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Abstract

Achieving end-to-end quality of service (QoS) in distrdsliteal-time embedded (DRE) systems require QoS support and
enforcement from their underlying operating platformsttidegrates many real-time capabilities, such as QoS-tthb
network protocols, real-time operating system schedutmeghanisms and policies, and real-time middleware sesviée
standards-based quality of service (QoS)-enabled companieldleware automates integration and configurationatés,
it is increasingly being used as a platform for developingmPRE systems that execute in environments where opeahtion
conditions, input workload, and resource availability car be characterized accurately a priori. Although QoS+apd
component middleware offers many desirable features, et historically lacked the ability to allocate resoas effi-
ciently and enable the system to adapt to fluctuations intinfukload, resource availability, and operating condit®

This paper presents three contributions to research on @dapesource management for component-based open DRE
systems. First, we describe the structure and functiopafithe Resource Allocation and Control Engine (RACE), tvigc
an open-source adaptive resource management framewdtlabp standards-based QoS-enabled component middleware
Second, we demonstrate and evaluate the effectivenes€af RAhe context of a representative open DRE system: NASA's
Magnetospheric Multi-scale Mission system. Third, we @néan empirical evaluation of RACE’s scalability as the fem
of nodes and applications in a DRE system grows. Our reshtissghat RACE is a scalable adaptive resource management
framework and yields a predictable and high performancéesgseven in the face of changing operational conditions and

input workload.

1 Introduction

Distributed real-time and embeddé@dRE) systems form the core of many large-scale missidicalidomains. In these

systems, achieving end-to-end quality of service (QoSliireq integrating a range of real-time capabilities, suzlQaS-



enabled network protocols, real-time operating systenedigling mechanisms and policies, and real-time middleware
vices, across the system domain. Although existing rekemmd solutions [1, 2] focus on improving the performance and
QoS of individual capabilities of the system (such as ojiregadystem scheduling mechanism and policies), they are not
sufficient for DRE systems as these systems require intagratrange of real-time capabilities across the system doma
Conventional QoS-enabled middleware technologies, sadReal-time CORBA [3] and the Real-time Java [4], have been
used extensively as an operating platforms to build DREesystas they support explicit configuration of QoS aspecth(su
as priority and threading models), and provide many delgiregdal-time features (such as priority propagation, salieg
services, and explicit binding of network connections).

QoS-enabled middleware technologies have traditionakiyi$ed on DRE systems that operatelmsedenvironments
where operating conditions, input workloads, and resoavedability are known in advance and do not vary signifibaat
runtime. An example of a closed DRE system is an avionicsianissomputer [5], where the penalty of not meeting a QoS
requirement (such as deadline) can result in the failureeéntire system or mission. Conventional QoS-enabledlsvidde
technologies are insufficient, however, for DRE systems élxacute inopenenvironments where operational conditions,
input workload, and resource availability cannot be chirégmed accurately priori. Examples of open DRE systems
include shipboard computing environments [6], multi-Béiemissions [7], and intelligence, surveillance andmegaissance
missions [8].

Specifying and enforcing end-to-end QoS is an importantduadlenging issue for open systems DRE due to their unique
characteristics, including (1) constraints in multiplegarces€.g, limited computing power and network bandwidth) and
(2) highly fluctuating resource availability and input whnéd. At the heart of achieving end-to-end QoS are resource
management techniques that enable open DRE systeadsfiito dynamic changes in resource availability and demand. In
earlier work we developed adaptive resource manageatgotithms(such as EUCON [9], DEUCON [10], HySUCON [11],
and FMUF [12]) andarchitectures such as HIDRA [13] based on control-theoretic techniqué& then developed FC-
ORB [14], which is a QoS-enabled adaptive middleware thatiéments the EUCON algorithm to handle fluctuations in
application workload and system resource availability.

A limitation with our prior work, however, is that it tightlgoupled resource management algorithms within particular
middleware platforms, which made it hard to enhance theréilgos without redeveloping significant portions of the mid
dleware. For example, since the design and implementafi&®CeéORB was closely tied to the EUCON adaptive resource
management algorithm, significant modifications to the reiddre was needed to support other resource management al-
gorithms, such as DEUCON, HySUCON, or FMUF. Object-oridrframeworks have traditionally been used to factor out
many reusable general-purpose and domain-specific seifvara DRE systems and applications [15]; however, to alevi
the tight coupling between resource management algoritmdsmiddleware platforms and improve flexibility, this pape
presents adaptive resource management framewfmkopen DRE systems. Contributions of this paper to theystifd
adaptive resource management solutions for open DRE systefde:

e The design of a Resource Allocation and Control Engine (RACE which is a fully customizable and configurable
adaptive resource management framework for open DRE sgst®ACE decouples adaptive resource management algo-

rithms from the middleware implementation, thereby emapihe usage of various resource management algorithmsuwtith



the need for redeveloping significant portions of the middlee. RACE can be configured to support a range of algorithms
for adaptive resource management without requiring maditios to the underlying middleware. To enabling the seasnle
integration of resource allocation and control algorithinis DRE systems, RACE enables the deployment and configarat
of feedback control loops. RACE therefore complementsréteal research on adaptive resource management algarith
that provide a model and theoretical analysis of systenopaidnce.

As shown in Figure 1, RACE provides (fgsource monitorshat track utilization of various system resources, such as
CPU, memory, and network bandwidth, @pS monitorghat track application QoS, such as end-to-end delaye&)urce
allocatorsthat allocate resource to components based on their rescemairements and current availability of system re-
sources, (4¢onfiguratorghat configure middleware QoS parameters of applicatiorpamants, (5¢ontrollersthat compute
end-to-end adaptation decisions based on control algasith ensure that QoS requirements of applications are me{(6a

effectorsthat perform controller-recommended adaptations.
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Figure 1: A Resource Allocation and Control Engine (RACE)®@pen DRE Systems

e Evaluate the effectiveness of RACE in the context of NASA's ignetospheric Multi-scale System (MMS) mission
which is representative open DRE system. The MMS missiotesysonsists of a constellation of spacecrafts that maintai
a specific formation while orbiting over a region of sciewtifiterest. In these spacecrafts, availability of resostosh as
processing power (CPU), storage, network bandwidth, ameep¢battery) are limited and subjected to runtime varizio
Moreover, resource utilization by, and input workload gbpkcations that execute in this system can not be accyratel
characterizedpriori. This paper evaluates the adaptive resource managemefuiltggsaof RACE in the context of this
representative open DRE system. Our results demonstrattevtien adaptive resource management algorithms for DRE
systems are implemented using RACE, they yield a predietaid high performance system, even in the face of changing
operational conditions and workloads.

e The empirical evaluation of RACE'’s scalability as the number of nodes and applications in a DRE system grows.
Scalability is an integral property of a framework as it detmes the framework’s applicability. Since open DRE syste

comprise large number of nodes and applications, to detemwinether RACE can be applied to such systems, we empjyricall



evaluate RACE's scalability as the number of applicatioms$ @odes in the system increases. Our results demonstedte th
RACE scales well as the number of applications and nodesisytktem increases, and therefore can be applied to a wide
range of open DRE systems.

The remainder of the paperis organized as follows: Sectmm#pares our research on RACE with related work; Section 3
motivates the use of RACE in the context of a representatRE Bystem case study; Section 4 describes the architedture o
RACE and shows how it aids in the development of the case stadgribed in Section 3; Section 5 empirically evaluates
the performance of the DRE system when control algorithnesused in conjunction with RACE and also presents an
empirical measure of RACE’s scalability as the number ofiapplons and nodes in the system grows; and Section 6 piesen

concluding remarks.

