The ADAPTIVE Service Executive:
An Object-Oriented Architecturefor Configuring
Concurrent Distributed Communication Systems

Douglas C. Schmidt and Tatsuya Suda
schmidt@ics.uci.edu and suda@ics.uci.edu
Department of Information and Computer Science
University of California, Irvine, CA 92717, (714) 856-4105 1

An earlier version of this paper appeared in the proceed-
ings of the 8" IFIP International Working Conference on
Upper Layer Protocols, Architectures, and Applications in
Barcelona, Spain, June 1994.

Abstract

The ADAPTIVE Service eXecutive (ASX) is an object-
oriented framework that enhance the development of dis-
tributed applications across a range of operating system
platforms. The components in ASX were developed using
object-oriented design techniques and C++ language fea-
turesin order to simplify the use of OS mechanismsthat pro-
vide interprocess communication, communication port de-
multiplexing, explicit dynamic linking, and concurrency. In
addition, the ASX components automate many system con-
figuration and reconfiguration steps by dynamically linking
network services into applicationsat run-timeand arranging
to execute these services on oneor more processes or threads.
This paper describes the structure and functionality of ASX
and presents several examplesillustrating key ASX features.

1 Introduction

Developing communication systems that effectively utilize
multi-processing and network services is a promising tech-
nique for increasing system performance, scalability, and
cost effectiveness. However, complex distributed communi-
cation systems (such as on-line transaction processing sys-
tems, manufacturing process controllers, distributed object
managers, and globa mobile communication systems) typ-
ically exhibit reliability, functionality, efficiency, and porta-
bility requirementsthat are challenging to satisfy simultane-
oudy. To meet these challenges, developers must address
many topics that are not relevant or are less problematic
for stand-alone applications, including (1) local and remote
interprocess communication (IPC) facilities, (2) system con-
figuration management techniques that permit the flexible

1This material is based upon work supported by the National Science
Foundation under Grant No. NCR-8907909. Thisresearchisalso supported
in part by grantsfrom the University of CaliforniaMICRO program, Nippon
Steel Information and Communication Systems Inc. (ENICOM), Hitachi
Ltd., Hitachi America, and Tokyo Electric Power Company.

insertion, modification, and removal of services from appli-
cations at installation-time and during run-time, (3) process
and thread creation, synchronization, communication, and
termination mechanisms, and (4) debugging and monitoring
support for tracking application behavior.

Object-oriented design and implementati on techniques of -
fer a variety of principles, methods, and tools that help to
alleviate complexity related to developing distributed com-
munication systems. This complexity emanates from factors
such as hon-type-secure, non-portable, and non-extensibleli-
brary and system call interfaces, aswell asalack of efficient
higher-level network programming abstractionsthat leverage
off the increasing availability of advanced OS mechanisms
such as explicit dynamic linking and multi-threading. To
illustrate how object-oriented techniques are being success-
fully appliedinsevera commercial and research projects, this
paper examinesthe structure and functionality of the ADAP-
TIVE Service eXecutive (ASX) framework. Thisframework
facilitates the development, configuration, and experimenta-
tion with concurrent, multi-service distributed communica
tion systems composed of singleton and/or hierarchically-
related services [1]. The ASX framework leverages off
a collection of C++ components that (1) support dynamic
configuration of application services, (2) consolidate com-
mon distributed application activities (such as connection
management, external data conversion, reliable data trans-
fer, 1/0O-based and timer-based event demultiplexing, service
dispatching, content-based message routing, status logging,
and inter-connection of hierarchically-related communica
tion services) within reusable C++ classes and frameworks,
and (3) take advantage of available OS multi-threading and
multi-processing mechanisms in a flexible manner.

This paper is organized as follows: Section 2 reviews
relevant background material; Section 3 describes the pri-
mary features and object-oriented architecture of the ASX
framework; Section 4 outlines severa research projects and
commercial communication systems that utilize components
in the ASX framework; and Section 5 presents concluding
remarks.

2 Research Background

Various strategies and tactics for developing highly config-
urable communication systems and distributed application
frameworks have emerged in severa research domains. The
ASX framework incorporates concepts from several modular
communi cation frameworksincluding SystemV STREAMS
[2], the x-kernd [3], and the Conduit framework [4] from the
Choicesobject-oriented OS (asurvey of theseand other com-
munication frameworks appears in [5]). These frameworks
all contain features that support the flexible configuration
of communication systems (such as those based upon the
Internet or 1ISO OSI reference models) by inter-connecting
“building-block” protocol and service components. In gen-
eral, these frameworks encourage the devel opment of stan-
dard communication-related components (such as message
managers, timer-based event dispatchers, demultiplexors[3],
and assorted protocol functions[6]) by decoupling processing
functionality from the surrounding framework infrastructure.
As described below, the ASX framework contains additional
features that further decouple system functionality from the
concurrency mechanisms used to provide parallelism.

Another influential branch of research addresses broader
policiesfor (1) reliably guiding thereconfiguration of execut-
ing communication systems and (2) representing application
state attributes as abstract datatypesto facilitate flexible ser-
vice configuration [7], communication [8], and migration in
heterogeneous and homogeneous [9] environments.

Another influential branch of research involves daemon
control frameworks..2 Daemon control frameworks provide
mechani sms that automate many tedious and error-prone ac-
tivities associated with configuring and reconfiguring net-
work daemons. These activitiesinclude (1) performing dae-
monization operations; (2) binding transport endpoints to
communication ports; (3) demultiplexing events received on
these ports; and (4) dispatching the appropriate handlers to
process the events.

Two widely available daemon control frameworks are
i netd [10] and | i st en [11], which are both distributed
with System V Release 4 UNIX. I netd and | i st en are
multi-service daemon control frameworks that utilize amas-
ter dispatcher process to monitor a set of communication
ports. Each port is associated with a communication-related
service (such asthestandard Internet servicesf t p,t el net,
dayt i me, and echo). When a service request arrives on a
monitored port, the dispatcher process demultiplexesthere-
guest to the appropriate pre-registered service handler. This
handler performs the service and returns any results to the
client requestor. Long-duration external services® (such as

2A daemon is a single operating system (OS) process that executeson a
host machine in the “background” (i.e., disassociated from any controlling
terminal) [10].

