Target Manager — A Resource Provisioning Service fo
Enterprise Distributed Real-time and Embedded Syst@s

Nilabja Roy, Nishanth Shankaran, and Douglas Crdh
Vanderbilt University, Nashville TN, USA 615-343%1
{nilabjar, nshankarschmidt}@dre.vanderbilt.edu

Abstract. Middleware is increasingly used to develop andi@epomponents
in enterprise distributed real-time and embeddeREPsystems. A key chal-
lenge in these systems is devising resource marexgeatgorithms that deploy
application components properly onto target nodes.provide an accurate
view of system resource utilization, these algonghneed runtime monitoring
of resources. Runtime monitoring and allocatiomresfources is also needed to
make redeployment or reconfiguration decisionsgeigd by various factors,
such as failures, attacks, overloads, or changemiatity of service (QoS) re-
guirements. DRE systems with a diverse range ofiGgtjpns can therefore
benefit from a common resource provisioning serciapable of monitoring re-
source data and enabling proper resource allocatiartimely manner.

This paper provides two contributions to the stoflyuntime resource provi-
sioning for enterprise DRE systems. First, it dibes the challenges in devel-
opingBulls-Eye, which is an open implementation of the OMG staddzarget
Manager specification that provides a reusableiceifor provisioning distrib-
uted resources in enterprise DRE systems. Secbprksents the results of ex-
periments that applied Bulls-Eye to the multi-layesource management sub-
system of a shipboard computing environment. Osulte show that provi-
sioning resources at runtime in a DRE system villsHtye simplifies resource
management and helps automate adaptations in ¢heofadynamic changes in
operating conditions.

Keywords: Resource Provisioning, Component Technology, DynaRée-
source Management, CORBA Component Model.

1 Introduction

Resource Provisioningchallenges of component-based enterprise DRE system
Applications in the domain of enterprise distriliitend real-time embedded (DRE)
systems, such as shipboard computing environmesatgllite constellations, and
surveillance and reconnaissance systems, are ¢hidzad by stringent quality of
service (QoS) requirements and operate in dynamit rasource-constrained envi-
ronments. The operating modes of these systemsdgmamically vary in response to
changes in policies or input loads, and they oéieecute across heterogeneous plat-
forms. Certain enterprise DRE system charactesissitich as their longevity and
complexity, motivate the use of component-basectldgwvnent. In this context, com-
ponents are units of implementation and compositlat have well-defined QoS
requirements and resource consumption profileenterprise DRE systems, applica-
tions consist of groups of domain-related tasks taa be implemented by param-
eterized and executable software components uso®té&pabled component middle-

ware platforms, such as OMG Lightweight CORBA Comgrat Model (CCM) [3]
and PRiSM [14].

Although component technologies can help enhanite@® reuse, maintenance, and
extensibility [19], they also introduce nedeployment and configuration challenges
[15] stemming from the need to shield applicatiand users from the complexities of
heterogeneous and dynamically changing hardwate/ad environments. The proc-
ess of deploying enterprise DRE systems involvesitarg adeployment plan that
allocates available computing and communicatioouess (e.g., memory, CPU, and
network bandwidth) to the components and estaldisbanections between them. To
prepare an effective deployment plan, the DRE gysteeds to know the resources
available in the target domain so that resourceswmption profiles of the compo-
nents can be mapped properly to the available ctimpuodes and communication
links. It is also important to track resource usageuntime so that components can be
redeployed and/or reconfigured to adapt to chamgepplication operating condi-
tions caused by policy changes or failures, whiakstrbe detected quickly so the
system can adapt with minimum disruption.

One way to address these challenges is to cesig®ource provisioning service that

(1) monitors the resources available in the tadgetain, (2) supplies this information
to human and/or automated planners who preparglaydeent plan using the current
resource profile, (3) dynamically allocates resesrt¢o deployed components and
releases resources when the components are teedhiatd (4) facilitates component
redeployment and reconfiguration based on resoaraglability and constraints.
Developing such a resource provisioning serviceeftterprise DRE systems is hard
due to the need to handle platform heterogeneitsti® responsiveness and scalabil-
ity, and enable dynamic updates within time coistsa

This paper describes the design and applicatidBublé-Eye, which is an implemen-
tation of the Lightweight CCM Target Manager spieeifion [6] that is tailored to the
needs of enterprise DRE systems. In particulargdesigned Bulls-Eye to optimize its
CPU and I/O usage to provide fast/predictable actesesource information and en-
able its use to provision enterprise DRE systenih wirange of QoS requirements.
The resulting object-oriented framework has bedrgirated with theComponent-
Integrated ACE ORB (CIAO) (www.dre.vanderbilt.edu/CIAY) which is an open-
source implementation of Lightweight CCM that haei applied to several enter-
prise DRE systems, including a shipboard compusiysiem and a prototype of a
NASA science mission.

The remainder of this paper is organized as folldexction 2 describes a case study
that motivates the need for a resource provisiofiagework in shipboard comput-
ing systems; Section 3 discusses the structurduanationality of the Bulls-Eye Tar-
get Manager; Section 4 explains the design chadleribat we overcame while de-
veloping Bulls-Eye and applying it to the shipboaimputing domain; Section 5
summarizes the results of experiments that measheesverhead of Bulls-Eye and
demonstrates its utility in the context of a prgpat shipboard computing system;
Section 6 compares our work on Bulls-Eye with edatesearch; and Section 7 pre-
sents concluding remarks and outlines our lessara¢d during this project.