2 Research Background and Related Work Comparison

This section presents an overview of existing middlewachrelogies that have been used to develop open DRE system
and also compares our work on RACE with related research ity open DRE systems. As in Figure 2 and described
below, we classify this research along two orthogonal dsiars: (1) QoS-enabled DOC middleware vs. QoS-enabled com-
ponent middleware and (2) design-time vs. run-time QoS gardition, optimization, analysis, and evaluation of caists,

such as timing, memory, and CPU.
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Figure 2: Taxonomy of Related Research

2.1 Overview of Conventional and QoS-enabled DOC Middlewar

Conventional middleware technologies for distributedcegbpomputing (DOC), such as The Object Management Group

(OMG)’s CORBA [16] and Sun’s Java RMI [17], encapsulates andances native OS mechanisms to create reusable net-



work programming components. These technologies providgea of abstraction that shields application developensf
the low-level platform-specific details and define higheel distributed programming models whose reusable APds an
components automate and extend native OS capabilities.

Conventional DOC middleware technologies, however, afdoalyfunctionalaspects of system/application development
such as how to define and integrate object interfaces andmggitations. They do not address QoS aspects of system/-
application development such as how to (1) define and enfgppéication timing requirements, (2) allocate resources t
applications, and (3) configure OS and network QoS poliaiel 8is priorities for application processes and/or threasis
result, the code that configures and manages QoS aspectbefteme entangled with the application code. These limitat
with conventional DOC middleware have been addressed bfplloging run-time platforms and design-time tools:

e Run-time. Early work on resource management middleware for shipbo&i systems presented in [18, 19] motivated
the need for adaptive resource management middleware wbiniswas further extended by QARMA [20], which provides
resource management asavicefor existing QoS-enabled DOC middleware, such as RT-COR&®kyu [21] also enhances
RT-CORBA QoS-enabled DOC middleware by providing a pogahlddleware scheduling framework that offers flexible
scheduling and dispatching services. Kokyu performs féégianalysis based on estimated worst case executioestiofi
applications to determine if a set of applicationsdébedulableResource requirements of applications, such as memory and
network bandwidth, are not captured and taken into conaiber by Kokyu. Moreover, Kokyu lacks the capability to tkac
utilization of various system resources as well as QoS diegifons. To address these limitations, research predén{22]
enhances QoS-enabled DOC middleware by combining Koky (BkRIMA.

e Design-time. RapidSched [23] enhances QoS-enabled DOC middleware,asuBi-CORBA, by computing and en-
forcing distributed priorities. RapidSched uses PERTS {@4pecify real-time information, such as deadline, eatad
execution times, and resource requirements. Static stdigtity analysis (such as rate-monotonic analysis) isither-
formed and priorities are computed for each CORBA objechandystem. After the priorities are computed, RapidSched

uses RT-CORBA features to enforce these computed prigritie
2.2 Overview of Conventional and QoS-enabled Component Maleware

Conventional component middleware technologies, such@€ORBA Component Model (CCM) [25] and Enterprise
Java Beans [26, 27], provide capabilities that addressdmtitation of DOC middleware technologies in the contebdys-
tem design and development. Examples of additional capabibffered by conventional component middleware coragar
to conventional DOC middleware technology include (1) dtadized interfaces for application component interact(@)
model-based tools for deploying and interconnecting campts, and (3) standards-based mechanisms for instaliing,
tializing, and configuring application components, thysasating concerns of application development, configonatnd
deployment.

Although conventional component middleware support the&gteand development of large scale distributed systems,
they do not address the address the QoS limitations of DO@Ievicire. Therefore, conventional component middleware

can support large scale enterprise distributed systerhadhIDRE systems that have the stringent QoS requiremehéeser



limitations with conventional component-based middleniaave been addressed by the following run-time platfornals an
design-time tools:

Run-time. QoS provisioning frameworks, such as QuO [28] and Qosk&sf§230] help ensure desired performance of
DRE systems built atop QoS-enabled DOC middleware and @a8led component middleware, respectively. When appli-
cations are designed using Qoskets (1) resources are dyalgnfie)allocated to applications in response to chamgiper-
ational conditions and/or input workload and (2) applicatparameters are fine-tuned to ensure that allocated pesate
used effectively. With this approach, however, appliaagiare augmented explicitly at design-time with Qosket coments,
such as monitors, controllers, and effectors. This appréags requires redesign and reassembly of existing apiplisa
built without Qoskets. When applications are generatedratime €.g, by intelligent mission planners [31]), this approach
would require planners to augment the applications withk@bsomponents, which may be infeasible since planners are
designed and built to solve mission goals and not perforrh platform-/middleware-specific operations.

Design-time. Cadena [32] is an integrated environment for developingwvaniflying component-based DRE systems by
applying static analysis, model-checking, and lightweighmal methods. Cadena also provides a component assembly
framework for visualizing and developing components armdrtbonnections. VEST [33] is a design assistant tool based o
the Generic Modeling Environmeifi34] that enables embedded system composition from conmidibearies and checks
whether timing, memory, power, and cost constraints of-tiea and embedded applications are satisfied. AIRES [35] is
a similar tool that provides the means to map design-timeaisoof component composition with real-time requirements
to run-time models that weave together timing and scheduttributes. The research presented in [36] describesigndes
assistant tool, based on MAST [37], that comprises a DSMLaasudlite of analysis and system QoS configuration tools and
enables composition, schedulability analysis, and asségr of operating system priority for application compatsen

Some design-time tools, such as AIRES, VEST, and those mezbén [36], useestimatessuch as estimated worst case
execution time, estimated CPU, memory, and/or network wadtt requirements. These tools are targeted for systeats th
execute irclosedenvironments, where operational conditions, input waaklleand resource availability can be characterized
accuratelya priori. Since RACE tracks and manages utilization of various sysgsources, as well as application QoS, it

can be used in conjunction with these tools to build open Dyems.
2.3 Comparing RACE with Related Work

Our work on RACE extends earlier work on QoS-enabled DOC teigdare by providing an adaptive resource manage-
ment framework for open DRE systems built atop QoS-enaldadponent middleware. DRE systems built using RACE
benefit from (1) adaptive resource management capabiitiB2\CE and (2) additional capabilities offered by QoS-dadb
component middleware compared to QoS-enabled DOC middégwa discussed in Section 2.2.

Comparedto related research presented in [18, 19, 20], RAé@fadaptive resource management framework that can be
customized and configured using model-driven deploymethcanfiguration tools such as tiéatform-Independent Com-
ponent Modeling Languag@®ICML) [38]. Moreover, RACE provides adaptive resource 0S management capabilities

more transparently and non-intrusively than Kokyu, QuO @odkets. In particular, it allocates CPU, memory, and nekwo



ing resources to application components and tracks andgeandilization of various system resources, as well asegijun
QoS. In contrast to our own earlier work on QoS-enabled DO@dfeivare, such as FC-ORB [14] and HiDRA [13], RACE
is a QoS-enabled component middleware framework that esdlfd deployment and configuration of feedback controldoop
in DRE systems.

In summary, RACE’s novelty stems from its combination of @Bsign-time model-driven tools that can both design
applications and customize and configure RACE itself, (2p®@0oabled component middleware run-time platforms, and
(3) research on control-theoretic adaptive resource naneagt. RACE can be used to deploy and manage component-
based applications that are composed at design-time viglraoiven tools, as well as at run-time fiytelligent mission
plannerg39], such as SA-POP [31].

