Patterns and Frameworks for
Concurrent Network
Programming with ACE and C++

Douglas C. Schmidt
Washington University, St. Louis

http://www.cs.wustl.edu/~schmidt/

schmidt@cs.wustl.edu

Motivation for Concurrency
e Concurrent programming is increasing rel-
evant to:
Leverage hardware/software advances

* e.dg., multi-processors and OS thread sup-
port

Increase performance

* e.d., overlap computation and communica-
tion

Improve response-time

* e.d., GUIs and network servers

Simplify program structure

* €.d., synchronous vs. asynchronous network
IPC

Motivation for Distribution

e Benefits of distributed computing:

Collaboration — connectivity and interworking
Performance — multi-processing and locality
Reliability and availability — replication
Scalability and portability — modularity

Extensibility — dynamic configuration and re-
configuration

Cost effectiveness — open systems and resource
sharing

Challenges and Solutions

e However, developing efficient, robust, and
extensible concurrent networking applica-
tions is hard

— e.g., must address complex topics that are less
problematic or not relevant for non-concurrent,
stand-alone applications

e OO techniques and OO language features
help to enhance software quality factors

— Key OO techniques include patterns and frame-
works

Key OO language features include classes, in-
heritance, dynamic binding, and parameterized
types

Key software quality factors include modular-
ity, extensibility, portability, reusability, and
correctness




Caveats

e OO is not a panacea

— However, when used properly it helps minimize
“accidental” complexity and improve software
quality factors

e Advanced OS features provide additional
functionality and performance, e.g.,

Multi-threading
Multi-processing
Synchronization
Shared memory
Explicit dynamic linking

Communication protocols and IPC mechanisms

Tutorial Outline

e Outline key OO networking and concur-
rency concepts and OS platform mecha-
nisms

— Emphasis is on practical solutions

e Examine several examples in detail

1. Distributed logger
2. Concurrent WWW client/server
3. Application-level Telecom Gateway

4. OO framework for layered active objects

e Discuss general concurrent programming
strategies

Software Development

Environment

e The topics discussed here are largely in-
dependent of OS, network, and program-
ming language

— Currently used successfully on UNIX/POSIX,
Win32, and RTOS platforms, running on TCP/IP
networks using C++

e Examples are illustrated using freely avail-
able ADAPTIVE Communication Environ-
ment (ACE) OO framework components

— Although ACE is written in C4++4, the princi-
ples covered in this tutorial apply to other OO
languages

* e.d., Java, Eiffel, Smalltalk, etc.

— In addition, other networks and backplanes can
be used, as well

Definitions

e Concurrency

— “Logically” simultaneous processing

— Does not imply multiple processing elements

e Parallelism

— "Physically” simultaneous processing

— Involves multiple processing elements and/or
independent device operations

e Dijstribution

— Partition system/application into multiple com-
ponents that can reside on different hosts

— Implies message passing as primary IPC mech-
anism




Stand-alone vs. Distributed Concurrency vs. Parallelism

Application Architectures

PRINTER

%
COMPUTER \ read_fds

WORK WORK
REQUEST REQUEST
\

FILE SYSTEM
(2) DISTRIBUTED APPLICATION ARCHITECTURE PARALLEL SERVER

Sources of Complexity Sources of Complexity (Cont,d)

o e Accidental complexity results from limita-
e Concurrent network application develop- tions with tools and techniques used to

ment exhibits both inherent and acciden- develop concurrent applications, e.g.,

tal complexity Lack of portable, reentrant, type-safe and ex-
tensible system call interfaces and component
libraries

e Inherent complexity results from funda-

mental challenges Inadequate debugging support and lack of con-
current and distributed program analysis tools
— Concurrent programming

* Eliminating “race conditions” Widespread use of algorithmic decomposition

* Deadlock avoidance

. Fair scheduling ) x Fine for explaining concurrent programming
Performance optimization and tuning concepts and algorithms but inadequate for

Distributed programming gﬁ\c/:g)grl]gg large-scale concurrent network ap-

* Addressing the impact of latency

* Fault tolerance and high availability

* Load balancing and service partitioning

* Consistent ordering of distributed events

Continuous rediscovery and reinvention of core
concepts and components




OO Contributions to Concurrent

Applications

e Concurrent network programming has tra-
ditionally been performed using low-level
OS mechanisms, e.g.,

* fork/exec

* Shared memory, mmap, and SysV semaphores

* Signals

* sockets/select

* POSIX pthreads, Solaris threads, Win32 threads

Patterns and frameworks elevate develop-
ment to focus on application concerns,

e.g.,

Service functionality and policies
Service configuration

Concurrent event demultiplexing and event han-
dler dispatching

Service concurrency and synchronization

13

Patterns

Patterns represent solutions to problems
that arise when developing software within
a particular context

— i.e., “Patterns == problem/solution pairs in a
context”

Patterns capture the static and dynamic
structure and collaboration among key par-
ticipants in software designs

— They are particularly useful for articulating how
and why to resolve non-functional forces

Patterns facilitate reuse of successful soft-
ware architectures and designs

Active Object Pattern

> loop {
N~ N #g m = act_queue_.dequeue()

/J Proxy m.call()

m \\ 1: enqueue(new M1) -
Future m2() \/ S~ S 7" - W N
Future m3() /’ TN 3.d}pa/tch() / ACthatIOIl !
- <

(
- Scheduler( - . Queue /

) ,/ enqueue()
dlspatch() 7 \ dequeue() ;J

! enqueue() b—\ PR

_
1~

.

2: enqueue(M ) N1 TN
1 I
‘ .

|
INVISIBLE KS er:l'}'(z)lnt\/ MethOd y 1 M2 \,

CLIENTSTO | m2() /1 RequeSt “/ ST
o)

- S

r~3

e Intent: decouples the thread of method
execution from the thread of method in-
vocation

Frameworks

A framework is:

— "An integrated collection of components that
collaborate to produce a reusable architecture
for a family of related applications”

Frameworks differ from conventional class
libraries:

1. Frameworks are “semi-complete” applications

2. Frameworks address a particular application do-
main

3. Frameworks provide “inversion of control”

Typically, applications are developed by in-
heriting from and instantiating framework
components




Differences Between Class

Libraries and Frameworks

APPLICATION INORKING
SPECIFIC |

LOGIC INVOKES | MATH ADTs

-

USER

| INTERFACE

(A) CLASS LIBRARY ARCHITECTURE

NETWORKING USER

\ INTERFACE

APPLICATIONA
INVOKES SPECIFIC

LOGIC

A

DATABASE

(B) FRAMEWORK ARCHITECTURE

Why We Need Communication

Middleware
e System call-level programming is wrong
abstraction for application developers, e.g.,

— Too low-level — error codes, endless reinven-
tion

Error-prone — HANDLES lack type-safety, thread
cancellation woes

Mechanisms do not scale — Win32 TLS
Steep learning curve — Win32 Named Pipes
Non-portable — Win32 WinSock bugs

Inefficient — i.e., tedious for humans

e GUI frameworks are inadequate for com-
munication software, e.g.,

— Inefficient — excessive use of virtual methods

— Lack of features — minimal threading and syn-
chronization mechanisms, no network services

18

The ADAPTIVE Communication
Environment (ACE)

SELF-CONTAINED MIDDLEWARE
DISTRIBUTED JAWS ADAPTIVE APPLICATIONS
SERVICE
WEB SERVER THE ACE ORB

COMPONENTS TOKEN GA'I'EWAY I:l [—
SERVER SERVER (r20)

B)

LOGGING NAME TIME -
SERVER SERVER SERVER

FRAMEWORKS ACCEPTOR CONNECTOR

SERVICE
'HANDLER

ADAPTIVE SERVICE EXECUTIVE (ASX)
PROCESS/ P A—

€ b \
WRAPPERS e GRS M e R CIOR/
SPIPE | [SOCK_SAP, FIFO PROACTOR
4 SAP TLl SAP

El MEMORY i SYSTEM
[ MAPPING || V IPC

PROCESS/THREAD COMMUNICATION VIRTUAL MEMORY
SUBSYSTEM SUBSYSTEM SUBSYSTEM

GENERAL POSIX AND WIN32 SERVICES

e A set of C++ wrappers, class categories,
and frameworks based on patterns

— www.cs.wustl.edu/~schmidt/ACE.html

ACE Statistics

Core ACE frameworks and components
contain 175,000 lines of C++

> 20 person-years of effort

Ported to UNIX, Win32, MVS, and em-
bedded platforms

Large user community (ACE-users.html)

Currently used by dozens of companies

— e.g., Siemens, Motorola, Ericsson, Kodak, Bell-
core, Boeing, SAIC, StorTek ,etc.

Supported commercially by Riverace

— www.riverace.com/




Class Categories in ACE

Network
o lServices

Stream
Framework

Service
Initialization
O

Interprocess
Communication Service

Configurator
O

Reactor
Concurrency
global

Class Categories in ACE (cont’d)

e Responsibilities of each class category

IPC encapsulates local and/or remote IPC mech-
anisms

Service Initialization encapsulates active/passive
connection establishment mechanisms

Concurrency encapsulates and extends multi-
threading and synchronization mechanisms

Reactor performs event demultiplexing and event
handler dispatching

Service Configurator automates configura-
tion and reconfiguration by encapsulating ex-
plicit dynamic linking mechanisms

Stream Framework models and implements /ay-
ers and partitions of hierarchically-integrated
communication software

Network Services provides distributed nam-
ing, logging, locking, and routing services

22

The ACE ORB (TAO)

in args

CLIENT (0B operation() OBJECT
(SERVANT)

out args + return value

y
SKELETON
L ORB RUN-TIME RIE);E;ETCIrE
SHESS SCHEDULER omret
REAL-TIME
ORB CORE ] GIOP/RIOP

OS KERNEL OS KERNEL

REAL-TIME 1/0 REAL-TIME 1/0
SUBSYSTEM SUBSYSTEM

HIGH-SPEED HIGH-SPEED
NETWORK INTERFACE NETWORK NETWORK INTERFACE,

e A high-performance, real-time ORB built
with ACE

e www.cs.wustl.edu/~schmidt/ TAO.html

23

TAO Statistics

Core TAO ORB contain ~50,000 lines of
C++

— Leverages ACE heavily

> 10 person-years of effort

Ported to UNIX, Win32, and embedded
platforms

Currently used by many companies

— e.g., Siemens, Boeing, SAIC, Raytheon, etc.

Supported commercially by OCI

— www.ociweb.com/




JAWS Adaptive Web Server Java ACE

1: GET ~schmidt DISTRIBUTED
HTTP/1.0 SERVICES AND TOKEN LOGGING NAME TIME
— COMPONENTS SERVER SERVER SERVER SERVER

2: lndex html

FRAMEWORKS

PROTOCOL AND CLASS SERVICE
ACCEPTOR CONNECTOR]
HANDLERS CATEGORIES HANDLER
PARSER E E E E ADAPTIVE SERVICE EXECUTIVE (ASX)

DISPATCHER JAVA SERVICE

REQUESTER ® S
Q ”i »z‘ »z’ WRAPPERS CONFIGURATOR

0000 JAVA VIRTUAL MACHINE ~ (JVM)

CRAPHICS COMMUNICATION PROTOCOL
ADAPTER (E.G., HTTP)

OS KERNEL OS KERNEL

0S 1/O SUBSYSTEM 0S 1/0 SUBSYSTEM

erwork AbAPTERS erwonk ADAPTERY Currently used for medical imaging proto-
NETWORK ADAPTERS NETWORK ADAPTERS
NETWORK type

A version of ACE written in Java

e A high-performance, cross-platform Web www.cs.wustl.edu/~schmidt/JACE.html
server built with ACE

— Used commercially by Entera www.cs.wustl.edu/~schmidt/C++2java.html

www.cs.wustl.edu/~schmidt/MedJava.ps.gz
e www.cs.wustl.edu/~jxh/research/

26

ACE-related Patterns

Router Acceptor

Concurrency Overview

Connector e A thread of control is a single sequence of
execution steps performed in one or more
programs

® Service — One program — standalone systems
Thread-per ; Configurator

Session

— More than one program — distributed systems

Asynchronous

Completion ea i e Traditional OS processes contain a single
Token thread of control

Thread o . .

Ext 1 d Snecific — This simplifies programming since a sequence
X erna. P of execution steps is protected from unwanted

Polymorphism Storage interference by other execution sequences...

Concurrency Initialization
Patterns Patterns

27




Traditional Approaches to OS Evaluating Traditional OS

Concurrency Process-based Concurrency

1. Device drivers and programs with signal e Advantages
handlers utilize a limited form of concur-

rency — Easy to keep processes from interfering
e.g., asynchronous I . . .
e e.g., asynchronous I/O * A process combines security, protection, and

e Note that concurrency encompasses more than robustness

multi-threading. ..

e Disadvantages
. Many existing programs utilize OS pro-
cesses to provide *“coarse-grained” con- 1. Complicated to program, e.g.,
currency

— Signal handling may be tricky
e o4,
— Client/server database applications — Shared memory may be inconvenient

— Standard network daemons like UNIX inetd > Inefficient

e Multiple OS processes may share memory via
memory mapping or shared memory and use
semaphores to coordinate execution

— The OS kernel is involved in synchronization
and process management

e The OS kernel scheduler dictates process be- — Difficult to exert fine-grained control over
havior scheduling and priorities

Lightweight Concurrency

Modern OS Concurrency
e Modern OSs provide lightweight mecha-

nisms that manage and synchronize mul-

e Modern OS platforms typically provide a tiple threads within a process

standard set of APIs that handle
— Some systems also allow threads to synchro-

. . nize across multiple processes
1. Process/thread creation and destruction pie P

2. Various types of process/thread synchroniza- .
tion and mutual exclusion e Benefits of threads

1. Relatively simple and efficient to create, con-

. Asynchronous facilities for interrupting long- trol, synchronize, and collaborate

running processes/threads to report errors and

control program behavior
prog — Threads share many process resources by de-

fault

e Once the underlying concepts are mas- . Improve performance by overlapping computa-
tered, it's relatively easy to learn different tion and communication

concurrency APIs
— Threads may also consume less resources

— e.g., traditional UNIX process operations, So- than processes
laris threads, POSIX pthreads, WIN32 threads,
Java threads, etc. . Improve program structure

— e.g., compared with using asynchronous 1/O

32




Single-threaded vs.
Multi-threaded RPC

CLIENT
/'Lr~>

|<—
TANAIN

REQUEST:

30

&

SERVICE
EXECUTES

KERNEL

HREAD
BLOCKED

RESPONSE— |

SINGLE-
THREADED RPC

KERNEL

SERVICE
EXECUTES

RESPONSE

REQUEST-

Hardware and OS Concurrency

Support

e Most modern OS platforms provide kernel
support for multi-threading

e e.9., SunOS multi-processing (MP) model
— There are 4 primary abstractions

1. Processing elements (hardware)
. Kernel threads (kernel)
. Lightweight processes (user/kernel)
. Application threads (user)

— Sun MP thread semantics work for both uni-
processors and multi-processors. ..

KERNEL-LEVEL USER-LEVEL

Sun MP Model (cont’'d)

_)2 ~ —>_) ')2
Ny 3 ]
nf mw@wm

]

»2 e

@@@@@ L.

SHARED MEMORY:

—)2 m UNIX

PROCESSING LIGHTWEIGHT PROCESS
ELEMENT PROCESS

THREAD

e Application threads may be bound and/or
unbound

Application Threads

e Most process resources are equally acces-
sible to all threads in a process, e.g.,

* Virtual memory

* User permissions and access control privileges
* Open files

* Signal handlers

e Each thread also contains unique informa-
tion, e.g.,

* Identifier

* Register set (e.g., PC and SP)

* Run-time stack

* Signal mask

* Priority

* Thread-specific data (e.g., errno)

e Note, there is generally no MMU protec-
tion for separate threads within a single
process...




Kernel-level vs. User-level
Threads

e Application and system characteristics in-
fluence the choice of user-level vs. kernel-
level threading

e A high degree of “virtual” application con-
currency implies user-level threads (i.e.,
unbound threads)

— e.g., desktop windowing system on a uni-processor

e A high degree of “real” application paral-

lelism implies lightweight processes (LWPs)

(i.e., bound threads)

— e.g., video-on-demand server or matrix multi-
plication on a multi-processor

Synchronization Mechanisms

Threads share resources in a process ad-
dress space

Therefore, they must use synchronization
mechanisms to coordinate their access to
shared data

Traditional OS synchronization mechanisms
are very low-level, tedious to program, error-
prone, and non-portable

ACE encapsulates these mechanisms with
higher-level patterns and classes

Common OS Synchronization

Mechanisms

. Mutual exclusion locks

e Serialize thread access to a shared resource

Counting semaphores

e Synchronize thread execution

. Readers/writer locks

e Serialize thread access to resources whose con-
tents are searched more than changed

Condition variables

e Used to block threads until shared data changes
state

. File locks

e System-wide readers/write locks accessed by
processes using filename

Additional ACE Synchronization

Mechanism

. Events

e Gates and latches

. Barriers

e Allows threads to synchronize their completion

Token

e Provides FIFO scheduling order and simplifies
multi-threaded event loop integration

Task

e Provides higher-level “active object” semantics
for concurrent applications

Thread-specific storage

e Low-overhead, contention-free storage




Concurrency Mechanisms in ACE

MANAGERS ! syner CONDITIONS

—— _

CTIVE - S
h i 7 Null ™\
\

;
7, S a
7" Thread * S
4 3 < i’l‘ N / epr )
o ocess p \\Condmon/

p
\\Managef, )

\_ s ! (P

\_ o=

o~
" L |
PPN
ADVANCED SYNCH o0k ! / Condition,
. I | - \ J

- ’ -~ Soe==s
. Y SN |/ Atomie
( Token (. Barrier A0 op

) N\ \/ci/

SYNCH WRAPPERS o e

/" RW ™ Semaphore}
\ 7\

N, Mutex J

e

TN
—— / AN
_ ~. / Null
- 5\, Mutex
( Mutex / J
\

i N

-7

- TN / N
/:I‘hrea:i\, ,” File *\ ///S Threﬁd \\‘
/ - . 4 \ Semaphor:
\ Mutex /=~ \ Lock Semaphory

NI N =T — . (WIS
> ’ \ / ~

/ Process >, 0 Events ' Process
\, Mutex \Semaphorg

N —— \__o———

——

)

e www.cs.wustl.edu/~schmidt/Concurrency.ps.gz

Graphical Notation

PROCESS

/

=N\ MTEMPLATE *

7 U CLASS__ _
AN _7

~

CLASS
CATEGORY INHERITS INSTANTIATES

ABSTRACT O
CLASS o

W CONTAINS

Distributed Logging Service

CLIENT

SERVER LOGGIN
DAEMON

STORAGE
DEVICE

e www.cs.wustl.edu/~schmidt/reactor-rules.ps.gz

Distributed Logging Service

e Server logging daemon

— Collects, formats, and outputs logging records
forwarded from client logging daemons residing

throughout a network or internetwork

e The application interface is similar to printf

ACE_ERROR ((LM_ERROR, "(%t) fork failed"));

// generates on server host

Oct 29 14:50:13 1992@tango.ics.uci.edu@2766@LM_ERROR@client

::(4) fork failed

ACE_DEBUG ((LM_DEBUG,
"(%t) sending to server Js", server_host));

// generates on server host

Oct 29 14:50:28 1992@zola.ics.uci.edu@18352@LM_DEBUG@drwho

::(6) sending to server bastille




Conventional Logging Server

Design

Typical algorithmic pseudo-code for the
server daemon portion of the distributed
logging service:

void server_logging_daemon (void)

{

initialize listener endpoint

loop forever

{
wait for events
handle data events
handle connection events

The “grand mistake:”

— Avoid the temptation to “step-wise refine” this
algorithmically decomposed pseudo-code directly
into the detailed design and implementation of
the logging server!