2 Case Study: An Enterprise DRE System for Shipboard
Computing

This section describes the structure and functignaf the Multi-Layer Resource
Management (MLRM) subsystem for shipboard computing that v8e as our running
case study in the paper to motivate our work onlsBiye. A shipboard computing
environment is a metropolitan area network of comafonal resources and sensors
that provides on-demand situational awareness atuhtion capabilities for human
operators, and responds flexibly to unanticipatestime conditions. To meet such
demands in a robust and timely manner, the shipboamputing environment uses
services in the MLRM subsystem to (1) bridge thp batween shipboard applica-
tions and the underlying operating systems and lendare infrastructure and (2)
support multiple QoS requirements, such as surilitglpredictability, security, and
efficient resource utilization. To support the decated operational tempo in modern
shipboard computing systems, the MLRM software nadapt in response to dy-
namic conditions for the purpose of utilizing theadable computer and communica-
tion resources to the highest degree possible & alenging mission needs.

omain Layer

Mission ﬁfi/:f

‘Mesource Pool

Layer
Pool Manager

Bulls-Eye
02 Target Manager

/_ﬁﬂ
Resource
A Layer
Node

Provisioner
arget Domaijn

A

Figure 1.Layered Architecture of the MLRM Subsystem

The MLRM subsystem described in this paper congikthe three layers shown in
Figure 1. The command and policy inputs flow inop-town manner and corre-
spondingly the resource status information moves ottom-up fashion. At the top
is theDomain Layer, which consists of th#lission Allocator. This allocator collects
command and policy inputs and passes them ontoRésmurce Pool Layer, which
represents a set of computing resources managadPbgl Manager. The Pool Man-
ager in turn interacts with theesource Allocation and Control Engine (RACE) [13],
which a reusable framework that separates resalimeation and control algorithms
from the underlying middleware deployment, confagion, and control mechanisms

so that different algorithms can reuse common reiddre mechanisms to (re)deploy
components onto nodes and manage the node’s resoamtong competing applica-
tions. The bottom layer is thHeesource Layer, which contains the entire set of hard-
ware elements in the shipboard computing enviromiamown as theTarget Do-
main. Each node in turn containsNide Provisioner that receives commands from
RACE to create and destroy applications on the node

The MLRM subsystem is built using ttf&omponent-Integrated ACE ORB (CIAO).
CIAO combined_ightweight CCM [5] mechanisms (such as standards for specifying,
implementing, packaging, assembling, and deployinghponents) andReal-time
CORBA [7] mechanisms (such as thread pools and pripriggervation policies). The
MLRM subsystem has scores of different types amthimces of CCM components
written in ~500,000 lines of C++ code and residimg-1,000 files developed by five
teams at different locations (dtsn.darpa.mil/ixea@ech/ixo_FeatureDetail.asp?id=6).

The scale, complexity, longevity and multiple Q@guirements of a shipboard com-
puting environment necessitates that its componeatseployed and allocated using
effective resource management techniques [5]. Tégsirement, in turn, motivates
the need for accurate information on resource abditly in the domain. The Bulls-
Eye Target Manager shown in Figure 1 serves thistfanality for the MLRM sub-
system by providing runtime information on resouusage that helps RACE opti-
mize component allocation and meet end-to-end @qg8irements.

Bulls-Eye is used during initial system deploymeiiten RACE runs algorithms to

allocate components to the appropriate nodes iesaurce pool. These algorithms
interact with Bulls-Eye to obtain information redarg resource utilization in the

target domain. This data is used to produce a gle@at plan needed to deploy the
system via DANCE, which is CIAO’s implementationtbE OMG Deployment and

Configuration (D&C) specification [1]. The D&C spécation standardizes many as-
pects of deployment and configuration for compossged distributed systems, in-
cluding component configuration, component assejrdoynponent packaging, pack-
age configuration/deployment and repository manageraf component implementa-
tions. Bulls-Eye is also used at runtime to extidgtamic resource availability data
and update component implementations dynamicalfy, & response to damage or
to handle changing workload levels.

A particularly important function of the resourdéoeation and control algorithms in

the MLRM subsystem is the (re)deployment and (nefigoration of components

based on their operational context. For examphipboard computing environment
may need to switch rapidly from crew entertainmeride to ship defense mode,
which necessitates updating and/or migrating masmputing services. Bulls-Eye

therefore provides mechanisms to retrieve the resoavailability data across the
entire target domain by monitoring and dynamicalpdating component resource
usage. RACE uses data provided by Bulls-Eye anddfeirements of each compo-
nent to generate an optimized deployment plan anensure that the components
allocated conform to the characteristics of eactiet® hardware, OS, middleware,
and programming language(s), which can be hightgrdie.

3 The Design of the Bulls-Eye Target Manager

Bulls-Eye is a resource provisioning service desijto enable software developers
and applications in enterprise DRE systems todtt)ave a list of the initial available
resources in a target domain, thereby enablingthparation of a deployment plan
fulfilling the allocation and connection requirenteiof each component, (2) allocate
resources for a particular deployment plan andassleresources when the compo-
nents or the entire deployment is removed, (3)iobtantime resource available in
the system, and (4) dynamically update the resococsumption data. This section
describes how the structure and functionality ofi8kye supports these capabilities
in the context of the Lightweight CCM Target Managpecification.