3An external service is executed in a different process address space
than the master dispatcher process that received the request. An internal
service, on the other hand, is executed within the same address space as the
dispatcher process.

ftp and tel net) are executed concurrently in separate
dave processes. In addition, i net d may be configured to
execute short-duration internal services (such as dayti ne
and echo) iteratively within its master dispatcher process
address space (notethat | i st en does not providethis type
of functionality).

Bothi netd and | i st en have proven to be quite use-
ful in practice. However, these daemon control frameworks
were developed without adequate consideration of object-
oriented techniques (such as class-based encapsulation, in-
heritance, dynamic binding, and parameterized types) and
advanced OS mechanisms (such as explicit dynamic linking
and multi-threading). Thisfact complicatescomponent reuse
and limits functionality. For example, the standard version
of i net d iswritten in C and its implementation is charac-
terized by a proliferation of global variables, alack of infor-
mation hiding, and an agorithmic decomposition that deters
fine-grained reuse of its internal components. Furthermore,
neither i net d nor | i st en provide automated support for
(1) dynamically linking services into the address space of
their master dispatcher processes at run-timeor (2) executing
these services concurrently via one or more threads. There-
fore, developerswho want their servicesto benefit from these
advanced OS mechanisms must manually program theminto
their network daemons.

3 The ADAPTIVE Service eXecutive
(ASX) Framework

Object-oriented application frameworks are becoming in-
creasingly popular as a means to simplify and automate the
development and configuration process associ ated with com-
plex domainssuch asgraphica user interfaces, databases, and
distributed communication systems. An application frame-
work is characterized by an integrated collection of compo-
nents that cooperate to define a reusable architecture for a
family of related applications [12]. Frameworks are distin-
guished from conventional class librariesin severa ways:

e Thecomponentsconstituting aframework areintegrated
together to address a particular problem domain. In
contrast, class library components (such as classes for
Strings, complex numbers, arrays, bitsets, etc.) areoften
devel oped to be domain independent

o Complete communication systems may be formed by
inheriting from and/or customizing existing framework
components, rather than simply invoking methods pro-
videdinaclass library. Inheritance enables the features
of a framework class to be shared automaticdly by its
descendant classes. It also alows the framework to
be extended transparently without affecting the origi-
nal code. Developers often interact with an application
framework by inheriting basic functionality from its ex-
isting scaffol ding and overriding certain virtual methods
to perform application-specific processing.

o At run-time, the framework is usualy responsible for
managing the event-loop(s) that providethedefault flow
of control within an application. The framework deter-
mineswhich set of framework-specific and application-
specific methodstoinvokein responseto externa events
(such as messages arriving on communication ports).

The ADAPTIVE Server eXecutive (ASX) is an object-
oriented framework that is specifically targeted for the dis-
tributed application domain. In particular, this framework
simplifiesthe construction of distributed communication sys-
tems by improving the modularity, extensibility, reusabil-
ity, and portability of both the application-specific services
and the underlying OS concurrency, IPC, and demultiplex-
ing mechanisms that these services rely upon. The primary
components in the ASX framework consist of C++ classes
and other class categories that may be combined flexibly via
inheritance, template instantiation, and object composition.
The following section describes the key features of the ASX
framework and outlinesitsprimary architectural components.

3.1 The ASXFramework Features
The ASX framework providesthe features described bel ow.

3.1.1 Reusable, Application-Independent Components

The ASX framework integrates a collection of reusable
communication-related components [13] that handle com-
mon distributed application activities such as port monitor-
ing; message buffering, queueing, and demultiplexing; ser-
vice dispatching; local/remote interprocess communication;
concurrency control; and application configuration, installa-
tion, and run-time service management. The use of object-
oriented techniques and C++ features enhance the reusability
and extensibility of these ASX components.

To implement these features, the ASX framework lever-
ages off the multi-threading and explicit dynamic linking
facilities available in operating systems such as UNIX and
Windows NT [14]. When combined with the use of C++
language features such as templates, inheritance, and dy-
namic binding, the reusable ASX components facilitate the
development of clientsand serversthat often may be updated
and extended without modifying, recompiling, relinking, or
even restarting existing applications. For example, asillus-
trated in Section 4, distributed communication systems may
be developed incrementally by inheriting, composing, and
customizing the existing suite of ASX components that sup-
port the dynamic configuration and concurrent execution of
application services [1].

3.1.2 Support for Highly-Decoupled System Architec-
tures

The ASX framework enhances the flexibility and extensi-
bility of distributed communication systems by decoupling

application service functionality from the following system
characteristics:

e System Structure;

e The type and number of services associated with each
process. In particular, the ASX framework supportsboth
single-service and multi-service applications.

o The point of time at which the service(s) are configured
into an application. A class category within ASX called
the Servi ce Confi gurat or [1] isused to encap-
sulate OS explicit dynamic linking mechanisms. This
enables services to be configured into ASX-based ap-
plications either (1) statically (at compile-time or link-
time) or (2) dynamically (when an application first be-
gins executing or even whileit is running). Moreover,
the choice between static and dynamic configuration
may be deferred until installation-time.

e The order in which hierarchically-related services are
combined into an application. Each service is repre-
sented as a distinct set of independent objects that com-
municate by passing messages. These objects may be
joined together in essentialy arbitrary configurationsto
satisfy applications requirements and enhance compo-
nent reuse.

o Communication Mechanisms:

e The underlying IPC mechanisms used to commu-
nicate with participating clients and servers. The
| PC_SAP [15] class library encapsulates the socket,
TLI, STREAM pipe, and named pipe mechanisms via
an object-oriented interface.