Select-based Logging Server

Implementation

SERVER
LOGGING DAEMON

. maxhandle;
listener

read handles

CONNECTION
REQUEST

LOGGING
RECORDS LOGGING LOGGING
RECORDS RECORDS

Conventional Logging Server

Implementation

Note the excessive amount of detail re-
quired to program at the socket level...

// Main program
static const int PORT = 10000;

typedef u_long COUNTER;
typedef int HANDLE;

// Counts the # of logging records processed
static COUNTER request_count;

// Passive-mode socket handle
static HANDLE listener;

// Highest active handle number, plus 1
static HANDLE maxhpl;

// Set of currently active handles
static fd_set read_handles;

// Scratch copy of read_handles
static fd_set tmp_handles;

// Run main event loop of server logging daemon.

int main (int argc, char *argv[])
{

initialize_listener_endpoint
(argc > 1 7 atoi (argv[1]) : PORT);

// Loop forever performing logging server processing.

for (5;) {
tmp_handles = read_handles; // struct assignment.

// Wait for client I/D events
select (maxhpl, &tmp_handles, 0, 0, 0);

// First receive pending logging records
handle_data ();

// Then accept pending connections
handle_connections ();




// Initialize the passive-mode socket handle

static void initialize_listener_endpoint (u_short port)
{

struct sockaddr_in saddr;

// Create a local endpoint of communication
listener = socket (PF_INET, SOCK_STREAM, 0);

// Set up the address information to become a server
memset ((void *) &saddr, O, sizeof saddr);
saddr.sin_family = AF_INET;

saddr.sin_port = htons (port);

saddr.sin_addr.s_addr = htonl (INADDR_ANY);

// Associate address with endpoint

bind (listener, (struct sockaddr *) &saddr, sizeof saddr);

// Make endpoint listen for connection requests
listen (listener, 5);

// Initialize handle sets
FD_ZERO (&tmp_handles);

FD_ZERO (&read_handles);

FD_SET (listener, &read_handles);

maxhpl = listener + 1;

// Receive pending logging records

static void handle_data (void)
{

// listener + 1 is the lowest client handle

for (HANDLE h = listener + 1; h < maxhpl; h++)
if (FD_ISSET (h, &tmp_handles)) {
ssize_t n = handle_log_record (h, 1);

// Guaranteed not to block in this case!
if (n > 0)
++request_count; // Count the # of logging records

else if (n == 0) { // Handle connection shutdown.
FD_CLR (h, &read_handles);
close (h);

if (h + 1 == maxhpl) {
// Skip past unused handles

while (!FD_ISSET (--h, &read_handles))
continue;

maxhpl = h + 1;
}
}
1

// Receive and process logging records

static ssize_t handle_log_record
(HANDLE in_h, HANDLE out_h)
{
ssize_t n;
size_t len;
Log_Record log_record;

// The first recv reads the length (stored as a
// fixed-size integer) of adjacent logging record.

n = recv (in_h, (char *) &len, sizeof len, 0);
if (n <= 0) return n;
len = ntohl (len); // Convert byte-ordering

// The second recv then reads LEN bytes to obtain the
// actual record
for (size_t nread = 0; nread < len; nread += n
n = recv (in_h, ((char *) &log_record) + nread,
len - nread, 0);

// Decode and print record.

decode_log_record (&log_record);

write (out_h, log_record.buf, log_record.size);
return n;

// Check if any connection requests have arrived

static void handle_connections (void)
{
if (FD_ISSET (listener, &tmp_handles)) {
static struct timeval poll_tv = {0, 0};
HANDLE h;

// Handle all pending connection requests
// (note use of select’s "polling" feature)

do {
h = accept (listener, 0, 0);
FD_SET (h, &read_handles);

// Grow max. socket handle if necessary.
if (h >= maxhpl)
maxhpl = h + 1;
} while (select (listener + 1, &tmp_handles,
0, 0, &poll_tv) == 1);




Limitations with Algorithmic

Decomposition Techniques

e Algorithmic decomposition tightly couples
application-specific functionality and the
following configuration-related character-
istics:

— Structure
* The number of services per process

* Time when services are configured into a
process

— Communication Mechanisms
* The underlying IPC mechanisms that com-

municate with other participating clients and
servers

* Event demultiplexing and event handler dis-
patching mechanisms

— Concurrency Model

* The process and/or thread architecture that
executes service(s) at run-time

Overcoming Limitations via OO
e The algorithmic decomposition illustrated
above specifies many low-level details

— Furthermore, the excessive coupling significantly
complicates reusability, extensibility, and portability. ..

e In contrast, OO focuses on application-
specific behavior, e.g.,

int Logging_Handler::handle_input (void)
{

ssize_t n = handle_log_record (peer ().get_handle (),
STDOUT) ;
if (n > 0)
++request_count; // Count the # of logging records

return n <= 0 7 -1 : 0;

}

OO Contributions
e Patterns facilitate the large-scale reuse of
software architecture

— Even when reuse of algorithms, detailed de-
signs, and implementations is not feasible

e Frameworks achieve large-scale design and
code reuse

— In contrast, traditional techniques focus on the
functions and algorithms that solve particular
requirements

e Note that patterns and frameworks are
not unique to OO!

— But objects are a useful abstraction mechanism

Patterns in the Distributed
Logger

Service
Configurator

SIRATEGIZ\ Reactor /

PATTERNS

Acceptor

TACTICAL Templ
plate Factory
PATTERNS | Iterator | | Wethod | | Method | | Adapter

e Note that strategic and tactical are al-
ways relative to the context and abstrac-
tion level




Pattern Intents

Reactor pattern

— Decouple event demultiplexing and event han-
dler dispatching from application services per-
formed in response to events

Acceptor pattern

— Decouple the passive initialization of a service
from the tasks performed once the service is
initialized

Service Configurator pattern

— Decouple the behavior of network services from
point in time at which services are configured
into an application

Active Object pattern

— Decouple method invocation from method ex-
ecution and simplifies synchronized access to
shared resources by concurrent threads

OO Logging Server
e OO server logging daemon decomposes
into several modular components:
1. Application-specific components
— Process logging records received from clients

Connection-oriented application components

— Svc_Handler

x Performs I/O-related tasks with clients

— Acceptor factory

* Passively accepts connection requests

* Dynamically creates a Svc_Handler object
for each client and “activates” it

. Application-independent ACE framework com-
ponents

— Perform IPC, explicit dynamic linking, event

demultiplexing, event handler dispatching, multi-

threading, etc.

APPLICATION-

CONNECTION-

SPECIFIC
COMPONENTS

ORIENTED
COMPONENTS

FRAMEWORK

Class Diagram for OO Logging

Server

_~ ——Logging_Handle _ SOCK_Stream
I SOCK_Acceptor ( Null_Synch
\
) / ) !
—— . y / . /
{~ Logging Logging /
\ o——
ACCCptOI‘ // ACTIVATES X Handler

“ 77 _ISVC_HANDLER |

("~ “"IPEER_STREAM !
IPEER_ACCEPTOR

I ISYNCH |
7/

|
0,
i

/

[
Acceptor \ 4

\
S———p_

~T T T~
/7 pEER
( PEER PEER
\ ACCEPTOR_~/ STREAM
O O
IPC_SAP

Concurrency Reactor

COMPONENTS

Service
Configurator

Demultiplexing and Dispatching
Events

e Problem

— The logging server must process several differ-
ent types of events simultaneously

e [orces
Multi-threading is not always available
Multi-threading is not always efficient
Multi-threading can be error-prone

Tightly coupling general event processing with
server-specific logic is inflexible

e Solution

— Use the Reactor pattern to decouple generic
event processing from server-specific process-

ing




The Reactor Pattern

e Intent

— "Decouple event demultiplexing and event han-
dler dispatching from the services performed in

response to events”

e This pattern resolves the following forces
for event-driven software:

— How to demultiplex multiple types of events
from multiple sources of events efficiently within
a single thread of control

— How to extend application behavior without re-
quiring changes to the event dispatching frame-

work

Structure of the Reactor Pattern

[~ o~
select (handles); / N
. —~ \
foreach h in handles { ( Concrete \
if (h is output handler) \
R seo: o Evem |
if (h is input handler) _ ! |
tablelhl->handle input 0; |~ 7T~ 45S | Handler/ A
if (h is signal handler)
table[hg]»handle_signal 0| { Event_Handler /
handle_input() l,

NN

timer_queue->expire_timers ();|

handle_output()
handle_signal() \
handle_timeout() |
get_handle() n

|

|

|

|

|

‘//’\*~\_,' y \\~‘_/’\\\
s ];{lmattll(:n \ 1 (Timer_Queue !
' Di r ~~-~ —

R PAtClCIagy | n-’/ A (" schedule_timer(h) 1
\ haqdle_events() | - )i Handles/, \\ cancel timer(h)  /

/ register_handler(h) ST \_expire_timers(h) /\
{ remove_handler(h) @ > s

7N
N 1 1 - .4

\

|

1

‘ 1
1
1
|

n

e www.cs.wustl.edu/~schmidt/Reactor.ps.gz

Collaboration in the Reactor

Pattern

main

INITIALIZE
E REGISTER HANDLER
g EXTRACT HANDLE
START EVENT LOOP
FOREACH EVENT DO
DATA ARRIVES
OK TO SEND
SIGNAL ARRIVES

TIMER EXPIRES

REMOVE HANDLER

EVENT HANDLING = INITIALIZATION

CLEANUP

progranll Event_Handler

callback :
Concrete

Reactor()

Initiation
Dispatcher

register_handler(callback

-
>

|
|
)|

get _handle()

-—

%

handle events()

handle_input()

select() |

handle_output()

handle timeout()

remove_handler(callback

U
[
Ij handle signal()
0
D

D‘ handle close()

Using the Reactor Pattern in the

Logging Server

REGISTERED
OBJECTS
: Logging
Handler

2: sh = new Logging_Handler
3: accept (sh->peer())

5: handle_input()
6: recv(msg)
7:process(msg)

APPLICATION

FRAMEWORK

KERNEL




The Acceptor Pattern

e Intent Structure of the Acceptor Pattern

— “Decouple the passive initialization of a service
from the tasks performed once the service is
initialized”

/T T——

£ Acceptor

N
[ES , Deer_acceptor_
AcTIVA accept()

N

SERVICE- /

DEPENDENT _- —— \/
\
1 Reactor A

=~ )
Handler /

} peer_stream

\\ open() ///“

~ ———

e This pattern resolves the following forces
for network servers using interfaces like
sockets or TLI:

1. How to reuse passive connection establishment

code for each new service SERVICE-

INDEPENDENT

. How to make the connection establishment code
portable across platforms that may contain sock-
ets but not TLI, or vice versa

. How to enable flexible policies for creation,

connection establishment, and concurrency e www.cs.wustl.edu/~schmidt/Acc-Con.ps.gz

. How to ensure that a passive-mode handle is
not accidentally used to read or write data

Collaboration in the Acceptor

Pattern

peer_acceptor_ sh:
: SOCK

) i Acceptor
INITIALIZE PASSIVE {openQ !
open() |

ENDPOINT

: Initiation Using the Acceptor Pattern in the

Server

acc :
Acceptor Sve_Handler Dlspatcher

% Logging Server

\
1
register_handler(acc) | j
T T |
| |
‘ |
|
|
|
\

REGISTER HANDLER

g
g ! handl
E EXTRACT HANDLE | LSt _han <0

ENDPOINT

|
START EVENT LOOP (handle_events()

: Logging
Handler

} : Logging
I I I

I

I

Handler

: Logging
Handler

select() >
handle_input()

FOREACH EVENT DO
: Logging
Acceptor

|
sh = make_svc handler()

CONNECTION EVENT

SERVICE

CREATE, ACCEPT,
AND ACTIVATE OBJECT

REGISTER HANDLER
FOR CLIENT 1/O

accept_svc_| handler (sh)
activate_svc_handler (sh)
b —

register_handler(sh)

INITIALIZATION  INITIALIZATION

} get_handle()

|

|

|

1 ‘

I handle_input()
| «

: oo
| |

|

|

|

|

EXTRACT HANDLE
PASSIVE ACTIVE

LIS’ TENE CONNECTIONS

: handle_input()

: sh = make_svc_handler()

: accept_svc_handler(sh) : Reactor
: activate_svc_handler(sh)

: Logging

Handler
PROCESS MSG
I handle_close()

} handle_close()

SERVICE
PROCESSING

I
@
% CLIENT SHUTDOWN

|
|
|
|
|
|
|
DATA EVENT |
|
|
|
|
|
|
|

SERVER SHUTDOWN

e Acceptor factory creates, connects, and

activates a Svc_Handler




S

APPLICATION
LAYER

LAYER

CONNECTION

REACTIVE
LAYER

tructure of the Acceptor Pattern
in ACE
_’n \ B Yo g(‘;'g]‘;‘i‘:;:;;:‘:andler

P
\ Concrete / ‘ ;
iSve Handler \ , Concrete /

e A Acceptor

7

‘rsvc HANDLER
W =— PEER ACCEPTORJ
| \
/ _ Acceptor
\ Handler _ - - _Acceplor ,'
~ it

— PEER STREAMJ
JEERSTREAM

{ open() ,f’ Imake sve_handler() / i
\

R /‘Iaccept sve_handler()
W |activate_svc_handler() /
/ open() A

\,Ohandle input) __~

- e
_ . S~_-

sh = make_svc_handler();
accept_svce_handler (sh);
activate_svc_handler (sh);

_/Event \
\ Handler /Q Reactor

/ handle_input( mput() \

e

— A

\,/ ~—

Acceptor Class Public Interface

e A reusable template factory class that ac-
cepts connections from clients

template <class SVC_HANDLER, // Service aspect
class PEER_ACCEPTOR>, // IPC aspect
class Acceptor : public Service_Object {
// Service_Object inherits from Event_Handler
public:
// Initialization.
virtual int open (const PEER_ACCEPTOR::PEER_ADDR &,
Reactor * = Reactor::instance ());

// Template Method or Strategy for creating,
// comnecting, and activating SVC_HANDLER’s
virtual int handle_input (HANDLE);

e Note how service and IPC aspects are strategized...

Acceptor Class Protected and

Private Interfaces

e Only visible to the class and its subclasses

protected:
// Factory method that creates a service handler.
virtual SVC_HANDLER #*make_svc_handler (void);

// Factory method that accepts a new connection.
virtual int accept_svc_handler (SVC_HANDLER ) ;

// Factory method that activates a service handler.

virtual int activate_svc_handler (SVC_HANDLER *);

private:
// Passive connection mechanism.
PEER_ACCEPTOR peer_acceptor_;
};

Acceptor Class Implementation

// Shorthand names.
#define SH SVC_HANDLER
#define PA PEER_ACCEPTOR

// Template Method Factory that creates, connects,
// and activates SVC_HANDLERs.

template <class SH, class PA> int

Acceptor<SH, PA>::handle_input (HANDLE)

¢ // Factory Method that makes a service handler.
SH *svc_handler = make_svc_handler ();
// Accept the connection.
accept_svc_handler (svc_handler);

// Delegate control to the service handler.

activate_svc_handler (svc_handler);




// Factory method for creating a service handler.
// Can be overridden by subclasses to define new
// allocation policies (such as Singletons, etc.).

template <class SH, class PA> SH *
Acceptor<SH, PA>::make_svc_handler (HANDLE)
{

return new SH; // Default behavior.

}

// Accept connections from clients (can be overridden).

template <class SH, class PA> int
Acceptor<SH, PA>::accept_svc_handler (SH *svc_handler)
{

peer_acceptor_.accept (svc_handler->peer ());
}

// Activate the service handler (can be overridden).

template <class SH, class PA> int

Acceptor<SH, PA>::activate_svc_handler (SH *svc_handler)

{
if (svc_handler->open () == -1)
svc_handler->close ();

// Initialization.

template <class SH, class PA> int
Acceptor<SH, PA>::open (const PA::PEER_ADDR &addr,

{

Reactor *reactor)

// Forward initialization to concrete peer acceptor
peer_acceptor_.open (addr);

// Register with Reactor.

reactor->register_handler
(this, Event_Handler::ACCEPT_MASK);

Svc _Handler Class Public Interface

e Provides a generic interface for communi-
cation services that exchange data with a
peer over a network connection

template <class PEER_STREAM, // IPC aspect

class SYNCH_STRATEGY> // Synchronization aspect

class Svc_Handler : public Task<SYNCH_STRATEGY>
{
public:
// Comnstructor.
Svc_Handler (Reactor * = Reactor::instance ());

// Activate the client handler.
virtual int open (void *);

// Return underlying IPC mechanism.
PEER_STREAM &peer (void);

e Note how IPC and synchronization aspects
are strategized...

Svc _Handler Class Protected

Interface

e Contains the demultiplexing hooks and other
implementation artifacts

protected:

// Demultiplexing hooks inherited from Task.
virtual int handle_close (HANDLE, Reactor_Mask);
virtual HANDLE get_handle (void) const;
virtual void set_handle (HANDLE);

private:
// Ensure dynamic initialization.
virtual ~“Svc_Handler (void);

PEER_STREAM peer_; // IPC mechanism.
Reactor *reactor_;

};




Svc_Handler implementation

e By default, a Svc_Handler object is regis-
tered with the Reactor

— This makes the service singled-threaded and
no other synchronization mechanisms are nec-
essary

#define PS PEER_STREAM // Convenient short-hand.

template <class PS, class SYNCH_STRATEGY>
Svc_Handler<PS, SYNCH_STRATEGY>::Svc_Handler
(Reactor *r): reactor_ (r) {}

template <class PS, class SYNCH_STRATEGY> int
Svc_Handler<PS, SYNCH_STRATEGY>::open (void *)
{

// Enable non-blocking I/0.

peer ().enable (ACE_NONBLOCK) ;

// Register handler with the Reactor.
reactor_->register_handler
(this, Event_Handler::READ_MASK);

Object Diagram for OO Logging

Server

: Service

Config
: Loggin
Accggtotg
: Logging
Handler
: Logging
Handler

: Service
Manager

\ e
| €

REMOTE
CONTROL
OPERATIONS

!