3.1 Structure of Bulls-Eye

Figure 2 shows the architecture of Bulls-Eye, whicimsists of a CORBA interface
specified in the Target Manager specification. 8#llye is comprised of two parts:
(1) a centralizetservice, known as the Target Manager cdid-tCore) used by ap-
plications and system services allocate and reless®rirces as needed and (2) multi-
ple monitors TM-Monitor) distributed across the domain that perform ressunoni-
toring and update the TM-core’s model of the amafntesources available at any
point in time.

<<clients>>
RACE
Planner
Resource
TM- Core |::> Consumed/
<<clients>> / Available
RACE
Controller
Domain / N
TM-Monitor TM-Monitor
Monitor || Monitor | | Monitor Monitor || Monitor | | Monitor
Component Host Component Host

Figure 2. The Bulls-Eye Target Manager Architecture

The Domain comprises of all the elements of a taggeironment comprising of
nodes, interconnects between them, bridges comgelstitween interconnects and the
set of resources belonging to themDAmain is a logical concept wherein a single
resource or node element can be part of more thantarget domainDomains are
therefore structured hierarchically, and a topdledemain may contain other do-

1 There is only one logical instance of the TM-cioréhe domain, though it can be replicated to
enhance availability and prevent a single poirfadéire.

mains. Each Domain will have a TM-Core accumulatimg resource information for
the associated target domain.

The TM-core provides a standard set of operatibas dpplications and system ser-
vices can use to provision available resoustatically (i.e., prior to system launch)
as well adynamically (i.e., during system runtime) in the form of a gea structure
known as theDomainStruct [4]. This structure describes the contents of the entire
target environment by composing data related tdlable nodes in the network, the
connections between nodes, connection between nefwthe shared resources
among them, and the resources for each element.

A TM-Monitor is placed on each logical node in tlaeget domain and monitors the
resource usage in that node. The TM-Monitor pecaity update to the TM-core,
with the current resource utilization/availabiliby that node. Upon receiving th up-
dated, the TM-Core aggregates the data received prévious data and updates its
content.

Bulls-Eye maintains a top-lev@®omain element that contains all the elements of a
target domain and is uniquely identified by a unsedly unique identifier (UUID).
This Domain element is designed so that all possible dom&mehts can be incorpo-
rated, which alleviates the need to create sepatatetures for different types of
resource, such as processor, memory, storage,rametivork bandwidth. This design
also makes client code flexible by alleviating theed for any specific type of re-
source in the domain since it can handle all thréetias of resource elements present
in the domain.

The TM-Monitors collect data pertaining to theitbsdomain and updates the TM-
Cores with fresh data. Clients are interested ta daross different sub-domains, so
the data from different TM-Monitors need to be aggted and presented uniformly.
In order to avoid latency issues, the distributeshitors push in only the data that
changed from the previous update. This data iseagged with the remaining domain
data which is already present.

3.2 Functionality of Bulls-Eye

Bulls-Eye provides the following standard Targetrdger operations that can be
invoked by clients to provision system resources:

* Querying static resources.Developers or planner applications can gge
t Al | Resour ces() to obtain the initial static resources in the targemain.
This operation returns thBomain structure that contains the entire domain re-
source in a hierarchical fashion.

* Querying dynamic resourcesDynamic time resource availability can be returned
by get Avai | abl eResource (). This operation returns the sarB®main
structure as above, except thta the resourcestéfieir remaining capacity.

« Committing resources.A planning application can call tor eat eResour ce-
Commi t nent () to commit (i.e., allocate) resources for a paréicudeployment
plan. This operation creates Resour ceConmi t ment Manager that can be
used to commit and release resources for a spgidiic A pool of resources can

be specified when a call wr eat eResour ceConmi t ment () is made or can
be allocated after it is created. An exceptioraised if a requested resource cannot
be committed.

* Releasing resourcesWhen an application or a component in an applicatfo
deleted all the resources allocated to it musteteased so they can be reallocated
when new applications are deployed. Resources eaelbased by an application
by calling r el easeResources() on the associatedResour ceComni t -
ment Manager . When aResour ceCommi t ment Manager is itself deleted via
dest r oyResour ceCommi t nent (), all remaining committed resources are re-
leased automatically.

» Updating dynamic resource data.The domain data in the TM-core can be up-
dated viaupdat eDomai n() . The updated information is passed in the form of
Domain structure, which is a subset of the higher lexahdin structure. An enu-
meration calledDomainUpdateKind can be passed to tell Bulls-Eye whether the
subset should be added, deleted, or updated.

The Bulls-Eye Target Manager functionality playkey role in the deployment and
configuration of enterprise DRE systems. On stariupeads a configuration script
containing the resources present in the domain.sthiet is prepared by a human or
automated domain administrator who understandttial domain contents, such as
nodes, the interconnects linking them, and theuress contained in them and avail-
able for application usage, such as processor itgpacemory capacity, and disk
capacity. The TM-Monitor is used to monitor compatseon a host is collocated and
started together with its associated NodeManagkichwis an entity defined by the
OMG D&C specification and implemented by CIAO adagmon process running on
each host.

At startup, the TM-core is passed the subset ofCibemain tells the TM-Monitor
which resources to monitor on the host. The TM-Mamthen checks th®omain
information and reports any discrepancies (suchthashard disk capacity being
smaller than the initial domain description or tiogle is single processor node instead
of a dual processor) to the TM-Core. Once Bulls-Eyep and running, it can be used
by the clients to make the above queries aboutitmeain, e.g., RACE components
can extract domain related information for prepgréndeployment plan. Any entity
willing to deploy plans in the domain will need ¢commit resources through Bull-s
Eye to successfully deploy and ultimately run aggiions.

