table:ActiveDemuxTable

addPOA

removePOA

bind

unbind

Figure 3. POA Demux: Sequence Diagram

Figure 2 shows the class diagram, and Figure 3 shows the
sequence of steps leading to the creation of an entry for the
POA in ZEN’s demultiplexing table. When an object is ex-
ternalized (e.g., via theORB::object_to_string()
operation), the index into the POA demultiplexing table
is added to the object key as a hint. Any request for this
object then contains this index in its object key portion.
ThePOASeverRequestHandler uses this information
to locate the POA that services the request in a singleO(1)
table lookup.

Empirical results: Inter-ORB analysis. For each of the
four Java ORBs (ORBacus, JacORB, Sun, and ZEN), we
measured the POA demultiplexing time as the depth of the
POA hierarchy was varied. POA hierarchy depth was varied
from 1 to 150 in increments of 25, for a total of 7 conditions.
For each condition, the time to reach the leaf POA was mea-
sured. Four different dependent measures of demultiplexing
time were analyzed: 1) latency for the average case; 2) la-
tency for the 99% case; 3) latency for the worst case; and
4) dispersion (standard deviation). A sample size of 5,000
data points was used for each condition.
� Average measures. Figure 4 illustrates that ZEN’s

active demultiplexing is highly efficient; the average latency
is �8�secs. Furthermore, ZEN’s performance is scalable;
average latency remains invariant across all conditions of
hierarchy levels. In contrast, the performance of dynamic

25 50 75 100 125 150 175
Depth of POA Hierarchy

1

5

25

125

625

La
te

nc
y 

(u
s)

Average

25 50 75 100 125 150 175
Depth of POA Hierarchy

1

5

25

125

625

La
te

nc
y 

(u
s)

99%

25 50 75 100 125 150 175
Depth of POA Hierarchy

1

2

4

8

16

La
te

nc
y 

(u
s)

Standard Deviation

25 50 75 100 125 150 175
Depth of POA Hierarchy

1

5

25

125

625

La
te

nc
y(

us
)

Zen
ORBacus
JacORB
Sun

Max

Figure 4. POA Demux Analysis

hashing (ORBacus) degrades rapidly as the nesting of the
POA hierarchy increases and number of collisions in the
hashtable increase. Moreover, linear search (Sun ORB and
JacORB) degrades rapidly with increase in depth of POA
hierarchy.
� Dispersion measures. ZEN’s performance shows

high predictability; the dispersion in ZEN is smaller than
that of other ORBs. Furthermore, the dispersion for ZEN
is independent of POA hierarchy depth. Conversely, the
dispersions for ORBacus, Sun ORB, and JacORB increase
with the depth of the POA hierarchy, indicating a reduction
in predictability with the depth of hierarchy.
� Worst Case Measures. The 99% bounds for all

ORBs follow a trend similar to that of their average cases.
ZEN’s bound is smaller than those of the other three ORBs
and does not vary with the depth of POA hierarchy. Sim-
ilarly, the worst case measures for ZEN are smaller than
those of the other ORBs. In contrast to the 99% bound,
which is close to the average case, the worst case measures
are high. The high maximum (max) values correlate with
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the GC in Java. Table 1 shows that the more the GC runs,
the worse performance becomes (e.g., Sun ORB’s GC runs
54 times, whereas ZEN’s GC runs 10 times). A second

ORB GC runs Avg Mem Collected/run Avg Time/run
ZEN 10 609728K 2.67000ms

ORBacus 26 609728K 2.74590ms
JacORB 34 609728K 2.82470ms

Sun 54 609728K 2.16120ms

Table 1. GC Stats:POA Hierarchy depth=150

factor is the use of JDK 1.4, which does not support Real-
time Java. Our analysis below shows how the use of jRate
alleviates the high worst case values.
Empirical results: jRate Analysis. Figure 5 shows that
the use of jRate increases the predictability of the demul-
tiplexing strategy used in ZEN. The dispersion when using
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Figure 5. jRate POA Demux Analysis

jRate is smaller than when using JDK 1.4 by a factor of
5. Similarly, the worst case latencies with jRate are sig-
nificantly smaller than with JDK 1.4; the worst case la-
tency with jRate is�60�secs, more than a factor of 7 bet-
ter than�450�secs with JDK 1.4. Moreover, the average
latency with jRate (�14�secs) is less than with JDK 1.4
(�20�secs).