3 Case Study: Magnetospheric Multi-scale (MMS) Mission DRESystem

This section presents an overview of NASA's Magnetosphdtitti-scale (MMS) mission [40] as a case study to motivate
the need for RACE in the context of open DRE systems. We alsoriibe the resource and QoS management challenges

involved in developing the MMS mission using QoS-enabletigonent middleware.
3.1 MMS Mission System Overview

NASAs MMS mission system is a representative open DRE systensisting of several interacting subsystems (both
in-flight and stationary) with a variety of complex QoS reguaients. As shown in Figure 3, the MMS mission consists of
a constellation of five spacecrafts that maintain a speafimétion while orbiting over a region of scientific intere$his
constellation collects science data pertaining to thehsaplasma and magnetic activities while in orbit and sena ia
ground station for further processing. In the MMS missioacgerafts, availability of resource such as processingepow
(CPU), storage, network bandwidth, and power (battery)ianiéed and subjected to runtime variations. Moreovermtese
utilization by, and input workload of, applications thaeexte in this system can not be accurately characteazaribri.
These properties make the MMS mission system an open DRE&msyst

Applications executing in this system can be classified adamee, navigation, and control (GNC) applications and
science applications. The GNC applications are respanfiblmaintaining the spacecraft within the specified oribite
science applications are responsible for collecting sgetata, compressing and storing the data, and transgriittnstored
data to the ground station for further processing.

As shown in Figure 3, GNC applications are localized to alsisgacecraft. Science applications tend to span the entire
spacecraft constellationg., all spacecrafts in the constellation have to coordinath e@ach other to achieve the goals of
the science mission. GNC applications are considbéiad real-timeapplications i(e., the penalty of not meeting QoS
requirement(s) of these applications is very high, oft¢al f@ the mission), where as science applications are deresisoft
real-timeapplicationsi(e., the penalty of not meeting QoS requirement(s) of thesei@fins is high, but not fatal to the

mission).
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Figure 3: MMS Mission System

Science applications operate in three moddsw surveyfast surveyandburstmode. Science applications switch from
one mode to another in reaction to one or mevents of interestFor example, for a science application that monitors the
earth’s plasma activity, thelowsurvey mode is entered outside the regions of scientificests and enables only a minimal
set of data acquisition (primarily for health monitoring)he fast survey mode is entered when the spacecrafts are within
one or more regions of interest, which enables data acmuiditr all payload sensors at a moderate rate. If plasmaigycti
is detected while in fast survey mode, the application erterst mode, which results in data collection at the highest data
rates. Resource utilization by, and importance of, a sei@pplication is determined by its mode of operation, whgh i

summarized by Table 1.

Mode Relative Importance| Resource Consumptiol
Slow survey Low Low
Fast survey Medium Medium

Burst High High

Table 1: Characteristics of Science Application

Each spacecraft consists of an on-board intelligent nigsianner, such as tlepreading activation partial order planner
(SA-POP) [31] that decomposes overall mission goal(s)@NL and science applications that can be executed contyrren
SA-POP employs decision-theoretic methods and other Adrsels (such as hierarchical task decomposition) to decampos
mission goals into navigation, control, data gatheringl data processing applications. In addition to initial gatien of
GNC and science applications, SA-POP incrementally géaerzew applications in response to changing mission goals
and/or degraded performance reported by on-board missiitons.

We have developed a prototype implementation of the MMSionissystems in conjunction with our colleagues at with



Lockheed Martin Advanced Advanced Technology Center, Ritm California. In our prototype implementation, we used
the Component-Integrated ACE ORBIAQO) [41] and Deployment and Configuration EngiiBANCE) [42] as the QoS-

enabled component middleware platform. Each spacecradt88-POP as its on-board intelligent mission planner.
3.2 Adaptive Resource Management Requirements of the MMS Maion System

As discussed in Section 2.2, the use of QoS-enabled componiédleware to develop open DRE systems, such as the
NASA MMS mission, can significantly improve the design, depenent, evolution, and maintenance of these systems. In
the absence of an adaptive resource management framevaovkyédr, several key requirements remain unresolved when
such systems are built in the absence of a adaptive resowcagament framework. To motivate the need for RACE, the
remainder of this section presents the key resource and @o&gement requirements that we addressed while building ou

prototype of the MMS mission DRE system.

3.2.1 Requirement 1: Resource Allocation To Applications

Applications generated by SA-POP aesource sensitivé.e., QoS is affected significantly if an application does notiee

the required CPU time and network bandwidth within boundsldyl Moreover, in open DRE systems like the MMS mission,
input workload affects utilization of system resources @u$ of applications. Utilization of system resources an® @b
applications may therefore vary significantly from theitirmsited values. Due to the operating conditions for open DRE
systems, system resource availability, such as availatieark bandwidth, may also be time variant.

A resource management framework therefore needs to (1)tardhé current utilization of system resources, (2) alteca
resources in a timely fashion to applications such that tkeburce requirements are met using resource allocdgorithms
such as PBFD [43], and (3) support multiple resource allonatrategies since CPU and memory utilization overheayhtni
be associated with implementations of resource allocatigorithms themselves and select the appropriate onggshdéng
on properties of the application and the overheads assdciwith various implementations. Section 4.2.1 descritmes h

RACE performs on-line resource allocation to applicatiomponents to addresses this requirement.

3.2.2 Requirement 2: Configuring Platform-specific QoS Parmeters

The QoS experienced by applications depend on variousoptatpecific real-time QoS configurations including Q9S
configuration of the QoS-enabled component middlewsueh as priority model, threading model, and request jgace
ing policy, (2) operating system QoS configuratisuch as real-time priorities of the process(es) and tlisgaldat host
and execute within the components respectively, anah¢B)orks QoS configurationsuch agi f f ser v code-points of
the component interconnections. Since these configusatiom platform-specific, it is tedious and error-prone fatam
developers or SA-POP to specify them in isolation.

An adaptive resource management framework therefore riequevide abstractions that shield developers and/or SA-
POP from low-level platform-specific details and define leiglevel QoS specification models. System developers and/o

intelligent mission planners should be able to specify Qo&acteristics of the application such as QoS requirenserds



relative importance, and the adaptive resource managdraerd@work should then configure the platform-specific paatens
accordingly. Section 4.2.2 describes how RACE providehéii@ level abstractions and shield system developers and SA

POP from low-level platform-specific details to addresbésrequirement.

3.2.3 Requirement 3: Enabling Dynamic System Adaptation ath Ensuring QoS Requirements are Met

When applications are deployed and initialized, resouacesallocated to application components based orestienated
resource utilization and estimated/current availabditgystem resources. In open DRE systems, howewtualresource
utilization of applications might be significantly diffarethan their estimated values, as well as availability aftteym re-
sources vary dynamically. Moreover, for applications exmg in these systems, the relation between input workload
resource utilization, and QoS cannot be charactedzedori.

An adaptive resource management framework therefore riegasvide monitors that track system resource utilization
as well as QoS of applications, at run-time. Although som& Quoperties (such as accuracy, precision, and fidelity of
the produced output) are application-specific, certain @Gu$8h asend-to-end latencgnd throughput) can be tracked by
the framework transparently to the application. Howevasteamization and configuration of the framework with domain
specific monitors (both platform specific resource monitord application specific QoS monitors) should be possilie. |
addition, the framework needs to enable the systead#ptto dynamic changes, such as variations in operational tondi
input workload, and/or resource availability. Section.d @&monstrates how RACE performs system adaptation amtle=ns

QoS requirements of applications are met to address thisrezgent.

4  Structure and Functionality of RACE

This section describes the structure and functionalityACE. RACE supports open DRE systems built atop CIAO, which
is an open-source implementation of Lightweight CCM. Altiges of RACE themselves are designed and implemented
as CCM components, so RACEA | ocat or s andCont r ol | er s can be configured to support a range of resource

allocation and control algorithms using model-driven $pslich as PICML.
4.1 Design of RACE

Figure 4 elaborates the earlier architectural overviewAER in Figure 1 and shows how the detailed design of RACE is
composed of the following components: (I)put Adapt er, (2)Cent ral Moni t or , (3)Al | ocat or s, (4)Conf i gurat ors,
(5)Control | ers,and (6)Ef f ect or s. RACE monitors application QoS and system resource usagigs\Resour ce
Moni t or s, QoS- Moni t or s,Node Moni t or s andCent r al Moni t or . Each componentin RACE is described below

in the context of the overall adaptive resource managentaiienge it addresses.

