
A Family of Design Patterns for Application-Level Gateways

Douglas C. Schmidt
schmidt@cs.wustl.edu

http://www.cs.wustl.edu/�schmidt/
Department of Computer Science

Washington University, St. Louis 63130
(TEL) 314-935-7538, (FAX) 314-935-7302

This paper appeared in the journal Theory and Practice of
Object Systems, special issue on Patterns and Pattern Lan-
guages, Wiley & Sons, Vol. 2, No. 1, December 1996.

Abstract

Abstract

Developers of communication software must confront recur-
ring design challenges involving robustness, efficiency, and
extensibility. Many of these challenges are independent of
the application-specific requirements. Successful developers
resolve these challenges by applying appropriate design pat-
terns. However, these patterns have traditionallybeen locked
in the minds of expert developers or buried within complex
system source code. The primary contribution of this pa-
per is to describe a family of design patterns that underly
many object-oriented communication software systems. In
addition to describing each pattern separately, the paper il-
lustrates how knowledge of the relationships and trade-offs
among patterns helps guide the construction of reusable com-
munication software frameworks.

1 Introduction

Building, maintaining, and enhancing high quality communi-
cation systems is hard. Developers must have a deep under-
standing of many complex issues such as service initializa-
tion and distribution, concurrency control, flow control, error
handing, and event loop integration. Successful communi-
cation software created by experienced software developers
embodies solutions to these issues.

It is often difficult, however, to separate the essence of
successful software solutions from the details of a particular
implementation. Even when software is written using well-
structured object-oriented frameworks and components, it
can be hard to identify key roles and relationships. More-
over, OS platform features (such as the absence or presence
of multi-threading) or requirements (such as best-effort vs.
fault tolerance error handling) are often different. These dif-
ferences can mask the underlying architectural commonality

among software solutions for different applications in the
same domain.

Capturing and articulating the essence and commonality of
successful communication software is important for several
reasons:

� It helps guide the design choices of developers who
are building new communication systems – By under-
standing the potential traps and pitfalls in their domain,
developers can select suitable architectures, protocols,
and platform features without wasting time and effort
implementing inefficient or error-prone solutions.

� It preserves important design information for program-
mers who enhance and maintain existing software –
Often, this information is locked in the minds of the
original developers. If this design information is not
documented explicitly, however, it will be lost over
time, thereby increasing maintenance costs and decreas-
ing software quality.

The purpose of this paper is to illustrate an effective way to
document the essence of successful communication software
by describing key design patterns used to build application-
level Gateways, which route messages between Peers dis-
tributed throughout a communication system.

Design patterns represent successful solutions to problems
that arise when building software [1]. Capturing and articu-
lating key design patterns helps to enhance software quality
by addressing fundamental challenges in large-scale system
development. These challenges include communication of
architectural knowledge among developers; accommodating
new design paradigms or architectural styles; resolving non-
functional forces such as reusability, portability, and exten-
sibility; and avoiding development traps and pitfalls that are
usually learned only by costly trial and error.

This paper presents the object-oriented architecture and
design of an application-level Gateway in terms of
the design patterns used to guide the construction of
reusable and Gateway-specific frameworks and compo-
nents. Application-level Gateways have stringent require-
ments for reliability, performance, and extensibility. There-
fore, they are excellent exemplars for presenting the struc-
ture, participants, and consequences of key design patterns
that appear in many communication software systems.

1

PEERS

GATEWAY

PEERS

1: 1: send
send__msg

msg()()

4: send_
4: send_msgmsg()()

2: 2: recvrecv__msgmsg()()

3: 3: routeroute__msgmsg()()

5: recv_msg()5: recv_msg()

Figure 1: The Structure and Collaboration of Peers and the
Gateway

The patterns described in this paper were discovered while
building a wide range of communication systems including
on-line transaction processing systems, telecommunication
switch management systems [2], electronic medical imag-
ing systems [3], and parallel communication subsystems [4].
Although the specific application requirements in these sys-
tems were quite different, the communication software design
challenges were very similar. Therefore, although the exam-
ples in this paper focus on Gateways, the patterns embody
design expertise that can be reused broadly in the communi-
cation domain.

The remainder of this paper is organized as follows: Sec-
tion 2 outlines an object-oriented software architecture for
application-level Gateways; Section 3 examines the design
patterns that form the basis for reusable communication soft-
ware, using application-level Gateways as an example; Sec-
tion 4 compares these patterns with those described in related
work; and Section 5 presents concluding remarks.

2 An Object-Oriented Software Archi-
tecture for Application-level Gate-
ways

This paper examines framework components and design pat-
terns that comprise and motivate the object-oriented architec-
ture of application-level Gateways developed by the author
and his colleagues. A Gateway is a Mediator [1] that de-
couples cooperating Peers throughout a network and allows
them to interact without having direct dependencies on each
other [5]. As shown in Figure 1, messages routed through
theGateway contain payloads encapsulated in routing mes-
sages.

Figure 2 illustrates the structure, associations, and internal
and external collaborations among objects within a software

CONNECTION

REQUEST

CONNECTION

REQUEST

OUTGOING

MESSAGES

: Output: Output
ChannelChannel

: Message: Message
QueueQueue: SOCK: SOCK

StreamStream

INCOMING

MESSAGES

: Acceptor: Acceptor

: SOCK: SOCK
AcceptorAcceptor

: Connector: Connector

: SOCK: SOCK
ConnectorConnector

: Map: Map
ManagerManager

: Input: Input
ChannelChannel

: SOCK: SOCK
StreamStream

: Routing: Routing
TableTable

: Map: Map
ManagerManager

: Output: Output
ChannelChannel

: Message: Message
QueueQueue: SOCK: SOCK

StreamStream

: Input: Input
ChannelChannel

: SOCK: SOCK
StreamStream

: Reactor: Reactor

GATEWAYGATEWAY

Figure 2: The Object-Oriented Gateway Software Archi-
tecture

architecture for application-level Gateways.1 This architec-
ture is based on extensive experience developing connection-
oriented Gateways for various commercial and research com-
munication systems. After building multiple Gateway sys-
tems it became clear that the software architecture of these
systems was largely independent of the protocols used to
route messages to Peers. This realization enabled the compo-
nents depicted in Figure 2 to be reused for the communication
software subsystems of many other projects. The ability to
reuse these components so widely stems from two factors:

� Understanding the actions and interactions of key de-
sign patterns within the domain of communication soft-
ware: Patterns capture the structure and collaboration of
participants in a software architecture at a higher level than
source code and object-oriented design models that focus on
individual objects and classes. Some of the communication
software patterns described in this paper have been docu-
mented individually [7, 8, 9]. Although individual pattern
descriptions capture valuable design expertise,complex com-
munication software systems embody scores of patterns. Un-
derstanding the relationships among these patterns is essen-
tial to document, motivate, and resolve difficult challenges
that arise when building communication software. There-
fore, Section 3 describes the interactions and relationships
among these patterns in terms of a family of design patterns
for communication software. These design patterns work
together to solve complex problems within the domain of
communication software.

1Relationships between components are illustrated throughout this paper
using Booch notation [6]. In this figure solid clouds indicate objects; nesting
indicates composition relationships between objects; and undirected edges
indicate an association exists between two objects.

2

� Developing an object-oriented framework that imple-
ments these design patterns: Recognizing the patterns
that commonly occur in many communication software sys-
tems helped shape the development of reusable framework
components. The Gateway systems this paper is based
upon were implemented with the ADAPTIVE Communica-
tion Environment (ACE) software [10]. ACE provides an
integrated framework of reusable C++ wrappers and compo-
nents that perform common communication software tasks.
These tasks include event demultiplexing, event handler dis-
patching, connection establishment, routing, dynamic con-
figuration of application services, and concurrency control.
In addition, the ACE framework contains implementations of
the design patterns described in Section 3. However, the pat-
terns are much richer than their implementation in ACE and
have been applied by many other communication systems, as
well.

This section describes how various ACE components have
been reused and extended to implement the application-
independent and application-specific components in the com-
munication Gateway shown in Figure 2. Following this
overview, Section 3 examines the family of design patterns
that underly the ACE components.

2.1 Application-independent Components

Most of the components in Figure 2 are based on ACE
components that can be reused in other communication sys-
tems. The only components that are not widely reusable
are the Input and Output Channels, which implement
the application-specific details related to message formats
and the routing protocol. The behavior of the application-
independent components in theGateway is outlined below:

� Interprocess communication (IPC) components: The
SOCKStream, SOCKConnector, and SOCKAcceptor
components encapsulate the socket network programming
interface [11]. These components simplify the development
of portable and correct communication software by shielding
developers from low-level, tedious, and error-prone socket-
level programming. In addition, they form the foundation
for the higher-level ACE components and patterns described
below.