The Logging Handler and

Logging Acceptor Classes

e Templates implement application-specific
logging server

// Performs I/0 with client logging daemons.

class Logging_Handler :
public Svc_Handler<SOCK_Acceptor::PEER_STREAM,
NULL_SYNCH> {
public:
// Recv and process remote logging records.
virtual int handle_input (HANDLE);
}

// Logging_Handler factory.

class Logging_Acceptor :
public Acceptor<Logging_Handler, SOCK_Acceptor> {
public:
// Dynamic linking hooks.
virtual int init (int argc, char *argv[]);
virtual int fini (void);

};

OO Design Interlude

o=
/

==\
/

(_ IPC_SAP 3\
> -
/7/7\ \‘/ \

SOCK_SAP TLI_SAP SPIPE_SAP FIFO_SAP

J U

| , TRANSPORT 4 IJ y
_/ SOCKET P // STREAM PIP / NAMED PP

\

API ( LAYER API API
INTERFACE AP; 3 3

e Q: What are the SOCK_* classes and why
are they used rather than using sockets
directly?

e A: SOCK_x are ‘“wrappers’ that encapsu-
late network programming interfaces like
sockets and TLI

— This is an example of the “Wrapper pattern”




The Wrapper Facade Pattern

e Intent

— "Encapsulate lower-level functions within type-
safe, modular, and portable class interfaces”

e This pattern resolves the following forces
that arise when using native C-level OS
APIs

How to avoid tedious, error-prone, and non-
portable programming of low-level IPC mech-
anisms

How to combine multiple related, but indepen-
dent, functions into a single cohesive abstrac-
tion

—

)
(
~

—

\
\

\
\
I
|
|

Structure of the Wrapper Facade

Pattern

l _”o_uoamaos_o\/
S ‘W
. b / rapper |
client _ PP
—— / operation]1() ./
| operation2()
,\ operation3() /

\ -
-\ 7/
== - N/

ﬁ:.mm.WMa —

~— —~ "
\

_—/

- ———

Vit
/

ot @t 2: specific_operationl()

specific_operation2()
specific_operation3()

socket()
bind()

Socket Structure

connect()

listen()

accept()

read()

write()

readv()

writev()
recvfrom()
sendto()
recvmsg()
sendmsg()
setsockopt()
getsockopt()
getpeername()
getsockname()
gethostbyname()
getservbyname()

e Socket limitations
1. API is linear rather than hierarchical

— i.e., it gives no hints on how to use it cor-
rectly

2. There is no consistency among names

3. Highly non-portable

TYPE OF COMMUNICATION SERVICE

Socket Taxonomy

COMMUNICATION DOMAIN

T

7 maeroxwm,ﬂd_ﬁxv?ijw - mcn_nmxwm,lmzm.ﬂv?m.:_

iy G P

I~ | sendto()/recvfrom() _ 71 sendto()/recvfrom()
- LT 4

- mJnrmRﬂHLZHHV\E_EO

] T | | I

! '~ “socket(PF UNIX) ' _ "~ socket(PF_UNIX)

| L i wcm-_ma,»b bind()/connect()_ _
send()/recv() send()/recv()

~ Tsocket(PF_UNIX) ~ | sockt(PF_UNIX)
-~ | bind()/connect() -, bind()/ t()
I _  socket(PF UNIX) | - socket(PF INET) ~
i E_Eo\:waad\nn,anv»o,\ bind()/listen()/accept()
\\\\\\\\\\\\ Il dmcyastenraceepty)_

send()/recv() send()/recv()

socket(PF_UNIX) socket(PF_INET)
bind()/connect bind()/connect

DATA
GRAM

DATAGRAM

CONNECTED

STREAM




TYPE OF COMMUNICATION SERVICE

SOCK_SAP Class Structure

COMMUNICATION DOMAIN
LOCAL/REMOTE

DATA
GRAM

7 OCK_Dgram_Bcast B
K_Dgram_Mcast |

P Ty

— - LSOCK_Dgram_ ,/i/, — SOCK_D
| . ” .
OCK_CODgram| — - T SOCK_CODgran -

-

DATAGRAM

CONNECTED

P 1

< LSOCK_Acceptor SOCK_ Acceptor
¥ L T

LSOCK _Strea;

|
- — =

-
-

STREAM

-
_ 7~ LOCK_Connector .~ SOCK_Connector
A — .

SOCK_SAP Factory Class

Interfaces

class SOCK_Connector

{

public:
// Traits
typedef INET_Addr PEER_ADDR;
typedef SOCK_Stream PEER_STREAM;

int connect (SOCK_Stream &new_sap,
const Addr &remote_addr,
Time_Value *timeout);
/...
};

class SOCK_Acceptor : public SOCK
{
public:
// Traits
typedef INET_Addr PEER_ADDR;
typedef SOCK_Stream PEER_STREAM;

SOCK_Acceptor (const Addr &local_addr);

int accept (SOCK_Stream &, Addr *, Time_Value *) const;
//...

SOCK_SAP Stream and

Addressing Class Interfaces

class SOCK_Stream : public SOCK
{
public:
typedef INET_Addr PEER_ADDR; // Trait.

ssize_t send (const void *buf, int n);
ssize_t recv (void *buf, int n);
ssize_t send_n (const void *buf, int n);
ssize_t recv_n (void *buf, int n);
int close (void);
/] ...

};

class INET_Addr : public Addr
{
public:
INET_Addr (u_short port_number, const char host[]);
u_short get_port_number (void);
int32 get_ip_addr (void);
/...
};

OO Design Interlude

e Q: Why decouple the SOCK_Acceptor and
the SOCK_Connector from SOCK_Stream?

e A: For the same reasons that Acceptor
and Connector are decoupled from Svc_Handler,
e.g.,

— A SOCK_Stream is only responsible for data
transfer

* Regardless of whether the connection is es-
tablished passively or actively

— This ensures that the SOCK* components are
never used incorrectly...

* e.d., you can't accidentally read or write
on SOCK_Connectors or SOCK_Acceptors,
etc.




SOCK_SAP Hierarchy
OO Design Interlude

=~ TN
- W
i’

{ sock
/ ‘N\ e Q: “How can you switch between different
L ) \W

T T IPC mechanisms?”

1

J »
¢  sock [/ (¢ SOCK

\/Cnnnectorl ) Acceptor (\
< DL _

_L;;C,}/ S on) A: By parameterizing IPC Mechanisms with

\Connector ( (
b Vvl Acceptor |
Y

) C++ Templates!

DATAGRAM ' "\\3/ STREAM CONNECTION
comm b ESTABLISHMENT

#if defined (ACE_USE_SOCKETS)
typedef SOCK_Acceptor PEER_ACCEPTOR;
#elif defined (ACE_USE_TLI)

typedef TLI_Acceptor PEER_ACCEPTOR;
e Shared behavior is isolated in base classes #endif /* ACE_USE_SOCKETS */

class Logging_Handler : public
Derived classes i lement different com- Svc_Handler<PEER_ACCEPTOR: :PEER_STREAM,
° rv impliemen Ifreren m NULL_SYNCH>

munication services, communication do- {/% ... /x};

mains, and connection roles class Logging_Acceptor : public
Acceptor <Logging Handler, PEER_ACCEPTOR>
{/% ... %/ };

e www.cs.wustl.edu/~schmidt/IPC_SAP—-92.ps.gz

89

// Automatically called when a Logging_Acceptor object
// is dynamically linked.

Logging_Acceptor::init (int argc, char *argv[])

Logging Handler Implementation Get_Opt get_opt (argc, argv, "p:", 0);
INET_Addr addr;

. . . . for (int c; (c = get_opt ()) '= -1; )
e Implementation of the application-specific suiten toy | BOF
logging method {
case ’p’:
addr.set (atoi (getopt.optarg));
// Callback routine that receives logging records. break;
// This is the main code supplied by a developer! default:
break;
int }
Logging_Handler::handle_input (HANDLE)
{ // Initialize endpoint and register with the Reactor
// Call existing function to recv open (addr, Reactor::instance ());
// logging record and print to stdout. }
handle_log_record (peer ().get_handle (), STDOUT);
} // Automatically called when object is dynamically unlinked.

Logging_Acceptor::fini (void)

handle_close ();
}




Putting the Pieces Together at

Run-time

e Problem
— Prematurely committing ourselves to a particu-

lar logging server configuration is inflexible and
inefficient

e [orces

— It is useful to build systems by ‘“scripting” com-
ponents

— Certain design decisions can’t be made effi-
ciently until run-time

— It is a bad idea to force users to “pay” for
components they do not use

e Solution

— Use the Service Configurator pattern to assem-
ble the desired logging server components dy-
namically

The Service Configurator Pattern

e Intent

— "“Decouple the behavior of services from the
point in time at which these services are con-
figured into an application”

e This pattern resolves the following forces
for highly flexible communication software:

— How to defer the selection of a particular type,
or a particular implementation, of a service un-
til very late in the design cycle

* i.e., at installation-time or run-time

— How to build complete applications by scripting
multiple independently developed services

— How to reconfigure and control the behavior of
the service at run-time

Structure of the Service

Configurator Pattern

- N
{  Concrete -/

| Service Object
A

APPLICATION
LAYER

< O
/Service
{ Object

\
\ suspend() '\
| resume() \

I init() ’

| fini() V/

\info /" m ) -
S , @ Service |

(Repository

~—-

CONFIGURATION
LAYER

/I~
7 \
C Event ) _

Handggr/ ,’n/77

o= ——
\ - \
/ Reactor
\ ————T

CONFIGURATION

EVENT HANDLING

Collaboration in the Service

Configurator Pattern

main() sve: : Reactor : Service : Service
Service_Object * Config Repository

Service Config() |

CONFIGURE
FOREACH SVC ENTRY DO

processid‘irectives() =
Ilink_service()

| =
init(argc, argv) |
T
register_handler(svc) !
get_handle()

|
|
run_event loop() !
t
|

|

|

|

|
DYNAMICALLY LINK !
SERVICE !

INITIALIZE SERVICE
REGISTER SERVICE

EXTRACT HANDLE

insert()
STORE IN REPOSITORY

START EVENT LOOP

|
|
|
|
| |
f |
| handle_events() |
FOREACH EVENT DO | "
D handle_input() |
INCOMING EVENT -——— |
|
|
|
|
|

handle_close()

|
|
|
|
|
SHUTDOWN EVENT }
-——
|
|
|
|
|
|
|

remove_handler(svc)

| junlink_service()
} fini() ! = || remove()
| |

CLOSE SERVICE

UNLINK SERVICE




Using the Service Configurator

Pattern for the Logging Server

CONFIGURATOR )
RUNTIME Reactive

Logger

Service
Repository
Thread Pool
Logger

Service
Object

svc.conf dynamic Logger Service Object *
FILE logger:make logger() "-p 2001"

e EXxisting service is single-threaded, other
versions could be multi-threaded. ..

Dynamic Linking a Service

e Application-specific factory function used
to dynamically create a service

// Dynamically linked factory function that allocates

// a new Logging_Acceptor object dynamically
extern "C" Service_Object *make_Logger (void);

Service_0Object *
make_Logger (void)
{
return new Logging_ Acceptor;
// Framework automatically deletes memory.

}

The make Logger function provides a hook
between an application-specific service and
the application-independent ACE mecha-
nisms

— ACE handles all memory allocation and deallo-
cation

Service Configuration

e Thelogging service is configured via script-
ing in a svc.conf file:

% cat ./svc.conf

# Dynamically configure the logging service

dynamic Logger Service_0bject *
logger:make_Logger() "-p 2010"

# Note, .dll or .so suffix added to "logger" automatically

e Generic event-loop to dynamically config-
ure service daemons

int

main (int argc, char *argv[])

{
// Initialize the daemon and configure services
Service_Config::open (argc, argv);

// Run forever, performing configured services
Reactor: :run_event_loop ();
/* NOTREACHED */

State-chart Diagram for the
Service Configurator Pattern

CONFIGURE/
Service_Config::process_directives()

INITIALIZED

SHUTDOWN/ NETWORK EVENT/
Service_Config::close() Reactor::dispatch()

START EVENT LOOP/
Reactor::run_event_loop()

PERFORM
RECONFIGURE/ CALLBACK
Service_Config::process_directives()

CALL HANDLER/
Event_Handler::handle_input()

e Note the separation of concerns between
objects...




Collaboration of Patterns in the

Server Logging Daemon

Logger A: C: : Service :Reactor . Service
Daemon Logging Logging Config + Reacto Repository

. Acceptor Handler
|Service_Config(} | i i
I I |

| e

|

CONFIGURE process_directives() }

———
link_service()

[T

FOREACH SVC ENTRY DO } |

LINK SERVICE [ I I
| init(argc, argv) ! }
’—registerihandler(A) !
get_handle() ! U
|

INITIALIZE SERVICE

REGISTER SERVICE

EXTRACT HANDLE
STORE IN REPOSITORY

insert()

|
run_event_loop()
|

|
I
I
I
START EVENT LOOP }
I
I

|
T
| |

| |

| ! handle_events() }

FOREACH EVENT DO | . ‘—"
| handlcimput() -

| |

I |

| |

I I

| |

I I

| |

| |

| |

| |

| |

| |

| |

| |

I |

I |

| |

| |

| |

CONNECTION EVENT -

} C =new Logging_Handler ! }
ALLOCATE AND t (C): = !

ACTIVATE OBJECT | accept (C); ! !

| C->open(A) [ |

REGISTER HANDLER | iregister_handler(C) I

FOR CLIENT 1/O } }

I I

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

EXTRACT HANDLE

1 _get_handle() }

|
handle_input()

T

write() }

|

| handleiclosé()

DATA EVENT

PROCESS LOGGING
RECORD

CLIENT SHUTDOWN | remove_handler(C)

|
|
|
|
|
|
|
|
|
|
|
|
t handle_close() | |
|
|
|
|

DAEMON SHUTDOWN

removeﬁhandler‘(A) ;
T T

fini0) 1 Fnlinkﬁservice()
} L remove()

UNLINK SERVICE

Advantages of OO Logging

Server

e The OO architecture illustrated thus far
decouples application-specific service func-
tionality from:

* Time when a service is configured into a process
* The number of services per-process

* The type of IPC mechanism used

* The type of event demultiplexing mechanism used

We can use the techniques discussed thus
far to extend applications without:

1. Modifying, recompiling, and relinking existing
code

2. Terminating and restarting executing daemons

The remainder of the slides examine a set
of techniques for decoupling functionality
from concurrency mechanisms, as well

102

Concurrent OO Logging Server

The structure of the server logging dae-
mon can benefit from concurrent execu-
tion on a multi-processor platform

This section examines ACE C++ classes
and patterns that extend the logging server
to incorporate concurrency

— Note how most extensions require minimal changes
to the existing OO architecture...

This example also illustrates additional ACE
components involving synchronization and
multi-threading

Concurrent OO Logging Server

Architecture

SERVER — = SERVER

LOGGING DAEMON

. l:logging | I:logging ,
: logging | handler || handler |
acceptor |

\

|
|
|
|
|
|
REQUEST 1|

LOGGING
RECORDS

LOGGING
RECORDS

e Thread-per-connection implementation




Pseudo-code for Concurrent

Server Application-specific Logging Code

e Pseudo-code for multi-threaded Logging_Handler ) ) ] ] )
factory server logging daemon e The OO implementation localizes the application-

specific part of the logging service in a
single point, while leveraging off reusable

initialize listener endpoint ACE components
foreach (pending connection event) {

accept connection . // Process remote logging records. Loop until
spawn a thread to handle connection and // the client terminates the connection.

run logger_handler() entry point

void handler_factory (void)

{

int
Thr_Logging_Handler::svc (void)
{

. while (handle_input () != -1)
e Pseudo-code for server logging daemon // Call existing function to recv logging

active object // record and print to stdout.
continue;

void logging_handler (void)
{ return O;

foreach (incoming logging records from client) ¥

call handle_log_record()
exit thread

Class Diagram for Concurrent )
) Thr_Logging_Acceptor and
OO Logging Server

_~——|Thr_Logging_Handler SOCK_Stream
1 SOCK_Acceptor n NULL_Synch
\

Thr /,/ Thr

Logging & Logging e Template classes that create, connect, and
/ . .
_Acceptor TR Handler activate a new thread to handle each client

Thr_Logging Handler

APPLICATION-
SPECIFIC
COMPONENTS

class Thr_Logging_Handler : public Logging_ Handler

'¥—‘%’EER75TREAM‘ // Inherits <handle_input>

ISYNCH | {
public:

// Override definition in the Svc_Handler
\ // class (spawns a new thread!).

N —
O~_

/ - virtual int open (void *);

ORIENTED
COMPONENTS

\

CONNECTION-

~

sz .

7 PEER O\ // Process remote logging records.
ACCEPTOR _/ . . .

- - virtual int svc (void);

- };

class Thr_Logging_Acceptor :
public Acceptor<Thr_Logging_Handler,
SOCK_Acceptor>

COMPONENTS

Service
Configurator {

// Same as Logging_Acceptor...

Concurrency Reactor N

global




// Override definition in the Svc_Handler class
// (spawns a new thread in this case!).

int
Thr_Logging_Handler::open (void *)
{

// Spawn a new thread to handle

// logging records with the client.

activate (THR_BOUND | THR_DETACHED);
}

// Process remote logging records. Loop until
// the client terminates the connection.

int
Thr_Logging_Handler::svc (void)
{

while (handle_input () !'= -1)
// Call existing function to recv logging
// record and print to stdout.
continue;

return O;

}

ACE Tasks

e An ACE Task binds a separate thread of
control together with an object’'s data and
methods

— Multiple active objects may execute in paral-
lel in separate lightweight or heavyweight pro-
cesses

e Task objects communicate by passing typed
messages to other Tasks

— Each Task maintains a queue of pending mes-
sages that it processes in priority order

ACE Task are a low-level mechanism to
support “active objects”

[

/ handle_input() ‘<
\ handle_output() RN\

Task Inheritance Hierarchy

r———71
SYNCH 1| _————~7 SYNCH |
STRATEGY | // Task !STRATEGY |

— \

| open)=0—>2 |

close()=0 |

\ put()=(()) y

N —|
Sve() \Y% /

-~ V2

—T 71

-
. | SYNCH |
— < L

,//Service \ /

| Object 1

\ suspend()=0 |
esume()=0 /
\\ W/

_"Event

\ Queue ,
/ \ /
- Handler ,

~

TN__""
/Shared !
| Object
\{ init(=0 |

\ fini ()=0 /

linfo()=0 1

\\W/ - \\W/ /

\ handle exception()
\I handle_signal()
i handle_timeout () ,
I handle close() 7
'| get_handle()=0 -~

ISTRATEGY |
o130 0T
| Message |

\

|

e Supports dynamically configured services

Task Class Public Interface

C++ interface for message processing

* Tasks can register with a Reactor
* They can be dynamically linked

* They can queue data

* They can run as “active objects”

e.g.,

template <class SYNCH_STRATEGY>
class Task : public Service_0Object
{
public:
// Initialization/termination hooks.
virtual int open (void *args = 0) = 0;
virtual int close (u_long flags = 0) = 0;

// Hook to pass msg for immediate processing.
virtual int put (Message_Block *,
Time_Value * = 0) = 0;

// Hook run by daemon thread(s) for
// deferred processing.

virtual int svc (void) = 0;

// Turn task into an active object.
int activate (long flags, int n_threads = 1);

112




Task Class Protected Interface

e The following methods are mostly used
within put and svc

// Accessors to internal queue.
Message_Queue<SYNCH_STRATEGY> #*msg_queue (void);
void msg_queue (Message_Queue<SYNCH_STRATEGY> *);

// Accessors to thread manager.
Thread_Manager *thr_mgr (void);
void thr_mgr (Thread_Manager *);

// Insert message into the message list.
int putq (Message_Block *, Time_Value *tv = 0);

// Extract the first message from the list (blocking).

int getq (Message_Block *&mb, Time_Value *tv = 0);

// Hook into the underlying thread library.
static void *svc_run (Task<SYNCH_STRATEGY> *);

OO Design Interlude

e Q: What is the svc_run() function and why
is it a static method?