4 Resolving Bulls-Eye Design Challenges

Although the CCM specification defines the intedaand the functionality of the
Target Manager service it does not prescribe amsjgdedetails. We were therefore
faced with a number of design challenges when implging Bulls-Eye. This section
describes the key design challenges we encountpredents our implementation
solutions, and outlines how we applied these smigtito the shipboard computing
applications supported by the MLRM subsystem dbsdrin Section 2.

Challenge 1: Integrating the Heterogeneous API of Mitiple Platforms

Context. The domain of DRE systems typically consists oftipld platforms across
the target environment. Each platform has it's glatform-specific application pro-
gramming interfaces (APIs) that provide currentotese data. For example, in
Unix/Linux we can get the resources used up by gaokess such as processor,
memory, byes sent/received information from th@dmystem file-structure, but for
Windows a DLL needs to be loaded that provides Bh far querying resource con-
sumption data.

Problem -2 Integrating the heterogeneous APl of multiple platforms. The data
returned by the platform-specific APl have theirrostructures, units and, semantics.
There must be some type of conversion algorithmittiarpret this data in a common
way so that the proper resource management desisiam be made. Moreover, the
resource utilization information provided to clisrdf Bulls-Eye should be consistent,
i.e., use similar units/structures. Otherwise, ukers of the data will need to convert
them manually, which is tedious, error-prone, aad ygield redundancy in conversion
logic. Ideally, it should be the responsibility thfe middleware to convert disparate
data into a uniform consistent form that can belirgaised by clients.

Monitor Component

TM-Monitor -monitor

+start()
1 " [stop()
+get_current_data()

Fig. 3. Using the Adapter Pattern in Bulls-Eye

Solution 2 Use the Adapter pattern to adapt diverse API. To mitigate the problem

of diverse resource management APIs in Bulls-Eyeused the Adapter pattern [2],
which converts non-standard APIs that extract resodata into the standard inter-
face defined by the Target Manager specificatidme implementation of this inter-

face converts the platform-specific data into garni type for storage and distribu-
tion to clients of Bulls-Eye.

The extraction of resource consumption data i&yrand the accurate value depends
upon the usage of a number of optimizations. Wel g®ene of the points mentioned
in [20] appropriate to our solution such as “kegpiproc open between reads” and
“reading data in a block rather than individual rettéers.” The data also depends
upon the processor architecture as also hardwanfégaeation, for example in a sin-
gle processor Linux machine it is easy to collémt €PU consumption data from
Iproc file system, but if there are multiple prasms or new technology (such as
hyper-threading) used the extraction of the sante lb@comes complex.

Applying the solution to the MLRM case study. The MLRM Node Provisioner
spawns applications on each host. It uses CIAO'dadNdanager to start up the com-
ponents that make up a particular application. &d¢ede Managers contain the in-
stances of TM-Monitor for the designated host. Bgrsystem startup, the TM-Moni-
tor loads the component suitable for the correspanglatform using CIAO’Repo-

Man [16] implementation of the Lightweight CCM Repasit Manager specification.
These components collect low-level data, convett ithe standard structure Bulls-
Eye expects, and the TM-Monitor then correspond wie component using the
standard interface and collects the required data.

Challenge 2: Providing a common access point to pvision resources in a
domain

Context. Enterprise DRE systems are often distributed aadogens or hundreds of
entities. The entire application environment igduiehically arranged with a top level
domain containing sub-domains in it which in tumntains computing nodes con-
nected via many routers and interconnects alonf thieir resources. Any planner
specific to a domain will require information ofsmrces contained in the entire
domain.

Problem -2 Accessing data through a common access point. The resource utiliza-
tion/availability data of all such different enéi§ need to be provided through a single
point common location for the users to make usth®fdata. Otherwise, the client has
to parse through hierarchically arranged domaimscflect data, and merge it in the
right way to make use of it. This is error-pronel as time-consuming, which also
means that the client may be working with staleadahile the resource condition
may have changed.

—

VA S
Iy o
¢ — bomain o P)

)
\KA‘ /\M\)/

]A
\HE
Resource

] Sha >

<<Managsr>>
=

BSqetAliResources()
E®getAvailableResources()
E\‘a;ommnResources()
‘SidestroyResourceCommitment()
SupdateDomain()

Figure 4. Providing a Common Access Point to DomaiResource Data

Solution 2 Use distributed monitors to collect data across the domain. To solve the
above problem of providing a common access poindéda in the domain, we use
TM-Monitors across the domain located in nodeshim target domain and a single
instance of the server (TM-Core), which is a seniit one node in the current do-
main. There can be multiple instances of this seipeplica to increase reliability.
These monitors communicate with the central seawver send data updates at a peri-
odic interval (configured externally). The monitansturn make use of the platform-

independent adapters described above to extraatemirce information. Thus the
solution above ensures that the monitoring proiseearried out in a scalable way in a
hierarchical fashion while, at the same time pringda common access point for all
resource data in the domain.

Applying the solution to the MLRM case study. As mentioned before the Node Pro-
visioners take the help of Node Managers in ordestart-up the applications in each
host. The TM-Monitors also start up along with tHhede Managers and receive a
Domain structure specifying which resources it needs taitoo Using this configu-
ration it starts monitoring the resources and sdyatk data to the centralized TM-
Core.