� Service initialization components: The Connector
and Acceptor are factories [1] that implement active
and passive strategies for initializing network services,
respectively.2 These components are based on the Connec-
tor pattern described in Section 3.2 and Acceptor pattern
described in Section 3.3. The Gateway uses these com-
ponents to establish connections with Peers and produce
initialized Input and Output Channels.

2Establishing connections between endpoints involves two roles: the
passive role (which initializes an endpoint of communication at a particular
address and waits passively for the other endpoint to connect with it) and the
active role (which actively initiates a connection to one or more endpoints
that are playing the passive role).

To increase system flexibility, connections can be estab-
lished in two ways:

1. From the Gateway to the Peers – which is typically
done whenever the Gateway first starts up to establish
the initial system configuration of Peers;

2. From aPeer to theGateway – which is typicallydone
once the system is running whenever a new Peerwants
to send or receive routing messages.

In a large system, several scores of Peers may be con-
nected to a single Gateway. Therefore, to expedite initial-
ization, the Gateway’s Connector can initiate all con-
nections asynchronously rather than synchronously. Asyn-
chrony helps decrease connection latency over long delay
paths (such as wide-area networks (WANs) built over satel-
lites or long-haul terrestrial links). The underlying SOCK
Connector [11] contained within a Connector provides
the low-level asynchronous connection mechanism. When a
SOCK Connector connects two socket endpoints via TCP
it produces a SOCK Stream object, which is then used to
exchange data between that Peer and the Gateway.

� Event demultiplexing components: The Reactor is
an object-oriented event demultiplexing mechanism based
on the Reactor pattern [7] described in Section 3.1. It chan-
nels all external stimuli in an event-driven application to a
single demultiplexing point. This permits single-threaded
applications to wait on event handles, demultiplex events,
and dispatch event handlers efficiently. Events indicate that
something significant has occurred (e.g., the arrival of a new
connection or work request). The main source of events in
the Gateway is routing messages that encapsulate various
payloads (such as commands, status messages, and bulk data
transmissions).

� Message demultiplexing components: The Map
Manager is a parameterized collection that efficiently maps
external ids (e.g., Peer routing addresses) onto internal ids
(e.g., Output Channels). The Gateway uses a Map
Manager to implement a Routing Table that handles
the demultiplexing and routing of messages internally to a
Gateway. The Routing Table maps addressing infor-
mation contained in routing messages sent by Peers to the
appropriate set of Output Channels.

� Message queueing components: The Message
Queue [10] provides a generic queueing mechanism. This
mechanism runs efficient and robustly in multi-threaded or
single-threaded environments. Developers can select the de-
sired concurrency strategy at the time a queue is instanti-
ated, TheGateway usesMessage Queues to buffer mes-
sages in Output Channels while they are being routed
to Peers.

2.2 Application-specific Components

Only two of the components (Input and Output
Channels) in Figure 2 are specific to the Gateway ap-
plication. These components implement the Router pattern

3

described in Section 3.4. Input and Output Channels
reside in the Gateway, where they serve as proxies for the
original source and the intended destination(s) of routing
messages sent to hosts across the network. The behavior of
these two Gateway-specific components is described be-
low:

� Input Channels: Input Channels are responsible
for routing incoming messages to their destination(s). The
Reactor notifies an Input Channel when it detects an
event on that connection’s communication endpoint. The
Input Channel then receives and frames a routing mes-
sage from that endpoint, consults the Routing Table to
determine the set of Output Channel destinations for the
message, and requests the selected Output Channels to
forward the message to the appropriate Peer destinations.

� Output Channels: An Output Channel is respon-
sible for reliably delivering routing messages to their desti-
nations. It implements a flow control mechanism to buffer
bursts of routing messages that cannot be sent immediately
due to transient network congestion or lack of buffer space at
a receiver. Flow control is a transport layer mechanism that
ensures a source Peer does not send data faster than a desti-
nation Peer can buffer and process the data. For instance, if
a destination Peer runs out of buffer space, the underlying
TCP protocol instructs the associated Gateway’s Output
Channel to stop sending messages until the destination
Peer consumes its existing data.

A Gateway integrates the application-specific and
application-independent components by inheriting from, in-
stantiating, and composing the ACE components described
above. As shown in Figure 33 Input and Output
Channels inherit from a common ancestor: the ACE Svc
Handler class, which is produced by Connectors and
Acceptors. The Svc Handler is a local Proxy [1] for
a remotely connected Peer. It provides a SOCK Stream,
which enables Peers to exchange messages via connected
Channels.

An Output Channel uses an ACE Message Queue
to chain unsent messages in the order they must be deliv-
ered when flow control mechanisms permit. Once a flow
controlled connection opens up, the ACE framework notifies
itsOutput Channel, which starts draining theMessage
Queue by sending messages to the Peer. If flow control
occurs again this sequence of steps is repeated until all mes-
sages are delivered.

To improve reliability and performance, the Gateways
described in this paper utilize the Transmission Con-
trol Protocol (TCP). TCP provides a reliable, in-order,
non-duplicated bytestream service for application-level
Gateways. Although TCP connections are inherently bi-
directional, data sent from Peer to the Gateway use a

3This figure illustrates additional Booch notation. Dashed clouds indicate
classes; directed edges indicate inheritance relationships between classes;
and an undirected edge with a small circle at one end indicates either a
composition relation between two classes.

SvcSvc
HandlerHandler

InputInput
ChannelChannel

OutputOutput
ChannelChannel

SOCKSOCK
StreamStream

MessageMessage
QueueQueue

Figure 3: Channel Inheritance Hierarchy

different connection than data sent from the Gateway to
the Peer. There are several advantages to separating input
connections from output connections in this manner:

� It simplifies the construction of Gateway Routing
Tables;

� It allows more flexibility in connection configuration
and concurrency strategies;

� It enhances reliability if errors occur on a connection
since Input and Output Channels can be recon-
nected independently.

3 A Family of Design Patterns for
Application-level Gateways

Section 2 illustrates the structure and functionality of an
application-level Gateway. Although this architectural
overview helps to clarify the behavior of key components
in a Gateway, it does not reveal the deeper relationships
and roles that underly the various software components. In
particular, the architecture descriptions do not motivate why
a Gateway is designed in this particular manner or why
certain components act and interact in certain ways. Under-
standing these relationships and roles is crucial to develop,
maintain, and enhance communication software.

An effective way to capture and articulate these relation-
ships and roles is to describe the design patterns that reify
them. A design pattern is a recurring solution to a design
problem within a particular domain (such as business data
processing, telecommunications, graphical user interfaces,
databases, or distributed communication software). Study-
ing the patterns in Gateway software is important to:

1. Identify successful solutions to common design chal-
lenges – The patterns underlying the Gateway archi-
tecture transcend the particular details of the application
and resolve common challenges faced by communica-
tion software developers. A thorough understanding of
the patterns presented below enables widespread reuse
of Gateway software architecture in other systems,
even when reuse of its algorithms, implementations, in-
terfaces, or detailed designs is not feasible [12].

4

ConnectorConnector
ActiveActive
ObjectObject

ReactorReactor

BuilderBuilderIteratorIterator AdapterAdapter
TemplateTemplate
MethodMethod

TACTICALTACTICAL

PATTERNSPATTERNS

STRATEGIC

PATTERNS

AcceptorAcceptor

RouterRouter

ProxyProxy

Figure 4: The Family of Patterns for Application-level
Gateways

2. Reduce the effort of maintaining and enhancing
Gateway software – The use of patterns helps to cap-
ture and motivate the collaboration between multiple
classes and objects. This is important for developers
who must maintain and enhance a Gateway. Although
the roles and relationships in a Gateway design are
embodied in the source code, extracting them from the
surrounding implementation details can be costly and
error-prone.

Figure 4 illustrates the following strategic patterns related
to connection-oriented, application-level Gateways:

� Concurrency patterns:

� The Reactor pattern – which decouples event demul-
tiplexing and event handler dispatching from services
performed in response to events;

� The Active Object pattern – which decouples method
execution from method invocation.

� Service initialization patterns:

� The Connector pattern – which decouples active service
initialization from the tasks service performed once the
service is initialized;

� The Acceptor pattern – which decouples passive service
initialization from the tasks performed once the service
is initialized.

� Application-specific patterns:

� The Router pattern – which decouples input mecha-
nisms from output mechanisms to route data correctly
without blocking a Gateway.

These five patterns are strategic because they significantly
influence the software architecture for applications in a par-
ticular domain (in this case, the domain of communication
software and Gateways). For example, the Router pattern
described in Section 3.4 decouples input mechanisms from
output mechanisms to ensure that message processing is not
disrupted or postponed indefinitely when a Gateway expe-
riences congestion or failure. This pattern helps to ensure a
consistently high quality of service for Gateways that use
reliable transport protocols such as TCP/IP or IPX/SPX. A
thorough understanding of the strategic communication pat-
terns described in this paper is essential to develop robust,
efficient, and extensible application-level Gateways.