A: OS thread spawn APIs require a C-style
function as the entry point into a thread

The Stream class category encapsulates the
svc_run function within the Task::activate
method:

template <class SYNCH_STRATEGY> int
Task<SYNCH_STRATEGY>::activate (long flags, int n_threads)
{
if (thr_mgr () == NULL)
thr_mgr (Thread_Manager::instance ());

thr_mgr ()->spawn_n
(n_threads, &Task<SYNCH_STRATEGY>::svc_run,
(void *) this, flags);

OO Design Interlude (cont’d)

e Task::svc_run isS static method used as the
entry point to execute an instance of a
service concurrently in its own thread

template <class SYNCH_STRATEGY> void *
Task<SYNCH_STRATEGY>::svc_run (Task<SYNCH_STRATEGY> *t)
{

// Thread added to thr_mgr()

// automatically on entry...

// Run service handler and record return value.
void *status = (void *) t->svc ();

tc.status (status);
t->close (u_long (status));

// Status becomes ‘return’ value of thread...
return status;

// Thread removed from thr_mgr()
// automatically on return...

OO Design Interlude

e Q: “How can groups of collaborating threads
be managed atomically?”

e A: Develop a “thread manager” class

— Thread Manager is a collection class

* It provides mechanisms for suspending and
resuming groups of threads atomically

* It implements barrier synchronization on thread
exits

— Thread_Manager also shields applications from
incompabitilities between different OS thread
libraries

* Itisintegrated into ACE via the Task: :activate
method




The Active Object Pattern Structure of the Active Object

Pattern

e Intent

43 loop {
S~ =
— “Decouple method execution from method in- ! P\»//\\ #g lr:caﬁ(c)t*queuef'dequeue()
vocation and simplifies synchronized access to LULSG7 '
shared resources by concurrent threads” (_ Future m1() \\ 1: enqueue(new M1)

\
Future m2() - / N
\ Future m38 /’ \// R dlspatch() /Actlvatlon)

PR
= ~—7 TN

-

(N )Scheduler\ - . Queue i
e This pattern resolves the following forces " dispatch()”, <) ,/ enqueue() \J
for concurrent communication software: { enqueue() 1 \ dequeue()

——
—

1 - -
How to allow blocking read and write opera- z enqueue(Ml) 1 fMI\\
1 \ I

tions on one endpoint that do not detract from ~3 - - =

the quality of service of other endpoints fServant T N
q y 1% INVISIBLE \\ mi() \ MethOdg ¢ M2 \'

)
0
m2() 0 Request 1‘/ L
How to serialize concurrent access to shared CLIENTS llm38 1 lg——

object state & ml) <~ @lio <\\M3\

L __ ~_~

How to simplify composition of independent
services e www.cs.wustl.edu/~schmidt/Act-Obj.ps.gz

ACE Support for Active Objects

Collaboration in the Active

. Task
ObjeCt Pattern 2: enqueue (msg) as

3:sve()
: Message 4: dequeue (msg)
Client Scheduler M1 Queue —» 5: do_work(msg)
Activation
| | Que‘ue
INVOKE mlQ | \

\
CREATE METHOD |enqueue(new M1)
REQUEST P

Proxy Servant

‘ 1: put (msg)

RETURN FUTURE

CONSTRUCTION

ty:
\

INSERT INTO enqueue(M1) Task

ACTIVATION QUEUE D ——

|
DEQUEUE NEXT dequeue(M1)
.

METHOD REQUEST : Message

SCHEDULING/  METHOD OBJECT

EXECUTION

|
\
\
\
\
\
\
\
\
\
\
\
\
\
EXECUTE <] dispatch(M1) Queue
\
|

call) |

! Lm0
RETURN RESULT _reply_to_future()

COMPLETION

|
| |
+ |
t 1
| |
| |

e Can implement complete Active Object
pattern or lighterweight subsets




Dynamically Reconfiguring the

. . . Logging Server
Collaboration in ACE Active

Objects e The concurrent logger is reconfigured by

changing the svc.conf file and sending SIGHUP
ty: ty: tymsg _q: t3: . .
Task Task Message_Queue Task signal to the server:

1 work ! X
PRODUCER TASK - : // Dynamically linked factory function that
| // allocates a new threaded Logging Acceptor.
PASS MSG put(msg) |

I enqueue_tail(msg) extern "C" Service_Object *make_Logger (void);
ENQUEUE MSG "

RUN svc() Service_Object *
ASYNCHRONOUSL 1 sve0 make_Logger (void)

{
ds head
DEQUEUE MSG Ml return new Thr_Logging_Acceptor;

}

QUEUEING PRODUCER

CONSUMER TASK < Work() % cat ./svc.conf
# Dynamically configure the logging service

# dynamic Logger Service_Object *
# /svcs/logger.dll :make_Logger() "-p 2010"
remove Logger
dynamic Logger Service_Object *
thr_logger:make_Logger() "-p 2010"
# .dll or .so suffix added to "thr_logger" automatically

CONSUMER

PASS MSG put(msg)

122

Caveats Explicit Synchronization

. Mechanisms
e The concurrent server logging daemon has

several problems

1. Output in the handle_log record function is e One approach for serialization uses OS

not serialized . . .
mutual exclusion mechanisms explicitly, e.g.,

. The auto-increment of global variable request_count

is also not serialized // at file scope

mutex_t lock; // SunOS 5.x synchronization mechanism

/...
handle_log_record (HANDLE in_h, HANDLE out_h)
{

// in method scope ...

. N ) mutex_lock (&lock);
— Note that this problem is indicative of a large write (out_h, log_record.buf, log record.size);
class of errors in concurrent programs... mutex_unlock (&lock);

/...

e Lack of serialization leads to errors on
many shared memory multi-processor platforms...

e The following slides compare and contrast
a series of techniques that address this
problem

However, adding these mutex calls explic-
itly is causes problems...




Problems Galore! C++ Wrappers for

Synchronization
e Problems with explicit mutex_* calls:

Inelegant e To address portability problems, define a
x “Impedance mismatch” with C/C++ C++ wrapper:

class Thread_Mutex
{
public:
Thread_Mutex (void) {
mutex_init (&lock_, USYNCH_THREAD, 0);

Obtrusive

* Must find and lock all uses of write

Error-prone }
“Thread_Mutex (void) { mutex_destroy (&lock_); }
x C++ exception handling and multiple method int acquire (void) { return mutex_lock (&lock_); }
exit points cause subtle problems int tryacquire (void) { return mutex_trylock (&lock); }
int release (void) { return mutex_unlock (&lock_); }
* Global mutexes may not be initialized correctly. .. private:
mutex_t lock_; // Sun0S 5.x serialization mechanism.
Non-portable void operator= (const Thread_Mutex &);
Thread_Mutex (const Thread_Mutex &) ;

* Hard-coded to Solaris 2.x g

Inefficient . . .
Note, this mutual exclusion class interface

* e.g., expensive for certain platforms/designs is portable to other OS platforms

125

Porting Mutex to Windows Using the C++ Mutex Wrapper

e Using C++ wrappers improves portability
and elegance

e WIN32 version of Mutex

class Thread_Mutex
{ // at file scope
public:
Thread_Mutex (void) { Thread_Mutex lock; // Implicitly "unlocked".
lock_ = CreateMutex (0, FALSE, 0);
} /...
“Thread_Mutex (void) { handle_log_record (HANDLE in_h, HANDLE out_h)
CloseHandle (lock_); {
} // in method scope ...
int acquire (void) {
return WaitForSingleObject (lock_, INFINITE); lock.acquire ();
} write (out_h, log_record.buf, log_record.size);
int tryacquire (void) { lock.release ();
return WaitForSingleObject (lock_, 0);
} /...
int release (void) {
return ReleaseMutex (lock_);
}
private:
HANDLE lock_; // Win32 locking mechanism. However, this doesn't really solve the te-

/e dium or error-proneness problems




Automated Mutex Acquisition and

Release

e TOo ensure mutexes are locked and un-
locked, we’ll define a template class that
acquires and releases a mutex automati-
cally

template <class LOCK>
class Guard

{
public:

Guard (LOCK &m): lock (m) { lock_.acquire (); }

~“Guard (void) { lock_.release (); }

private:
LOCK &lock_;
}

Guard uses the C++ idiom whereby a con-
structor acquires a resource and the de-
structor releases the resource

OO Design Interlude

e Q: Why is Guard parameterized by the
type of LOCK?

A: since there are many different flavors of
locking that benefit from the Guard func-
tionality, e.g.,

Non-recursive vs recursive mutexes
Intra-process vs inter-process mutexes
Readers/writer mutexes

Solaris and System V semaphores

File locks

Null mutex

In ACE, all synchronization wrappers use
to Adapter pattern to provide identical in-
terfaces whenever possible to facilitate pa-
rameterization

The Adapter Pattern

Intent

— "“Convert the interface of a class into another
interface client expects”

* Adapter lets classes work together that couldn't

otherwise because of incompatible interfaces

This pattern resolves the following force
that arises when using conventional OS
interfaces

1. How to provide an interface that expresses the
similarities of seemingly different OS mecha-

nisms (such as locking or IPC)

Structure of the Adapter Pattern

T — =

1: request () ST =N
. ~———"Adapter /
client =\
request() ,’

———~_"

/2 specific_request()

Adapteel Y
gspemﬁc requq AsteeZ )»

w specific requé\ Adaptee3
W specific_request()
\

=




Using the Adapter Pattern for
Locking

—_——

\
client |

—

—_

l 1: Guard()

\ —_—
(/ Guard()
~ /
S,

~ _ _[Mutex -

/ v P
\ Guard '
\
| Guard() O ;

| ~Guard() / 2:acquire()

N——TN_"7 N ——<_"~

A : mutex_lock()

Y~

~ p—
< —

/
- )
§ Mutex
\
acquire()

/
4

T — o~

- POSIX

| pthread mutex
_lock()

—— T

3" Win32

| EnterCritical
Section()

Solaris

mutex lock()

A thread-safe handle_log_record()

Function

template <class LOCK = Thread_Mutex> ssize_t
handle_log_record (HANDLE in_h, HANDLE out_h)
{
// new code (beware of static initialization...)
static LOCK lock;
ssize_t n;
size_t len;
Log_Record log_record;

n = recv (h, (char *) &len, sizeof len, 0);

if (n '= sizeof len) return -1;
len = ntohl (len); // Convert byte-ordering

for (size_t nread = 0; nread < len; nread += n
n = recv (in_h, ((char *) &log_record) + nread,
len - nread, 0));
// Perform presentation layer conversions.
decode (&log_record);
// Automatically acquire mutex lock.
Guard<LOCK> monitor (lock);
write (out_h, log_record.buf, log_record.size);
// Automatically release mutex lock.

Remaining Caveats

e Thereis a race condition when increment-
ing the request_count variable

int Logging_Handler::handle_input (void)

ssize_t n = handle_log_record (peer ().get_handle (),
STDOUT) ;
if (n > 0)
// @@ Danger, race condition!!!
++request_count; // Count the # of logging records

return n <= 0 7 -1 : 0;

}

Solving this problem using the Mutex or
Guard classes is still tedious, low-level, and
error-prone

A more elegant solution incorporates pa-
rameterized types, overloading, and the
Decorator pattern

Transparently Parameterizing

Synchronization Using C++

e The following C++4 template class uses
the “Decorator” pattern to define a set
of atomic operations on a type parameter

template <class LOCK = Thread_Mutex, class TYPE
class Atomic_Op {
public:
Atomic_Dp (TYPE ¢ = 0) { count_ = c; }
TYPE operator++ (void) {
Guard<LOCK> m (lock_); return ++count_;
}
void operator= (const Atomic_Op &ao) {
if (this != &ao) {
Guard<LOCK> m (lock_); count_ = ao.count_;
}
}
operator TYPE () {
Guard<LOCK> m (lock_);
return count_;
}
// Other arithmetic operations omitted...
private:
LOCK lock_;
TYPE count_;
};

u_long>




Final Version of Concurrent Synchronization-aware Logging
Logging Server Classes

e Using the Atomic Op class, only one change o
e A more sophisticated approach would add

several new parameters to the Logging Handler

// At file scope. class
typedef Atomic_Op<> COUNTER; // Note default parameters...
COUNTER request_count;

is made

template <class PEER_STREAM,
class SYNCH_STRATEGY, class COUNTER>
request_count iS now serialized automati- class Logging Handler
: public Svc_Handler<PEER_STREAM, SYNCH_STRATEGY>
cally {
for (; ; ++request_count) // Atomic_Op::operator++ public:
handle_log_record (get_handle (), STDOUT); Logging_Handler (void);
// Process remote logging records.
virtual int svc (void);
The original non-threaded version may be
.. protected:
supported efficiently as follows: // Receive the logging record from a client.
ssize_t handle_log_record (HANDLE out_h);
typedef Atomic_Op<Null_Mutex> COUNTER; // Lock used to serialize access to std output.
//. .. static SYNCH_STRATEGY::MUTEX lock_;
for (; ; ++request_count) // Count the number of logging records that arrive.
handle_log_record<Null_Mutex> static COUNTER request_count_;
(get_handle (), STDOUT); };

Thread-safe handle_log_record
Method

template <class PS, class LOCK, class COUNTER> ssize_t
Logging_Handler<PS, LOCK, COUNTER>::handle_log_record
(HANDLE out_h)

{ e In order to use the thread-safe version, all
ssize_t n; .. . . A
size t len; we need to do is instantiate with Atomic_Op
Log_Record log_record;

Using the Thread-safe
handle_log _record() Method

typedef Logging Handler<TLI_Stream,
++request_count_; // Calls COUNTER::operator++(). NULL_SYNCH,
Atomic_0Op<> >
n = peer ().recv (&len, sizeof len); LOGGING_HANDLER;

if (n '= sizeof len) return -1;
len = ntohl (len); // Convert byte-ordering
e To obtain single-threaded behavior requires

peer ().recv_n (&log_record, len);
a simple change:

// Perform presentation layer conversions
log_record.decode (); typedef Logging Handler<TLI_Stream,

// Automatically acquire mutex lock. NULL_SYNCH

Guard<LOCK> monitor (lock_); Atomic_Op <Null_Mutex, u_long> >
write (out_h, log_record.buf, log_record.size); LOGGING_HANDLER;:

// Automatically release mutex lock. -




Concurrent WWW Client/Server

Example

e The following example illustrates a con-

current OO architecture for a high-performance

Web client/server

e Key system requirements are:

1.

Robust implementation of HT TP protocol

— i.e., resilient to incorrect or malicious Web

clients/servers

. Extensible for use with other protocols

— e.g., DICOM, HTTP 1.1, SFP

. Leverage multi-processor hardware and OS soft-
ware

— e.g., support various concurrency models

General Web Client/Server

GRAPHICS
ADAPTER

OS KERNEL

0S 1/0 SUBSYSTEM

NETWORK ADAPTERS

Interactions

1: GET ~schmidt
HTTP/1.0
—_—

2: index.html
-—

DISPATCHER

*i. »iO *20

COMMUNICATION PROTOCOL
(E.G., HTTP)

OS KERNEL

0S 1/0 SUBSYSTEM
NETWORK ADAPTERS

NETWORK

Pseudo-code for Concurrent

WWW Server

e Pseudo-code for master server

void master_server (void)

{

initialize work queue and
listener endpoint at port 80
spawn pool of worker threads
foreach (pending work request from clients) {
receive and queue request on work queue
}

exit process

e Pseudo-code for thread pool workers

void worker (void)

{

foreach (work request on queue)
dequeue and process request
exit thread

OO Design Interlude

e Q: Why use a work queue to store mes-
sages, rather than directly reading from
I/O handles?

o A:

Separation of concerns

Promotes more efficient use of multiple CPUs
via load balancing

Enables transparent interpositioning and prior-
itization

Makes it easier to shut down the system cor-
rectly and portably

e Drawbacks

— Using a message queue may lead to greater

context switching and synchronization overhead. ..

— Single point for bottlenecks




Thread Entry Point

e Each thread executes a function that serves
as the “entry point” into a separate thread
of control

— Note algorithmic design...

typedef u_long COUNTER;
// Track the number of requests
COUNTER request_count; // At file scope.

// Entry point into the WWW HTTP 1.0 protocol.
void *worker (Message_Queue *msg_queue)
{

Message_Block *mb; // Message buffer.

while (msg_queue->dequeue_head (mb)) > 0) {
// Keep track of number of requests.
++request_count;

// Print diagnostic
cout << "got new request " << 0S::thr_self ()
<< endl;

// Identify and perform WWW Server
// request processing here...

}

return O;

}

Master Server Driver Function

e The master driver function in the WWW
Server might be structured as follows:

// Thread function prototype.
typedef void *(*THR_FUNC) (void *);

int main (int argc, char *argv[]) {
parse_args (argc, argv);
Message_Queue msg_queue; // Queue client requests.

// Spawn off NUM_THREADS to run in parallel.
for (int i = 0; i < NUM_THREADS; i++)
thr_create (0, 0, THR_FUNC (&worker),
(void *) &msg_queue, THR_NEW_LWP, 0);

// Initialize network device and

// recv HTTP work requests.

thr_create (0, 0, THR_FUNC (&recv_requests),
(void *) &msg_queue, THR_NEW_LWP, 0);

// Wait for all threads to exit (BEWARE)!
while (thr_join (0, &t_id, (void **) 0) == 0)
continue; // ...

Pseudo-code for recv_requests()

e €.Jg.,

void recv_requests (Message_Queue *msg_queue)

{

initialize socket listener endpoint at port 80

foreach (incoming request)
{
use select to wait for new connections or data
if (connection)
establish connections using accept
else if (data) {
use sockets calls to read HT TP requests
into msg
msg_queue.enqueue_tail (msg);

e The “grand mistake:”

— Avoid the temptation to “step-wise refine” this
algorithmically decomposed pseudo-code directly
into the detailed design and implementation of
the WWW Server!

Limitations with the www

Server
e The algorithmic decomposition tightly cou-
ples application-specific functionality with

various configuration-related characteris-
tics, e.qg.,

— The HTTP 1.0 protocol
— The number of services per process
— The time when services are configured into a

process

e The solution is not portable since it hard-
codes

— SunOS 5.x threading

— sockets and select

e There are race conditions in the code

148




Overcoming Limitations via OO

e The algorithmic decomposition illustrated
above specifies too many low-level details

— Furthermore, the excessive coupling compli-
cates reusability, extensibility, and portability. ..

e In contrast, OO focuses on decoupling
application-specific behavior from reusable
application-independent mechanisms

e The OO approach described below uses
reusable framework components and com-
monly recurring patterns

Eliminating Race Conditions

e Problem

— A naive implementation of Message_Queue will
lead to race conditions

* e.d., when messages in different threads are
enqueued and dequeued concurrently

e [orces

— Producer/consumer concurrency is common,
but requires careful attention to avoid over-
head, deadlock, and proper concurrency con-
trol

e Solution

— Utilize a “condition variables”

Condition Variable Overview

e Condition variables (CVs) are used to “sleep/wait”
until a particular condition involving shared
data is signaled

— CVs may be arbitrarily complex C++4 expres-
sions

— Sleeping is often more efficient than busy waiting. ..