4.1.1 Challenge 1: Domain Specific Representation of Appktion Metadata

Problem. End-to-end applications can be composed either at desigmn dir at runtime. At design time, CCM based

end-to-end applications are composed using model-drav@ls,tsuch as PICML; and at runtime, they can be composed by

10
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Figure 4: Detailed Design of RACE

intelligent mission planners like SA-POP. When an applicais composed using PICML, metadata describing the agplic
tion is captured in XML files based on tiRackageConf i gur at i on schema defined by the Object Management Group’s
Deployment and Configuration specification [44]. When aggtlons are generated during runtime by SA-POP, metadata is

captured in an in-memory structure defined by the planner.

Solution: Domain-specific customization and configuratiorof RACE’s adapters. During design time, RACE can be
configured using PICML and ahnput Adapt er appropriate for the domain/system can be selected. For @rano
manage a system in which applications are constructed &rdése using PICML, RACE can be configured with the
Pl CMLI nput Adapt er ; and to manage a system in which applications are constrattaintime using SA-POP, RACE
can be configured with th8APOPI nput Adapt er . As shown in Figure 5, thenput Adapt er parses the metadata that
describes the application into an in-memory end-to-&@®¢ E) IDL structure that is internal to RACE. Key entities of the
E- 2- EIDL structure are shown in Figure 6.

TheE- 2- E IDL structure populated by thienput Adapt er contains information regarding the application, inclugin

(1) components that make up the application and their resaequirement(s), (2) interconnections between the coemns,

11
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* 1
QoSRequirement E-2-E Property
+name : string(idl) +UUID : string(idl) . [+name : string(idi)
+value : any(idl) +name : string(idl) 1 +value : any(idl)
+MonitorID : string(idl) +priority : long(idl)

ResourceRequirement N Component N Property
+type : string(idl) +node : string(idl) +name : string(idl)
+amount : double(idl) +name : string(idl) +value : any(idl)

Figure 6: Main Entities of RACE’s E-2-E IDL Structure

(3) application QoS properties (such relative priorityl@oS requirement(s) (such as end-to-end delay), and (4pimap
components onto domain nodes. The mapping of componersiodes need not be specified in the metadata that describes
the application which is given to RACE. If an mapping is sfiedi it is honored by RACE; if not, a mapping is determined

at runtime by RACE'&l | ocat or s.

4.1.2 Challenge 2: Efficient Monitoring of System Resource tilization and Application QoS

Problem. In open DRE systems, input workload, application QoS, arftation and availability of system resource are
subject to dynamic variations. In order to ensure appbca@®oS requirements are met, as well as utilization of system
resources are within specified bounds, application QoS &lizhtion/availability of system resources are to be nored
periodically. The key challenge lies in designing and impating a resource and QoS monitoring architecture thig¢sca

well as the number of applications and nodes in the systerease.

12



Solution: Hierarchical QoS and resource monitoring architecture. RACE’s monitoring framework is composed of
theCentral Monitor, Node Mnitors, Resource Mnitors,andQS Monitors. These components track
resource utilization by, and QoS of, application compose#s shown in Figure 7, RACESbni t or s are structured

in the following hierarchical fashion. Resour ce Mboni t or collects resource utilization metrics of a specific reseurc

Central
Monitor

i

System Resource Utilization & QoS

|

S AN )
O O O

Node Resource Q_O E-2-E QoS
‘ D Node Monitor Monitor ApplicationOMonitor

Figure 7: Architecture of Monitoring Framework

such as CPU or memory. B80S Moni t or collects specific QoS metrics of an application, such asterehd latency or
throughput. ANode Nbni t or tracks the QoS of all the applications running on a node akasehe resource utilization of
that node. Finally, &entral Monitor tracks the QoS of all the applications running the entiréesys which captures
the system QoS, as well as the resource utilization of thieeesytstem, which captures the system resource utilization

Resour ce Moni t ors use the operating system facilities, such/gs oc file system inLi nux/ Uni x operating
systems and theystem registryn W ndows operating systems, to collect resource utilization mstatthat node. As
the resource monitors are implemented as shared librdraggscan be loaded at runtime, RACE can be configured with
new/domain-specific resource monitors without making aogifications to other entities of RACEDS Mbni t or s are
implemented as software modules that collect end-to-eeddy and throughput metrics of an application and are dynam
cally installed into a running system using DylInst [45]. §hpproach ensure rebuilding, re-implementation, oragist of
already running application components is not requiredrddeer, with this approaclioS Moni t or s can be turned on
or off on demand at runtime.

The primary metric that we use to measure the performancarafenitoring framework isnonitoring delaywhich is
defined as the time taken to obtain a snapshot of the entitersyis terms of resource utilization and QoS. To minimize
the monitoring delay and ensure that RACE’s monitoring éeckure scales as the number of applications and nodes in
the system increase, the RACE’s monitoring architectusgrisctured in a hierarchical fashion. We validate thisrola

Section 5.
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4.1.3 Challenge 3: Resource Allocation

Problem. Applications executing in open DRE systems are resourcgtsenand require multiple resources such as mem-
ory, CPU, and network bandwidth. In open DRE systems, ressuallocation cannot be performed during design time
as system resource availability may be time variant. Mogeanput workload affects the utilization of system resmsr
by already executing applications. Therefore, the keylehgk lies in allocating various systems resources to egiihin

components in a timely fashion.

Solution:On-line Resource allocation. RACE’s Al | ocat or s implement resource allocation algorithms and allocate
various domain resources (such as CPU, memory, and netvemidwidth) to application components by determining the
mapping of components onto nodes in the system domain. F@irt@pplicationsstatic mapping between components
and nodes may be specified at design-time by system devslofehonor these static mappings, RACE therefore provides
a static allocatorthat ensures components are allocated to nodes in accerdaticthe static mapping specified in the
application’s metadata. If no static mapping is specifienlydver,dynamic allocatordetermine the component to node
mapping at runtime based on resource requirements of th@awents and current resource availability on the various
nodes in the domain. As shown in Figure 5, inpuAtd ocat or s include theE- 2- E IDL structure corresponding to the
application and the current utilization of system resosirce

The current version of RACE provides the followiAgl ocat or s: (1) a single dimension bin-packer [46] that makes al-
location decisions based on either CPU, memory, or netwaridwidth requirements and availability, (2) a multi-dmm@nal
bin-packer — partitioned breadth first decreasing allact8] — that makes allocation decisions based on CPU, memory
and network-bandwidth requirements and availability, é3)da static allocator. Metadata is associated with eadtaibr
and captures its type.¢., static, single dimension bin-packing, or multi-dimemgibbin-packer ) and associated resource
overhead (such as CPU and memory utilization). SiAlcEocat or s themselves are CCM components, RACE can be

configured with newAl | ocat or s by using PICML.

4.1.4 Challenge 4: Accidental Complexities in Configuring Ritform-specific QoS Parameters

Problem. As described in Section 3.2.2, real-time QoS configuraticth® underlying component middleware, operating
system, and network affects the QoS of applications exegirtiopen DRE systems. Since these configurations are ptatfo

specific, it is tedious and error-prone for system develwpeSA-POP to specify them in isolation.

Solution: Automate configuration of platform-specific parameters. As shown in Figure 8, RACE'€onf i gur at or s
determine values for various low-level platform-specifeSparameters, such as middleware, operating system, tmorke
settings for an application based on its QoS charactesiatid requirements such as relative importance and endetde
lay. For example, thi1 ddl ewar eConf i gur at or configures component Lightweight CCM policies, such asdtlireg
policy, priority model, and request processing policy lobse the class of the applicatiomm(portantandbest-efforf. The

Oper at i ngSyst emConf i gur at or configures operating system parameters, such as the j@sooit theComponent
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Figure 8: QoS Parameter Configuration with RACE

Serverghat host the components based on Rate Monotonic Sched®M&) [46] or based on criticality (relative impor-
tance) of the application. Likewise, thidet wor kConf i gur at or configures network parameters, suchdas f ser v
code-points of the component interconnections. Like ogmities of RACE Conf i gur at or s are implemented as CCM

components, so new configurators can be plugged into RACBbfjguring RACE at design-time using PICML.