Application-level Gateways also utilize many tactical pat-
terns, such as the following:

� Builder pattern – which provides a factory for building
complex objects incrementally. TheGatewayuses this
pattern to create its Routing Table from a configu-
ration file.

� Iterator pattern – which decouples sequential access
to a container from the representation of the container.
TheGateway uses this pattern to connect and initialize
Input and Output Channels with Peers.

� Template Method pattern – which specifies an algorithm
where some steps are supplied by a derived class. The
Gateway uses this pattern to selectively override cer-
tain steps in the Connector and Acceptor in order
to restart failed connections automatically.

� Adapter pattern – which transforms a non-conforming
interface into one that can be used by a client. The
Gateway uses this pattern to treat different types of
routing messages (such as commands, status informa-
tion, and bulk data) in a uniform manner.

� Proxy pattern – which provides a local surrogate object
that acts in place of a remote object. The Gateway uses
this pattern to shield the main Gateway routing code
from delays or errors caused by the fact that Peers are
located on other host machines in the network.

Compared to strategic patterns (which are often domain-
specific and have broad design implications), tactical pat-
terns are domain-independent and have a relatively localized
impact on a software design. For instance, Iterator is a tac-
tical pattern used in the Gateway to process entries in the
Routing Table sequentially without violating data en-
capsulation. Although this pattern is domain-independent
and thus widely applicable, the problem it addresses does
not impact the application-level Gateway software design as
pervasively as strategic patterns like the Router. A thorough
understanding of tactical patterns is essential to implement
highly flexible software that is resilient to changes in appli-
cation requirements and platform environments.

Although there are various forms for describing patterns,
they typically convey the following information [1]:

� The intent of the pattern;

5

Reactor

handle_events()
register_handler(eh, type)
remove_handler(eh, type) Event HandlerEvent Handler

handle_event(type)
get_handle()

Ann

11

select (handles)
foreach h in handles loop
 table[h]->handle_event (type)
end loop

nn

11

A
PPLIC

A
TIO

N

A
PPLIC

A
TIO

N--SPEC
IFIC

SPEC
IFIC

A
PPLIC

A
TIO

N

A
PPLIC

A
TIO

N--IN
D

E
PE

N
D

E
N

T

IN
D

E
PE

N
D

E
N

T

HandlesHandles

11

11

ConcreteConcrete
EventEvent

HandlerHandler

Figure 5: Structure and Participants in the Reactor Pattern

� The design forces that motivate and shape the pattern;

� The solution to these forces;

� The related classes and their roles in the solution;

� The responsibilities and dynamic collaborations among
classes;

� The positive and negative consequences of using the
pattern;

� Guidance for implementors of the pattern;

� Example source code illustrating how the pattern is ap-
plied;

� References to related work.

It is important to recognize that the strategic patterns in this
paper are much more generally applicable than the specific
use cases for the Gateway described below. The references
[7, 8, 9] provide additional use cases for these patterns, along
with more detailed coverage of each pattern and sample im-
plementations.

3.1 The Reactor Pattern

Intent: The Reactor pattern decouples event demultiplex-
ing and event handler dispatching from the services per-
formed in response to events.

Motivation and Forces: Single-threaded applications
must be able to handle events from multiple sources without
blocking on any single source. The Reactor pattern resolves
the following forces that impact the design of single-threaded,
event-driven communication software:

1. The need to demultiplex multiple types of events from
multiple sources of events efficiently within a single
thread of control – A Reactor serializes the handling
of events from multiple sources within an application
process at the level of event demultiplexing. By us-
ing the Reactor pattern, the need for more complicated

mainmain
programprogram

REGISTER HANDLER

DISPATCH HANDLER(S)

RUN EVENT LOOP

EXTRACT HANDLE

INITIALIZE

callback :
Concrete

Event_Handler

handle_events()

handle_event(event_type)

reactor :
Reactor

get_handle()

Reactor()

register_handler(callback)

select()

: Handles

WAIT FOR EVENTS

IN
IT

IA
L

IZ
A

T
IO

N
IN

IT
IA

L
IZ

A
T

IO
N

M
O

D
E

M
O

D
E

E
V

E
N

T
 H

A
N

D
L

IN
G

E
V

E
N

T
 H

A
N

D
L

IN
G

M
O

D
E

M
O

D
E

Figure 6: Object Interaction Diagram for the Reactor Pattern

threading, synchronization, or locking within an appli-
cation is often eliminated.

2. The need to extend application behavior without requir-
ing changes to the event dispatching framework – The
Reactor factors out the demultiplexing and dispatching
mechanisms from the event handler processing poli-
cies. The demultiplexing and dispatching mechanisms
are generally independent of an application and are thus
reusable. In contrast, the event handler policies are more
specific to an application. This separation of concerns
allows application policies to change without affecting
the lower-level framework mechanisms.

Structure, Participants, and Implementation: Figure 5
illustrates the structure and participants in the Reactor pat-
tern. The Reactor defines an interface for registering,
removing, and dispatching Concrete Event Handler
objects (such as Input or Output Channels in the
Gateway). An implementation of this interface provides
a set of application-independent mechanisms. These mech-
anisms perform event demultiplexing and dispatching of
application-specific event handlers in response to events
(such as input, output, signal, and timer events).

An Event Handler specifies an abstract interface
used by the Reactor to dispatch callback methods
defined by objects that register to events of interest.
Each Concrete Event Handler selectively imple-
ments callback method(s) to process events in an application-
specific manner.

Collaborations: Figure 6 illustrates the collaborations be-
tween participants in the Reactor pattern. These collabora-
tions are divided into the following two modes:

1. Initialization mode – where Concrete Event
Handler objects are registered with the Reactor;

2. Event handling mode – where the Reactor invokes
upcalls on registered objects, which then handle events
in an application-specific way.

Usage: The Reactor is used for the following event dis-
patching operations in a Gateway:

6

:: Reactor Reactor

REGISTEREDREGISTERED

OBJECTSOBJECTS

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

OS EVENT DEMULTIPLEXING INTERFACE

:Timer:Timer
QueueQueue

: Signal: Signal
HandlersHandlers

: Handle: Handle
TableTable

: Event: Event
HandlerHandler

: Output: Output
ChannelChannel

: Event: Event
HandlerHandler

: Output: Output
ChannelChannel

: Event: Event
HandlerHandler

: Input: Input
ChannelChannel

1: handle_event()1: handle_event()

4: send(msg)4: send(msg)

2: recv(msg)2: recv(msg)
3: route(msg)3: route(msg)

Figure 7: Using the Reactor Pattern in the Gateway

� Input events – The Reactor dispatches each incoming
routing message to the Input Channel associated
with its socket handle, at which point the message is
routed to the appropriate Output Channel(s). This
use-case is shown in Figure 7.

� Output events – The Reactor ensures that outgoing
routing messages are eventually delivered on flow con-
trolled Output Channels described in Section 3.4
and 3.5.

� Connection completion events – The Reactor dis-
patches events that indicate the completion status of
connections that are initiated asynchronously. These
events are used by the Connector described in Sec-
tion 3.2.

� Connection request events – The Reactor also dis-
patches events that indicate the arrival of passively
initiated connections. These events are used by the
Acceptor described in Section 3.3.

The Reactor pattern has been used in many single-threaded
event-driven frameworks (such as the Motif, Interviews [13],
System V STREAMS [14], the ACE object-oriented commu-
nication framework [10], and implementations of DCE and
CORBA). In addition, it forms the foundation for most of the
strategic patterns presented below.

3.2 The Connector Pattern

Intent: The Connector pattern decouples active service ini-
tialization from the tasks performed once a service is initial-
ized.

Motivation and Forces: Connection-orientedapplications
(like a Gateway) and middleware (like CORBA or Dis-
tributed COM) are often written using lower-level network

ReactorReactor11nn

EventEvent
HandlerHandler

ConnectorConnector
connect_svc_handler()
activate_svc_handler()
handle_event()
connect(sh, addr)

SVC_HANDLERSVC_HANDLER

PEER_CONNECTORPEER_CONNECTOR

ConcreteConcrete
ConnectorConnector

Concrete_Svc_HandlerConcrete_Svc_Handler

SOCK_ConnectorSOCK_Connector11

ConcreteConcrete
Svc HandlerSvc Handler

SOCK_StreamSOCK_Stream

open()

nn

R
E

A
C

T
IV

E
R

E
A

C
T

IV
E

L
A

Y
E

R
L

A
Y

E
R

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

handle_event()

A

connect_svc_handlerconnect_svc_handler

 (sh, addr); (sh, addr);1:1:

Svc HandlerSvc Handler

PEER_STREAMPEER_STREAM

open() AA

INITIALIZES

INITIALIZES

activate_svc_handleractivate_svc_handler

 (sh); (sh);2:2:

nn

Figure 8: Structure and Participants in the Connector Pattern

programming interfaces (like sockets [15] and TLI [16]). The
Connector pattern resolves the following forces that impact
the active initialization of services written using these lower-
level interfaces:

1. The need to reuse active connection establishment code
for each new service – The Connector pattern permits
key characteristics of services (such as the communi-
cation protocol or the data format) to evolve indepen-
dently and transparently from the mechanisms used to
establish the connections. Since service characteristics
change more frequently than connection establishment
mechanisms this separation of concerns reduces soft-
ware coupling and increases code reuse.