3.2. Servant Demultiplexing Comparisons

ORBacus, JacORB, and Sun ORB use dynamic hash-
ing for Step 4 of demultiplexing. Every POA in the ORBs
is associated with an Active Object Map entity (AOM).
The AOM maintains an internal Hashtable1 of type java.
util.Hashtable to register the association between the
object id of the CORBA object being activated and its cor-
responding servant. All object references generated by the

1In JacORB, using the jacorb.hashtableclass property, the end user can
specify the exact hashtable class to be used.

POA have the object id embedded within the object key. Af-
ter receiving a client request, the object id embedded within
the request is demarshaled. The AOM uses the object id
within the client request to consult its internal hashtable to
obtain the corresponding servant.

ZEN uses Active Demultiplexing for this stage
of demultiplexing. ZEN’s RetainStrategy
(corresponding to the ACTIVE OBJECT MAP ONLY

value of the servant retention policy) maintains an
ActiveDemuxServantTable , as shown in Figure 6.
ZEN assigns every active object in the POA a location
in this table. The POAservant_to_reference()
and id_to_reference() operations assign the ser-
vant a slot in the demux table using the internal ZEN
bindServant() method. The servant location in the
table is added as an ACT to the object key corresponding
to the externalized CORBA object. Any client requests for
this object thus contain this index in the object key. By
using the information identified by the ACT, the servant
corresponding to the object key can be found in a single
O(1) table lookup. The POA’sdeactivate_object()
operation invokes ZEN’s internalunbindServant()
method on theActiveDemuxServantTable , which in
turn recycles the demultiplexing slots in the table, as shown
in Figure 7.

RetainStrategy
-servantTable: ActiveDemuxServantTable
+bindServant(srv:Servant): ActiveDemuxLoc
+unbindServant(index:ActiveDemuxLoc): boolean
+find(oid:ObjectId): ActiveDemuxLoc

ActiveDemuxServantTable
-entries: ActiveDemuxLoc[]
+bind(srv:Servant): ActiveDemuxLoc
+find(srv:Servant): ActiveDemuxLoc
+unbind(index:ActiveDemuxLoc): boolean

ActiveDemuxLoc
+subject: Object
+generationCount: int

{manages}

contains
1

1..n

Figure 6. Servant Demux: Static Structure

poa:POA retain:RetainStrategy table:ActiveDemuxservantTable

servant_to_reference

deactivate_object

bindServant

unbindServant

bind

bindindex

unbind
result

Figure 7. Servant Demux: Sequence Diagram

Empirical results: Inter-ORB analysis. For each of the
four Java ORBs (ORBacus, JacORB, Sun, and ZEN), we
measured the servant demultiplexing time as the number of
active servants was varied. The number of active servants
registered with the POA was varied from 1 to 1,500 in incre-
ments of 250, for a total of 7 conditions. For each condition,
the time to reach the last servant registered and externalized
was measured. The same four dependent measures used in
the POA hierarchy tests were used here. A sample size of
5,000 data points was used for each condition.
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� Average measures. Figure 8 illustrates that ZEN’s
active demultiplexing is highly efficient; the average latency
is�8 �secs. Furthermore, ZEN’s performance is indepen-
dent of the number of active servants. In contrast, the per-
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Figure 8. Servant Demux Analysis

formance of dynamic hashing used by ORBacus, JacORB,
and Sun ORB degrades with the number of servants. Inter-
estingly, the graph reveals that JacORB and ORBacus out-
perform ZEN for a small number of servants. The reason
for this behavior is that after ZEN locates the target servant
using the ACT in the object key, a check is necessary to
1) compare generation counts2 in the object key and in the
active demux table to determine if the target servant is the
same, and 2) check if the target servant is still active. In
the other ORBs, however, deactivation of servants causes
entries to be removed from the AOM, thus avoiding these
extra comparisons.
� Dispersion measures. Figure 8 shows that ZEN’s