° Th_is allows more co_mplex scheduling de-
cisions, compared with a mutex

— j.e., a mutex makes other threads wait, whereas
a condition object allows a thread to make
itself wait for a particular condition involving
shared data

Condition Variable Usage

e A particular idiom is associated with ac-
quiring resources via condition variables

// Global variables

static Thread_Mutex lock; // Initially unlocked.
// Initially unlocked.

static Condition_Thread_Mutex cond (lock);

void acquire_resources (void) {
// Automatically acquire the lock.
Guard<Thread_Mutex> monitor (lock);

// Check condition (note the use of while)
while (condition expression is not true)
// Sleep if not expression is not true.
cond.wait ();

// Atomically modify shared information here...

// monitor destructor automatically releases lock.




Condition Variable Usage (cont’d)

e Another idiom is associated with releasing
resources via condition variables

void release_resources (void) {
// Automatically acquire the lock.
Guard<Thread_Mutex> monitor (lock);

// Atomically modify shared information here...
cond.signal (); // Could also use cond.broadcast()

// monitor destructor automatically releases lock.

e Note how the use of the Guard idiom sim-
plifies the solution

— e.g., now we can't forget to release the lock!

Condition Variable Interface

e In ACE, the Condition_Thread Mutex class
is a wrapper for the native OS condition
variable abstraction

— e.g., cond_t on SunOS 5.x, pthread cond_t
for POSIX, and a custom implementation on
Win32

class Condition_Thread_Mutex
public:
// Initialize the condition variable.
Condition_Thread_Mutex (const Thread_Mutex &) ;
// Implicitly destroy the condition variable.
~“Condition_Thread_Mutex (void);

// Block on condition, or until time has
// passed. If time == 0 use blocking semantics.
int wait (Time_Value *time = 0) const;
// Signal one waiting thread.
int signal (void) const;
// Signal *all* waiting threads.
int broadcast (void) const;
private:
cond_t cond_; // Solaris condition variable.
const Thread_Mutex &mutex_;
// Reference to mutex lock.

};

Overview of Message Queue and
Message Block Classes

e A Message Queue is composed of one or
more Message Blocks

— Similar to BSD mbufs or SVR4 STREAMS
m_blks

— Goal is to enable efficient manipulation of arbitrarily-
large message payloads without incurring un-
necessary memory copying overhead

e Message Blocks are linked together by prev_
and next_ pointers

e A Message Block may also be linked to a
chain of other Message Blocks

Message Queue and
Message _Block Object Diagram
| SYNCH |

: Messageistratecy |
Queue "7 77 : Message

: Message

: Message
Block
next




The Message Block Class

e The contents of a message are represented
by a Message Block

class Message_Block
{
friend class Message_Queue;
public:
Message_Block (size_t size,
Message_Type type = MB_DATA,
Message_Block *cont = O,
char *data = 0,
Allocator *alloc = 0);
/...

private:
char *base_;
// Pointer to beginning of payload.
Message_Block *next_;
// Pointer to next message in the queue.
Message_Block *prev_;
// Pointer to previous message in the queue.
Message_Block *cont_j;
// Pointer to next fragment in this message.
/...
}

OO Design Interlude

e Q: What is the Allocator object in the
Message_Block constructor?

e A: It provides extensible mechanism to con-
trol how memory is allocated and deallo-
cated

— This makes it possible to switch memory man-
agement policies without modifying Message Block

— By default, the policy is to use new and delete,
but it's easy to use other schemes, e.g.,

* Shared memory
* Persistent memory
* Thread-specific memory

— A similar technique is also used in the C++4
Standard Template Library

OO Design Interlude

e Here's an example of the interfaces used
in ACE

— Note the use of the Adapter pattern to inte-
grate third-party memory allocators

class Allocator {
/! ...
virtual void *malloc (size_t nbytes) = 0;
virtual void free (void *ptr) = 0;

}s;

template <class ALLOCATOR>
class Allocator_Adapter : public Allocator {
/] ...
virtual void *malloc (size_t nbytes) {
return allocator_.malloc (nbytes);

}

ALLOCATOR allocator_;
};

Allocator_Adapter<Shared_Alloc> sh_malloc;
Allocator_Adapter<New_Alloc> new_malloc;
Allocator_Adapter<Persist_Alloc> p_malloc;
Allocator_Adapter<TSS_Alloc> p_malloc;

The Message_Queue Class Public

Interface

e A Message Queue is a thread-safe queueing
facility for Message Blocks

— The bulk of the locking is performed in the
public methods

template <class SYNCH_STRATEGY>
class Message_Queue
{
public:
// Default high and low water marks.
enum { DEFAULT_LWM = O, DEFAULT_HWM = 4096 };

// Initialize a Message_Queue.
Message_Queue (size_t hwm = DEFAULT_HWM,
size_t lwm = DEFAULT_LWM);

// Check if full or empty (hold locks)
int is_empty (void) const;
int is_full (void) const;

// Enqueue and dequeue Message_Block *’s.
int enqueue_prio (Message_Block *, Time_Value *);
int enqueue_tail (Message_Block *, Time_Value *);
int dequeue_head (Message_Block *&, Time_Value *);

160




The Message Queue Class The Message Queue Class
Private Interface Implementation

private methods

template <class SYNCH_STRATEGY> int
Message_Queue<SYNCH_STRATEGY>::is_empty_i (void) comnst {

private:
return cur_bytes_ <= 0 && cur_count_ <= 0;

// Routines that actually do the enqueueing and
// dequeueing (do not hold locks). 3
int enqueue_prio_i (Message_Block *, Time_Value *);
int enqueue_tail_i (Message_Block *new_item, Time_Value *
int dequeue_head_i (Message_Block *&first_item);

template <class SYNCH_STRATEGY> int
Message_Queue<SYNCH_STRATEGY>::is_full_i (void) const {
return cur_bytes_ > high_water_mark_;

// Check the boundary conditions (do not hold locks). }
int is_empty_i (void) const;

int is_full_i (void) const; template <class SYNCH_STRATEGY> int

Message_Queue<SYNCH_STRATEGY>::is_empty (void) const {
/] ... Guard<SYNCH_STRATEGY: :MUTEX> m (lock_);
return is_empty_i ();

// Parameterized types for synchronization }

// primitives that control concurrent access.
// Note use of C++ "traits" template <class SYNCH_STRATEGY> int

SYNCH_STRATEGY : : MUTEX lock_; Message_Queue<SYNCH_STRATEGY>: ris_full (VOid) const ‘[
SYNCH_STRATEGY: : CONDITION not_empty_cond_; Guard<SYNCH_STRATEGY: :MUTEX> m (lock_);
SYNCH_STRATEGY: : CONDITION not_full_cond_; return is_full i O;

}

OO Design Interlude

// Queue new item at the end of the list.

template <class SYNCH_STRATEGY> int
. i i Message_Queue<SYNCH_STRATEGY>::enqueue_tail
° .
Q: How should locking be performed in an (essage_Block *new_item, Time_Value *tv)
OO class? {

Guard<SYNCH_STRATEGY: :MUTEX> monitor (lock_);

e A: In general, the following general pat- // Wait while the queue is full.

tern is useful: ) ) )
while (is_full_i ())

{
// Release the lock_ and wait for timeout, signal,
// or space becoming available in the list.

. o if (not_full_cond_.wait (tv) == -1)
* This also helps to avoid intra-class method return -1;

deadlock. .. }

— "Public functions should lock, private functions
should not lock”

// Actually enqueue the message at the end of the list.

— This is actually a variant on a common OO ) = :
enqueue_tail_i (new_item);

pattern that “public functions should check,

private functions should trust” . .
// Tell blocked threads that list has a new item!

not_empty_cond_.signal ();
— Naturally, there are exceptions to this rule...




// Dequeue the front item on the list and return it
// to the caller.

template <class SYNCH_STRATEGY> int
Message_Queue<SYNCH_STRATEGY>: :dequeue_head
(Message_Block *&first_item, Time_Value *tv)

{
Guard<SYNCH_STRATEGY: :MUTEX> monitor (lock_);

// Wait while the queue is empty.

while (is_empty_i ())
{
// Release the lock_ and wait for timeout, signal,
// or a new message being placed in the list.
if (not_empty_cond_.wait (tv) == -1)
return -1;

}

// Actually dequeue the first message.
dequeue_head_i (first_item);

// Tell blocked threads that list is no longer full.
not_full_cond_.signal ();

Overcoming Algorithmic
Decomposition Limitations
e The previous slides illustrate tactical OO
techniques, idioms, and patterns that:
1. Reduce accidental complexity e.g.,

— Automate synchronization acquisition and re-
lease (C++ constructor/destructor idiom)

— Improve consistency of synchronization in-
terface (Adapter and Wrapper patterns)

2. Eliminate race conditions

e The next slides describe strategic patterns,
frameworks, and components that:

1. Increase reuse and extensibility e.g.,

— Decoupling solution from particular service,
IPC and demultiplexing mechanisms

2. Improve the flexibility of concurrency control

166

Selecting the Server’s

Concurrency Architecture

e Problem
— A very strategic design decision for high-performance

Web servers is selecting an efficient concur-
rency architecture

e [orces

— No single concurrency architecture is optimal

— Key factors include OS/hardware platform and
workload

e Solution

— Understand key alternative concurrency pat-
terns

Concurrency Patterns in the Web

Server

e The following example illustrates the pat-
terns and framework components in an
OO implementation of a concurrent Web
Server

There are various architectural patterns
for structuring concurrency in a Web Server

1. Reactive
Thread-per-request
Thread-per-connection

. Synchronous Thread Pool

. Asynchronous Thread Pool




Reactive Web Server

2: HANDLE INPUT
HTTP 3: CREATE HANDLER
Handler 4: ACCEPT CONNECTION
T 5: ACTIVATE HANDLER

l
|
|

|
|

6: PROCESS HTTP REQUEST

Thread-per-Request Web Server

2: HANDLE INPUT

3: CREATE HANDLER

4: ACCEPT CONNECTION
5: SPAWN THREAD

HTTP

Handler Acceptor

f
|
|
!

|

6: PROCESS HTTP REQUEST

Thread-per-Connection Web

Server

3: SPAWN THREAD 2: CREATE, ACCEPT,
PER CONNECTION AND ACTIVATE
HTTP_HANDLER

Handle-based Synchronous
Thread Pool Web Server

Event
Dispatcher

2: ACCEPT CONNECTION
3: MORPH INTO HANDLER




Queue-based Synchronous
Thread Pool Web Server

2: HANDLE INPUT
3: ENQUEUE REQUEST

Asynchronous Thread Pool Web

Server

1: INITIATE ASYNC ACCEPT
2: RUN EVENT LOOP
4: ACCEPT COMPLETES
5: QUEUE COMPLETION

6: DEQUEUE COMPLETION
& PROCESS

Web Server Software Architecture

HTTP HTTP
Handler Handler

HTTP SS"CI" SS°d<
Handler
Stream

e Event Dispatcher

— Encapsulates Web server concurrency and dis-
patching strategies

e HTTP Handlers

— Parses HT TP headers and processes requests

e HTTP Acceptor

— Accepts connections and creates HT TP Han-
dlers

Patterns in the Web Server

Implementation

Acceptor

Half-Sync/

Asynchronous
Completion
Token

Half-Async
U

Connector

Service

Configurator

O

Reactor/

Proactor

STRATEGIC PATTERNS
TACTICAL PATTERNS

Strategy

Abstract
Factory

Adapter

Singleton




Patterns in the WWW
Client/Server (cont’d)

e The WWW Client/Server uses same pat-
terns as distributed logger

— i.e., Reactor, Service Configurator, Active Ob-
ject, and Acceptor

e It also contains following patterns:
— Connector

* ‘““Decouple the active initialization of a ser-
vice from the tasks performed once the ser-
vice is initialized”

— Double-Checked Locking Optimization
* "“Ensures atomic initialization of objects and

eliminates unnecessary locking overhead on
each access”

— Half-Sync/Half-Async

* “Decouple synchronous I/O from asynchronous
I/O in a system to simplify concurrent pro-
gramming effort without degrading execu-
tion efficiency”

Architecture of Our WWW Server

WWW SERVER

: HTTP Msg
Processor Q“e“

: HTTP : HTTP
Handler Handler

Reactor

APPLICATION

FRAMEWORK

An Integrated Reactive/Active
Web Server

REGISTERED

OBJECTS 4: getq(msg)
5:sve(msg)

sve_run

HTTP
Handler Processor

Event 2: recv_request(msg)
Handler3: putq(msg)

Initiation
Dispatcher

Reactor

1: handle_input()

| OS EVENT DEMULTIPLEXING INTERFACE |

The HT TP _Handler Public

Interface

e The HTTP_Handler is the Proxy for commu-
nicating with clients (e.g., WWW browsers
like Netscape or IE)

— It implements the asynchronous portion of Half-
Sync/Half-Async pattern

template <class PEER_ACCEPTOR>
class HTTP_Handler :
public Svc_Handler<PEER_ACCEPTOR: :PEER_STREAM,
NULL_SYNCH> {
public:
// Entry point into HTTP_Handler, called by
// HTTP_Acceptor.
virtual int open (void *)
{
// Register with Reactor to handle client input.
Reactor::instance ()->register_handler
(this, READ_MASK);

// Register timeout in case client doesn’t
// send any HTTP requests.
Reactor::instance ()->schedule_timer
(this, 0, Time_Value (HTTP_CLIENT_TIMEOUT));




The HT TP _Handler Protected

Interface

e The following methods are invoked by call-
backs from the Reactor

protected:

// Reactor notifies when client’s timeout.

virtual int handle_timeout (const Time_Value &,
const void *)

{

// Remove from the Reactor.

Reactor::instance ()->remove_handler

(this, READ_MASK);

// Reactor notifies when client
// HTTP requests arrive.
virtual int handle_input (HANDLE);

// Receive/frame client HTTP requests (e.g., GET).
int recv_request (Message_Block &*);

};

Integrating Multi-threading

e Problem

— Multi-threaded Web servers are needed since
Reactive Web servers are often inefficient and
non-robust

e [orces

— Multi-threading can be very hard to program

— No single multi-threading model is always op-
timal

e Solution

— Use the Active Object pattern to allow multiple
concurrent server operations in an OO-manner

APPLICATION

Using the Active Object Pattern
in the WWW Server

REGISTERED svc_run

4: getq(msg)
OBJECTS 5:sve(msg) -

{ HTTP
Handler

2: recv_request(msg)
putq(msg)

\ RcaD

| OS EVENT DEMULTIPLEXING INTERFACE |

Event °
Handler =

1: handle_input()

The HT TP _Processor Class

e Processes HT TP requests using the “Thread-
Pool” concurrency model to implement
the synchronous task portion of the Half-
Sync/Half-Async pattern

class HTTP_Processor : public Task<MT_SYNCH> {
public:
// Singleton access point.
static HTTP_Processor *instance (void);

// Pass a request to the thread pool.
virtual int put (Message_Block *, Time_Value *);

// Entry point into a pool thread.
virtual int svc (int)
{

Message_Block *mb = 0; // Message buffer.

// Wait for messages to arrive.

for (;)

{
getq (mb); // Inherited from class Task;
// Identify and perform HTTP Server
// request processing here...




Using the Singleton

e The HTTP Processor iS implemented as a
Singleton that is created “on demand”

// Singleton access point.

HTTP_Processor *
HTTP_Processor: :instance (void)
{
// Beware of race conditions!
if (instance_ == 0)
instance_ = new HTTP_Processor;

return instance_;

}
// Constructor creates the thread pool.

HTTP_Processor: :HTTP_Processor (void)
{
// Inherited from class Task.
activate (THR_NEW_LWP, num_threads);
}

Subtle Concurrency Woes with

the Singleton Pattern

e Problem

— The canonical Singleton implementation has
subtle “bugs” in multi-threaded applications

e [orces

— Too much locking makes Singleton too slow. ..

— Too little locking makes Singleton unsafe...

e Solution

— Use the Double-Checked Locking optimization
pattern to minimize locking and ensure atomic
initialization

The Double-Checked Locking

Optimization Pattern

e Intent

— "Ensures atomic initialization of objects and
eliminates unnecessary locking overhead on each
access”

e This pattern resolves the following forces:

1. Ensures atomic initialization or access to ob-
Jjects, regardless of thread scheduling order

2. Keeps locking overhead to a minimum

— e.g., only lock on first access

e Note, this pattern assumes atomic mem-
ory access...