4.1.5 Challenge 5: Computation of System Adaptation Decighs

Problem. In open DRE systems, resource utilization of applicatiomghinbe significantly different than their estimated
values and availability of system resources may be time&xarMoreover, for applications executing in these systetime

relation between input workload, resource utilizatiord oS cannot be characterizagriori. Therefore, in order to ensure
that QoS requirements of applications are met, and ufitinatystem resources are within the specified bounds, thersys
must be able tadaptto dynamic changes, such as variations in operational tondj input workload, and/or resource

availability.

Solution: Control-theoretic adaptive resource managemetalgorithms. RACE’s Cont r ol | er s implement various
Control-theoretic adaptive resource management algosittuch as EUCON [9], DEUCON [10], HySUCON [11], and
FMUF [12], thereby enabling open DRE systems to adapt togingroperational context and variations in resource apaila
ity and/or demand. Based on the control algorithm they imglet,Cont r ol | er s modify configurable system parameters,
such as execution rates and mode of operation of the agphcatal-time configuration settings — operating systeiorjies

of component servethat host the components — and netwdik ser v code-points of the component interconnections. As
shown in Figure 9, input to the controllers include currexstaurce utilization and current QoS. Sir@ent r ol | er s are

implemented as CCM components RACE can be configured withGoaw r ol | er s by using PICML.
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Figure 9: RACE's Feedback Control Loop

4.1.6 Challenge 6: Efficient Execution of System AdaptatioDecisions

Problem. Although control-theoretic adaptive resource manageigotrithms compute system adaptation decisions, one
of the challenges we faced in building RACE is the design amglémentation oeffectors— entities that modify system
parameters in order to achieve the controller recommengstéra adaptation. The key challenge lies in designing and

implementing the effector architecture that scales wethasiumber of applications and nodes in the system increase.

Solution: Hierarchical effector architecture. Effectors modify system parameters, including resourttesated to com-
ponents, execution rates of applications, and OS/middwatwork QoS setting for components, to achieve the obetr
recommended adaptation. As shown in Figurefd, ect or s are designed hierarchically. Tieent ral Ef f ect or first
computes the values of various system parameters for alldties in the domain to achieve t@ent r ol | er recommended
adaptation. The computed values of system parametersdbrresle are then propagateddbf ect or s located on each
node, which then modify system parameters of its node acuglyd

The primary metric that is used to measure the performanaeradnitoring effectors iactuation delaywhich is defined
as the time taken to execute controller recommended adapthtoughout the system. To minimize the actuation detay a
ensure that RACE scales as the number of applications arebhiothe system increase, the RACE's effectors are streattur
in a hierarchical fashion. We validate this claim in Secton

Since the elements of RACE are developed as CCM componeh®E Rself can be configured using model-driven tools,
such as PICML. Moreover, new and/or domain specific entitieh asnput Adapt er s, Al | ocat ors,Control | ers,
Ef fectors, Configurators, QS Mnitors, andResource Monitors, can be plugged directly into RACE

without modifying RACE'’s existing architecture.
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4.2 Addressing MMS Mission Requirements Using RACE

Section 4.1 provides a detailed overview of various adeptsource management challenge of open DRE systems and
how RACE addresses these challenges. We now describe hovie RA&S applied to our MMS mission case study from
Section 3 and show how it addressed key resource alloc&io8 configuration, and adaptive resource managementeequir

ments that we identified in Section 3.

4.2.1 Addressing Requirement 1: Resource Allocation to Adfations

RACE's | nput Adapt er parses the metadata that describes the application tsmdhtaresource requirement(s) of com-
ponents that make up the application and populate&iti®e E IDL structure. TheCentral Monitor obtains system
resource utilization/availability information for RACEResour ce Moni t or s, and using this information along with
the estimatedresource requirement of application components capture¢dda E- 2- E structure, theAl | ocat or s map
components onto nodes in the system domain based on rurgsoerce availability.

RACE's| nput Adapt er,Central Monitor,andAl | ocat or s coordinate with one another to allocate resources
to applications executing in open DRE systems, therebyesdirg the resource allocation requirement for open DRE S\

identified in Section 3.2.1.

4.2.2 Addressing Requirement 2: Configuring Platform-speific QoS Parameters

RACE shields application developers and SA-POP from lovellplatform-specific details and defines a higher-level QoS
specification model. System developers and SA-POP spenify QoS characteristics of the application, such as QoS
requirements and relative importance, and RAGEsf i gur at or s automatically configures platform-specific parameters
appropriately.

For example, consider two science applications — one eixerint fast survey mode and one executing in slow survey
mode. For these applications, middleware parameters eoatigoy theM ddl ewar e Confi gur at or includes: (1)
CORBA end-to-end priority, which is configured based on exien mode (fast/slow survey) and application period/diead
(2) CORBA priority propagation model (CLIENPROPAGATED / SERVERDECLARED), which is configured based on
the application structure and inter-connection, and (8atling model (single threaded / thread-pool / thread-paibi
lanes), which is configured based on number of concurremtqgueaponents connected to a component. Vhed! ewar e
Conf i gur at or derives configuration for such low level platform-specificgmeters from application end-to-end structure
and QoS requirements.

RACE's Conf i gur at or s provides higher level abstractions and shield system dpees and SA-POP from low-level
platform-specific details, thus addressing the requirésmassociated with configuring platform-specific QoS patanse

identified in Section 3.2.2.
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4.2.3 Addressing Requirement 3: Monitoring End-to-end Qo%nd Ensuring QoS Requirements are Met

When resources are allocated to components at design-jirsgstem designers using PICMiLe. mapping of application
components to nodes in the domain are specified, these mperate performed based on estimated resource utilizafion
applications and estimated availability of system resesiréllocation algorithms supported by RACEEI ocat or s allo-
cate resources to components based on current systemaesiilization and component’s estimated resource remards.

In open DRE systems, however, there is often no accuargieori knowledge of input workload, the relationship between
input workload and resource requirements of an applicadind system resource availability.

To address this requirement, RACE’s control architectumpleys a feedback loop to manage system resource and ap-
plication QoS and ensures (1) QoS requirements of apmitatire met at all times and (2) system stability by maintaini
utilization of system resources below their specified zdtiion set-points. RACE’s control architecture featurésemlback
loop that consists of three main componeiMsni t or s, Cont r ol | er s, andEf f ect or s, as shown in Figure 9.

Moni t or s are associated with system resources and QoS of the appiisaind periodically update ti@nt r ol | er
with the current resource utilization and QoS of appligagicurrently running in the system. Tientr ol | er imple-
ments a particular control algorithm such as EUCON [9], DEMN[10], HySUCON [11], and FMUF [12], and computes
the adaptations decisions for each (or a set of) applic@jdn achieve the desired system resource utilization an8. Q
Ef f ect or s modify system parameters, which include resource allongt components, execution rates of applications,
and OS/middleware/network QoS setting of components,tizeae the controller recommended adaptation.

As shown in Figure 9, RACE’s monitoring framewor®nt r ol | er s, andEf f ect or s coordinate with one another
and the aforementioned entities of RACE to ensure (1) Qo&@irements of applications are met and (2) utilization oteys
resources are maintained within the specified utilizateirp®int set-point(s), thereby addressing the requiréssssociated

with runtime end-to-end QoS management identified in Sedi@.3. We empirically validate this in Section 5.