dispersion is generally smaller than that of other ORBs.
Further, ZEN’s dispersion does not increase reliably with
number of active servants. The Max panel reveals that for
the condition of 1,000 servants, an anomalous worst case
sample measurement at 112�secs is responsible for the in-
crease in dispersion. Dispersion is decreased in the other
conditions, indicating that the increase did not stem from
the increase in the number of servants. Conversely, the
dispersions for ORBacus, Sun ORB, and JacORB increase
with the number of active servants, indicating decreased
predictability with increase in number of servants.
� Worst Case Measures. The 99% bound for ZEN is

small, very close to its average latency. Unlike the other
ORBs, ZEN’s 99% bound does not vary with the number
of active servants. ZEN’s worst case latencies are high,
however. Once again, similar to the POA demultiplexing
results from Section 3.1, the more frequently the GC runs,

2Generation counts help to recycle slots in the active demux table.

the greater the worst case latencies become. (Table 2 shows
that JacORB’s GC runs 47 times, whereas ZEN’s GC runs
12 times). The high worst case latencies are also due to Sun

ORB GC runs Avg Mem Collected/run Avg Time/run
ZEN 12 609728K 2.4560ms

ORBacus 29 609728K 2.7459ms
JacORB 47 609728K 3.8247ms

Sun 37 609728K 2.5612ms

Table 2. GC Stats: Number of Servants=1,500

JDK 1.4, which does not guarantee real-time behavior. The
use of jRate, discussed below, ameliorates this shortcoming.
Empirical results: jRate Analysis. The results presented
in Figure 9 show a pattern similar to the POA demultiplex-
ing results. The use of jRate not only ensures better pre-

250 500 750 1000 1250 1500 1750
Number of Servants

5

25

125
La

te
nc

y 
(u

s) jRate
jdk1.4

Average

250 500 750 1000 1250 1500 1750
Number of Servants

5

25

125

La
te

nc
y(

us
)

99%

250 500 750 1000 1250 1500 1750
Number of Servants

5

10

15

20

25

30

35

La
te

nc
y 

(u
s)

Standard Deviation

250 500 750 1000 1250 1500 1750
Number of Servants

5

25

125

La
te

nc
y(

us
)

Max

Figure 9. jRate Servant Demux Analysis

dictability but also leads to a lower latency for this stage of
demultiplexing. The dispersion measures indicate that the
use of jRate ensures a tighter bound than JDK 1.4; the dis-
persion with jRate is lower by a factor of 5, and does not
vary with number of active servants. Moreover, the worst
case results for jRate display a trend similar to the disper-
sion measures. The maximum worst case measurements for
ZEN with JDK 1.4 (�480�secs) are greater than with jRate
(�65�secs) by a factor of 7.

3.3. Operation Demultiplexing Comparisons

The ZEN IDL compiler invokesjperf , which is a Java
implementation of the GNUgperf perfect hash function
generator [14].jperf runs as a child process to generate
scalable, efficient, and predictable collision-free tokens for
lookup methods based on the operation names defined in an
IDL interface. After receiving a client request, the operation
name is demarshaled and then used to perform the upcall.
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For each operation name in the IDL interface, JacORB
and Sun’s IDL compiler create a uniquejava.lang.
Integer index and store the association in ajava.
util.Hashtable . After receiving a client request, the
operation name is used as a key into the hashtable to obtain
its index. Using a switch on the index, the code performing
the upcall is reached. We were unable to run thejidl IDL
compiler provided by ORBacus. Hence, it is not possible
for us to discuss the demultiplexing strategy used. We have
reported this as a bug.

Empirical results: Inter-ORB analysis. For each of the
three Java ORBs (JacORB, Sun, and ZEN), we measured
the operation demultiplexing time as the number of opera-
tions in an IDL interface was varied. Number of operations
was varied from 1 to 50 in increments of 10, for a total of 6
conditions. The same four different dependent measures of
demultiplexing time used previously were analyzed here as
well. A sample size of 5,000 data points was used for each
condition.