Challenge 3: Presenting data to clients with fast esponse time in uniform
structure

Context. An enterprise DRE system can have many resouneg¢site present in vari-
ous forms of composition. For example, a targetaiamay consist of X hosts, each
host can consist of Y elements, e.g., one hostheae a sound card connected to it
while another may have a video card. The data fdfarent sections of the domain
need to be presented in a uniform and aggregated fiwr the clients to use the data
for effective resource management. The data alsds® be relevant, the changes in
the domain need to captured with very low respdinse so that it is useful for clients
to make use of the data meaningfully.

Problem 2 Providing aggregated data of entire domain with fast response time. In

a typical application scenario there can be numedmmain elements, data related to
all these elements can be huge and there can hificgigt latency in transfer of such
information. Data updates from distributed monitors will reatle ttentral server
separately and will pertain to only a specific g@ciof the entire domain. These up-
dates need to be merged along with multiple sudaigs to the main data store,
parsing and trying to find the corresponding dévaesfor a particular resource can be
costly and can significantly slow down the respatise. Thus, there is a need for an
efficient and scalable algorithm to handle the da¢age.

Solution 2 Combination of heap-sort and timer based aggregation algorithm. To
solve the above problem, Bulls-Eye uses a comlunaif two approaches, |) it opti-
mizes the data uploaded to the TM-Core to minimizeecessary CPU and network
processing by maintaining a cache of the last @pdant to the TM-Core. Whenever
it gets fresh data from the underlying componemihpares the data received with
the cached data. It only sends a data update rié tiseany difference. For example,
when memory resource is monitored, if a particodading informs the TM-Monitor
that the memory usage has not changed from theufddte to the TM-Core then
there is no update sent to the TM-Core.

II) It uses a combination of a heap-sort algoritanmd a timer based aggregation
mechanism is employed. Heap sorting gives an Or(Jagne complexity in the worst

case. We label each resource entity with a unideetity and place the identity along
with the pointers to the actual data structure imeap. There is also a timer which
fires at regular intervals (configured externalBfice updated data from the monitors
is received, it is stored in a cache. On the fimhghe timer, the cache is examined for

any outstanding data update. The resource entitf ithe update is searched in the
heap and its corresponding data structure is ugdateonstant time. This gives us an
O (log n) time complexity in the worst case. The -Ménitor optimizes the data
uploaded to the TM-Core to minimize unnecessary @RUd network processing by
maintaining a cache of the last update sent tortleCore. Whenever it gets fresh
data from the underlying component it comparesdae received with the cached
data. It only sends a data update if there is affigrdnce. For example, when mem-
ory resource is monitored, if a particular readinfprms the TM-Monitor that the
memory usage has not changed from the last upddteetTM-Core then there is no
update sent to the TM-Core.

Applying the solution to the MLRM case study. The operational context of a ship-
board computing environment evolves continuouslky,, é needs to satisfy changing
mission requirements and adapt to transient ovérboad failure in the nodes. Such
changes provoke a reaction in the control algorithinat drive the dynamic update or
the partial or complete redeployment of the systkrorder to achieve this, current
domain resource data should be available. The alpesd aggregation algorithm used
by Target Manager (1) improves the responsivenefsedlarget Manager and allows
it to collaborate faster with clients (such as MERM subsystem and its applica-
tions) and (2) helps reduce the costs associatdd retleploying and updating the
system, thereby enabling more CPU and 1/O procgdsirbe spent performing mis-
sion tasks and meeting system deadlines.

Challenge 4: Using Multiple Configurable Monitor Components to Extract
Variety of Data

Context. There are many types of elements in a typicaletadgpmain for enterprise

DRE systems. Each element can have its own moodoiponent supplying its re-

source usage. These separate monitors could aldevatoped by multiple vendors,

e.g., in some platforms there can be vendor supgddtware component providing

the processor consumption data (Windows) whiletirexs a developer may need to
write code to access the data (Linux/Unix), andogker applications may want to use
specialized third-party hardware monitoring ui

Problem -2 Using multiple configurable monitor components to extract variety of
data. Bulls-Eye’s TM-Monitor communicates with the undémnlg components to
extract data. Since there can be different elemattdshed with a host, it must keep
track of each element to be monitored along wghcidmponent. For example there
can be a component monitoring CPU and memory usalgige another can monitor
the usage of a I/O and disk space. There is asméled to swap displays for a par-
ticular type of resource, e.g., when there is agrage of a display with its latest ver-
sion.

Solution 2 Initial Domain data configured with resource element and component
name. The initial Domain data sent to TM-Monitor is digured with the name of the
element to be monitored along with its’ componesitne, which is done by the Do-
main Administrator before the startup of Bulls-Eyiéhe resources that need to be
tracked are initially configured. The Strategy pattis used here to load and unload
multiple components for the same resource elemAtitthe components confirm to a

particular interface, containing life-cycle actigi and data supplying operations. The
component is loaded by the TM-Monitor and it maiméaa map of resource element
to component name. The TM-Monitor makes a callaohecomponent to start and
stop the component and also periodically and deetis turrent data. It also combines
the data from each component into one sifignain structure before uploading it to
the TM-Core, which makes it easy to extend Bull-Eyeonitoring capabilities.

Applying the solution to the MLRM case study. The Domain Administrator creates
the configuration initially. The elements monitoredeach host are included along
with their components. During startup tbemain data reaches each TM-Monitor in
each host. TM-Monitor then loads the component sitadts monitoring. In case it
fails to find the component, TM-Monitor throws axception.

5 Experimental Evaluation of Bulls-Eye

This section outlines the testbed that providesifrastructure for a representative
enterprise DRE system from the domain of shipbaardputing used to evaluate the
performance of Bulls-Eye, describes our experimeatsl analyzes the results ob-
tained to evaluate the performance of Bulls-Eye.