Using the Double-Checked
Locking Optimization Pattern for
the WWW Server

if (instance =NULL) {
mutex_.acquire ();
if (instance_ =NULL)
instance_=new HTTP_Processor;
mutex_.release ();

}

return instance ;

(
- Processor

\
\

| static instance()o/\\
| static instance_ g

o
~_ -




Integrating Reactive and
Half-Sync/Half-Async Pattern

Multi-threaded Layers

e Intent
e Problem
— "An architectural pattern that decouples syn-
— Justifying the hybrid design of our Web server chronous I/O from asynchronous I/O in a sys-

can be tricky tem to simplify programming effort without de-
grading execution efficiency”

e [orces . .
e This pattern resolves the following forces

— Engineers are never satisfied with the status for concurrent communication systems:

quo ;-)

— How to simplify programming for higher-level

) ) ) ) . communication tasks

— Substantial amount of time is spent re-discovering
tihen intent of complex concurrent software de- + These are performed synchronously (via Ac-
sl9 tive Objects)

— How to ensure efficient lower-level I/O com-
e Solution munication tasks

— Use the Half-Sync/Half-Async pattern to ex- * These are performed asynchronously (via the
plain and justify our Web server concurrency Reactor)
architecture

Structure of the
Half-Sync/Half-Async Pattern Collaboration in the
Half-Sync/Half-Async Pattern

External Async Message Sync
Event Source Task Queue Task

I notification() i i I
| ——

EXTERNAL EVENT A

|
RECY MSG read(msg)

TASK LAYER

PHASE

work()
| —

enqueue(msg)

I
I
I
I
I
PROCESS MSG I
I

ENQUEUE MSG

1, 4: read(data)

DEQUEUE MSG

EXECUTE TASK

| MESSAGE QUEUES

SYNC QUEUEING ASYNC

PHASE PHASE

\2: interrupt e This illustrates input processing (output

EXTERNAL processing is similar)

EVENT SOURCES

ASYNCHRONOUS QUEUEING SYNCHRONOUS
TASK LAYER




Joining Async and Sync Tasks in

Using the Half-Sync/Half-Async

Pattern in the WWW Server the WWW Server
e The following methods form the boundary
between the Async and Sync layers

4: getq(msg) /

S:S%ic((rlnsg)g template <class PA> int
HTTP_Handler<PA>::handle_input (HANDLE h)

{

SYNC TASK

HTTP Message_Block *mb = 0;

Pr r .
ocesso // Try to receive and frame message.

if (recv_request (mb) == HTTP_REQUEST_COMPLETE) {
Reactor::instance ()->remove_handler
(this, READ_MASK);
Reactor::instance ()->cancel_timer (this);
2: recv_request(msg) // Insert message into the Queue.
Event 3: putq(msg) HTTP_Processor<PA>::instance ()->put (mb);
}

QUEUEING

HTTP
Handler

3

HTTP_Processor: :put (Message_Block *msg,
Time_Value *timeout) {
// Insert the message on the Message_Queue
// (inherited from class Task).
putq (msg, timeout);

ASYNC TASK

Optimizing Our Web Server for

Asynchronous Operating Systems
The Proactor Pattern
e Problem

— Synchronous multi-threaded solutions are not e Intent

always the most efficient . .
— "“Decouples asynchronous event demultiplexing

and event handler completion dispatching from
service(s) performed in response to events”

e forces

— Purely asynchronous I/O is quite powerful on

some OS platforms e This pattern resolves the following forces

for asynchronous event-driven software:

* €.9g., Windows NT 4.x — How to demultiplex multiple types of events
from multiple sources of events asynchronously

— Good designs should be adaptable to new con- and efficiently within a minimal number of threads
texts

— How to extend application behavior without re-
quiring changes to the event dispatching frame-

. ork
e Solution w

— Use the Proactor pattern to maximize perfor-
mance on Asynchronous OS platforms




Structure of the Proactor

APPLICATION- APPLICATION-

N C'HTTP , Async! Collaboration in the Proactor
/ Handler | i
B Pattern

overlapped_result=
GetQueuedCompleteStatus();
overlapped_result->complete() -

——— ___——=

- ~
' Event_Handler | )
\ | Acceptor// Asynchronous

\ handle accept() | & ~——TN_7 T Proactive Operation  Asynchronous Completion Completion
Initiator Processor Operation Dispatcher  Handler

£ \
handle read file() / N /=
handle_write file() | Async { Async \ " | |
/ Asynchronous register (tiperation, handler, dispatcher;

handle_timeout() | Op ' Accept |
get_handle() ' open() / NV operation initiated >

\_ cancel() !
\ _
N /’\v/

——=

Operation performed execute
e asynchronously >

N
— . \ /. \
‘ ‘f C(?mpletlon \ ; Timer_Queue » dispatch
\ - Dispatcher | n- 11— Operation completes
yO—— o CHandles | schedulg_tlmer(h) h
/ handle_events() , Han es/, \ cancel timer(h) |
( register_handle() / N \\expire_ﬁmer(h) /’ Completion Handler handle event
- - i notified

1

N__— -

e www.cs.wustl.edu/~schmidt/proactor.ps.gz

Client Connects to a Proactive
Client Sends Request to a

Web Server
Proactive Web Server

Web Server 1. accept 1: GET
connection letc/passw( Web Server

Web
Browser - Web ~ HTTP . 4: parse request
Browser Handler [~

(i.cigciigrt ) 6: write (File, Conn.,
ptor, A 8: write "~ Handler, Dispatcher)

5: read (File) | 3: complete

‘ 7: write

complet

4: connec]

Completion Operating
Dispatcher System

2: read complete

Completion Operating File
Dispatcher System System

3: handle  5: accept
events complete




Structuring Service Initialization

e Problem

— The communication protocol used between clients
and the Web server is often orthogonal to the
initialization protocol

e [orces

— Low-level connection establishment APIs are
tedious, error-prone, and non-portable

— Separating initialization from use can increase
software reuse substantially

e Solution

— Use the Acceptor and Connector patterns to
decouple passive service initialization from run-
time protocol

Using the Acceptor Pattern in the

HTTP
Handler
HTTP
Handler

WWW Server

HTTP
HTTP

HTTP Handler
Acceptor Handler

Acceptor

1: handle_input()

2: sh = make_svc_handler()
3: accept_svc_handler(sh)
4: activate_svc_handler(sh)

PASSIVE LISTENER
Reactor

CONNECTIONS

The HT TP _Acceptor Class

Interface

e The HTTP_Acceptor class implements the
Acceptor pattern

— i.e., it accepts connections/initializes HTTP Handlers

template <class PEER_ACCEPTOR>
class HTTP_Acceptor : public
// This is a ‘‘trait.’’
Acceptor<HTTP_Handler<PEER_ACCEPTOR: : PEER_STREAM>,
PEER_ACCEPTOR>
{
public:
// Called when HTTP_Acceptor is
// dynamically linked.
virtual int init (int argc, char *argv[]);

// Called when HTTP_Acceptor is
// dynamically unlinked.
virtual int fini (void);

/! ...
};

The HTTP_Acceptor Class

Implementation

// Initialize service when dynamically linked.

template <class PA> int
HTTP_Acceptor<PA>::init (int argc, char *argv[])
{

Options::instance ()->parse_args (argc, argv);

// Initialize the communication endpoint and

// register to accept connections.

peer_acceptor ().open
(PA::PEER_ADDR (Options::instance ()->port ()),
Reactor::instance ());

}
// Terminate service when dynamically unlinked.

template <class PA> int
HTTP_Acceptor<PA>::fini (void)
{
// Shutdown threads in the pool.
HTTP_Processor<PA>::instance ()->
msg_queue ()->deactivate ();

// Wait for all threads to exit.
HTTP_Processor<PA>::instance ()->thr_mgr ()->wait ();

}




Using the Service Configurator
Pattern in the WWW Server

SERVICE Reactive
CONFIGURATOR
RUNTIME

Service
Repository

sve.conf dynamic Web_Server Service Object *
FILE www_server:make Web_Server() "-ORBport 2001"

e Existing service is based on Half-Sync/Half-
Async ‘“‘Thread pool”' pattern

— Other versions could be single-threaded, could
use other concurrency strategies, and other
protocols

Service Configurator

Implementation in C+4+

e The concurrent WWW Server is config-

ured and initialized via a configuration script

% cat ./svc.conf
dynamic Web_Server Service_0Object *
www_server :make_Web_Server ()
"-p $PORT -t $THREADS"
# .dll or .so suffix added to "www_server" automatically

Factory function that dynamically allocates
a Half-Sync/Half-Async WWW Server ob-
ject

extern "C" Service_Object *make_Web_Server (void);

Service_Object *make_Web_Server (void)
{

return new HTTP_Acceptor<SOCK_Acceptor>;

// ACE dynamically unlinks and deallocates this object.
}

Main Program for WWW Server

e Dynamically configure and execute the WWW

Server
— Note that this is totally generic!

int main (int argc, char *argv[])

{
// Initialize the daemon and dynamically
// configure the service.
Service_Config::open (argc, argv);

// Loop forever, running services and handling

// reconfigurations.

Reactor: :run_event_loop ();
/* NOTREACHED */

The Connector Pattern

Intent

— “Decouple the active initialization of a service
from the task performed once a service is ini-
tialized”

This pattern resolves the following forces
for network clients that use interfaces like
sockets or TLI:

1. How to reuse active connection establishment
code for each new service

2. How to make the connection establishment code
portable across platforms that may contain sock-
ets but not TLI, or vice versa

. How to enable flexible policies for creation,
connection establishment, and concurrency

. How to efficiently establish connections with
large number of peers or over a long delay path




Structure of the Connector

Pattern

- \l
Handler ¢
— - Connector

b connect(sh, addr)
ACTIVATES 1 ( complete() -

\

|
peer _stream  ,

\
|
|

\ open()
N ——~ n

HANDLE ASYNC
CONNECTION COMPLETION

//\——-/_/—~\\

SERVICE- Reactor /)
INDEPENDENT —
~

SERVICE-
DEPENDENT

PHASE

CONNECTION INITIATION/

PROCESSING  SEVICE INITIALIZATION

SERVICE
PHASE

Collaboration in the Connector

Pattern

POISOCK gyt ter aSor:
. | Connect I
connect(sh, addr) | \
|
" c?nnect svc _handler(sh, addr)

con :

Client C "

FOREACH CONNECTION
INITIATE CONNECTION

SYNC CONNECT connect() }
——

I
|
I
I
I
I
|
ACTIVATE OBJECT « a‘ctivate svc_handler(sh) }
I

|

I

|

I

|

open()

INSERT IN REACTOR register_handler(sh

get_handle()

EXTRACT HANDLE ‘ -

handle_events()

select() |

handle_input()
sve()

FOREACH EVENT DO

DATA ARRIVES

|
|
|
|
| |
| |
| |
START EVENT LOOP t +
| |
| |
| |
|
|
|
PROCESS DATA |
|

e Synchronous mode

Collaboration in the Connector

Pattern

Client Connector
| Connector |
conncct(sh addr) |

FOREACH CONNECTION | |

ASYNC CONNECT connect() |
———

INSERT IN REACTOR |

INITIATION
PHASE

con: peer_stream . reactor :
: SOCK Sve_Handler Reactor
)

INITIATE CONNECTION e c?nnect svc_handler(sh, addr) }
|

|
register_handler(con)|
=1

CONNECTION

handle_events()
START EVENT LOOP =

PR S —

FOREACH EVENT DO
| handle output()

|
o |
&

select() |

CONNECTION COMPLETE

PHASE

SERVICE

ACTIVATE OBJECT open() !

register_handler(sh
INSERT IN REACTOR

[l
EXTRACT HANDLE }
|
|

DATA ARRIVES

SERVICE
PROCESSING  INITIALIZATION

PHASE

PROCESS DATA
|

|
|
|
|
|
|
|
—] activate_svc_handler(sh)
i
|
|
|
|
|
|
|
|
|
|
|
|
|
| |

Asynchronous mode

get_handle()

handle_input()
; sve()

APPLICATION
LAYER

CONNECTION
LAYER

REACTIVE
LAYER

Structure of the Connector
Pattern in ACE

~—__ —~— | Concrete_Svc_Handler
\ «
, Concrete / . Concrete /

/
|Sve Handler ) 4 / Connector B
\\ open() | -~ T~
/

i

7 SVC HANDLER |

W | PEER_CONNECTOR |
\

NTS__ = _Connector

l | connect_svc handler()\
M| activate_svc_handler() |

}/ \“ PEER_STREAM ‘
\ Sve Handler N 4 Ohandle _output() e
\/ connect(sh, addr)o/

)
\ 0 7 NI
——~_ 7/ ~_~ N

~-" |
1 . | connect_svc_handler
I L3 (sh, addr);
activate_svc_handler
(sh);

e ——

\/ Handler l/ﬂ Reactor )

_J
/ handle output()\ll

\// \_/—-__,




Using the Connector Pattern in a

WWW Client Connector Class Public Interface

HTTP e A reusable template factory class that es-

HTTP Handler HTTP ] ] ) )
Handler Handler tablishes connections with clients

template <class SVC_HANDLER, // Type of service
class PEER_CONNECTOR> // Comnection factory
class Connector
: public Service_Object

HTTP {
public:
// Initiate connection to Peer.
PENDING virtual int connect (SVC_HANDLER &*svc_handler,
CONNECTIONS Reactor @ const PEER_CONNECTOR: :PEER_ADDR &,
Synch_Options &synch_options);
// Cancel a <svc_handler> that was

// started asynchronously.
virtual int cancel (SVC_HANDLER *svc_handler);

e e.g., in the Netscape HTML parser

OO Design Interlude

e Q: What is the Synch_Options class? Connector Class Protected

Interface
e A: This allows callers to define the syn-
protected:

chrony/asynchrony policies, e.g., // Demultiplexing hooks.
virtual int handle_output (HANDLE); // Success.
. virtual int handle_input (HANDLE); // Failure.
zlass Synch_Options virtual int handle_timeout (Time_Value &, const void *);

// Options flags for controlling synchronization.
enum {

USE_REACTOR = 1,

USE_TIMEQUT = 2

};

// Create and cleanup asynchronous connections...
virtual int create_svc_tuple (SVC_HANDLER *,
Synch_Options &) ;
virtual Svc_Tuple *cleanup_svc_tuple (HANDLE);

// Table that maps an I/0 handle to a Svc_Tuple *.
Map_Manager<HANDLE, Svc_Tuple *, Null_Mutex>
handler_map_;

Synch_Options (u_long options = 0,
const Time_Value &timeout
= Time_Value: :zero,

const void *arg = 0); // Factory that actively establishes connections.

PEER_CONNECTOR connector_;
// This is the default synchronous setting. 3,

static Synch_Options synch;
// This is the default asynchronous setting.
static Synch_Options asynch;
}




OO Design Interlude

e Q: “What is a good technique to imple-
menting a handler map?”

— e.g., to route messages or to map HANDLEs
to SVC_HANDLERSs

e A: Use a Map Manager collection class

— ACE provides a Map_Manager collection that
associates external ids with internal ids, e.g.,

* External ids - HANDLE

* Internal ids — set of Svc_Handlers

— Map_Manager uses templates to enhance reuse

Map_Manager Class

e Synchronization mechanisms are parameterized...

template <class EXT_ID, class INT_ID, class LOCK>
class Map_Manager
{
public:
bool bind (EXT_ID, INT_ID %*);
bool unbind (EXT_ID);

bool find (EXT_ID ex, INT_ID &in) {
// Exception-safe code...
Read_Guard<LOCK> monitor (lock_);
// lock_.read_acquire ();
if (find_i (ex, in))
return true;
else
return false;
// lock_.release ();
}

private:

LOCK lock_;

bool locate_entry (EXT_ID, INT_ID &);
//

};

Connector Class Implementation

// Shorthand names.
#define SH SVC_HANDLER
#define PC PEER_CONNECTOR

// Initiate connection using specified blocking semantics.
template <class SH, class PC> int
Connector<SH, PC>::connect
(SH *sh,
const PC::PEER_ADDR &r_addr,
Synch_Options &options) {
Time_Value *timeout = 0;
int use_reactor = options[Synch_Options::USE_REACTOR];

if (use_reactor) timeout = Time_Value::zerop;
else
timeout = options[Synch_Options::USE_TIMEOUT]
? (Time_Value *) &options.timeout () : 0;

// Use Peer_Connector factory to initiate connection.
if (connector_.connect (*sh, r_addr, timeout) == -1) {
// If the connection hasn’t completed, then
// register with the Reactor to call us back.
if (use_reactor && errno == EWOULDBLOCK)
create_svc_tuple (sh, options);
else
// Activate immediately if we are connected.
sh->open ((void *) this);

// Register a Svc_Handler that is in the
// process of connecting.

template <class SH, class PC> int
Connector<SH, PC>::create_svc_tuple
(SH *sh, Synch_Options &options)
{
// Register for both "read" and "write" events.
Reactor::instance ()->register_handler
(sh->get_handle (),
Event_Handler::READ_MASK |
Event_Handler::WRITE_MASK);

Svc_Tuple *st = new Svc_Tuple (sh, options.arg ());

if (options[Synch_Options::USE_TIMEOUT])
// Register timeout with Reactor.
int id = Reactor::instance ()->schedule_timer
(this, (comnst void *) st,
options.timeout ());
st->id (id);

// Map the HANDLE to the Svc_Handler.
handler_map_.bind (sh->get_handle (), st);




// Cleanup asynchronous connections...

template <class SH, class PC> Svc_Tuple *
Connector<SH, PC>::cleanup_svc_tuple (HANDLE h)
{

Svc_Tuple *st;

// Locate the Svc_Tuple based on the handle;
handler_map_.find (h, st);

// Remove SH from Reactor’s Timer_Queue.
Reactor::instance ()->cancel_timer (st->id ());

// Remove HANDLE from Reactor.
Reactor::instance ()->remove_handler (h,
Event_Handler::RWE_MASK | Event_Handler::DONT_CALL);

// Remove HANDLE from the map.
handler_map_.unbind (h);
return st;

// Finalize a successful connection (called by Reactor).

template <class SH, class PC> int
Connector<SH, PC>::handle_output (HANDLE h) {
Svc_Tuple *st = cleanup_svc_tuple (h);

// Transfer I/0 handle to SVC_HANDLE =*.
st->svc_handler ()->set_handle (h);

// Delegate control to the service handler.
sh->open ((void *) this);
}

// Handle connection errors.

template <class SH, class PC> int

Connector<SH, PC>::handle_input (HANDLE h) {
Svc_Tuple *st = cleanup_svc_tuple (h);

}

// Handle connection timeouts.

template <class SH, class PC> int
Connector<SH, PC>::handle_timeout
(Time_Value &time, const void *arg) {
Svc_Tuple *st = (Svc_Tuple *) arg;
st = cleanup_svc_tuple
(st->svc_handler ()->get_handle ());
// Forward "magic cookie"...
st->svc_handler ()->handle_timeout (tv, st->arg ());

The OO Architecture of the
JAWS Framework

Reactor/Proactor
1/0O Strategy

State Singleton
Cached Virtual

Tilde ~

: Expander ey

Protocol
Handler

Event Dispatcher

Strategy

Protocol ’
Filter W

OO0V
Concurrency @

Protocol Pipeline Strategy

Active Object

Framework
Service Configurator

Framework

e www.cs.wustl.edu/~jxh/research/

Web Server Optimization

Techniques

Use lightweight concurrency

Minimize locking

Apply file caching and memory mapping

Use ‘“gather-write” mechanisms

Minimize logging

Pre-compute HT TP responses

e Avoid excessive time calls

e Optimize the transport interface




Application-level Gateway

Example

e The next example explores the patterns
and reusable framework components used
in an OO architecture for application-level
Gateways

e Gateways route messages between Peers
in a large-scale telecommunication system

e Peers and Gateways are connected via TCP/IP

Physical Architecture of the

Gateway

TRACKING
SATELLITES STATION

WIDE AREA
NETWORK

/
COMMANDS BULK DATA
TRANSFER

GATEWAY—

=]

LOCAL AREA NETWORK

GROUND = — =
STATION

PEERS

OO Software Architecture of the

Gateway

: Output
Channel

: Output
: Input Channel
Channel

I
INCOMING OUTGOING
MESSAGES MESSAGES

Gateway Behavior

e Components in the Gateway behave as
follows:

1. Gateway parses configuration files that specify
which Peers to connect with and which routes
to use

. Channel Connector connects to Peers, then
creates and activates Channel subclasses (Input_Channel
or Output_Channel)

. Once connected, Peers send messages to the
Gateway

— Messages are handled by an Input_Channel

— Input_Channels work as follows:
(a) Receive and validate messages
(b) Consult a Routing Table

(¢) Forward messages to the appropriate Peer(s)
via Output_Channels




Patterns in the Gateway Using the Reactor Pattern for the

Gateway
ject Router

REGISTERED
o @i OBJECTS

Channel 4: send(msg) : Input
Channel

¢

Connector Acceptor

O

2: recv(msg)

APPLICATION

Service
Conﬁgurator

STRATEGI \
¢ Reactor

PATTERNS

FRAMEWORK

it Template| | Fact
emplate actory
PATIERNS | Tterator | | Method | | Method | | Proxy

e The Gateway components are based upon
a system of patterns

KERNEL

Class Diagram for OO Gateway Architecture

Single-Threaded Gateway e The Gateway is decomposed into compo-
nents that are layered as follows:

Channel . . o
_“>"71SOCK Connector _~——1SOCK Stream 1. Application-specific components
o | = " n Null_Synch
\

4 !
/ ) /

/ P
. CChannel // (\ Input/Output // — Channels route messages among Peers
, Connector é’//\ Channels / . . o
\ ACTIVATES g o . Connection-oriented application components
~ 7

= J

APPLICATION-
SPECIFIC
COMPONENTS

AN -
\
e

\\g ,,,,,,,, — Svc_Handler

! (" “IPEER_STREAM] '
] ) ~ x Performs I/O-related tasks with connected
/

P y clients
{ Connector

\
\

Al
B \l SVC_HANDLER
\] |PEER_CONNECTOR

CONNECTION-
ORIENTED
COMPONENTS

S—mos — Connector factory

AN S 3 * Establishes new connections with clients

\CONNECTOR} b STPleEM
R 4
N7

+ Dynamically creates a Svc_Handler object
for each client and “activates” it

Connection

. Application-independent ACE framework com-
ponents

COMPONENTS

Service o o
Configurator — Perform IPC, explicit dynamic linking, event

e demultiplexing, event handler dispatching, multi-
glg:lmcurrency threading, etc.