5 Empirical Results and Analysis

This section presents the design and results of experirtteattevaluate the performance and scalability of RACE in our
prototype of the NASA MMS mission system case study desdribeSection 3. These experiments validate our claims in
Section 4 and Section 4.2 that RACE is an scalable adapseeiree management framework and can perform effective end-

to-end adaptation and yield a predictable and scalable DRtem under varying operating conditions and input worétloa
5.1 Hardware and Software Testbed

Our experiments were performed on the ISISLab testbed atléfailt University (ww. dr e. vander bi | t . edu/
| SI Sl ab). The hardware configuration consists of six nodes, five othlacted as spacecrafts and one that acted as
a ground station. The hardware configuration of all the nodes a 2.8 GHz Intel Xeon dual processor, 1 GB physical
memory, 1GHz Ethernet network interface, and 40 GB hardedrilhe Redhat Fedora Core release 4 OS with real-time

preemption patches [47] was used for all the nodes.
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Our experiments also used CIAO/DANCE 0.5.10, which is ouempource QoS enabled component middleware that
implements the OMG Lightweight CCM [48] and Deployment armh@iguration [44] specifications. RACE and our DRE
system case study are built upon CIAO/DANCE.

5.2 MMS DRE System Implementation

Science applications executing atop our MMS DRE systemamrgosed of the following components:

e Plasma sensor componenthich manages and controls the plasma sensor on the spticeollects metrics corre-

sponding to the earth’s plasma activity.

e Camera sensor componentwhich manages and controls the high-fidelity camera on faeecraft and captures

images of one or more star constellations.

e Filter component, which processes the data from the sensor components to/eesng extraneous noise in the col-

lected data/image.

e Analysis component which processes the collected data to determine if theigl@tcinterest or not. If the data is of

interest, the data is compressed and transmitted to thexdisiation.
e Compression componentwhich uses loss-less compression algorithms to com@éisseollected data.
¢ Communication component which transmits the compressed data to the ground statgivadically.
e Ground component which received the compressed data from the spacecraftstares it for further processing.

All these components—except for the ground component—ggem the spacecraftsTable 2 summarizes the number of
lines of C++ code of various entities in our middleware, RA@GRd our prototype implementation of the MMS DRE system

case study, which were measured using SLOCCountv( dwheel er . conf sl occount).

Entity Total Lines of Source Code
MMS DRE System 19,875
RACE 157,253
CIAO/DANCE 511,378

Table 2: Lines of Source Code for Various System Elements

5.3 Evaluation of RACE'’s Scalability

Sections 4.1.2 and 4.1.6 claimed that the hierarchicabdesi RACE’s monitors and effectors enables RACE to scale

as the number of applications and nodes in the system grows/alldated this claim by studying the impact of increasing

1our experiments used component emulations that have the mmurce utilization characteristics as the original ponents.
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number of nodes and applications on RACE’s monitoring datayactuation delay when RACE’s monitors and effectors are
configured hierarchically and non-hierarchically. As désd in Sections 4.1.2 and 4.1r6pnitoring delayis defined as the
time taken to obtain a snapshot of the entire system in tefmesource utilization and QoS amdtuation delays defined

as the time taken to execute controller recommended adaptatoughout the system.

To measure the monitoring and actuation delays, we instnteddRACE'sCent r al Moni t or andCentral Effector,
respectively, with high resolution timersACE Hi gh_Res _Ti ner [15]. The timer in theCent ral Moni t or measured
the time duration from when requests were sent to indivitheale Moni t or s to the time instant when replies from all
Node Mbni t or s were received and the data (resource utilization and agifmit Q0S) were assembeled to obtain a snap-
shot of the entire system. Similarly, the timer in Bent r al Ef f ect or measured the time duration from when system
adaptation decisions were received from @oat r ol | er to the time instant when acknowledgment indicating sudaéss

execution of node level adaption from individdeilf ect or s (located on each node) were received.

5.3.1 Experiment 1: Constant Number of Application and Varying Number of Nodes

This experiment studied the impact of varying number of sadehe system domain on RACE’s monitoring and actuation
delay. We present the results obtained from running ther@rpat with a constant of five applications, each composed of
six components (plasma-sensor/camera-sensor, andlitsis,analysis, compression, communication, and grouadjl a

varying number of nodes.

Experiment configuration. We varied the number of nodes in the system from one to six. taAl wf 30 application
components were evenly distributed among the nodes in tersy The experiment was composed of two scenarios: (1)
hierarchical and (2) non-hierarchical configuration of FA&Cmonitors and effectors. Each scenario was compriseeMefis
runs, and number of nodes in the system during each run wasacaf During each run, monitoring delay and actuation

delay was collected over 50,000 iterations.

Analysis of results. Figures 10a and 10b compare the impact of increasing the auafimodes in the system on RACE'’s
monitoring and actuation delay, respectively, under the $aenarios. Figures 10a and 10b show that monitoring and ac-
tuation delays are significantly lower in the hierarchicahfiguration of RACE’s monitors and effectors compared ® th
non-hierarchical configuration. Moreover, as the numberazfes in the system increases, the increase in monitorithg an
actuation delays are significantlyg, 18% and 29%, respectively) lower in the hierarchical carfigjon compared to the
non-hierarchical configuration. This result occurs beeandividual node monitors and effectors execute in pdralleen
monitors and effectors are structured hierarchicallysahg significantly reducing monitoring and actuation deflegpec-
tively.

Figures 10a and 10b show the impact on monitoring and aotudtlay when the monitors and effectors are structured
hierarchically and the number of nodes in the system inereaishough individual monitors and effectors execute irgfial,

resource data aggregation and computation of per-nodéadtapdecisions are centralized by tbent r al  Moni t or and

2As we varied the number of nodes from one to six each scenadattotal of seven runs.
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Central Effector,respectively. The results show that this configuratiotdgi@ marginal increase in the monitoring
and actuation delay.€., 6% and 9%, respectively) as the number of nodes in the syisEeases.

Figures 10a and 10b show that when there is only one node sy#tem, the performance of the hierarchical configura-
tion of RACE’s monitors and effectors is worse than the nardrchical configuration. This result measures the owathe
associated with the hierarchical configuration. As showhRigures 10a and 10b, however, as the number of nodes in the

system increase, the benefit of the hierarchical configaratiitweighs this overhead.

5.3.2 Experiment 2: Constant Number of Nodes and Varying Nurher of Applications

This experiment studied the impact of varying the numbempgfiaations on RACE’s monitoring and actuation delay. We
now present the results obtained from running the expetimigin six nodes in the system and varying number of applceti
(from one to five), each composed of six components (plasgnaes/camera-sensor, analysis, filter, analysis, corsipres

communication, and ground).

Experiment configuration. We varied the number of applications in the system from orfizéo Once again, the applica-
tion components were evenly distributed among the six niodég system. This experiment was composed of two scenarios
(1) hierarchical and (2) non-hierarchical configuratiorR#fCE’s monitors and effectors. Each scenario was compo$ed
five runs, with the number of applications used in each rud behstant. As we varied the number of applications from one
to five, for each scenario we had a total of five runs. Durindheaa, monitoring delay and actuation delay was collected

over 50,000 iterations.

Analysis of results. Figures 11a and 11b compare the impact on increase in nurh@gplications on RACE’s monitoring

and actuation delay, respectively, under the two scendfigsires 11a and 11b show that monitoring and actuatiorysele
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significantly lower under the hierarchical configuratioiR#CE’s monitors and effectors compared with the non-hiriaal
configuration. These figures also show that under the hieiGiconfiguration, there is a marginal increase in the hooimg
delay and negligible increase in the actuation delay asuhgber of applications in the system increase.

These results show that RACE scales well with as the numbapdés and applications in the system increase. The
results also show that RACE’s scalability is primarily dadhe hierarchical design of RACE’s monitors and effecttivere

by validating our claims in Sections 4.1.2 and 4.1.6.
5.4 Evaluation of RACE'’s Adaptive Resource Management Cagailities

We now evaluate the adaptive resource management cajgsbilftRACE under two scenarios: (1) moderate workload,
and (2) heavy workload. Applications executing on our prgie MMS mission DRE system were periodic, with deadline
equal to their periods. In both the scenarios, we use thelideadiss ratio of applications as the metric to evaluateesys
performance. For every sampling period of RACE@nt r ol | er, deadline miss ratio for each application was computed
as the ratio of number of times the application’s end-tolatehcy® was greater than its deadline to the number of times the

application was invoked.