e The 1/O-based and timer-based event demultiplexing
mechanisms used to dispatch incoming connection
requests and data onto the appropriate application-
specified service. A sub-framework within ASX called
the React or [16] portably encapsulates both the
sel ect and pol | I/O demultiplexing system calls
viaan object-oriented interface.

o Execution Agents:

e The type and number of execution agents and process
architectures used to perform services at run-time. De-
velopers may select between user-level and kernel-level
process and thread execution agents.

e The ASX framework provides a set of classes and
toolsthat enable flexible selection from among several
message-based and task-based processarchitectures[5].
A process architecture bindsunitsof application service
processing (such aslayers, functions, connections, mes-
sages, etc.) with one or more CPUs [17]. The choice
of process architecture significantly affects key sources
of distributed application performance overhead (such
as memory-to-memory copying and data manipulation,

APPLICATION
Stream

DOWNSTREAM
WVIH1ISdN

NETWORK INTERFACE
OR PSEUDO-DEVICES

N
APPLICATION
Stream

L) DY

MODULE WRITE READ
OBJECT QUEUE QUEUE
OBJECT OBJECT

MESSAGE
OBJECT

Figure1: C++ Componentsin the ASX Framework

context switching, scheduling, and synchronization),
and al so influences demulti plexing strategies and proto-
col programming techniques [3]. The process architec-
ture components in ASX also support multiple service
invocation semantics, where application service pro-
cessing may be performed concurrently via either syn-
chronous and/or asynchronous techniques. Section 3.3
describes the process architecture support in the ASX
framework in greater detail.

The ASX framework enables applicationsto avoid prema
turely committing to the structural, communication mech-
anism, and execution agent system charactistic described
above until late in the development cycle (i.e, during
installation-time or run-time). By deferring these decisions,
application portability, reusability, and extensibility is en-
hanced. For example, decouplingdesign and implementation
choices until sufficient information is available helps tailor
distributed communication system service configurations to
specific application requirements, OS platform characteris-
tics, and network conditions.

3.2 TheArchitecture of the ASX Framework

This section briefly describes the primary C++ compo-
nents in the ASX framework (illustrated in Figure 1). To
avoid gratuitously renaming familiar terminol ogy, many C++
class names in the ASX framework correspond closely with
functionally equivalent components available in System V
STREAMS. In addition, most ASX class interfaces are also
relatively similar to their STREAMS counterparts, though

C++ inline accessor/mutator functions are generally used in
lieu of accessing class data fields directly. However, the
implementation techniques used in ASX are significantly dif-
ferent, with an emphasis on supporting flexible service con-
figuration and concurrency control for distributed commu-
nication systems running on multi-processor platforms. For
instance, to reduce the likelyhood of deadlock and to sim-
plify intra-Stream flow control, the ASX framework’s pro-
cess architecture components completely re-engineer the co-
routine-based, “weightless’ service processing mechanisms
used in STREAMS[18]. A weightless process does not exe-
cuteonitsown separate run-timestack. Therefore, it may not
suspend execution to wait for resources to become available
or events to occur, which grestly complicates programming
and increases the potentia for deadlock.

The remainder of this section discusses the primary com-
ponents of the ASX framework in detail.

e The STREAM Class. In ASX, the STREAM class pro-
videsapplicationswithaget /put -styleinterfacefor sending
and receiving data and control messages on a Stream. The
STREAMclassis aso the primary unit of application service
configurationfor aparticular instance of a Stream. Thisclass
implements the interconnection logic required to insert and
remove service processing Modul es intoand fromaStream
concurrently and correctly at run-time.

e The Module Class:. The Modul e class is the primary
unit of interconnection for clustering one or more applica
tion services together in a Stream. By default, two standard
Modul es (theSt r eamHead andthe St r eamTai |) are
installed automatically when a Stream is opened. These
Modul es interpret standard control messages that circulate
through a Stream at run-time. For incoming messages, the
St reamTai | classtypicaly transforms packets from net-
work devices or pseudo-devices into a canonical message
format recognized by other componentsin a Stream (it per-
forms the opposite transformation for outgoing messages).
Likewise, the St r eamHead class provides message cre-
ation and buffering capabilities between an application and
a Stream. 1/O between an application and a Stream is syn-
chronous when the St r eamHead Modul e appears a the
top of a Stream. However, if the St r eamHead is omit-
ted, messages percolating up a Stream are delivered into
the address space of an application asynchronously. Each
instance of a Modul e contains two Tasks: one handles
“read-side” processing for incoming messages and the other
handles “write-side” processing for outgoing messages.

e The Task Classs Each Task contains (1) a
Message_Li st that enables queueing of messages, (2) a
pointer to its adjacent Task on a Stream, (3) a back-pointer
to its enclosing parent Modul e (which enables it to locate
itssibling), and (4) anumber of standard utility methods that
maintain and mediate access to the internal state of a Task.
Several methods in the Task class are defined as pure vir-

tual functions#, which ensures that derived subclasses will
provide the requisite data structures and application service
functionality. For example, derived subclasses must supply
open and cl ose methodsthat perform application-specific
Task initiaization and termination activities (such as alo-
cating and releasing per-session control blocks and private
synchronization objects). Likewise, subclasses must e so de-
fine aput method, which performs service processing syn-
chronously when a message arrives from an adjacent Task.
In addition, asubclass may optionally provideasvc method
to handle service processing asynchronously. Selecting be-
tween these aternatives depends on certain installation-time
and run-time factors such as the choice of process architec-
ture and the current availability of chronically scarce shared
resources like Message Bl ocks.

e The Message_List Class. The Message_Li st class
provides a thread-safe message buffering facility built upon
the underlying Message Bl ock class (which itsdf is a
linked list of oneor moreMessage_Bl ock objectsthat form
a complete message). A “simple’ message contains a sin-
gle Message Bl ock and a“composite’ message contains
multiple Message Bl ockslinked together. The overhead
resulting from passing Message Bl ocks between Tasks
is minimized by passing pointers to messages rather than
copying data. Each Message_Li st contains a spin lock
that prevents race conditions when Message_Bl ocks are
enqueued and dequeued concurrently by multiple threads.
In addition, each Message_Li st containsa pair of condi-
tion variables (named not f ul | and not enpt y) that im-
plement flow control between adjacent Tasks. When one
Task attempts to insert a Message Bl ock into a neigh-
boring Task that has reached its high watermark, the wai t

operation it performs on the not f ul I condition variable
atomically relinquishes the CPU and deeps awaiting flow
control conditionsto abate. When the number of bytesin the
flow controlled Message_Li st falsbelow its low water-
mark, the blocked Task isautomatically signaled to resume
its execution.