Using the Connector Pattern for

the Gateway

‘ilii“:iil' !!I‘l“lltl

ACTIVE
CONNECTION:

-

: Reactor

: Connector : Channel

ENDING
CONNECTIONS

Specializing Connector and
Svc_Handler
e Producing an application that meets Gate-

way requirements involves specializing ACE
components

— Connector — Channel Connector

— Svc_Handler — Channel — Input_Channel
and Output_Channel

e Note that these new classes selectively over-
ride methods defined in the base classes

— The Reactor automatically invokes these meth-
ods in response to I/O, signal, and timer events

Channel Inheritance Hierarchy

APPLICATION- /’ .
\
/
INDEPENDENT - Sve L

‘._ Handler )

APPLICATION- 4 . g
SPECIFIC o / N
e N~ -

\
_~/ Channel \
peer_stream_

J C__ _—
7 Output / ]
- \ \
Channel ~~, Input "~
N Channel
_ Insg queue_ -~ N ot
\ —

-~ >

~_ = ~_ ——

Channel Class Public Interface

e Common methods and data for I/O Chan-
nels

// Determine the type of threading mechanism.
#if defined (ACE_USE_MT)

typedef MT_SYNCH SYNCH;

#else

typedef NULL_SYNCH SYNCH;

#endif /* ACE_USE_MT */

// This is the type of the Routing_Table.
typedef Routing_Table <Peer_Addr,
Routing_Entry,
SYNCH: : MUTEX> ROUTING_TABLE;

class Channel
: public Svc_Handler<SOCK_Stream, SYNCH>
{
public:
// Initialize the handler (called by Connector).
virtual int open (void * = 0);

// Bind addressing info to Router.
virtual int bind (const INET_Addr &, CONN_ID);




OO Design Interlude

e Q: Whatisthe MT_SYNCH class and how
does it work?

e A: MT_SYNCH provides a thread-safe syn-
chronization policy for a particular instan-
tiation of a Svc_Handler

— e.g., it ensures that any use of a Svc_Handler's
Message_Queue will be thread-safe

— Any Task that accesses shared state can use
the “traits” in the MT_SYNCH

class MT_SYNCH { public:
typedef Thread_Mutex MUTEX;
typedef Condition_Thread_Mutex CONDITION;

H

— Contrast with NULL_SYNCH

class NULL_SYNCH { public:
typedef Null_Mutex MUTEX;
typedef Null_Condition_Thread_Mutex CONDITION;

H

237

Channel Class Protected Interface

e Common data for I/O Channels

protected:
// Reconnect Channel if connection terminates.
virtual int handle_close (HANDLE, Reactor_Mask);

// Address of peer.
INET_Addr addr_;

// The assigned connection ID of this Channel.
CONN_ID id_;
};

Detailed OO Architecture of the

Gateway

: Output R . 5 : Input
Channel “Routine Channel
+ MK
~
Stream
: Output
Channel
+ M

Stream

|

I

INCOMING

MESSAGES
CONNECTION

REQUEST
|

OUTGOING
MESSAGES
CONNECTION |
REQUEST v
1

"

Input_Channel Interface

e Handle input processing and routing of
messages from Peers

class Input_Channel : public Channel
{
public:

Input_Channel (void);

protected:
// Receive and process Peer messages.
virtual int handle_input (HANDLE);

// Receive a message from a Peer.
virtual int recv_peer (Message_Block *&);

// Action that routes a message from a Peer.
int route_message (Message_Block *);

// Keep track of message fragment.
Message_Block *msg_frag_;
};




Output_Channel Interface

e Handle output processing of messages sent
to Peers

class Output_Channel : public Channel
{
public:

Output_Channel (void);

// Send a message to a Gateway (may be queued).
virtual int put (Message_Block *, Time_Value * = 0);

protected:
// Perform a non-blocking put().
int nonblk_put (Message_Block *mb);

// Finish sending a message when flow control abates.
virtual int handle_output (HANDLE) ;

// Send a message to a Peer.
virtual int send_peer (Message_Block *);

};

Channel_Connector Class

Interface

e A Concrete factory class that behaves as
follows:

1. Establishes connections with Peers to produce
Channels

2. Activates Channels, which then do the work

class Channel_Connector : public
Connector <Channel, // Type of service
SOCK_Connector> // Connection factory
{
public:
// Initiate (or reinitiate) a connection on Channel.
int initiate_connection (Channel *);

}

e Channel _Connector also ensures reliability by
restarting failed connections

Channel_Connector

Implementation

e Initiate (or reinitiate) a connection to the
Channel

int
Channel_Connector::initiate_connection (Channel *channel)
{
// Use asynchronous connections...
if (connect (channel, channel->addr (),
Synch_Options::asynch) == -1) {
if (errno != EWOULDBLOCK)
// Reschedule ourselves to try to connect again.
Reactor::instance ()->schedule_timer
(channel, 0, channel->timeout ());
else
return -1; // Failure.
}
else
// We’re connected.
return O;

The Router Pattern

e Intent

— “Decouple multiple sources of input from mul-
tiple sources of output to prevent blocking”

e The Router pattern resolves the following
forces for connection-oriented routers:

— How to prevent misbehaving connections from
disrupting the quality of service for well-behaved
connections

— How to allow different concurrency strategies
for Input and Output Channels




Structure of the Router Pattern

// — -7~

J
,~ Input
1 Channel ) A
/ handle 1nput() J

ROUTING
LAYER

——

¢ T
P

{ Message {
| Queue /
\ Q /

N

~N——>T TN

QOutput )
Channel (\/

/ handle output() ) J

put

\/

l\ Event \

l Handler

\_/,-

REACTIVE
LAYER

/\—__/h

\
Reactor i

,_‘\J

e www.cs.wustl.edu/~schmidt/ TAPOS—-95.ps.gz

245

INPUT

ROUTE

OUTPUT
PROCESSING SELECTION PROCESSING

Collaboration in the Router

Pattern

: Routing : Output : Input
Table Channel Channel

|
START EVENT LOOP | handle_events()

reactor :
Reactor

FOREACH EVENT DO

T
I select() 5 |

|
DATA EVENT lAhandle_input()

PHASE

RECV MSG
recv_peer()

ROUTE MSG
FIND DESTINATIONS

I
|
T
|
|
|
|
|
|
|
|
|
} put)
send_p "“
enqueue()|
|

SEND MSG
(QUEUE IF FLOW
CONTROLLED)

PHASE

sch‘eduleiwakeup() _

FLOW CONTROL

ABATES handle output()

1
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| dequeue(),
DEQUEUE AND SEND |
MSG (REQUEUE IF |

PHASE

;
|
|
|
|
|
|
i
! putQ
|

|
|
|
|
|
|
|
|
|

FLOW CONTROLLED) |
|

Collaboration in Single-threaded

Gateway Routing

Message \ S:send_peer(msg)
Queue

Subscriber
Set

6: put (msg)
Input
Channel

1: handle_input()
2: recv_peer(msg)

Output
Channel

Message
Queue

7: send_peer(msg)
8: enqueue(msg)
9: schedule_wakeup()

10: handle_output()
11: dequeue(msg)
12: send_peer(msg)

// Receive input message from Peer and route
// the message.

int
Input_Channel: :handle_input (HANDLE)
{

Message_Block *route_addr = O;

// Try to get the next message.

if ((n = recv_peer (route_addr)) <= 0) {
if (errno == EWOULDBLOCK) return O;
else return n;

}

else
route_message (route_addr);

}
// Send a message to a Peer (queue if necessary).

int
Output_Channel: :put (Message_Block *mb, Time_Value *)
{
if (msg_queue_->is_empty ())
// Try to send the message *without* blocking!
nonblk_put (mb);
else
// Messages are queued due to flow control.
msg_queue_->enqueue_tail (mb, Time_Value::zerop);




// Route message from a Peer.

int
Input_Channel::route_messages (Message_Block *route_addr)
{

// Determine destination address.

CONN_ID route_id = *(CONN_ID *) route_addr->rd_ptr ();

const Message_Block *const data = route_addr->cont ();
Routing_Entry *re = 0;

// Determine route.
Routing_Table::instance ()->find (route_id, re);

// Initialize iterator over destination(s).
Set_Iterator<Channel *> si (re->destinations ());

// Multicast message.
for (Channel *out_ch;
si.next (out_ch) != -1;
si.advance ()) {
Message_Block *newmsg = data->duplicate ();
if (out_ch->put (newmsg) == -1) // Drop message.
newmsg->release (); // Decrement reference count.
}
delete route_addr;

}

Peer Message

// unique connection id that denotes a Channel.
typedef short CONN_ID;

// Peer address is used to identify the

// source/destination of a Peer message.
class Peer_Addr {

public:

CONN_ID conn_id_; // Unique connection id.
u_char logical_id_; // Logical ID.

u_char payload_; // Payload type.

};

// Fixed sized header.
class Peer_Header { public: /* ... x/ };

// Variable-sized message (sdu_ may be
// between O and MAX_MSG_SIZE).

class Peer_Message {
public:
// The maximum size of a message.
enum { MAX_PAYLOAD_SIZE = 1024 };
Peer_Header header_; // Fixed-sized header portiomn.
char sdu_[MAX_PAYLOAD_SIZE]; // Message payload.
};

OO Design Interlude

e Q: What should happen if put() fails?

— e.g., if a queue becomes full?

e A: The answer depends on whether the
error handling policy is different for each
router object or the same...

— Strategy pattern: give reasonable default, but
allow substitution

e A related design issue deals with avoid-
ing output blocking if a Peer connection
becomes flow controlled

// Pseudo-code for receiving framed message
// (using non-blocking I/0).

int
Input_Channel: :recv_peer (Message_Block *&route_addr)
{
if (msg_frag_ is empty) {
msg_frag_ = new Message_Block;
receive fixed-sized header into msg_frag_
if (errors occur)
cleanup
else
determine size of variable-sized msg_frag_
}
else
determine how much of msg_frag_ to skip

perform non-blocking recv of payload into msg_frag_
if (entire message is now received) {
route_addr = new Message_Block (sizeof (Peer_Addr),
msg_frag_)
Peer_Addr addr (id (), msg_frag_->routing_id_, 0);
route_addr->copy (&addr, sizeof (Peer_Addr));
return to caller and reset msg_frag_
}
else if (only part of message is received)
return errno = EWOULDBLOCK
else if (fatal error occurs)
cleanup




OO Design Interlude

e Q: How can a flow controlled Output_Channel
know when to proceed again without polling
or blocking?

e A: Use the Event_Handler::handle_output
notification scheme of the Reactor

— i.e., via the Reactor’s methods schedule_wakeup
and cancel _wakeup

e This provides cooperative multi-tasking within
a single thread of control

— TheReactor calls back to the handle_output
method when the Channel is able to transmit
again

// Perform a non-blocking put() of message MB.

int Output_Channel::nonblk_put (Message_Block #*mb)
{
// Try to send the message using non-blocking I/0
if (send_peer (mb) != -1
&& errno == EWOULDBLOCK)
{

// Queue in *front* of the list to preserve order.
msg_queue_->enqueue_head (mb, Time_Value::zerop);

// Tell Reactor to call us back when we can send again.

Reactor::instance ()->schedule_wakeup
(this, Event_Handler::WRITE_MASK);

// Simple implementation...

int
Output_Channel: :send_peer (Message_Block *mb)
{

ssize_t n;

size_t len = mb->length ();

// Try to send the message.
n = peer ().send (mb->rd_ptr (), len);

if (n <= 0)
return errno == EWOULDBLOCK 7 O : n;
else if (n < len)
// Skip over the part we did send.
mb->rd_ptr (n);
else /* if (n == length) */ {
delete mb; // Decrement reference count.
errno = 0;
}

return n;

// Finish sending a message when flow control
// conditions abate. This method is automatically
// called by the Reactor.

int
Output_Channel: :handle_output (HANDLE)
{

Message_Block *mb = 0;

// Take the first message off the queue.
msg_queue_->dequeue_head
(mb, Time_Value::zerop);
if (nonblk_put (mb) != -1
Il errno != EWOULDBLOCK) {

// If we succeed in writing msg out completely

// (and as a result there are no more msgs

// on the Message_Queue), then tell the Reactor

// not to notify us anymore.

if (msg_queue_->is_empty ()
Reactor: :instance ()->cancel_wakeup
(this, Event_Handler::WRITE_MASK);




The Gateway Class

N ///‘\_"\

/ ) / ) v
- Q \
< Connector v ,” Service'-_ ¢ ik
~ < . Y 'y Manager )
N Object | 4~ =

AN -

S —

-~

\
INDEPENDENT

TN APPLICATIOV

/ N\ SPECIFIC
_~” Channel |

- \
\. Connector 4 -
N _/ N
\\ SING[EIOli//

/ .
~<—— .~ Routing X
. N . Table )
/ | INPUT CHANNEL. | o /
7 {wmmngl/\m@/
\
) Gateway/ _

\ 7

- —

e This class integrates other application-specific
and application-independent components

Gateway Class Public Interface

e Since Gateway inherits from Service Object
it may be dynamically (re)configured into
a process at run-time

// Parameterized by the type of I/0 channels.
template <class INPUT_CHANNEL, // Input policies
class OUTPUT_CHANNEL> // Output policies
class Gateway
: public Service_Object
{
public:

// Perform initialization.
virtual int init (int argc, char *argv[]);

// Perform termination.
virtual int fini (void);

Gateway Class Private Interface

protected:
// Parse the channel table configuration file.
int parse_cc_config_file (void);

// Parse the routing table configuration file.
int parse_rt_config_file (void);

// Initiate connections to the Peers.
int initiate_connections (void);

// Table that maps Connection IDs to Channel *’s.
Map_Manager<CONN_ID, Channel *, Null_Mutex>
config_table_;
}

// Convenient short-hands.
#define IC INPUT_CHANNEL
#define 0C OUTPUT_CHANNEL

// Pseudo-code for initializing the Gateway (called
// automatically on startup).

template <class IC, class 0C>
Gateway<IC, 0C>::init (int argc, char *argv[])
{

// Parse command-line arguments.

parse_args (argc, argv);

// Parse and build the connection configuration.
parse_cc_config_file ();

// Parse and build the routing table.
parse_rt_config_file ();

// Initiate connections with the Peers.
initiate_connections ();
return 0;




Configuration and Gateway

Routing

GATEWAY

I |
I | |

Configuration Files

e The Gateway decouples the connection
topology from the peer routing topology

— The following config file specifies the connec-
tion topology among the Gateway and its Peers

# Conn ID Hostname Port Direction Max Retry

10002

10002 32
10002 32
10002 32
10002 32

— The following config file specifies the routing
topology among the Gateway and its Peers

# Conn ID Logical ID Payload Destinations

// Parse the cc_config_file and
// build the connection table.

template <class IC, class 0C>
Gateway<IC, 0C>::parse_cc_config_file (void)
{

CC_Entry entry;

cc_file.open (cc_filename);

// Example of the Builder Pattern.

while (cc_file.read_line (entry) {
Channel *ch;

// Locate/create routing table entry.
if (entry.direction_ == ’0°)

ch = new 0C;
else

ch = new IC;

// Set up the peer address.

INET_Addr addr (entry.port_, entry.host_);
ch->bind (addr, entry.conn_id_);
ch->max_timeout (entry.max_retry_delay_);
config_table_.bind (entry.conn_id_, ch);

// Parse the rt_config_file and
// build the routing table.

template <class IC, class 0C>
Gateway<IC, 0C>::parse_rt_config_file (void)
{

RT_Entry entry;

rt_file.open (cc_filename);

// Example of the Builder Pattern.

while (cc_file.read_line (entry) {
Routing_Entry *re = new Routing_Entry;
Peer_Addr peer_addr (entry.conn_id, entry.logical_id_);
Set<Channel *> *channel_set = new Set<Channel *>;

// Example of the Iterator pattern.
foreach destination_id in entry.total_destinations_ {
Channel *ch;
if (config_table_.find (destination_id, ch);
channel_set->insert (ch);

}

// Attach set of destination channels to routing entry.
re->destinations (channel_set);

// Bind with routing table, keyed by peer address.
routing_table.bind (peer_addr, re);




// Initiate connections with the Peers.

int Gateway<IC, 0OC>::initiate_connections (void)
{
// Example of the Iterator pattern.
Map_Iterator<CONN_ID, Channel *, Null_Mutex>
cti (connection_table_);

// Iterate through connection table
// and initiate all channels.

for (const Map_Entry <CONN_ID, Channel *> *me = 0;
cti.next (me) != 0;
cti.advance ()) {
Channel *channel = me->int_id_;

// Initiate non-blocking connect.
Channel_Connector: :instance ()->
initiate_connection (channel);

}

return O;

Dynamically Configuring Services

into an Application

e Main program is generic

// Example of the Service Configurator pattern.
int main (int argc, char *argv[])
{
// Initialize the daemon and
// dynamically configure services.
Service_Config::open (argc, argv);
// Run forever, performing configured services.

Reactor: :run_event_loop ();

/* NOTREACHED */

Using the Service Configurator

Pattern for the Gateway

SERVICE Thread

CONFIGURATOR ) Gateway
RUNTIME Reactive

Gateway

Service

Repository Thread Pool
Gateway

svc.conf dynamic Gateway Service Object *
FILE gateway:make Gateway() "-ORBport 2001"

e Replace the single-threaded Gateway with
a multi-threaded Gateway

Dynamic Linking a Gateway

Service

e Service configuration file

% cat ./svc.conf

static Svc_Manager "-p 5150"

dynamic Gateway_Service Service_Object *
Gateway:make_Gateway () "-d"

# .dll or .so suffix added to "logger" automatically

Application-specific factory function used
to dynamically link a service

// Dynamically linked factory function that allocates
// a new single-threaded Gateway object.

extern "C" Service_Object *make_Gateway (void);

Service_0Object *

make_Gateway (void)

{
return new Gateway<Input_Channel, Output_Channel>;
// ACE automatically deletes memory.