5.4.1 Summary of Evaluated Scheduling Algorithms

We studied the performance of the prototype MMS system uvaléous configurations: (1) a baseline configuration with-
out RACE and static priority assigned to application cormgrda based on Rate Monotonic Scheduling (RMS) [46], (2) a
configuration with RACE’s Maximum Urgency First (MURonf i gur at or, and (3) a configuration with RACE’s MUF

Confi gur at or and Flexible MUF (FMUF) [12]Cont r ol | er. The goal of these experiments is not to compare the

3The end-to-end latency of an application was obtained fré&x@ Rs QoSMoni t or s.
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performance of various adaptive resource managementthiga; such as EUCON [9], DEUCON [10], HySUCON [11],
or FMUF. Instead, the goal is to demonstrate how RACE can bd tsimplement these algorithms and there by meet the
system adaptation requirements of open DRE systems.

A disadvantage of RMS scheduling is that it cannot providégpmance isolation for higher importance applicatior@][4
During system overload caused by dynamic increase in thkleaxt, applications of higher importance with a low rate may
miss deadlines. Likewise, applications with medium/lowgportance but high rates may experience no missed deadline

In contrast, MUF provides performance isolation to appi@es of higher importance by dividing operating system/and
or middleware priorities into two classes [49]. All compaitgbelonging to applications of higher importance aregaesd
to the high-priority class, while all components belongiagpplications of medium/lower importance are assignetti¢o
low-priority class. Components within a same priority slase assigned operating system and/or middleware pehtased
on the RMS policy. Relative to RMS, however, MUF may causersi inversion when an higher importance application
has a lower rate than medium/lower importance applicatidssa result, MUF may unnecessarily cause an application of
medium/lower importance to miss its deadline, even whetaaks are schedulable under RMS.

To address limitations with MUF, RACE’s FMUEont r ol | er provides performance isolation for applications of higher
importance while reducing the deadline misses of appticatof medium/lower importance. While both RMS and MUF as-
sign priorities statically at deployment time, the FMGént r ol | er adjusts the priorities of applications of medium/lower
importance dynamically based on performance feedback. FNhgF Cont r ol | er can reassign applications of medi-
um/lower importance to the high-priority class when (1)ta# applications currently in the high-priority class muwir
deadlines while (2) some applications in the low-priorityss miss their deadlines. Since the FMO&nt r ol | er moves
applications of medium/lower importance back to the loveity class when the high-priority class experiences tiead
misses it can effectively deal with workload variations sai by application arrivals and changes in application wi@t

times and invocation rates.

5.4.2 Experiment 1: Moderate Workload

Experiment configuration. The goal of this experiment configuration was to evaluate R&Gystem adaptation capabili-
ties under a moderate workload. This scenario therefordaymg two of the five emulated spacecrafts, one emulatechgrou
station, and three periodic applications. One applicatias initialized to execute in fast survey mode and the remgin
two were initialized to execute in slow survey mode. As diésat in Section 3.1, applications executing in fast survegen
have higher relative importance and resource consumgtemmapplications executing in slow survey mode. Each agplic
tion is subjected to an end-to-end deadline equal to itodermable 3 summarizes application periods and the mapging o
components/applications onto nodes.

The experiment was conducted over 1,400 seconds, and weatthwariation in operating condition, input workload
and a mode change by performing the following steps. At time 0sec, we deployed applications one and two. At time
T = 300sec, the input workload for all the application were reduced &y percent, and at timE = 700sec we deployed

application three. AT" = 1000sec, application three switched mode from slow survey to fasteyr To emulate this mode
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Application Component Allocation Period Mode
Spacecraft Ground | (msec)
1 2 Station

1 Communication Analysis Ground | 1000 Fast Survey
Plasma-sensor| Compression

2 Analysis Communication| Ground 900 Slow Survey
Camera-sensor| Compression

Filter

3 Plasma-sensor| Communication| Ground 500 Slow Survey

Camera-sensor| Compression
Filter

Table 3: Application Configuration under Moderate Workload

change, we increased the rate (reduced the period) of application three by twenty perc&irice each application was
subjected to an end-to-end deadline equal to its periodvdtuate the performance of RACE, we monitored deadline
miss ratioof all applications that were deployed.

RACE’s FMUFCont r ol | er was used for this experiment since the MMS mission apptoatdescribed above do not
support rate adaptation. RACE is a framework, however, lseratdaptation strategies/algorithms, such as HySUCON [11
can be implemented and employed in a similar way. Below, veduewe the use of FMUF for end-to-end adaptation. Since
this paper focuses on RACE—and not the design or evaluatiodiwidual control algorithms—we use FMUF as an example
to demonstrate RACE’s ability to support the integratiodesdback control algorithms for end-to-end adaptation RED
systems. RACE’s FMUF controller was configured with thedwiing parameters: sampling period = 10 secoidss 5,
andthreshold = 5%

Analysis of results. Figures 12a, 12b, and 12c¢ show the deadline miss ratio ofcapipins when the system was operated
under baseline configuration, with RACE’'s MWonf i gur at or , and with RACE’s MUFConf i gur at or along with
FMUF Cont r ol | er, respectively. These figures show that under all the threégiorations, deadline miss ratio of ap-
plications (1) reduced &' = 300sec due to the decrease in the input work load, (2) increaséd at 700sec due to the
introduction of new application, and (3) further increase¢@ = 1, 000sec due to the mode change from slow survey mode
to fast survey mode. These results demonstrates the impéotctuation in input workload and operating conditions on
system performance.

Figure 12a shows that when the system was operated undeasledire configuration, deadline miss ratio of medium
importance applications (applications executing in fasvey mode) were higher than that of low importance appbcat
(applications executing in slow survey mode) due to reasgpkined in Section 5.4.1. Figures 12b and 12c show thahwhe
RACE’s MUF Conf i gur at or is used (both individually and along with FMUEBont r ol | er ), deadline miss ratio of
medium importance applications were nearly zero througth@ucourse of the experiment. Figures 12a and 12b demtmstra

that RACE improves QoS of our DRE system significantly by auunriing platform-specific parameters appropriately.
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Figure 12: Deadline Miss Ratio Under Moderate Workload

As described in [12], the FMUEont r ol | er responds to variations in input workload and operating @@t (in-
dicated by deadline misses) by dynamically adjusting therities of the low importance applicationsg,, moving low
importance applications into or out of the high-prioritass$). Figures 12a and 12c demonstrate the impact of the RACE’

Cont r ol | er on system performance.

5.4.3 Experiment 2: Heavy Workload

Experiment configuration. The goal of this experiment configuration was to evaluate RAGystem adaptation capabil-
ities under a heavy workload. This scenario therefore eygulall five emulated spacecrafts, one emulated groundstati
and ten periodic applications. Four of these applicatioesevinitialized to execute in fast survey mode and the remain

ing six were initialized to execute in slow survey mode. ®dlsummarizes the application periods and the mapping of
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components/applications onto nodes.