2. The need to make the connection establishment code
portable across platforms that contain different network
programming interfaces – This is particularly important
for asynchronous connection establishment, which is
hard to program portably and correctly using lower-
level network programming interfaces like sockets and
TLI.

3. The need to enable flexible service concurrency policies
– Once a connection is established, peer applications use
the connection to exchange data to perform some type
of service (e.g., remote login, WWW HTML document
transfer, etc.). A service can run in a single-thread, in
multiple threads, or multiple processes, regardless of
how the connection was established or how the services
were initialized.

4. The need to actively establish connections with large
number of peers efficiently – The Connector pattern can

7

ClientClient

FOREACH CONNECTIONFOREACH CONNECTION

 INITIATE CONNECTION INITIATE CONNECTION

 ASYNC CONNECT ASYNC CONNECT

 INSERT IN REACTOR INSERT IN REACTOR

START EVENT LOOPSTART EVENT LOOP

FOREACH EVENT DOFOREACH EVENT DO

handle_events()

select()

CONNECTION COMPLETECONNECTION COMPLETE

INSERT IN REACTORINSERT IN REACTOR

con :con :
ConnectorConnector

handle_event()

reactor :reactor :
ReactorReactor

sh:sh:
Svc_HandlerSvc_Handler

handle_event()

register_handler(sh)

get_handle()
EXTRACT HANDLEEXTRACT HANDLE

DATA ARRIVESDATA ARRIVES

svc()PROCESS DATAPROCESS DATA

connect(sh, addr)

connect()

ACTIVATE OBJECTACTIVATE OBJECT

register_handler(con)

: SOCK: SOCK
ConnectorConnector

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

IN
IT

IA
T

IO
N

IN
IT

IA
T

IO
N

 P
H

A
S

E
P

H
A

S
E

S
E

R
V

IC
E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N
IN

IT
IA

L
IZ

A
T

IO
N

P
H

A
S

E
P

H
A

S
E

S
E

R
V

IC
E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

R
O

C
E

S
S

IN
G

P
H

A
S

E
P

H
A

S
E

activate_svc_handler(sh)

connect_svc_handler(sh, addr)

open()

Figure 9: Object Interaction Diagram for the Connector Pat-
tern

employ asynchrony to initiate and complete multiple
connections in non-blocking mode. By using asyn-
chrony, the Connector pattern enables applications to
actively establish connections with a large number of
peers efficiently over long-delay WANs.

Structure, Participants, and Implementation: Figure 8
illustrates the layering structure of participants in the Con-
nector pattern.4 The Connector is a factory that assem-
bles the resources necessary to connect and activate a Svc
Handler, which is a Proxy that exchanges messages with its
Peer. The Connector’s initialization strategy can estab-
lish connections with Peers either synchronously or asyn-
chronously.

The participants in the Connection Layer of the Connec-
tor pattern leverage off the Reactor pattern. For instance,
the Connector’s asynchronous initialization strategy es-
tablishes a connection after the Reactor notifies it that a
previously initiated connection request to a Peer has com-
pleted. Using the Reactor pattern enables multiple Svc
Handlers to be initialized actively within a single thread
of control.

To increase flexibility, the implementation of a
Connector can be parameterized by a particular type
of PEER CONNECTOR and SVC HANDLER. The PEER
CONNECTOR supplies the underlying transport mechanism
(such as C++ wrappers for sockets or TLI) used by the
Connector to actively establish a connection. The SVC
HANDLER specifies an abstract interface for defining a ser-
vice that communicates with a connected Peer. A Svc
Handler can be parameterized by a PEER STREAM end-
point. The Connector associates this endpoint to its Peer
when a connection is actively established.

4In this figure the dashed rectangles indicate template parameters and a
dashed directed edge indicates template instantiation.

By inheriting from Event Handler (shown in Fig-
ure 5), a Svc Handler can register with a Reactor and
use the Reactor pattern to handle its I/O events within the
same thread of control as the Connector. Conversely, a
Svc Handler can use the Active Object pattern and handle
its I/O events within a separate thread. Section 3.5 evaluates
the tradeoffs between these different patterns.

Parameterized types are used to decouple the Connector
pattern’s connection establishment strategy from the type of
service and the type of connection mechanism. Develop-
ers supply template arguments for these types to produce
Application Layer Connectors (such as the Connector
used by the Gateway to initialize its Input and Output
Channels). This enables the wholesale replacement of the
SVC HANDLER and PEER CONNECTOR types, without af-
fecting the Connector pattern’s service initialization strategy.

Note that a similar degree of decoupling could be achieved
via inheritance and dynamic binding by using the Abstract
Factory or Factory Method patterns described in [1]. Pa-
rameterized types were used to implement this pattern since
they improve run-time efficiency. In general, templates trade
compile- and link-time overhead and space overhead for im-
proved run-time performance.

Collaborations: The collaborations among participants in
the Connector pattern are divided into three phases:

1. Connection initiation phase – which actively con-
nects one or more Svc Handlers with their peers.
Connections can be initiated synchronously or asyn-
chronously. The Connector’s connectmethod im-
plements the strategy for actively establishing connec-
tions.

2. Service initialization phase – which activates a Svc
Handler by calling its open method when its con-
nection completes successfully. The open method of
the Svc Handler then performs service-specific ini-
tialization.

3. Service processing phase – which performs the
application-specific service processing using the data
exchanged between the Svc Handler and its con-
nected Peer.

Figure 9 illustrates these three phases of collaboration us-
ing asynchronous connection establishment. Note how the
connection initiation phase is temporally separated from the
service initialization phase. This enables multiple connec-
tion initiations to proceed in parallel within a single thread of
control. The collaboration for synchronous connection estab-
lishment is similar. In this case, the Connector combines
the connection initiationand service initializationphases into
a single blocking operation.

In general, synchronous connection establishment is useful
for the following situations:

� If the latency for establishing a connection is very low
(e.g., establishing a connection with a server on the same
host via the loopback device);

8

� If multiple threads of control are available and it is
feasible to use a different thread to connect each Svc
Handler synchronously;

� If a client application cannot perform useful work until
a connection is established.

In contrast, asynchronous connection establishment is useful
for the following situations:

� If the connection latency is high and there are many
peers to connect with (e.g., establishing a large number
of connections over a high-latency WAN);

� If only a single thread of control is available (e.g., if the
OS platform does not provide application-level threads);

� If the client application must perform additional work
(such as refreshing a GUI) while the connection is in the
process of being established.

It is often the case that network services like the Gateway
must be developed without knowing if they will connect
synchronously or asynchronously. Therefore, components
provided by a general-purpose network programming frame-
work must support multiple synchronous and asynchronous
use-cases.

The Connector pattern increases the flexibility and reuse
of networking framework components by separating the
connection establishment logic from the service process-
ing logic. The only coupling between a Connector and
a Svc Handler occurs in the service initialization phase,
when theConnector invokes theopenmethod of theSvc
Handler. At this point, the Svc Handler can perform
its service-specific processing using any suitable application-
level protocol or concurrency policy. For instance, when
messages arrive at a Gateway, the Reactor can be used
to dispatch Input Channels to frame the messages, de-
termine outgoing routes, and deliver the messages to their
Output Channels. However, a different type of con-
currency mechanism (such as Active Objects described in
Section 3.5) can be used by the Output Channels to
send the data to the remote destinations.

Usage: The Connector pattern is used by the Gateway
to simplify the task of connecting to a large number of
Peers. Peer addresses are read from a configuration file
during Gateway initialization. The Gateway uses the
Builder pattern [1] to bind these addresses to dynamically
allocated Channels. Since Channels inherit from Svc
Handler, all connections can be initiated asynchronously
using the Iterator pattern [1]. The connections are then com-
pleted in parallel using the Connector.