e TheMultiplexor Class. TheMul ti pl exor classpro-
vides mechanisms that enable layered application servicesto
demultiplex messages between one or more Modul es ina
Stream. Mul ti pl exor s are implemented as a C++ tem-
plateclass parameterized by an external identifier. Thisexter-
nal identifier isused toinstantiateaMap_Manager template
that performs efficient intra-Stream message routing. Each
Map_Manager object containsa set of Modul es that may
be linked above and below aMul ti pl exor in essentialy
arbitrary configurations. Although layered multiplexing and
demultiplexingisgenerally disparaged for high-performance
communication systems, most conventional communication
modelsinvolvesomeform of multiplexing, sothe ASX frame-
work provides mechanisms that support it.

4Pure virtual functions are a C++ feature that provide only abstract
interfaces, without any accompanying definitions [19]. Subclasses must
subsequently provide these definitions before objects may be instantiated.

¢ The Service Configurator Class Category: The ASX
framework usesthe Ser vi ce Conf i gur at or described
in [1]. The Service Configurator is centered
around the Servi ce_Confi g class illustrated in Fig-
ure 2 (3)° which integrates the Servi ce_ Qbj ect,
Servi ce_Reposi tory, and React or components as
described below:

e TheService Object Abstract Base Class— The Task
class is derived from the Servi ce_Obj ect class,
which providesinterfacesthat allow devel opersto spec-
ify the information necessary to support automatic dy-
namic linking and serviceinitialization a run-time[1].
AsshowninFigure2 (1), theSer vi ce_Obj ect class
itself inherits from the Event _Handl er base class.
When used in conjunctionwiththeReact or described
below, the Event _Handl er base class provides auto-
matic 1/0 port demultiplexing and service dispatching
for application-specific Tasks that communicate with
external processes and/or devices.

e Standard Subclasses of Service Object — The
Servi ce Confi gurat or containsalibrary of stan-
dard componentsthat inherit from Ser vi ce_Cbj ect .
These standard components perform the service in-
vocation and service directory mechanisms described
below. Services that want to use these mechanisms
may inherit from the Eager _Spawn, Lazy_Spawn,
Pr ocess_Spawn, Thr ead_Spawn, Li nk_Spawn,
or Servi ce_Manager subclasses illustrated in Fig-
ure2(2).

The Eager _Spawn subclass pre-spawns one or more
processes or threads at application creationtime. These
“warm-started” execution agents form a pool that helps
improve response time by reducing service startup over-
head when requests arrive from clients. Depending on
factors such as number of available CPUs, current ma-
chine load, or the length of a client request queue, this
pool may be expanded or contracted dynamically.

The Lazy_Spawn subclass does not immediately
spawn a process when a client request is received. In-
stead, atimer isset and therequest ishandled iteratively
by the application. However, if the timer expires a
new slave process is automatically spawned to continue
processing the service independently from the master
dispatcher process[21].

The Pr ocess_Spawn subclass implements the exter-
nal service processinvocation functionality provided by
inetdandl i sten. It operates by spavning a new
dave process “on-demand” in response to the arrival
of client requests. The slave process then performs the

5These componentsand their relationships are illustrated via Booch no-
tation [20]. Dashed clouds indicate classes and directed edges indicate
inheritancerel ationshipsbetween these classes. Solid cloudsindicate oneor
more class objects and nesting indicate composition relationships between
these objects (cf. Figure 1).

{ Client o e
\ / /
¢ Listener | Service, (Link |
N / /Manager \ / Spawn }
SERVICE-) Fpeeg% / =2 T
SPECIFIC ! _reactor |
—’ . s TN
- \ (L \
A= \ Eager | | |/ Spawn)
/ Service", | Spawn -
I Object |
\ suspend
' fépmeé)/\
AN W/ TN ~
N/ / — | , _—
/ (S)h r;td ; {Thread|
rrrrr [
// Event \\ \\ init(// { S/p/a\V\in//
/ Handler | \\flrglog,'
handle input
\ handle o pu(g) \W/
\Hangle exceg‘)t(l)on() / . 2 AL & S
andie_si /
Iﬂangle tllrg\;p(L)Jt 0/ Serwce Object l
andle clo: _/
=it S

e -

\

(1) Service_Object
Inheritance Hierarchy

(2) Standard Subclasses
of Service Object

(Serwce \

Yinsert() |

\ remove ())

-\ O NN =~
e y Service (SERVICE-\
*Reposnory\ srvice.N -~ _Cconfig | SPECIFIC)
—) e svc_conf_file ! R
l /\SPEClFlg/’ ’/ open() S
\ S~ . process dwectnves())
\ ;) load szrwce() e()(/ =
/" suspend_servic % N
I resume serwce() ~"Service h
| unload service() | > Object >,
run_event Ioop()\ S~ T
\ daemomze() n
1
< SerV|ce !
(Repostory\
'Repostory\) / REACTOR\ TN
Iterator / { open() .
S \ register_| handler() -
yopeng ¢ \ remove_handler() / Event ;
reset()) ! schedul
, [schedule_timer(), n Handler S
\, getnext() \ cancel_timer() 11 (! er
<8dVa“°90' \ handieevents) | TN
(3) The Service Repository (4) The Service_Config
Class Class

PEEN N

lINHERITS L gryenll

FROM (BY REFERENCE)

W/ FRIEND \B/ARSTRACT

Figure 2: Component Relationshipsfor the Ser vi ce Confi gur at or Framework

service request in its own separate address space — ter-
minating when the request is complete. Spawning a
process on-demand helpsto reduce the consumption of
OSresources, at the expense of higher costsfor initialy
starting a service.