Application Component Allocation Period Mode
Spacecraft Ground | (msec)
1 2 3 4 5 Station
1 Communication Analysis Filter Compression | Ground | 1000 Fast Survey
Plasma-sensor
2 Camera-sensor Filter Communication | Ground 900 Slow Survey
Compression Analysis
3 Camera-sensor| Plasma-sensor| Communication Analysis Filter Ground 500 Slow Survey
Compression
4 Communication Filter Plasma-sensor Compression | Ground 800 Slow Survey
Analysis
5 Communication Camera-sensor| Analysis Compression | Ground | 1200 | Slow Survey
Filter
6 Analysis Filter Communication| Compression | Plasma-sensor| Ground 700 Slow Survey
7 Plasma-sensor| Plasma-sensor| Communication Analysis Filter Ground 600 Fast Survey
Compression
8 Communication Plasma-sensor Compression | Ground 700 Slow Survey
Filter Analysis
9 Communication Camera-sensor| Analysis Compression | Ground 400 Fast Survey
Filter Plasma-sensor
10 Compression Communication Plasma-sensor| Ground 700 Fast Survey
Filter Analysis

Table 4: Application Configuration under Heavy Workload

The experiment was conducted over 1,400 seconds, and wetahthe variation in operating condition, input workload,
and a mode change by performing the following steps. At fime Osec, we deployed applications one through six. At time
T = 300sec, the input workload for all the application were reduced &y percent, and at tiniE = 700sec we deployed
applications seven through ten. At= 1,000sec, applications two through five switched modes from slow syro fast
survey. To emulate this mode change, we increased the raeptitations two through five by twenty percent. RACE’s

FMUF controller was configured with the following paramstesampling period = 10 second$,= 5, andthreshold = 5%

Analysis of results. Figure 13a shows that when the system was operated undeaskére configuration, the deadline
miss ratio of the medium importance applications were algginer than that of the low importance applications. Figurgb

and 13c show that when RACE’s MUBonf i gur at or is used (both individually and along with FMUBont r ol | er),
deadline miss ratio of medium importance applications weaaly zero throughout the course of the experiment. FgjiBa

and 13b demonstrate how RACE improves the QoS of our DREmy&tmificantly by configuring platform-specific param-
eters appropriately. Figures 12a and 12c demonstrate th@ERmproves system performance (deadline miss ratio) even

under heavy workload.
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Figure 13: Deadline Miss Ratio under Heavy Workload

These results show that RACE improves system performangeiigrming adaptive management of system resources

there by validating our claim in Section 4.2.3.
5.5 Summary of Experimental Analysis

This section evaluated the performance and scalabilithefRACE framework by studying the impact of increase in
number of nodes and applications in the system on RACE’s tmang delay and actuation delay. We also studied the
performance of our prototype MMS DRE system with and withBR&CE under varying operating condition and input
workload. Our results show that RACE is a scalable adap&seurce management framework and performs effective end-
to-end adaptation and yields a predictable and high-pmidace DRE system.

From analyzing the results in Sections 5.3 we observe th@Rg#cales well as the number of nodes and applications in the
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system increases. This scalability stems from RACE's teednchical design of monitors and effectors, which vaédaiur
claims in Sections 4.1.2 and 4.1.6. From analyzing the tepuésented in Section 5.4, we observe that RACE significant
improves the performance of our prototype MMS DRE systenmewveler varying input workload and operating conditions,
thereby meeting the requirements of building componese®RE systems identified in Section 3.2. These benefitk resu
from configuring platform-specific QoS parameters appaiply and performing effective end-to-end adaptation,cihi

were performed by RACE'Sonf i gur at or s andCont r ol | er s, respectively.

6 Concluding Remarks

Open DRE systems require end-to-end QoS enforcement freimuthderlying operating platforms to operate correctly.
These systems often run in environments where resourcabnity is subject to dynamic change. To meet end-to-en& Qo
in these dynamic environments, open DRE systems can bemefitsfdaptive resource management frameworks that moni-
tors system resources, performs efficient application lwadkmanagement, and enables efficient resource provigjdor
executing applications. Resource management algorittassdoon control-theoretic techniques are emerging as aiprom
ing solution to handle the challenges of applications witingent end-to-end QoS executing in open DRE systems.eThes
algorithms enable adaptive resource management cajbititopen DRE systems and adapt gracefully to fluctuation in
resource availability and application resource requirgraeruntime.

This paper described RACE, which is our adaptive resouraggagement framework that provides end-to-end adaptation
and resource management for open DRE systems built atope@alfed component middleware. Open DRE systems built
using RACE benefit from the advantages of component-basadlenvare, as well as QoS assurances provided by adaptive
resource management algorithms. We demonstrated how RA&QEdresolve key resource and QoS management chal-
lenges associated with a prototype of the NASA MMS missiateay. We also analyzed results from empirical studies of
RACE's end-to-end performance.

Since the elements of RACE are designed and implemented Bsdo@ponents, RACE itself can be configured using
model-driventools, such as PICML. Moreover, nemput Adapt er s, Al | ocat or s,Conf i gur at ors,andControl | ers
can be plugged into RACE using PICML without modifying itdsting architecture. RACE can also be used to deploy, al-
locate resources to, and manage performance of, applisatiat are composed at design-time and runtime.

The lessons learned in building RACE and applying to our MMSsion system prototype thus far include:

e Challenges involved in developing open DRE systemg\chieving end-to-end QoS in open DRE systems require
adaptive resource management of system resources, asswelegration of a range of real-time capabilities. QoS-
enabled middleware such as CIAO/DANCE, along with the supgfddSMLs and tools such as PICML, provide an
integrated platform for building such systems and are emgras an operating platform for these systems. Although
CIAO/DANCE and PICML alleviate many challenges in buildiBRE systems, they do not addresses the adaptive
resource management challenges and requirements of opersizRems. Adaptive resource management solutions

are therefore needed to ensure QoS requirements of applis@xecuting atop these systems are met.
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e Decoupling middleware and resource management algorithmsimplementing adaptive resource management al-
gorithms within the middleware tightly couples the res@uncanagement algorithms within particular middleware
platforms. This coupling makes it hard to enhance the adlgms without redeveloping significant portions of the
middleware. Adaptive resource management frameworkh,asIRACE, alleviate the tight coupling between resource

management algorithms and middleware platforms and ingpflexibility.

System Domain

b

MM

Resource Group Resource Group Resource Group

Figure 14: Hierarchical Composition of RACE

e Design of a framework determines its performance and appliability. The design of key modules and entities
of the resource management framework determines the ditsjadnd therefore the applicability, of the framework.
To apply a framework like RACE to a wide range of open DRE syst# must scale well as the number of nodes
and application in the system grows. Our empirical studieshe scalability of RACE showed that structuring and
designing key modules of RACE (g, monitors and effectors) in a hierarchical fashion not aigyificantly improves

the performance of RACE, but also improves its scalability.

e Need for domain specific configuring/customizing of the addjpre resource management framework Utilization
of system resources, such as CPU, memory, and network bdiidwind system performance, such as latency and
throughput, can be measured in a generic fashion acrossugasystem domains. In open DRE systems, however,
the need to measure utilization of domain-specific resaigch as battery utilization, and application-specifiSQo
metrics, such as the fidelity of the collected plasma datghhuiccur. Domain-specific customization and configuration
of an adaptive resource management framework, such as R#OEId therefore be possible. RACE supports domain-
specific customization of itdbni t ors andEf f ect ors. As a part of our future work, we plan to empirically

evaluate the ease of integration of these domain-specsiiuree entities.

e Need for distributed/decentralized adaptive resource maagement.Design, analysis, and implementationaef-
tralized adaptive resource management algorithms that manage tine gystem is relatively easier as compared to
the design, analysis, and implementatiordetentralizecadaptive resource management algorithms. However, en-
tities of a resource management framework that implemesgettalgorithms, such as RACE% | ocat or s and
Cont r ol | er s, might become a bottleneck as the size of the system grows.aPproach to resolve this issue is to

partition system resources int@source groupsand employ a hierarchical approach to adaptive resourcagement
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as shown in Figure 14. As a part of our future work on RACE, vamb enhance RACE such thalbgal instance of
RACE can be used to manage resource allocation, QoS corifigurand runtime adaption within a resource group,

and aglobalinstance of RACE can be used to manage the resource andrparfoe of the entire system.

RACE, CIAO, DANCE, and PICML are available in open-sourcaerfdor download adeuce. doc. wust | . edu/
Downl oad. ht m .
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