� Average measures. Figure 10 illustrates that ZEN’s
perfect hashing is highly efficient; the average latency is
�1�sec, and does not vary with the the number of ac-
tive servants. In contrast, both JacORB and Sun exhibit
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Figure 10. Operation Demux Analysis

slower performance. The dynamic hashing strategies used
by JacORB and Sun ORB both incur a higher overhead to
compute the hash function. Latency for both ORBs, how-
ever, is almost constant until the number of methods reaches
30, at which point the latency increases by 3�sec for each
condition.

� Dispersion measures. Figure 10 illustrates that
ZEN’s predictability is better than that of the other ORBs;
ZEN’s dispersion is smaller than that of the other ORBs
for all cases, and does not reliably vary with the number
of methods. In contrast, the dispersions for the Sun ORB

and JacORB are larger and increase with the number of op-
erations, indicating decreased predictability as the number
of operations increases.
�Worst Case Measures. ZEN’s 99% bound and worst

case measures are tighter compared to the other ORBs. As
in previous tests, the worst case measures for all ORBs are
high compared to the average and 99% bound. The GC
analysis in Table 3 (with 50 methods) shows that the high-
est worst case latency (the Sun ORB) coincides with the
maximum number of GC runs. In contrast, ZEN has the
lowest worst case latency and fewest GC runs. The high

ORB GC runs Avg Mem collected/run Avg Time/run
ZEN 5 609728K 1.156ms

JacORB 7 609728K 1.238ms
Sun 14 609728K 1.345ms

Table 3. GC Stats:Number of Methods=50

worst case latency indicates that ZEN has predictable de-
multiplexing most of the time but not all the time when run
on JDK 1.4. The use of jRate, discussed below, addresses
this issue.
Empirical results: jRate Analysis. Figure 11 shows that
jRate improves the predictability of ZEN’s perfect hashing
strategy. Overall performance is faster, as shown by the av-
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Figure 11. jRate Operation Demux Analysis

erage latencies which differ by a factor of four. The dis-
persion with jRate is tighter than with JDK 1.4, less by a
factor of 5. The worst case measures for jRate show a trend
similar to the dispersion measures; the maximum worst case
latency with jRate is�30�secs while that of JDK 1.4 is�60
�secs.

4. Related Work

In recent years, a considerable amount of research has
focused on enhancing the predictability of middleware for
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DRE applications. We summarize key related efforts here.

TimeSys RTSJ Reference Implementation (RI).
TimeSys has developed the official RTSJ Reference Im-
plementation (RI) [18], a fully compliant implementation
of Java that implements all the mandatory features in
the RTSJ. As soon as the commercial TimeSys RTSJ
implementation is available, we plan to port ZEN to it.
RTSJ benchmarking suites. RTJPerf [3] is an open-
source RT-Java benchmarking suite that tests/benchmarks
most of the RTSJ features critical to real-time embedded
systems. The Real-Time Java for Embedded Systems (RT-
JES) program [8] is working to mature and demonstrate
real-time Java technology. A key objective of the RTJES
program is to assess important real-time capabilities of real-
time Java technology via a comprehensive benchmarking
effort. We are developing a similar benchmarking suite to
test ZEN using RT-Java.

5. Concluding Remarks

Ensuring end-to-end middleware predictability is essen-
tial to support the QoS capabilities needed by DRE ap-
plications. This paper describes the optimizations applied
in the CORBA object adapter layer to address key RT-
CORBA scalability and predictability challenges. We show
how the data structures and algorithms used in the ZEN
RT-CORBA ORB are more predictable than those used in
other Java ORBs, including JacORB, Sun JDK ORB, and
ORBacus. By using a combination of active demultiplex-
ing and perfect hashing, ZEN ensures efficient and scalable
O(1) worst-case lookup time for the ORB’s demultiplexing
stages. Our empirical results show that the strategies used
in ZEN – in conjunction with an ahead-of-time compiled
RTSJ implementation in jRate – help ensure predictability
by bounding jitter and worst case performance for the de-
multiplexing stages.

The empirical results presented in this paper provide a
baseline for what can be achieved using RTSJ middleware
to implement RT-CORBA. To develop predictable Java-
based middleware, RT-CORBA developers should focus on
both (1) efficient data structures and algorithms and (2) us-
ing RTSJ features directly in the ORB. There is an impor-
tant synergy between the two; optimizing just one of these
aspects may not ensure the predictability required for DRE
systems.
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