Figure 10 illustrates the relationship between participants
in the Connector pattern after four connections have been
established. Three other connections that have not yet
completed are owned by the Connector. As shown in
this figure, the Connector maintains a table of the three
Channels whose connections are pending completion. As

: Connector

: Reactor
PENDING

CONNECTIONS

ACTIVE

CONNECTIONS

: Svc
Handler

: Channel

: Svc
Handler

: Channel

: Svc
Handler

: Channel

: Svc
Handler

: Channel

: Svc
Handler

: Channel

: Svc
Handler

: Channel
: Svc

Handler

: Channel

Figure 10: Using the Connector Pattern in the Gateway

connections complete, the Connector removes each con-
nectedChannel from its table and activates it. In the single-
threaded implementationInput Channels register them-
selves with the Reactor once they are activated. Hence-
forth, when routing messages arrive, Input Channels
receive and forward them to Output Channels, which
deliver the messages to their destinations (these activities are
described in Section 3.4).

In addition to establishing connections, a Gateway can
use the Connector in conjunction with the Reactor to
ensure that connections are restarted if network errors occur.
This enhances the Gateway’s fault tolerance by ensuring
that channels are automatically reinitiated when they discon-
nect unexpectedly (e.g., if a Peer crashes or an excessive
amount of data is queued at an Output Channel due
to network congestion). If a connection fails unexpectedly,
an exponential-backoff algorithm can be implemented using
the timer-based dispatching capabilities of the Reactor to
restart the connection efficiently.

3.3 The Acceptor Pattern

Intent: The Acceptor pattern decouples passive service ini-
tialization from the tasks performed once the service is ini-
tialized.

Motivationand Forces: The Acceptor pattern resolves the
following forces that impact the passive initialization of ser-
vices written using lower-level network programming inter-
faces like sockets and TLI:

1. The need to reuse passive connection establishment code
for each new service – The Acceptor pattern permits key
characteristics of services (such as the communication
protocol or the data format) to evolve independently and
transparently from the mechanisms used to establish the
connections. Since service characteristics change more
frequently than connection establishment mechanisms
this separation of concerns helps reduce software cou-
pling and increases code reuse.

9

ReactorReactor11

AcceptorAcceptor

SVC_HANDLERSVC_HANDLER

PEER_ACCEPTORPEER_ACCEPTOR

ConcreteConcrete
AcceptorAcceptor

Concrete_Svc_HandlerConcrete_Svc_Handler

SOCK_AcceptorSOCK_Acceptor11
ConcreteConcrete

Svc HandlerSvc Handler

SOCK_StreamSOCK_Stream

open()

nn
R

E
A

C
T

IV
E

R
E

A
C

T
IV

E
L

A
Y

E
R

L
A

Y
E

R
C

O
N

N
E

C
T

IO
N

C
O

N
N

E
C

T
IO

N
L

A
Y

E
R

L
A

Y
E

R
A

P
P

L
IC

A
T

IO
N

A
P

P
L

IC
A

T
IO

N
L

A
Y

E
R

L
A

Y
E

R

INITIALIZES

INITIALIZES

sh = make_svc_handler();sh = make_svc_handler();

accept_svc_handler (sh);accept_svc_handler (sh);

activate_svc_handler (sh);activate_svc_handler (sh);

nn

EventEvent
HandlerHandler

handle_event()

AA

make_svc_handler()
accept_svc_handler()
activate_svc_handler()
open()
handle_event()

SvcSvc
HandlerHandler

PEER_STREAMPEER_STREAM

open() AA

Figure 11: Structure and Participants in the Acceptor Pattern

2. The need to make the connection establishment code
portable across platforms that contain different network
programming interfaces – Parameterizing the Accep-
tor’s mechanisms for accepting connections and per-
forming services helps to improve portability by allow-
ing the wholesale replacement of these mechanisms.
This makes the connection establishment code portable
across platforms that contain different network program-
ming interfaces (such as sockets but not TLI, or vice
versa).

3. The need to enable flexible service concurrency policies
– Once a connection is established, peer applications use
the connection to exchange data to perform some type
of service (e.g., remote login, WWW HTML document
transfer, etc.). A service can run in a single-thread,
in multiple threads, or multiple processes, regardless
regardless of how the connection was established or
how the services were initialized.

4. The need to ensure that a passive-mode I/O handle is
not accidentally used to read or write data – By strongly
decoupling the Acceptor from the Svc Handler,
passive-mode listener endpoints cannot be used incor-
rectly (e.g., to try to read or write data on a passive-
mode listener socket used to accept connections). This
eliminates an important class of network programming
errors.

The Acceptor pattern is the “dual” of the Connector pattern
described in Section 3.2. However, the Connector pattern es-
tablishes connections actively, whereas the Acceptor pattern
establishes connections passively. The consequences of this

ServerServer

REGISTER HANDLERREGISTER HANDLER

START EVENT LOOPSTART EVENT LOOP

CONNECTION EVENTCONNECTION EVENT

REGISTER HANDLERREGISTER HANDLER

FOR CLIENT FOR CLIENT I/OI/O

FOREACH EVENT DOFOREACH EVENT DO

EXTRACT HANDLEEXTRACT HANDLE

INITIALIZE PASSIVEINITIALIZE PASSIVE

ENDPOINTENDPOINT

acc :acc :
AcceptorAcceptor

handle_event()

handle_close()

reactor :reactor :
ReactorReactor

select()

sh:sh:
Svc_HandlerSvc_Handler

handle_event()

register_handler(sh)

get_handle()
EXTRACT HANDLEEXTRACT HANDLE

DATA EVENTDATA EVENT

CLIENT SHUTDOWNCLIENT SHUTDOWN

svc()
PROCESS MSGPROCESS MSG

open()

CREATECREATE,, ACCEPT ACCEPT,,
AND ACTIVATE OBJECTAND ACTIVATE OBJECT

SERVER SHUTDOWNSERVER SHUTDOWN
handle_close()

: SOCK: SOCK
AcceptorAcceptor

handle_events()

get_handle()

register_handler(acc)

sh = make_svc_handler()
accept_svc_handler (sh)
activate_svc_handler (sh)

open()

E
N

D
P

O
IN

T
E

N
D

P
O

IN
T

IN
IT

IA
L

IZ
A

T
IO

N
IN

IT
IA

L
IZ

A
T

IO
N

P
H

A
S

E
P

H
A

S
E

S
E

R
V

IC
E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N
IN

IT
IA

L
IZ

A
T

IO
N

P
H

A
S

E
P

H
A

S
E

S
E

R
V

IC
E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

R
O

C
E

S
S

IN
G

P
H

A
S

E
P

H
A

S
E

Figure 12: Object Interaction Diagram for the Acceptor Pat-
tern

difference in connection roles is illustratedby the forces these
two patterns resolve. For instance, note that the first three
forces resolved by the Acceptor pattern are essentially the
same as for the Connector pattern, with only the passive and
active roles reversed. However, the final force resolved in
each pattern is different due to the inverse connection roles
played by each pattern.

Structure, Participants, and Implementation: Figure 11
illustrates the layering structure of participants in the Ac-
ceptor pattern, which is nearly identical to the Connector
layering structure in Figure 8. The Acceptor is a factory
that assembles the resources necessary to create, accept, and
activate a Svc Handler. The Svc Handler in the Ac-
ceptor pattern plays the same role as in the Connector pattern,
i.e., it is a local Proxy for a remotely connected Peer.

The Connection Layer in the Acceptor pattern leverages off
the Reactor pattern. For instance, the Acceptor’s initial-
ization strategy establishes a connection after the Reactor
notifies it that a new connection request has arrived from
a Peer. Using the Reactor pattern enables multiple Svc
Handlers to be initialized passively within a single thread
of control.

To increase flexibility, the implementation of an
Acceptor can be parameterized by a particular type
of PEER CONNECTOR and SVC HANDLER. The PEER
ACCEPTOR supplies the underlying transport mechanism
(such as C++ wrappers for sockets or TLI) used by the
Acceptor to passively establish a connection. The SVC
HANDLER specifies an abstract interface for defining a ser-
vice that communicates with a connected Peer. A SVC
HANDLER can be parameterized by a PEER STREAM end-
point. The Acceptor associates this endpoint to its Peer
when a connection is established passively.

As with the Connector pattern, a Svc Handler can use
either the Reactor pattern or Active Object pattern to handle

10

: Input: Input
AcceptorAcceptor

:: Reactor Reactor

ACTIVE

CONNECTIONS

: Svc
Handler

: Input: Input
ChannelChannel

: Svc: Svc
HandlerHandler

: Output: Output
ChannelChannel

: Svc: Svc
HandlerHandler

: Output: Output
ChannelChannel

: Svc: Svc
HandlerHandler

: Input: Input
ChannelChannel

PASSIVE

LISTENERS: Output: Output
AcceptorAcceptor

Figure 13: Using the Acceptor Pattern in the Gateway

its I/O events. Likewise, the implementation of the Accep-
tor pattern presented above also uses parameterized types.
Parameterized types enhance portability since the Acceptor
pattern’s connection establishment strategy is independent of
the type of service and the type of IPC mechanism. De-
velopers can supply concrete arguments for these types to
produce Application Layer Concrete Acceptor (such
as the Acceptor used by the Gateway and Peers to
passively initialize Input and Output Channels).