5.1 Hardware/Software Testbed

Our experiments were performed on the ISISLab éktht Vanderbilt University
(www.dre.vanderbilt.edu/ISISlab). The hardware dgunfation consists of three
nodes acting as the system domain. The hardwafeaoation of all the nodes was a
2.8 GHz Intel Xeon dual processor, 1 GB physicaimoey, 1Ghz Ethernet network
interface, and 40 GB hard drive. Redhat Fedora @dease 4 operating system run-
ning in real-time scheduling mode was used fotredInodes.

et Q@ = 00 - O

Node 2 Node 4 Node 6
Mission Critical Bull-s Eye Bull-s Eye
TM Core TM Monitor

E Mission Support
Application Component such as
Best Effort . Sensors, Planners, Effectors
Figure 5. Operational Strings in the Testbed
Figure 5 shows our representative enterprise DRIEeRy test configuration, which
was composed of three operational strings [13]heantaining six application com-
ponents. The application components were implendeasing work load generators

[18]. Real-time QoS properties and requirementgheSe operational strings are
specified by their relative priority and end-to-edéadline, respectively. The three

operational strings were composed of one missidit&l; one mission-support, and
one best-effort operational string. The missiotigal operational string was config-

ured with the highest priority, followed by the siisn-support and best-effort opera-
tional strings. An end-to-end deadline of 500 ms wecified for the mission-critical

operational string.

To evaluate the utility of Bulls-Eye, we deploydue tmission-critical operational

string followed by the best-effort operational styj which was then followed by the
mission-support operational string. At each nodiiwithe domain, Bulls-Eye moni-

tored the net processor utilization, as well ascgssor utilization per each compo-
nent. We also monitored the end-to-end executioe tf the mission-critical opera-

tional string. Since Bulls-Eye is implemented asomponent, we also monitored the
resource utilization of Bulls-Eye to determine therhead of Bulls-Eye itself.

In conjunction with Bulls-Eye, thBesource Allocation and Control Engine (RACE)
[13] was used in our experiments to ensure enditbexecution time of the mission-
critical operational string was below its end-taletieadline. RACE enables DRE
system developers to configure allocation and cbralgorithms depending on the
characteristics of applications being deployed andbles the use of multiple algo-
rithms without needing to handcraft the mechanissed to configure the algorithms.
It also deploys the application components to werioodes within a resource pool
using specialized allocation algorithms. Input®R&CE include (1) end-to-end dead-
line of mission-critical operational string and (2)ntime resource utilization infor-
mation, which was provided by Bulls-Eye.

5.2 Analysis of Results

This section presents results from running the eyt described above on our
ISISlab testbed. We used end-to-end execution diilee mission-critical operational
string as a metric to evaluate the utility of BtlHge and the resource utilization by
Bulls-Eye as a measure of the infrastructure ovath&esource utilization informa-
tion collected by Bulls-Eye for the six nodes ie thomain is shown in Figures 6-A,
6-B, 6-C, 6-D, 6-E, and 6-F as a function of tiremd-to-end execution time of the
mission-critical operational string is shown in &g 7 as a function of time. Since
Bulls-Eye was deployed on node 6, Figure 6-F alsptures the overhead of the
Bulls-Eye infrastructure.

% Utilization

500 1000 1500 2000 2500
T

Figure 6-A. Node 1 Figure 6-B. No&e

§

i NJ

% Utilization

1000 1500

Tine (sec)

2500

Figure 6-C. Node 3

% Utilization

8 & & 8 8 ¥ 8 8

R

ey AT

g

iy V‘

2500

Figure 6-D. Node

As shown in Figure 6-A, 6-B, 6-C, 6-D, 6-E, and 6when the mission-support op-
erational string is deployed at the 1,8G@&cond, the net processor utilization of the
nodes increased above the RMS recommended utiizagtpoint of 0.7 [17]. At the
same time, as shown in Figure 7, the end-to-endutixm time of mission-critical
operational string increased above it deadline08f ®s. This result indicates that the
increase in execution time of the mission-critiopérational string results from over-
utilization of system resources (CPU).

Processor Utilization

:

A \N«/WﬂmJ \Muw\w» W Pust o
[
|

M
[V‘
e

|

I RYSURS S

% utilization
% Utilization

M AL 0 ARARAKAANIA
ML A AR A AAA A A B rw

A AGHA
VML AGHY
g PN A A AL nn] 3 ‘ v

|

1000

1500 1000 2500

Tine (sec)

Figure 6-E. Node 5

2000 2500

Figure 6-F. Node 6

The resource utilization information collected bwlB-Eye serves as the input to
RACE and triggers RACE to perform adaptive systemtiol modifications, such as
modifying operating system priority, scheduler slaand/or tearing down lower pri-
ority operational strings.

In our experiment, RACE tears down the best-efégérational string to meet the
QoS requirements of higher priority mission-critioperational strings. As a result of
these adaptive control actions, the end-to-end i@t time of the mission-critical
operational string is once again below its deadlagshown in Figure 7. Figure 6-F
shows that the infrastructure overhead due to Hipis itself is insignificant compare
to the network resource utilization.

2508

2008

1508

1008

680 1208 1888 2408 3000
Tine (sec)

Figure 7. End-to-End Execution Time of the Missior€ritical Operational String

Without a resource provisioning service like Bullge, over-utilization of system

resources could go unnoticed. Resource utilizatidormation is a key input to any

control framework. A control framework for enteigei DRE system, such as RACE,
requires resource utilization information regardimgltiple types and instances of
resources from the domain. A resource provisiotitagnework such as Bulls-Eye is
therefore essential to effective adaptive resoumamagement for enterprise DRE
systems.