The Thread_Spawn subclass implements service
spawning techniques that are often more efficient than
the process invocation method used by i net d and
listen. Rather than using fork and exec to
create a separate process on a per-request basis, the
Thr ead_Spawn class creates a separate thread. This
thread executesits associated service to completion and
then exits.

The Li nk_Spawn subclass dynamicaly links and ex-
ecutes a new service without spawning a new process
or thread. This allows services to be loaded and un-
loaded on demand, rather than being pre-loaded dur-
ing daemon initiaization. The Li nk_Spawn subclass
is implemented by (1) dynamicdly linking an object
file, (2) obtaining the entry-point of the appropriate
Servi ce_Cbj ect in thisfile, and (3) invoking the
service to perform the client request. Upon comple-
tion, the service installed by Li nk_Spawn may be au-
tomatically removed by closingtheSer vi ce_Obj ect
and unlinking the object file from the daemon’s address
space.

The Ser vi ce_Manager subclass enables loca and
remote clients to determine which services are cur-
rently offered by a network application. During ap-
plication configuration, a Ser vi ce_Manager object

may be registered at awell-known communication port
accessible by clients. When a client requests a list
of enabled application services, the handl e.i nput
method in the Ser vi ce_Manager invokes theitera
tor for the Ser vi ce_Reposi t ory class (described
below). This iterator is used to generate a complete
listing of developer-supplied information that describes
each enabled service. This listing is transferred back
to the client to indicate both the address format and the
transport protocol required to contact application ser-
vices.

e The Service_Repository Class— To simplify adminis-

tration of single-service and multi-service applications,
it is necessary to individually and/or collectively con-
trol and coordinate the Ser vi ce_Cbj ect sthat com-
prise an application’s current suite of active services.
The Servi ce_Reposi tory is an object manager
that coordinates local and remote queries and updates
involving the services offered by an ASX-based ap-
plication. A search structure within the object man-
ager bindsservice names (represented as ASCI | strings)
with instances of composite Ser vi ce_Cbj ect s(rep-
resented as C++ object code). A service name uniquely
identifies an instance of a Ser vi ce_Obj ect stored
in the repository. As illustrated in Figure 2 (3), the
Servi ce_Reposi t ory aso contains methods that
load, (re)enable, disable, or remove Modul es and
Mul ti pl exor sfrom an application statically and/or
dynamically, based upon notification from externa
events (such as signals or control messages).

¢ The Reactor Class Category — The React or is an
extensible event demultiplexing and service dispatch-
ing framework that portably encapsul ates and enhances
the functionality of the UNIX sel ect and pol |
[/O demultiplexing mechanisms. An instance of the
React or is provided within the ASX framework to
automate the registration and dispatching of services
within one or more Streams. Typically, these ser-
vices interact with external 1/0 devices (such as net-
work controllersand serial-linedrivers). TheReact or
integrates the demultiplexing of 1/O descriptor-based
events together with timer-based events via the uni-
form service dispatching interface provided by the
Event _Handl er base class. Application-specific
subclasses define composite objects by inheriting and
refining this interface. As shown in Figure 2 (4), the
React or aso contains a set of methods that register,
remove, schedule, and expire |/O-based and timer-based
objects. When an object is registered by an applica
tion, theReact or extractsthe underlying 1/O descrip-
tor from the object and stores it (along with descrip-
tors from other registered objects) into a data structure
passed to sel ect or pol | . When events associated
with registered objectsoccur at run-time, theReact or
automatically dispatches the appropriate method(s) of
the activated objects, which then perform application-
specific services.

e The Service_Config Class — The Ser vi ce_Confi g
class shown in Figure 2 (4) integrates the other compo-
nents in the Ser vi ce Confi gur at or to facilitate
the static and/or dynamic configuration of concurrent,
multi-service communication systems.

Figure 3 illustrates several representative architectura
configurations of ASX componentswithin a distributed envi-
ronment. Figure3 (1) depictsaclient applicationthat utilizes
ASX components to manipulate 1/0 messages sent and re-
ceived on one or more network devices. Figure3 (2) portrays
a server application composed of several inter-connected,
layered services. Figure 3 (3) illustrates an r who dagmon
configurationinvolvingsingleton servicesthat are not rel ated
hierarchically nor inter-connected.

3.3 Flexible Process Architecture Support

The ASX framework is designed to decouple operations
that implement service functionality from the (1) execution
agents, (2) concurrency control mechanisms, and (3) service
invocation semantics used to implement particular process
architectures such as message-based pardlelism and task-
based parallelism [22]. The following techniques are used
by the ASX framework to accomplish this decoupling:

e Multi-level Concurrency Model: The ASX framework
leverages off the multi-level concurrency model provided by
the underlying SunOS 5.3 process and thread management

facilities [14]. The semantics of the SunOS synchroniza-
tion objects (such as mutex and condition variables, counting
semaphores, and readers/writer locks) offer equivalent se-
mantics when used within threads spawned via one of the
following two modes:

1. Bound threads —which map 1-to-1 directly onto kernel
threads. Bound threads permit independent services
to execute in parallel on multiple CPUs. However, a
context switchisgenerally required to reschedul e bound
threadsand most synchronization operationsrequire OS
kernel intervention.

2. Unbound threads—which are multiplexed in an n-to-m
manner atop one or more kernel threads by a hybrid
user/kernel-leve thread run-time library. This library
schedules, dispatches, and suspends unbound threads,
while attempting to minimize kernel involvement. De-
pending upon the number of kernel threads that an ap-
plication and/or library associates with a process, one or
more unbound threads may execute on multiple CPUs
inparalld.