Collaboration: Figure 12 illustrates the collaboration
among participants in the Acceptor pattern. These collab-
orations are divided into three phases:

1. Endpoint initialization phase – which creates a passive-
mode endpoint (encapsulated by PEER ACCEPTOR)
that is bound to a network address (such as an IP address
and port number). The passive-mode endpoint listens
for connection requests from Peers. This endpoint is
registered with the Reactor, which drives the event
loop that waits on the endpoint for connection requests
to arrive from Peers.

2. Service activation phase – Since an Acceptor in-
herits from an Event Handler the Reactor can
dispatch the Acceptor’s handle event method
when connection events arrive. This method performs
the Acceptor’s Svc Handler initialization strat-
egy. This strategy assembles the resources necessary to
create a new Concrete Svc Handler object, ac-
cept the connection into this object, and activate theSvc
Handler by calling its open method.

3. Service processing phase – once activated, the Svc
Handler processes incoming event messages arriving
on thePEER STREAM. ASvc Handlerwill process
incoming event messages using a concurrent event han-
dling pattern such as the Reactor or the Active Object
[9].

RoutingRouting
TableTable

find()

OutputOutput
ChannelChannel

send_msg()
put()

InputInput
ChannelChannel

recv_msg()

1

nn

I/
O

I/
O

L
A

Y
E

R
L

A
Y

E
R

R
O

U
T

IN
G

R
O

U
T

IN
G

L
A

Y
E

R
L

A
Y

E
R

MessageMessage
QueueQueue

EVENT SOURCE AND SINKEVENT SOURCE AND SINK

Figure 14: Structure and Participants in the Router Pattern

Usage: Figure 13 illustrates how the Acceptor pattern is
used by the Gateway. The Gateway uses this pattern
when it plays the passive connection role. In this case,
Peers connect to Gateway, which uses the Acceptor pat-
tern to decouple the passive initialization of Input and
Output Channels from the routing tasks performed once
a Channel is initialized.

The intent and general architecture of the Acceptor pattern
is found in network server management tools likeinetd [15]
andlisten [16]. These tools utilize a master Acceptor pro-
cess that listens for connections on a set of communication
ports. Each port is associated with a communication-related
service (such as the standard Internet services ftp, telnet,
daytime, and echo). When a service request arrives on
a monitored port, the Acceptor process accepts the request
and dispatches an appropriate pre-registered handler that per-
forms the service.

3.4 The Router Pattern

Intent: The Router pattern decouples multiple sources of
input from multiple sources of output to route data correctly
without blocking a Gateway.

Motivation and Forces: Message routing in a Gateway
must not be disrupted or postponed indefinitely when con-
gestion or failure occurs on incoming and outgoing network
links. The Router pattern resolves the following forces that
arise when building robust connection-orientedGateways:

1. The need to prevent misbehaving connections from dis-
rupting the quality of service for well-behaved connec-
tions – If outgoing connections can flow control as a
result of network congestion, or input connections can
fail because Peers disconnect, theGatewaymust not
perform blockingsend or recv operations on any sin-
gle channel. Otherwise, messages on other channels
could not be sent or received and the quality of service
provided to Peers would degrade.

2. The need to allow different concurrency strategies
for Input and Output Channels – Several concur-

11

rency strategies for processing Input and Output
Channels are described in this paper including (1)
single-threaded processing using the Reactor pattern
and (2) multi-threaded processing using the Active Ob-
ject pattern. Each strategy is appropriate under differ-
ent situations, depending on factors such as the num-
ber of CPUs, context switching overhead, and number
of Peers. By decoupling Input Channels from
Output Channels the Router pattern allows cus-
tomized concurrency strategies to be configured flexibly
into a Gateway.

Structure, Participants, and Implementation: Figure 14
illustrates the layer structuring of participants in the Router
pattern. The I/O Layer provides an event source for Input
Channels and an event sink for Output Channels.
An Input Channel uses a Routing Table to map
routing messages onto one or more Output Channels.
If messages cannot be delivered to their destination Peers
immediately they are buffered in a Message Queue for
subsequent transmission.

Because Input Channels are decoupled from
Output Channels their implementations can vary inde-
pendently. This separation of concerns is important since it
allows different concurrency strategies to be used for input
and output. The consequences of this decoupling is discussed
further in Section 3.5.

Collaborations: Figure 15 illustrates the collaboration
among participants in the Router pattern. These collabo-
rations can be divided into three phases:

1. Input processing phase – whereInput Channels re-
assemble incoming TCP segments into complete routing
messages;

2. Route selection phase – where Input Channels
consult a Routing Table to select the Output
Channels responsible for sending the routing mes-
sages;

3. Output processing phase – where the selected Output
Channels transmit the routing messages to their des-
tination(s) without blocking the process.

Usage: The other strategic patterns in this paper (i.e., Reac-
tor, Connector, Acceptor, and Active Object) can be applied
to many other types of communication software. In con-
trast, the Router pattern is tightly coupled with theGateway
application. A primary challenge of building a reliable
connection-oriented Gateway centers on avoiding block-
ing I/O. This is necessary to reliably manage flow control
on Output Channels. If the Gateway blocked indefi-
nitely when sending on a congested connection then incoming
messages could not be routed, even if those messages were
destined for non-flow controlled Output Channels.

The remainder of this section describes how the Router pat-
tern can be implemented in a single-threaded, Reactor version
of the Gateway (Section 3.5 examines the multi-threaded,

: Routing: Routing
TableTable

recv_msg()

find ()

I/OI/O
LayerLayer

: Input: Input
ChannelChannel

FIND DESTINATIONSFIND DESTINATIONS

ROUTE MSGROUTE MSG

main()main()

SEND MSGSEND MSG

((QUEUE IF FLOWQUEUE IF FLOW

CONTROLLEDCONTROLLED))

put()

wakeup()
FLOW CONTROLFLOW CONTROL

ABATESABATES

DEQUEUE AND SENDDEQUEUE AND SEND

MSG MSG ((REQUEUE IFREQUEUE IF

FLOW CONTROLLEDFLOW CONTROLLED))

: Output: Output
ChannelChannel

RECV MSGRECV MSG

send_msg()

IN
P

U
T

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

R
O

U
T

E
S

E
L

E
C

T
IO

N
P

H
A

S
E

O
U

T
P

U
T

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

dequeue()

enqueue()

send_msg()

schedule_wakeup()

Figure 15: Object Interaction Diagram for the Router Pattern

Active Object version of the Router pattern). The Router pat-
tern uses a Reactor as a cooperative multi-tasking sched-
uler forGateway I/O operations, just like the Connector and
Acceptor patterns. The Reactor allows multiple events on
different connections to be demultiplexed within a single
thread of control. The use of single-threading eliminates
the overhead of synchronization (since access to shared ob-
jects like the Routing Table need not be serialized) and
context switching (since message routing occurs in a single
thread).

In the Reactor version of the Router pattern, the Input
Channels and Output Channels inherit indirectly
from Event Handler. This enables the Gateway
to route messages by having the Reactor dispatch
the handle event methods of Input and Output
Channels when messages arrive and flow control condi-
tions subside, respectively.

Using the Reactor pattern to implement the Router pattern
involves the following steps:

1. Initialize non-blocking endpoints – The Input and
Output Channel handles are set into non-blocking
mode after they are activated by an Acceptor or
Connector. The use of non-blocking I/O is essen-
tial to avoid subtle errors that can occur on faulty or
congested network links.

2. Input message reassembly and routing – Routing mes-
sages are received in fragments byInput Channels.
If an entire message is not immediately available, the
Input Channelmust buffer the fragment and return
control to the event loop. This is essential to prevent
“head of line” blocking on Input channels. When
an Input Channel successfully receives and frames
an entire message it uses the Routing Table to de-
termine the appropriate set of Output Channels
that will deliver the message.