6 Related Work

This section compares our work on Bulls-Eye withatesd work in the domain of
resource provisioning.

The CMU Resource Monitoring System (ReMoS) [8]asvice that allows network-
aware applications to obtain relevant informatibiow the bandwidth and latency of
a specific flow, where flow is an application lewgnnection between a pair of com-
putation nodes. It also answers queries abouteh&ank topology. ReMoS uses two
abstraction levels: explicit management of resowftaring and statistical measure-
ment. Its flows abstraction captures the commuitnatetween nodes and its topolo-
gies abstraction provides a logical view of netwodnnectivity. ReMoS measure-
ments are made at the network level, so it providiEgmation for use in sharing of
resources. Bulls-Eye, in contrast, focuses on éseurce availability for component
assemblies, rather than the network level. Thisisaequires the aggregation of data
into a single unit so that decisions regarding whehits/assemblies can be taken.
Resource provisioning, synchronizing multiple plars and matching of component
requirements to target domain availability are otkey concerns for Bulls-Eye,
which acts as a common service for resource paniisg at multiple layers.

The BBN Resource Status Service (RSS) [9] is amathéti-layer resource monitor-
ing service. RSS consists of monitors (known astiétion objects”) that are distrib-
uted to hosts in a network and which communicati wach other to acquire the
required data. In addition, RSS aggregates datearbus resources, such as proces-
sor load average and memory consumption. WhereaR¥$% is based on a non-stan-
dard interface, Bulls-Eye supports the OMG Lighgiei CCM Target Manager
specification, which defines standard interfaces third-party providers can use to

integrate their monitoring mechanisms. The LighthiCCM Target Manager speci-
fication (and thus Bulls-Eye) also supports reseuptovisioning by providing a
common point to commit and release resources fterdnt plans deployed, which is
not supported by RSS.

The Globus Toolkit [10] provides a number of ressuprovisioning services that
focus on monitoring, management, scheduling, arwidioation of different compu-

tations in a computing grid. It also has tools fansmitting and managing large
amounts of data useful to grid-based applicatiBodis-Eye does itself does not man-
age applications of a distributed environment {rgyon other services in CIAO, such
as DAnCE and RACE for these capabilities), butdadtfocuses on the collection,
aggregation, and presentation of resource infoonaiti a timely manner. Bulls-Eye
focuses on deployment and configuration of comptbased applications and has
features to support real-time QoS policies for foisxritical DRE systems.

[11] proposes an integrated architecture for mampglependencies uniformly in
distributed component-based systems. It allows ldpees to present dependencies
between components; instantiates component bagaitatns and manages hard-
ware resources in the distributed system. Forghipose, it has eesource manage-
ment service which is similar to Bulls-Eye in that it uses dilstited monitors to ac-
quire local status information and aggregatesrtf@rmation on a central server. [11]
focuses largely on the allocation and running @f #ipplications, however, whereas
Bulls-Eye is built more generically and suppor@nsiard interfaces for plugging in
multiple types of resource monitors. [11] also does deal with the resource provi-
sioning aspects supported by Bulls-Eye.

[12] implements a resource monitoring service simib Bulls-Eye, but with a focus
on collecting resource data to create a forecastiadel that provides process sched-
ulers with resource trends so that they can scbhedhdre efficiently. Our Bulls-Eye
approach is different in that it collects resoumsformation at runtime at a finer-
grained level i.e., it collects data for each p#ptting process and thread and feeds it
to sophisticated framework such as RACE which wuseliple allocation and control
algorithms [13]. These algorithms can then (re)dg@nd (re)configure the applica-
tions with the goal of maintaining stringent Qosgjuieements. Since Bulls-Eye is
targeted for enterprise DRE systems, it focusegherlatency of the data collection
and a standard interface to make it available tmwraated resource management
framework, such as RACE.

7 Concluding Remarks

This paper motivated and described Bulls-Eye, whgclan implementation of the
Lightweight CCM Target Manager specification we eleped to support resource
provisioning for enterprise DRE systems. We disedsthe design challenges faced
when developing Bulls-Eye and applying it to a Sloigrd computing system and
showed how our solutions helped resolve these exigdis. We also presented results
the results of experiments that show how Bulls-Eiyeplifies resource management
and helps automate adaptations in the face of dignaperating condition changes.

The following are lessons learned during our wankBallls-Eye and its application to
the Multi-Layer Resource Manager (MLRM) subsysteasecstudy:

« Building enterprise DRE systems whose operatiopatasitics change frequently
necessitates the dynamic monitoring of domain nessuand requires a framework
to provide resource availability information to eteathe automated (re)deployment
and (re)configuration of heterogeneous compondntsighout the system.

» The CCM Target Manager specification strikes aedai¥e balance between flexi-
bility and efficiency by keeping client code coresidbly simpler and supporting
dynamic updates and system (re)deployment andofréuration.

* Applying patterns to Bulls-Eye helped ensure thatdesign used best practices
associated with solving recurring problems and rfagimg the experience of ex-
perienced developers. Patterns applied to Bullsifgleded Adaptor and Strategy.