The ASX framework employs this multi-level concurrency
model to flexibly support severa flavors of parallelism with
minimal impact on a process architecture's overall structure.
For example, the paralelism obtained directly via bound
threadsis useful for simultaneously performing presentation
layer conversionson multiple messages using multiple CPUs.
These operationsbenefit significantly from direct parallelism
since they involve ailmost no inter-thread communication or
synchronization [23]. Conversaly, maintaining a pool of un-
bound threads that shepard messages throughout a stack of
services may benefit from thereduced kernel involvement as-
sociated with the multiplexed flavor of parallelism provided
by unbound threads.

¢ Configurable Concurrency Control Classes. By de-
fault, the core ASX C++ classes described in Section 3.2 are
implemented with minimal internal locking to avoid over-
constraining the granularity of a process architecture’'s syn-
chronization strategies. In particular, only framework mech-
anisms that would not function correctly in amulti-threaded
environment (such as enqueueing Message Bl ocks onto
aMessage_Li st or resolving internal Modul e addresses
stored in aMul ti pl exor within a Stream) are protected
by synchronization objects. More sophisticated concurrency
control schemes may be created by selectively instrument-
ing services with ASX synchronization wrappers[13]. These
wrappersutilizeseveral C++ features such as (1) inheritance,
(2) parameterized types, and (3) conditional compilation to
select from a pre-defined library of C++ synchronization
components. |ngeneral, thisapproach decoupl esthe protocol
processing functionality from the mutual exclusion code that
synchronizesinteractions between objectswithinaparticular
process architecture.

¢ Alternative Service Invocation Semantics: Messages
that arrive at the head or the tail of a Stream are sheparded

REMAINDER OF
CLIENT APPLICATION

. Service
Config

KERNEL

WP SPACE

1) CLIENT
CONFIGURATION

: Reactor
‘u’

=D

(2) LAYERED SERVICE
SERVER CONFIGURATION

USER
SPACE

RWHO
DAEMON

BROADCAST
SENDER

BROADCAST
RECEIVER

(D=

(3) SINGLETON SERVICE
SERVER CONFIGURATION)

Figure 3: Alternative ASX Distributed Application Configurations

through aseriesof inter-connected Tasks by repeatedly call-
ing their put and/or svc methods via either synchronous
and/or asynchronous invocation mechanisms [24], as fol-
lows:

¢ Synchronous | nvocation — This mechanism borrowsthe
thread of control from the entity that passed a message
viatheTask: : put method. A thread of control gener-
aly originates“upstream” from an application process,
“downstream” froman |/O deviceinterrupt, or internally
from an event dispatching mechanism (such as a timer-
driven callout queue used to trigger retransmissions for
connection-oriented transport protocol s).

e Asynchronous Invocation — This mechanism typicaly
emanates from one or more threads associated with
a Task or Modul e. A thread executes a service's
Task: : svc method, which runs an event loop that
continuously waitsfor messagesto arriveontheTask’s
Message_Li st . When messages arrive, thesvc rou-
tine performs the necessary service processing opera-
tions. Messages are forwarded to the next Task in
a Stream by invoking the Task: : put next method,
which subsequently calls the put method in the adja
cent Task. This put routine will either borrow the
thread of control from the Task that invoked it or it
will enqueue the message for subsequent processing in
its corresponding svc routine.

The ASX framework providesthe basic service invocation
mechanisms described above. However, an application is
responsible for selecting an appropriate set of process archi-
tecture policiesthat combine these synchronousand/or asyn-
chronous invocation mechanisms [1]. In general, selecting

CLIENT
LOGGING

HOST
A |[CLIENT

SERVER LOGGING
DAEMON

STORAGE
DEVICE

CLIENT
LOGGING
DAEMON

Figure4: The Distributed Logging Facility

between these different mechanisms involves trade-offs be-
tween efficiency, ease of programming, and deadlock avoid-
ance. For example, depending on application characteristics,
available OS paralédism, and/or devel oper constraints (such
as cross-platform portability), a Task, Modul e, and/or en-
tire Stream may be bound to one or morethreads of control in
aflexible manner determined during Stream configuration.

SERVER
HOST SERVER LOGGING DAEMON

~

OBJECTS
NETWORK TcP
CONNECTION
TCP
CONNECTION
CLIENT |
HOST
NAMED
PIPE : SOCK
Stream CLIENT
CLIENT LOGGING HOST

g DAEMON

APPLICATION

Figure5: ASX Componentsin the Distributed Logging Fa
cility

4 ASX Examples

The ASX framework components are currently being used
in several research projects[17] and commercia projects[1]
to enhance the configuration flexibility and software compo-
nent reuse of distributed communication systemsthat operate
efficiently and portably across multiple hardware and soft-
ware platforms. The remainder of this section examines the
architecture of two existing communication systems, a dis-
tributed logging facility and a device monitoring system for
telecommuni cationsdevices. Notethat thelogging facility is
an example of a monolithic service and the PBX monitoring
systemisan example of layered services operating withinthe
ASX framework.

4.1 Distributed Logging Example

The ADAPTIVE Communication Environment (ACE) pro-
vides adistributed logging facility that simplifies distributed
application debugging and run-timetracing. Debugging dis-
tributed communication systems may be quite chalenging
since diagnostic output appears in different windows and/or
on remote host systems. As shown in Figure 4, the ACE
distributed logging facility consists of several interoperating
components located on multiple machines throughout an in-
ternetwork (the complete design and implementation of the

distributed logging facility is described in detail in [25, 16]).

Application processes (e.g., 1, P2, P3) running on client
hosts use the Log_Msg C++ class to generate various types
of logging records (such as LOG_ERROR and LOG_DEBUG).
The Log-Msg: : | og method providesapri nt f -stylein-
terface that timestamps logging records and sends them via
the FI FO_SAP C++ wrapper for named pipes. The named
pi pe communi cates with a client logging daemon running on
thelocal host machine. This client logging daemon receives
thelogging recordsin “priority order” and uses another C++
wrapper (the SOCK_St r eamclass) to forward the records
viaa TCP/IP connection to a remote server logging daemon
residing at adesignated server hostinalocal and/or widearea
network. The server logging daemon displays these records
on one or more output devices (such as printers, persistent
storage devices, and/or monitoring consol es).