}




Concurrency Strategies for
Using the Active Object Pattern

for the Gateway

Patterns

e The Acceptor and Connector patterns do
not constrain the concurrency strategies
of a Svc_Handler

REGISTERED

: Output : Output OBJECTS >
Channel |/ Channel : Input

4: send(msg) Channel

APPLICATION

. . ua/: : Event
e There are three common choices: 2: recv(msg) {1 o

3: route(msg)

1. Run service in same thread of control

/
1: handle_input()

2. Run service in a separate thread

FRAMEWORK

3. Run service in a separate process

e Observe how OO techniques push this de-
cision to the “edges” of the design

KERNEL

— This greatly increases reuse, flexibility, and per-
formance tuning

Using the Half-Sync/Half-Async

Collaboration in the Active i
Pattern in the Gateway

Object-based Gateway Routing

Routing
Table

TASK LAYER

Message

'7 Subscriber
3: find() Set
4: put (msg)

— Channel

1: dequeue(msg)
2: send(msg)

LAYER

MESSAGE QUEUES

QUEUEING SYNCHRONOUS

2 recv(msg)
3 get_route(msg)
4: enqueue(msg)

: Input 1: dispatch()
Channel
W

272

1: handle_input () 5: send_peer(msg)
2: recv_peer(msg) -

ASYNCHRONOUS
TASK LAYER




APPLICATION-

CONNECTION-

Class Diagram for Multi- Threaded

Gateway

_~———1Channel SOCK_Stream
- SOCK_Connector MT_Synch
1 n =
/
Channel / Input

\, Connector /' acnvates /Thr_Output
P Channels

~
~
N

SPECIFIC
COMPONENTS

X
~7-{PEER_STREAM

)
7

7

{  Connector
\

\

N

ORIENTED
COMPONENTS

— ~. _

OOREER N =Y e
\CONNECTOR '\ ‘sTRAM |

e _ - 7
~S—-

FRAMEWORK
COMPONENTS

Service
Configurator

Reactor

Concurrency
global

Thr_Output_Channel Class

Interface

e New subclass of Channel uses the Active
Object pattern for the Output Channel

— Uses multi-threading and synchronous I/O (rather
than non-blocking I/O) to transmit message to
Peers

Transparently improve performance on a multi-
processor platform and simplify design

#define ACE_USE_MT
#include "Channel.h"

class Thr_QOutput_Channel : public Output_Channel
{
public:
// Initialize the object and spawn a new thread.
virtual int open (void *);

// Send a message to a peer.
virtual int put (Message_Block *, Time_Value *

// Transmit peer messages within separate thread.
virtual int svc (void);

};

Thr_Output_Channel Class

Implementation

e The multi-threaded version of open is slightly
different since it spawns a new thread to
become an active object!

// Override definition in the Output_Channel class.

int
Thr_Output_Channel::open (void *)
{
// Become an active object by spawning a
// new thread to transmit messages to Peers.

activate (THR_NEW_LWP | THR_DETACHED);
}

activate is a pre-defined method on class
Task

// Queue up a message for transmission (must not block
// since all Input_Channels are single-threaded).

int
Thr_Output_Channel::put (Message_Block *mb, Time_Value *)
{
// Perform non-blocking enqueue.
msg_queue_->enqueue_tail (mb, Time_Value: :zerop);

}

// Transmit messages to the peer (note simplification
// resulting from threads...)

int
Thr_Output_Channel::svc (void)
{

Message_Block *mb = 0;

// Since this method runs in its own thread it
// is OK to block on output.

while (msg_queue_->dequeue_head (mb) != -1)
send_peer (mb);

return O;




Dynamic Linking a Gateway

Service

Service configuration file

% cat ./svc.conf

remove Gateway_Service

dynamic Gateway_Service Service_Object *
thr_Gateway:make_Gateway () "-d"

# .dll or .so suffix added to "thr_Gateway" automatically

Application-specific factory function used
to dynamically link a service

// Dynamically linked factory function that allocates
// a new multi-threaded Gateway object.

extern "C" Service_Object *make_Gateway (void);

Service_0Object *

make_Gateway (void)

{
return new Gateway<Input_Channel, Thr_Output_Channel>;
// ACE automatically deletes memory.

}

ACE Streams

e An ACE Stream allows flexible configura-
tion of layered processing modules

e It is an implementation of the Pipes and
Filters architectural pattern

— This pattern provides a structure for systems
that process a stream of data

— Each processing step is encapsulated in a filter
component

— Data is passed through pipes between adjacent
filters, which can be re-combined

Session Router
Module

Event Filter
Module

Event Analyzer
Module

Switch Adapter
RUN-TIME Module

\

TELECOM
SWITCHES
\

Implementing a Stream in ACE

e A Stream contains a stack of Modules

e Each Module contains two Tasks

— j.e., a read Task and a write Task

e Each Task contains a Message Queue and a
pointer to a Thread Manager




Stream Class Category

Alternative Invocation Methods
APPLICATION APPLICATION
Stream
A £,

NETWORK INTERFACK
OR PSEUDO-DEVICES(

MESSAGE MODULE READ TASK READ TASK PROCESS OR
OBJECT OBJECT OBJECT OBJECT THREAD

MODULE WRITE ~ READ
TASK  TASK
OBJECT OBJECT OBJECT

Alternative Concurrency Models
ACE Stream Example: Parallel

I/O Copy

e Illustrates an implementation of the clas-
sic “bounded buffer” problem

e The program copies stdin to stdout via
the use of a multi-threaded Stream

(1) TASK-BASED (2) MESSAGE-BASED
CONCURRENCY MODEL CONCURRENCY MODEL

e In this example, the “read” Task is al-
ways ignored since the data flow is uni-

directional
S

MESSAGE PROCESSING TASK
OBJECT ELEMENT OBJECT




Producer and Consumer Object
c Obj Producer Interface

Interactions

0 ® €.4g.,
5: write()
// typedef short-hands for the templates.
e — typedef Stream<MT_SYNCH> MT_Stream;
| typedef Module<MT_SYNCH> MT_Module;
Consumer | typedef Task<MT_SYNCH> MT_Task;

Module

// Define the Producer interface.

class Producer : public MT_Task
{
public:
// Initialize Producer.
virtual int open (void *)
| {
Producer | //te}cti.vaz’?é}){ Ij\};wiilel;z:)rited from class Task.
activate ;
Module | } -

e e e e ———

// Read data from stdin and pass to consumer.
virtual int svc (void);

/...

1: read()

Consumer Class Interface

// Run in a separate thread.

int
Producer::svc (void) ® €4,
{
for (int n; ; ) {
// Allocate a new message.
Message_Block *mb = new Message_Block (BUFSIZ);

// Define the Consumer interface.

class Consumer : public MT_Task
{
public:

if ((n = read (STDIN, mb->rd_ptr (), mb->size ())) <= 0) // Initialize Consumer.
virtual int open (void *)

{
// Send a shutdown message to other thread and exit. t
mb->length (0);
this->put_next (mb);
}
break;
}
else

{

// Keep reading stdin, until we reach EOF.

// activate() is inherited from class Task.
activate (THR_NEW_LWP);

// Enqueue the message on the Message_Queue for

// subsequent processing in svc().

. . . T . =
mb->wr_ptr (n); // Adjust write pointer. zlrtual int put (Message_Block*, Time_Value 0)
// putq() is inherited from class Task.

// Send the message to the other thread. return putq (mb, tv);

this->put_next (mb); }
}
}
return O;

}

// Receive message from producer and print to stdout.
virtual int svc (void);

};




// The consumer dequeues a message from the Message_Queue,
// writes the message to the stderr stream, and deletes
// the message. The Consumer sends a O-sized message to
// inform the consumer to stop reading and exit.

int
Consumer: :svc (void)
{
Message_Block *mb = 0;

// Keep looping, reading a message out of the queue,
// until we get a message with a length == 0,
// which informs us to quit.

for (5;)
{
int result = getq (mb);

if (result == -1) break;
int length = mb->length ();

if (length > 0)
write (STDOUT, mb->rd_ptr (), length);

delete mb;

if (length == 0) break;
}
return 0;

}

Main Driver Function

e €.4d.,

int main (int argc, char *argv[])

{
// Control hierachically-related active objects.
MT_Stream stream;

// Create Producer and Consumer Modules and push
// them onto the Stream. All processing is then
// performed in the Stream.

stream.push (new MT_Module ("Consumer",
new Consumer) ;

stream.push (new MT_Module ("Producer",
new Producer));

// Barrier synchronization: wait for the threads,
// to exit, then exit ourselves.
Thread_Manager::instance ()->wait ();

return O;

Evaluation of the Stream Class

Category

e Structuring active objects via a Stream al-
lows “interpositioning”

— Similar to adding a filter in @ UNIX pipeline

e New functionality may be added by “push-
ing” a new processing Module onto a Streamn,
e.g.,

stream.push (new MT_Module ("Consumer",

new Consumer))
stream.push (new MT_Module ("Filter",

new Filter));
stream.push (new MT_Module ("Producer",

new Producer));

Concurrency Strategies

e Developing correct, efficient, and robust
concurrent applications is challenging

e Below, we examine a number of strategies
that addresses challenges related to the
following:

Concurrency control
Library design
Thread creation

Deadlock and starvation avoidance




General Threading Guidelines

A threaded program should not arbitrarily
enter non-threaded (i.e., “unsafe”) code

Threaded code may refer to unsafe code
only from the main thread

— e.g., beware of errno problems

Use reentrant OS library routines (“_r"
rather than non-reentrant routines

Beware of thread global process opera-
tions

— e.g., file I/O

Make sure that main terminates via thr_exit (3T)
rather than exit(2) or “falling off the end”

293

Thread Creation Strategies

e Use threads for independent jobs that must
maintain state for the life of the job

e Don’t spawn new threads for very short
jobs

e Use threads to take advantage of CPU
concurrency

e Only use “bound” threads when absolutely
necessary

e If possible, tell the threads library how
many threads are expected to be active
simultaneously

— e.g., use thr,setconcurrency

General Locking Guidelines

Don’t hold locks across long duration op-
erations (e.g., I/O) that can impact per-
formance

— Use “Tokens"” instead...

Beware of holding non-recursive mutexes
when calling a method outside a class

— The method may reenter the module and dead-
lock

Don’t lock at too small of a level of gran-
ularity

Make sure that threads obey the global
lock hierarchy

— But this is easier said than done...

Locking Alternatives

e Code locking
— Associate locks with body of functions

* Typically performed using bracketed mutex
locks

— Often called a monitor

e Data locking

— Associate locks with data structures and/or
objects

— Permits a more fine-grained style of locking

e Data locking allows more concurrency than
code locking, but may incur higher over-
head




Passive Object Strategy

Single-lock Strategy e A more OO locking strategy is to use a
“Passive Object"”

. . . . . — Also known as a “monitor”
One way to simplify locking is use a single,

application-wide mutex lock . . o .
Passive Object synchonization mechanisms

allow concurrent method invocations
Each thread must acquire the lock before — Either eliminate access to shared data or use

. . . synchronization objects
running and release it upon completion
— Hide locking mechanisms behind method inter-
faces

The advantage is that most legacy code * Therefore, modules should not export data
doesn't require changes directly

The disadvantage is that parallelism is elim- Advantage is transparency
inated

— Moreover, interactive response time may de- . .
grade if the lock isn't released periodically Disadvantages are increased overhead from

excessive locking and lack of control over
method invocation order

Active Object Strategy
Invariants

e Each task is modeled as an active object

that maintains its own thread of control In general, an invariant is a condition that
is always true

e Messages sent to an object are queued
up and processed asynchronously with re- For concurrent programs, an invariant is
spect to the caller a condition that is always true when an

associated lock is not held
— i.e., the order of execution may differ from the

order of invocation — However, when the lock is held the invariant
may be false

. . . — When the code releases the lock, the invariant
e This approach is more suitable to message must be re-established

passing-based concurrency

e €.g., enqueueing and dequeueing messages
e The ACE Task class implements this ap- in the Message Queue class
proach




Run-time Stack Problems
e Most threads libraries contain restrictions
on stack usage

The initial thread gets the “real” process stack,
whose size is only limited by the stacksize limit

All other threads get a fixed-size stack

* Each thread stack is allocated off the heap
and its size is fixed at startup time

e Therefore, be aware of “stack smashes”
when debugging multi-threaded code

— Overly small stacks lead to bizarre bugs, e.g.,

* Functions that weren’t called appear in backtraces
* Functions have strange arguments

Deadlock

e Permanent blocking by a set of threads
that are competing for a set of resources

e Caused by “circular waiting,” e.g.,

— A thread trying to reacquire a lock it already
holds

— Two threads trying to acquire resources held
by the other

* e.g., 71 and 15 acquire locks Li and Lo in
opposite order

e One solution is to establish a global or-
dering of lock acquisition (i.e., a lock hi-
erarchy)

— May be at odds with encapsulation...

Avoiding Deadlock in OO

Frameworks

e Deadlock can occur due to properties of
OO frameworks, e.g.,

— Callbacks

— Inter-class method calls

e There are several solutions
— Release locks before performing callbacks

* Every time locks are reacquired it may be
necessary to reevaluate the state of the ob-
ject

— Make private “helper” methods that assume
locks are held when called by methods at higher
levels

— Use a Token or a Recursive Mutex

Recursive Mutex

e Not all thread libraries support recursive
mutexes

— Here is portable implementation available in
ACE:

class Recursive_Thread_Mutex
{
public:
// Initialize a recursive mutex.
Recursive_Thread_Mutex (void);
// Implicitly release a recursive mutex.
~“Recursive_Thread_Mutex (void);
// Acquire a recursive mutex.
int acquire (void) const;
// Conditionally acquire a recursive mutex.
int tryacquire (void) const;
// Releases a recursive mutex.
int release (void) const;

private:
Thread_Mutex nesting_mutex_;
Condition_Thread_Mutex mutex_available_;
thread_t owner_id_;
int nesting_level_;




// Acquire a recursive mutex (increments the nesting
// level and don’t deadlock if owner of the mutex calls
// this method more than once).

Recursive_Thread_Mutex::acquire (void) const
{
thread_t t_id = Thread::self ();

Guard<Thread_Mutex> mon (nesting_mutex_);

// If there’s no contention, grab mutex.
if (nesting_level_ == 0) {
owner_id_ = t_id;
nesting_level_ = 1;
else if (t_id == owner_id_)
// 1f we already own the mutex, then
// increment nesting level and proceed.
nesting_level _++;
else {
// Wait until nesting level drops
// to zero, then acquire the mutex.
while (nesting_level_ > 0)
mutex_available_.wait ();

// Note that at this point
// the nesting mutex_ is held...

owner_id_ = t_id;
nesting_level_ = 1;
}

return O;

// Releases a recursive mutex.

Recursive_Thread_Mutex::release (void) const

{
thread_t t_id = Thread::self ();

// Automatically acquire mutex.
Guard<Thread_Mutex> mon (nesting_mutex_);

nesting_level_--—;

if (nesting_level_ == 0) {
// This may not be strictly necessary, but
// it does put the mutex into a known state...
owner_id_ = 0S::NULL_thread;

// Inform waiters that the mutex is free.
mutex_available_.signal ();

}

return O;

}

Recursive_Thread_Mutex: :Recursive_Thread_Mutex (void)
: nesting_level_ (0),
owner_id_ (0S::NULL_thread),
mutex_available_ (nesting_mutex_)

Avoiding Starvation

e Starvation occurs when a thread never ac-
quires a mutex even though another thread
periodically releases it

e The order of scheduling is often undefined

e This problem may be solved via:
— Use of “voluntary pre-emption” mechanisms

x e.g., thr yield () or Sleep

— Using a “Token” that strictly orders acquisition
and release

Drawbacks to Multi-threading

e Performance overhead

— Some applications do not benefit directly from
threads

— Synchronization is not free

— Threads should be created for processing that
lasts at least several 1,000 instructions

e Correctness

— Threads are not well protected against inter-
ference from other threads

— Concurrency control issues are often tricky

— Many legacy libraries are not thread-safe

e Development effort

— Developers often lack experience

— Debugging is complicated (lack of tools)

308




Lessons Learned using OO

Patterns

e Benefits of patterns

— Enable large-scale reuse of software architec-
tures

— Improve development team communication

— Help transcend language-centric viewpoints

e Drawbacks of patterns

— Do not lead to direct code reuse
— Can be deceptively simple

— Teams may suffer from pattern overload

Lessons Learned using OO

Frameworks

e Benefits of frameworks

— Enable direct reuse of code (cf patterns)

— Facilitate larger amounts of reuse than stand-
alone functions or individual classes

e Drawbacks of frameworks
— High initial learning curve

* Many classes, many levels of abstraction

— The "inversion of control” for reactive dispatch-
ing may be non-intuitive

— Verification and validation of generic compo-
nents is hard

Lessons Learned using C++4

e Benefits of C++

— Classes and namespaces modularize the system
architecture

— Inheritance and dynamic binding decouple ap-
plication policies from reusable mechanisms

— Parameterized types decouple the reliance on
particular types of synchronization methods or
network IPC interfaces

e Drawbacks of C++

— Many language features are not widely imple-
mented

— Development environments are primitive

— Language has many dark corners and sharp
edges

Software Principles for
Distributed Applications
1. Use patterns and frameworks to separate
policies from mechanisms

e Enhance reuse of common concurrent program-
ming components

2. Decouple service functionality from configuration-
related mechanisms

e Improve flexibility and performance

3. Utilize OO class abstractions, inheritance,
dynamic binding, and parameterized types

e Improve extensibility and modularity




Software Principles for

Distributed Applications (cont’d)

1. Use advanced OS mechanisms to enhance
performance and functionality

e e.g., implicit and explicit dynamic linking and
multi-threading

2. Perform commonality/variability analysis

e Identify uniform interfaces for variable compo-
nents and support pluggability of variation

Conferences and Workshops on

Patterns

e Pattern Language of Programs Confer-
ences

— September, 1999, Monticello, Illinois, USA

— st-www.cs.uiuc.edu/users/patterns/patterns.htmi

e The European Pattern Languages of Pro-
gramming conference

— July, 1999, Kloster Irsee, Germany

— www.cs.wustl.edu/~schmidt/patterns.html

e USENIX COOTS

— May 3-7, 1999, San Diego, CA

— www.usenix.org/events/coots99/

Patterns and Frameworks

Literature

e Books

— Gamma et al., “Design Patterns: Elements
of Reusable Object-Oriented Software” AW,
1994

— Pattern Languages of Program Design series
by AW, 1995—-97.

— Siemens, Pattern-Oriented Software Architec-
ture, Wiley and Sons, 1996

e Special Issues in Journals

— October '96 CACM (guest editors: Douglas C.
Schmidt, Ralph Johnson, and Mohamed Fayad)

— October '97 CACM (guest editors: Douglas C.
Schmidt and Mohamed Fayad)

e Magazines

— C++4 Report and JOOP, columns by Coplien,
Vlissides, Vinoski, Schmidt, and Martin

Obtaining ACE

The ADAPTIVE Communication Environ-
ment (ACE) is an OO toolkit designed ac-
cording to key network programming pat-
terns

All source code for ACE is freely available

— www.cs.wustl.edu/~schmidt/ACE.html

Mailing lists

* ace-users@cs.wustl.edu

* ace-users-request@cs.wustl.edu

* ace-announce®@cs.wustl.edu

* ace-announce-request@cs.wustl.edu

Newsgroup

— comp.soft-sys.ace




Concluding Remarks

e Developers of communication software con-
front recurring challenges that are largely
application-independent

— e.g., service initialization and distribution, error
handling, flow control, event demultiplexing,
concurrency control

e Successful developers resolve these chal-
lenges by applying appropriate patterns to
create communication frameworks

e Frameworks are an effective way to achieve
broad reuse of software