3. Message delivery – The selected Output Channels
try to send the message to the destination Peer. Mes-

12

: Routing: Routing
TableTable

: Input: Input
ChannelChannel

7: put (msg)7: put (msg)

1: handle_event()1: handle_event()
2: recv_msg(msg)2: recv_msg(msg)

3: find()3: find()

:: MessageMessage
QueueQueue

: Output: Output
ChannelChannel

5: nonblk_put(msg)5: nonblk_put(msg)
6: send_msg(msg)6: send_msg(msg)

ROUTEROUTE
IDID

SubscriberSubscriber
SetSet

4:
 p

ut (
m

sg
)

4:
 p

ut (
m

sg
)

: Output: Output
ChannelChannel

8: nonblk_put(msg)8: nonblk_put(msg)
9: send_msg(msg)9: send_msg(msg)
10: enqueue(msg)10: enqueue(msg)
11: schedule_wakeup()11: schedule_wakeup()

12: wakeup()12: wakeup()
13: dequeue(msg)13: dequeue(msg)
14: send_msg(msg)14: send_msg(msg)

:: MessageMessage
QueueQueue

Figure 16: Using the Router Pattern in a Single-threaded
Reactive Gateway

sages must be delivered reliably in “first-in, first-out”
(FIFO) order. To avoid blocking, all send operations
in Output Channels must check to make sure that
the network link is not flow controlled. If it is not, the
message can be sent successfully. This path is depicted
by theOutput Channel in the upper right-hand cor-
ner of Figure 16. If the link is flow controlled, however,
the Router pattern must use a different strategy. This
path is depicted by theOutput Channel in the lower
right-hand corner of Figure 16.

To handle flow controlled connections, the Output
Channel inserts the message it is trying to send into
its Message Queue. It then instructs the Reactor
to call back to the Output Channel when the flow
control conditions abate, and returns to the main event
loop. When it is possible to try to send again, the
Reactor dispatches the handle event method on
the Output Channel, which then retries the opera-
tion. This sequence of steps may be repeated multiple
times until the entire message is transmitted success-
fully.

Note that the Gateway always returns control to its main
event loop immediately after every I/O operation, regardless
of whether it sent or received an entire message. This is
the essence of the Router pattern – it correctly routes the
messages to peers without blocking on any single I/O channel.

3.5 The Active Object Pattern

Intent: The Active Object pattern decouples method exe-
cution from method invocation to enable concurrent execu-
tion of methods.

ClientClient
InterfaceInterface

ResultHandle m1()
ResultHandle m2()
ResultHandle m3()

ActivationActivation
QueueQueue
insert()

remove()

SchedulerScheduler

dispatch()
m1'()
m2'()
m3'()

ResourceResource
RepresentationRepresentation

MethodMethod
ObjectsObjects

loop {
 m = actQueue.remove()
 dispatch (m)
}

INVISIBLEINVISIBLE
TOTO

CLIENTSCLIENTS

VISIBLEVISIBLE
TOTO

CLIENTSCLIENTS

nn

11

11
11

11

11

Figure 17: Structure and Participants in the Active Object
Pattern

Motivation and Forces: All the strategic patterns used by
the single-threadedGateway in Section 3.4 are layered upon
the Reactor pattern. The Connector, Acceptor, and Router
patterns all use the Reactor as a scheduler/dispatcher to ini-
tialize and route messages within a single thread of control.
In general, the Reactor pattern forms the central event loop in
single-threaded reactive systems. For example, in the single-
threaded Gateway implementation, the Reactor provides
a coarse-grained form of concurrency control that serializes
the invocation of event handlers at the level of event demul-
tiplexing and dispatching within a process. This eliminates
the need for additional synchronization mechanisms within a
Gateway and minimizes context switching.

The Reactor pattern is well-suited for applications that use
short-duration callbacks (such as passive connection estab-
lishment in the Acceptor pattern). It is less appropriate, how-
ever, for long-duration operations (such as blocking on flow
controlled Output Channels during periods of network
congestion). In fact, much of the complexity in the single-
threaded Router pattern implementation stems from using the
Reactor pattern as a cooperative multi-tasking mechanism. It
is much easier, therefore, to implement the output portion of
the Router pattern with the Active Object pattern. This pattern
allows Output Channels to block independently when
sending messages to Peers.

The Active Object pattern resolves the following force that
impacts the design of applications like a Gateway that must
communicate simultaneously with multiple Peers:

� The need to allow blocking read and write operations
on one endpoint that do not detract from the quality of
service of other endpoints. Network services are gener-
ally easier to program if blocking I/O is used rather than
reactive non-blocking I/O [17]. The increased simplic-
ity occurs since the execution state can be localized in
the activation records of a thread of control, rather than
being decentralized in a set of control blocks maintained

13

INVOKEINVOKE

INSERT ININSERT IN
 PRIORITY QUEUE PRIORITY QUEUE

cons(m1')

remove(m1')DEQUEUE NEXTDEQUEUE NEXT
 METHOD OBJECT METHOD OBJECT

RETURN RESULTRETURN RESULT

EXECUTEEXECUTE

clientclient
: Client: Client

InterfaceInterface
: Activation: Activation

QueueQueue

insert(m1')

dispatch(m1')

M
E

T
H

O
D

 O
B

J
E

C
T

M
E

T
H

O
D

 O
B

J
E

C
T

C
O

N
S

T
R

U
C

T
IO

N
C

O
N

S
T

R
U

C
T

IO
N

S
C

H
E

D
U

L
IN

G
/

E
X

E
C

U
T

IO
N

C
O

M
P

L
E

T
IO

N

m1()

: Represent-: Represent-
ationation

: Scheduler: Scheduler

CREATE METHOD
OBJECT

reply_to_future()

future()RETURN RESULTRETURN RESULT
HANDLEHANDLE

Figure 18: Object Interaction Diagram for the Active Object
Pattern

by application developers.

Structure, Participants, and Implementation: Figure 17
illustrates the structure and participants in the Active Ob-
ject pattern. The Client Interface presents the pub-
lic methods available to clients. The Scheduler deter-
mines next method to execute based on synchronization
and scheduling constraints. The Activation Queue
maintains a list of pending Method Objects. The
Scheduler determines the order in which these Methods
Objects are executed (a FIFO scheduler is used in the
Gateway to maintain the order of message delivery). The
Resource Representation maintains context infor-
mation shared by the implementation methods.

Collaborations: Figure 18 illustrates the collaborations
among participants in the Active Object pattern. These col-
laborations are divided into the following phases:

1. Method Object construction – in this phase the client
application invokes a method defined by the Client
Interface. This triggers the creation of a Method
Object, which maintains the argument bindings to
the method, as well as any other bindings required to
execute the method and return a result. For example, a
binding to a Result Handle object returned to the
caller of the method. A Result Handle is returned
to the client unless the method is “oneway,” in which
case no Result Handle is returned.

2. Scheduling/execution – in this phase the Scheduler
acquires a mutual exclusion lock, consults the
Activation Queue to determine which Method
Object(s) meet the synchronization constraints.
The Method Object is then bound to the current
Resource Representation and the method is al-
lowed to access/update this representation and create a
Result Handle.

3. Return result – the final phase binds the Result
Handle value, if any, to a future [18, 19] object that

: Routing: Routing
TableTable

: Input: Input
ChannelChannel

:: MessageMessage
QueueQueue

: Output: Output
ChannelChannel

4: put (msg)4: put (msg)

1: handle_event ()1: handle_event ()
2: recv_msg(msg)2: recv_msg(msg)

3: find()3: find()

:: MessageMessage
QueueQueue

: Output: Output
ChannelChannel

5: send_msg(msg)5: send_msg(msg)

5: send_msg(msg)5: send_msg(msg)

ACTIVEACTIVE

ACTIVEACTIVE

ROUTEROUTE
IDID

SubscriberSubscriber
SetSet

Figure 19: Using the Router Pattern in a Multi-threaded
Active Object Gateway

passes return values back to the caller when the method
finishes executing. A future is a synchronization object
that enforces “write-once, read-many” synchronization.
Subsequently, any readers that rendezvous with the fu-
ture will evaluate the future and obtain the result value.
The future and the Method Object will be garbage
collected when they are no longer needed.

Usage: The Gateway implementation described in Sec-
tion 3.4 is single-threaded. It uses the Reactor pattern imple-
mentation of the Router Pattern as a cooperative multi-tasking
scheduler that dispatches events of interest to a Gateway.
After implementing a number of single-threadedGateways
it became clear that using the Reactor pattern as the basis for
all Gateway routing I/O operations was error-prone and
hard to maintain. For example, maintenance programmers
frequently did not recognize the importance of returning con-
trol to the Reactor’s event loop immediately when I/O op-
erations cannot proceed. This misunderstanding became a
common source of errors in single-threaded Gateways.

To avoid these problems, a number of multi-threaded
Gateways were built using variations of the Active Ob-
ject pattern. The remainder of this section describes how
Output Channels can be multi-threading using the Ac-
tive Object pattern.5 This modification greatly simplified
the implementation of the Router pattern since Output
Channels can block in their own thread of control with-
out affecting other Channels. Implementing the Output
Channels as Active Objects also eliminated the sub-
tle and error-prone cooperative multi-tasking programming
techniques required when using the Reactor to schedule
Output Channels.