 Using efficient aggregation algorithms helped inygr@verall system performance
and also increased the responsive of Bulls-Eyegchvim turn led to clients re-
sponding to changes in the application operatimglitimn or policy in an effective
manner.

e The judicious use of distributing computing of neee data across different stages,
helped increase the performance of Bulls-Eye bly fekploiting the computing
power of distributed hosts across the target doraathdistribute complexity over
multiple processors.

¢ Bulls-Eye plays an important role in the allocat@frcomponents to different hosts
across the domain. It helps allocation algorithmsome up with a deployment
plan which optimizes resource usage. Control allgos which need to re-allocate
components due to changing operating environmesiot @se Bulls-Eye to monitor
the running of the application.

The implementation of Bulls-Eye is freely available open-source software and can
be downloaded along with the CIAO, DANnCE, and RAQgen-source middleware
from www.dre.vanderbilt.edu/CIAO.

8 REFERENCES

1. Deng, G., Balasubramanian, J., Otte, W., Schmidtaid Gokhale, A. (2005, Nov),
“DANCE: A QoS-enabled Component Deployment and @uméation Engine,” Pro-
ceedings of the 3rd Working Conference on CompoBepioyment. Grenoble, France.

2. Gamma, E., Helm, R., Johnson, R., and Vlisside®D&sign Patterns Elements of Reus-
able Object-Oriented Software,” Addison-Wesley, 499

3. Object Group Management (2003, May), Light Weigi@RBA Component Model Re-
vised Submission, Ed. OMG Document realtime/03-85-0

4. Object Management Group: Deployment and Configonafidopted Submission, OMG
Document ptc/03-07-08 edn. (2003).

5. Object Management Group (2002, Aug). Real-time C@R®pecification. Ed. OMG
Document formal/02-08-02.

6. D. Schmidt, M. Stal, H. Rohert, and F. Buschmdpatfern-Oriented Software Architec-
ture: Patterns for Networked and Concurrent Objects, Wiley and Sons, 2000.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

D. Schmidt, R. Schantz, M. Masters, J. Cross, r@hand L. DiPalma, “Towards Adap-
tive and Reflective Middleware for Network-Cent@ommbat Systems,” CrossTalk, Nov,
2001.

DeWitt, T. Gross, B. Lowekamp, N. Miller, P. Ste@tk, J. Subhlok, D. Sutherland, "Re-
MoS: A Resource Monitoring System for Network-Awdxgplications"Carnegie Mellon
School of Computer Science, CMU-CS-97-194.

J. Zinky, J. Loyall, and R Shapiro “Runtime, Perfiance Modeling and Measurement of
Adaptive Distributed Object Applications,” Procergliof International Symposium on
Distributed Object and Applications, DOA 2002, @Q&-30 2002, University of Califor-
nia, Irvine CA USA.

I.Foster and C. Kesselman. Globus: A Metacompuitifigastructure Toolkit. Intl. Journal
of Supercomputer Applications and High PerformaBoenputing, 11(2):115-128, 1997.

F. Kon, T. Yamane, C. Hess, R. Campbell, and M.kMias, “Dynamic Resource Man-
agement and Automatic Configuration of Distribut@dmponent Systems,” Proceedings
of the 6th USENIX Conference on Object-Oriented Hretogies and Systems
(COO0TS'2001)San Antonio, Texas, Jan, 2001.

R. Wolski, “Experiences with Predicting Resourcef@tenance On-line in Computational
Grid Settings” ACM SIGMETRICS Performance Evaluati@eview, Volume 30, Num-
ber 4, pp 41--49, Mar, 2003.

N. Shankaran, J. Balasubramanian, D. Schmidt, Gw&s, P. Lardieri, E. Mulholland,
and T. Damiano, “A Framework for (Re)Deploying Campnts in Distributed Realtime
and Embedded Systems”, poster paper at the Deplendath Adaptive Distributed Sys-
tems Track of the 21st ACM Symposium on Applied @atmg, Apr 23 -27, 2006, Dijon,
France.

W. Roll, “Towards Model-Based and CCMBased Appiimas for Real-Time Systems,”
in Proceedings of the International Symposium ofe€kOriented Real-time Distributed
Computing (ISORC), Hokkaido, Japan, IEEE/IFIP, N2803.

S. Murat, Bicer, F. Pilhofer, G. Bardouleau, an&rhith, "Next Generation Architecture
for Heterogeneous Embedded Systems”, InternatiOnaference on Engineering of Re-
configurable Systems and Algorithms (ERSA). JunQ&s Vegas, NV, USA.

S. Paunov and D. Schmidt, “RepoMan: A ComponentoRigpry Manager for Enterprise
Distributed Real-time and Embedded Systems,” Patinge of the 44th ACM Southeast
Conference, Melbourne, FL, Mar 10-12, 2006.

J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monato8cheduling Algorithm: Exact
Characterization and Average Case Behavior,” Ic@dings of the 10th IEEE Real-time
Systems Symposium (RTSS 1989), Santa Monica, D88.19

J. Hill, J. Slaby, S. Baker, and D. Schmidt, “Eaing Enterprise Distributed Real-time
and Embedded System Quality of Service with Sydisecution Modeling Tools,” Pro-
ceedings of the 12th IEEE International ConfereoseEmbedded and Real-Time Com-
puting Systems and Applications, Sydney, Austrdlé18 Aug 2006.

G. Heineman and B. Councill, Component-Based Se#wangineering: Putting the
Pieces Together, Addison-Wesley, Reading, Massattsy2001.

C. Smith and D. Henry, “High-Performance Linux G&rsMonitoring Using Java,” Pro-
ceedings of the 3rd Linux Cluster International f&oence, 2002.