The server 1ogging daemonisasingle-threaded concurrent
server [26] that is built upon various ASX components such
asthe React or, theLoggi ng_Li st ener class, and the
Loggi ng_l Oclass. The relationships between these com-
ponentsareillustratedin Figure5. Loggi ng_Li st ener is
atemplatesubclassthat inheritsfromtheSer vi ce_Obj ect
class (which enables it to be dynamicaly linked into the
server logging daemon and initialized) and is parameter-
ized by the SOCK_Li st ener class and the Loggi ng_I O
class (which itself is another template class that inher-
its from Event Handl er and is parameterized by the
SOCK_St reamclass). Loggi ng_Li st ener is respon-
sible for establishing connections with clients by dynam-
ically cresting Loggi ng-I O objects and registering them
with the React or. The Loggi ng_l O class is responsi-
ble for displaying logging records sent from multiple client
logging daemons on multiple client hosts. Decoupling the
connection establishment and data transmission functional-
ity into these two parameterized classes helpsto improvethe
modularity, reusability, and configurability of the distributed
logging components.

4.2 PBX Device Monitor

The ASX framework aso facilitates the flexible configu-
ration of communication systems containing layered ser-
vices. Figure 6 illustrates the client/server architecture of
a PBX monitoring system. This system isimplemented us-
ing ASX components. In this example, the server host acts
asan intermediate router, forwarding statusinformation gen-
erated by one or more PBX devices to client monitoring
hosts attached to a network. PBX devices may be attached
to a server daemon through some form of communication
link (e.g., a serid-line or network connection) that interacts
with the Devi ce_Adapt er class. Likewise, clients at-
tach to the server by (1) establishing a connection with the
d i ent _Adapt er moduleand (2) indicating which type(s)
of PBX signalsthey are interested in monitoring. The write-
sideof thed i ent _Adapt er class accepts connection re-
quests from clients and also forwards client-based control

messages through the inter-connected write-side Tasks of

the Stream to the appropriate PBX.
The read-side of the Devi ce_Adapt er classis respon- MCFE)T(OR
sible for parsing and transforming incoming device sig-
nals into a canonical event message format built atop the
Message Bl ock class. These messages are then passed
along to the read-side of the Si gnal _Rout er class, which
identifies the client(s) that should receive the message based
upon addressing tables maintained in the Task. Once
the proper destination(s) are known, the read-side of the
C i ent _Adapt er class uses separate connectionsto trans-
mit messages to dl clients that have registered previously to
receive these particular types of event messages.
Aninstanceof Ser vi ce_Conf i g isusedinthisexample)
to control theinitialization and termination of the Task and | |--2-- VAR A Ay S
Mbdul e componentsconfigured at install ati on-timeand dur- KERNEL
ing run-time. Likewise, withinthe Ser vi ce_Confi g ob-
ject, an instance of the React or isused to dispatch incom- oo J /
ing client messages to the appropriate Cl i ent _| Ohandler. DEVICES CLIENT]
Thed i ent _Li st ener class handles connection requests :
from clientsand theCl i ent _I Oclass handles data transfer
between the server and its clients. Control messages arriv-
ing from clients are sent down the write-side of the Stream,
startingwiththed i ent _Adapt er and continuingthrough
to the write-side of the Devi ce_Adapt er . Likewise, in-

coming signals from devices are sent to the read-side of the A
Stream, starting with the Devi ce _Adapt er . . _ o
Thefollowing C++ code fragment illustrateshow the PBX Figure6: ASX Componentsfor thePBX Monitor Application

monitoring application configures its hierarchically-related

services: . . " e

_ particular choice of communication protocols. In addition, it
Modul e *da = new Mdul g\dg;th}” ce_Adapter Adapt er 3850 Straght forward to reconfigure the binding of threads
Modul e *ea = new Module (" Event Anal yzer", onto Tasks and Modul es in order to reduce programming

new Event Anal yzer, new Event_Anal yzer kffort, ensure correct behavior, and improve performance.
Modul e *nr = new Module ("Milticast_Router", ' ’ P P

new Mil ticast_Router, new Multicast_Router);

STREAM PBX_non;

o 5 Concluding Remarks
/* Push the nodules onto the application stream */

if (PBX app. push &%a?z == - % . The ASX framework is an integral part of the ADAPTIVE
o éggTFE?PBg(ngé.Lpﬁhmea) 7o\ nl) sa->get_nane () Bommuynication Environment (ACE) [17]. The goal of the
| Log_;\/ls :P:BIXBg (LOG_ERI&O:& " ‘i/qg\ nl ea->get _name () ACE project is to produce an extensible framework that
e nggl_Msg: B BSD?L%iER&gQ) . 0—/15\ n) ca- >get_nane ())q;mplifiesthe deyelopment of concurrent, multi-ser\'/icedi's-
tributed communication systems composed of services tai-

Earlier non-object-oriented incarnations of the PBX mon- lored for particular application, OS platform, and network
itoring application used ad hoc techniques (such as linked characteristics. To help achieve this goal, the ASX frame-
lists, parameter passing, and shared memory) to exchange work employsavariety of advanced operating system mech-
messages between the various related application services. anisms, object-oriented design techniques, and C++ language
In contrast, the ASX framework provides standard queue- features. In general, object-oriented techniques and C++
ing mechanisms that compose and layer the hierarchicaly- features enhance software quality factors (such as robust-
related services together to form a complete server appli- ness, ease of use, portability, reusability, and extensibility),
cation. Using multiple inter-connected processing modules whereas OS featuresimprovefunctional ity and performance.
greatly simplifies portability and configurability. For exam- In particular, the ASX framework automates many steps in-
ple itisrelatively simpleto migrate certain processing func- volved with configuring and reconfiguring services into dis-
tionality from the server to the clients. Moreover, the ASX tributed communication systems [1]; encapsulates local and
framework also shields the mgjority of the PBX application remote IPC [15], distributed logging [25], I/O port demul-
codefrom knowledge of the client/server interactionsand the tiplexing and service dispatching [16]; and enables flexible

10

invocation methods for intra- and inter-service concurrency
[17].