Figure 19 illustrates the Active Object version of the
Router pattern. Note how much simpler is it compared with

5While it is possible to apply the Active Object pattern to the Input
Channels this has less impact on the Gateway design because the
Reactor already supports non-blocking input.

14

the Reactor solution in Figure 16. The simplification occurs
primarily since the complex output scheduling logic moved
into the Active Objects, rather than being the responsibility
of the application programmer.

It is also possible to observe the difference in complexity
between the single-threaded and multi-threaded Gateways
by examining the source code that implements the Router
pattern in production Gateway systems. 6 However, using
source code to identify the reasons behind this complexity
is hard due to all the error handling and protocol-specific
details that surround the implementation. These details tend
to disguise the key insight: the main difference between the
complexity of the single-threaded and multi-threaded solu-
tions arise from the choice of the Reactor pattern vs. the
Active Object pattern. This paper has explicitly focused on
the interactions and tradeoffs between these patterns in or-
der to clarify the consequences of different design choices.
In general, documenting the interactions and relationships
between closely related patterns is a very challenging and
unresolved topic that is currented be addressed by the pat-
terns community.

4 Related Work

[1, 5, 20] identify, name, and catalog many fundamental
object-oriented design patterns. This section examines how
the patterns described in this paper relate to other patterns in
the literature. Note that many of the tactical patterns form
the basis for implementing the strategic patterns presented in
this paper.

The Reactor pattern is related to the Observer pattern [1].
In the Observer pattern, multiple dependents are updated au-
tomatically when a subject changes. In the Reactor pattern,
a handler is dispatched automatically when an event occurs.
Thus, the Reactor dispatches a single handler for each event
(though there can be multiple sources of events). The Reac-
tor pattern also provides a Facade [1]. The Facade pattern
presents an interface that shields applications from complex
relationshipswithina subsystem. The Reactor pattern shields
applications from complex mechanisms that perform event
demultiplexing and event handler dispatching.

The mechanism the Reactor uses to dispatch Event
Handlers is similar to the Factory Callback pattern [21].
The intent of both patterns is to decoupling event reception
from event processing. The primary different is the purpose
of the pattern – the Factory Callback is a creational pattern,
whereas the Reactor dispatching is a behavioral pattern.

The Connector pattern is a variation of the Template
Method and Factory Method patterns [1]. In the Template
Method pattern, an algorithm is written such that some steps
are supplied by a derived class. In the Factory Method pat-
tern, a method in a subclass creates an associate that performs
a particular task, but the task is decoupled from the protocol

6An ACE-based example of single-threaded and multi-threaded
Gateways that illustrates all the patterns in this paper is freely available
via the WWW at http://www.cs.wustl.edu/�schmidt.

used to create the task. The Connector pattern is a Factory
that use Template Methods to create, connect, and activate
handlers for communication channels. In the Connector pat-
tern, theconnectmethod implements a standard algorithm
for initiating a connection and activating a handler when the
connection is established. The intent of the Connector pattern
is similar to the Client/Dispatcher/Server pattern described in
[5]. They both are concerned with separating active connec-
tion establishment from the subsequent service. The primary
difference is that the Connector pattern addresses both syn-
chronous and asynchronous connection establishment.

The Acceptor pattern can also be viewed as a variation of
the Strategy and Factory Method patterns [1]. The Acceptor
pattern is a connection factory that embodies the strategy for
create service handlers, accepting connections into service
handlers, and activating service handles to process data ex-
changed across communication channels. The Acceptor
implements the algorithm that passively listens for connec-
tion requests, then creates and activates a handler when the
connection is established. The handler performs a service
using data exchanged on the connection. Thus, the service is
decoupled from the network programming interface and the
transport protocol used to establish the connection.

The Router pattern is a variant of the Mediator pattern [1],
which decouples cooperating components of a software sys-
tem and allows them to interact without having direct depen-
dencies among each other. The Router pattern is specialized
to resolve the forces associated with network communication.
It decouples the mechanisms used to process input messages
from the mechanisms used to process output mechanisms to
prevent blocking. In addition, the Router pattern allows the
use of different concurrency strategies for input and output
channels.

5 Concluding Remarks

This paper illustrates how a family of patterns have been
applied to facilitate widespread reuse of design exper-
tise and software components in production communication
Gateways. These patterns illustrate the structure of, and
collaboration between, objects that perform core communi-
cation software tasks. The tasks addressed by these patterns
include event demultiplexing and event handler dispatching,
connection establishment and initialization of application ser-
vices, concurrency control, and routing.

The family of design patterns and the ACE framework
components described in this paper have been reused by the
author and his colleagues in many production communica-
tion software systems ranging from telecommunication and
electronic medical imaging projects [12, 3] to academic re-
search projects [10]. In general, patterns aid the development
of components and frameworks in these systems by capturing
the structure and collaboration of participants in a software
architecture at a higher level than (1) source code and (2)
object-oriented design models that focus on individual ob-
jects and classes.

15

Our experience applying a design pattern-based reuse strat-
egy has been quite positive [2]. For instance, we’ve signifi-
cantly reduced the software maintenance and training effort
for the production communication systems by documenting
the intent, structure, and behavior of ACE components in
terms of the patterns they reify. Focusing on patterns has
also enabled us to reuse software architecture even when
reuse of algorithms, implementations, interfaces, or detailed
designs was not feasible due to differences in OS platforms
[12]. An in-depth discussion of our experiences and lessons
learned using patterns appeared in [2].

Acknowledgements

I would like to thank Steve Berczuk, Chris Cleeland, Tim
Harrison, Hans Rohnert, and the anonymous referees for
contributing valuable suggestions that helped improve the
quality of this paper.

References
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[2] D. C. Schmidt, “Experience Using Design Patterns to Develop
Reuseable Object-Oriented Communication Software,” Com-
munications of the ACM (Special Issue on Object-Oriented
Experiences), vol. 38, October 1995.

[3] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” in Proceedings
of the 2nd Conference on Object-Oriented Technologies and
Systems, (Toronto, Canada), USENIX, June 1996.

[4] D. C. Schmidt and T. Suda, “Measuring the Performance of
Parallel Message-based Process Architectures,” in Proceed-
ings of the Conference on Computer Communications (INFO-
COM), (Boston, MA), pp. 624–633, IEEE, April 1995.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons, 1996.

[6] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[7] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

[8] D. C. Schmidt, “Acceptor and Connector: Design Patterns for
Initializing Communication Services,” in The 1st European
Pattern Languages of Programming Conference (Washington
University technical report #WUCS-97-07), July 1997.

[9] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Proceed-
ings of the 2nd Annual Conference on the Pattern Languages
of Programs, (Monticello, Illinois), pp. 1–7, September 1995.

[10] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the

6th USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[11] D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Program-
ming,” in Proceedings of the 1st Conference on Object-
Oriented Technologies and Systems, (Monterey, CA),
USENIX, June 1995.

[12] D. C. Schmidt and P. Stephenson, “Experiences Using De-
sign Patterns to Evolve System Software Across Diverse OS
Platforms,” in Proceedings of the 9th European Conference
on Object-Oriented Programming, (Aarhus, Denmark), ACM,
August 1995.

[13] M. A. Linton, J. Vlissides, and P. Calder, “Composing User
Interfaces with InterViews,” IEEE Computer, vol. 22, pp. 8–
22, February 1989.

[14] D. Ritchie, “A Stream Input–OutputSystem,” AT&T Bell Labs
Technical Journal, vol. 63, pp. 311–324, Oct. 1984.

[15] W. R. Stevens, UNIX Network Programming, First Edition.
Englewood Cliffs, NJ: Prentice Hall, 1990.

[16] S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

[17] D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-Async: an
Architectural Pattern for Efficient and Well-structured Con-
current I/O,” in Pattern Languages of Program Design (J. O.
Coplien, J. Vlissides, and N. Kerth, eds.), Reading, MA:
Addison-Wesley, 1996.

[18] R. H. Halstead, Jr., “Multilisp: A Language for Concur-
rent Symbolic Computation,” ACM Trans.ProgrammingLan-
guages and Systems, vol. 7, pp. 501–538, Oct. 1985.

[19] B. Liskov and L. Shrira, “Promises: Linguistic Support for
Efficient Asynchronous Procedure Calls in Distributed Sys-
tems,” in Proceedingsof the SIGPLAN’88 Conferenceon Pro-
gramming Language Design and Implementation, pp. 260–
267, June 1988.

[20] J. O. Coplien and D. C. Schmidt, eds., Pattern Languages of
Program Design. Reading, MA: Addison-Wesley, 1995.

[21] S. Berczuk, “A Pattern for Separating Assembly and Process-
ing,” in Pattern Languages of Program Design (J. O. Coplien
and D. C. Schmidt, eds.), Reading, MA: Addison-Wesley,
1995.

16