The ASX components described in this paper are avail-
able via anonymous ftp from i cs. uci . edu in the file
ghu/ C++.wr appers. tar. Z. This distribution contains
complete source code, documentation, and example test
driversfor the C++ components devel oped as part of the ACE
project [17] at the University of California, Irvine. Compo-
nents in the ASX framework have been ported to both UNIX
and Windows NT and are currently being used in a number
of commercia productsincluding the Bellcore Q.port ATM
signaling software product, the Ericsson EOS family of PBX
monitoring applications, and the network management por-
tion of the M otorolalridium mobile communi cations system.

References

[1] D.C. Schmidtand T. Suda, “ The Service Configurator Frame-
work: An Extensible Architecture for Dynamically Config-
uring Concurrent, Multi-Service Network Daemons,” in Pro-
ceedings of the Second International Workshop on Config-
urable Distributed Systems, (Pittsburgh, PA), pp. 190-201,
IEEE, Mar. 1994.

D. Ritchig, “ A Stream Input—Output System,” AT& T Bell Labs
Technical Journal, vol. 63, pp. 311-324, Oct. 1984.

N. C. Hutchinson and L. L. Peterson, “The x-kernel: An Ar-
chitecturefor Implementing Network Protocols,” |IEEE Trans-
actions on Software Engineering, vol. 17, pp. 6476, January
1991.

J. M. Zweig, “The Conduit: a Communication Abstractionin
C++,” in Proceedings of the 2"¢ USENIX C++ Conference,
pp. 191-203, USENIX Association, April 1990.

D. C. Schmidt and T. Suda, “ Transport System Architecture
Services for High-Performance Communications Systems,”
|IEEE Journal on Selected Areas in Communication, vol. 11,
pp. 489-506, May 1993.

D. C. Schmidt, B. Stiller, T. Suda, A. Tantawy, and M. Zit-
terbart, “ Language Support for Flexible, Application-Tailored
Protocol Configuration,” in Proceedings of the 18" Confer-
ence on Local Computer Networks, (Minneapolis, Minnesota),
pp. 369378, Sept. 1993.

JMagee, JKramer, and M.Slomann, “Constructing Dis-
tributed Systems in Conic,” |IEEE Transactions on Software
Engineering, vol. SE-15, June 1989.

J. M. Purtilo, “The Polylith Software Toolbus,” ACM Trans-
actions on Programming Languages and Systems, To appear
1994.

F. Douglis and J. Ousterhout, “ Transparent Process Migra-
tion: Design Alternatives and the Sprite Implementation.”
Software Practice & Experience, to appear. An earlier version
isavailableas Computer Science Division (EECS), University
of California, Berkeley, Technical Report UCB/CSD 89/540,
November 1989, 1991.

W. R. Stevens, UNIX Network Programming. Englewood
Cliffs, NJ: Prentice Hall, 1990.

S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

R. Johnson and B. Foote, “Designing Reusable Classes,”
Journal of Object-Oriented Programming, vol. 1, pp. 22-35,
June/July 1988.

D. C. Schmidt, “The ADAPTIVE Communication Environ-
ment: Object-Oriented Network Programming Components
for Developing Client/Server Applications,” in Proceedings

(3]

[4]

[10]
[11]

[12]

[13]

11

of the 11" Annual Sun Users Group Conference, (San Jose,
CA), pp. 214-225, SUG, Dec. 1993.

J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

D. C. Schmidt, “IPC_SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

D. C. Schmidt, “ The Object-Oriented Desigh and Implemen-
tation of the Reactor: A C++ Wrapper for UNIX 1/0 Multi-
plexing (Part 2 of 2),” C++ Report, vol. 5, September 1993.

D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dy-
namically Assembled Protocol Transformation, Integration,
and eValuation Environment,” Journal of Concurrency: Prac-
tice and Experience, vol. 5, pp. 269-286, June 1993.

S. Saxena, J. K. Peacock, F. Yang, V. Verma, and M. Krish-
nan, “Pitfalls in Multithreading SVR4 STREAMS and other
Weightless Processes,” in Proceedings of the Winter USENIX
Conference, (San Diego, CA), pp. 85-106, Jan. 1993.

Bjarne Stroustrup and Margret Ellis, The Annotated C++ Ref-
erence Manual. Addison-Wesley, 1990.

G. Booch, Object Oriented Analysis and Design with Ap-
plications (2" Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[21] D. E. ComerandD. L. Stevens, Internetworking with TCP/IP
Vol [11: Client — Server Programming and Applications. En-
glewood Cliffs, NJ: Prentice Hall, 1992.

D. C. Schmidt and T. Suda, “ A Framework for Developingand
Experimenting with Parallel Process Architectures to Sup-
port High-Performance Transport Systems,” in Proceedings
of the 2™ Workshop on the Architecture and | mplementation
of High Performance Communication Subsystems, (Williams-
burg, Virgina), |IEEE, September 1993.

M. Goldberg, G. Neufeld, and M. Ito, “A Parallel Approach
to OSI Connection-Oriented Protocols,” in Proceedingsof the
374 |FIP Workshop on Protocals for High-Speed Networks,
(Stockholm, Sweden), May 1992.

[24] A. Garg, “Parallel STREAMS: a Multi-Process Implemen-
tation,” in Proceedings of the Winter USENIX Conference,
(Washington, D.C.), Jan. 1990.

[25] D. C. Schmidt, “The Reactor: An Object-Oriented Interface
for Event-Driven UNIX 1/O Multiplexing (Part 1 of 2),” C++
Report, vol. 5, February 1993.

[26] D. C. Schmidt, “Object-Oriented Techniquesfor Developing
Extensible Network Servers,” in Proceedings of the Second
C++ World Conference, (Dallas, Texas), SIGS, Oct. 1993.

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[22]

[23]

