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Abstract

Abstract

Developers of communication software must confront recur-
ring design challenges involving robustness, efficiency, and
extensibility. Many of these challenges are independent of
the appli cation-specific requirements. Successful developers
resolve these challenges by applying appropriate design pat-
terns. However, these patterns havetraditional ly been | ocked
in the minds of expert devel opers or buried within complex
system source code. The primary contribution of this pa-
per is to describe a family of design patterns that underly
many object-oriented communication software systems. In
addition to describing each pattern separately, the paper il-
lustrates how knowledge of the relationships and trade-offs
among patternshel psguidethe constructi on of reusable com-
muni cation software frameworks.

1 Introduction

Building, maintaining, and enhancing high quality communi-
cation systems ishard. Developers must have a deep under-
standing of many complex issues such as service initiaiza
tion and distribution, concurrency control, flow control, error
handing, and event loop integration. Successful communi-
cation software created by experienced software developers
embodies solutionsto these issues.

It is often difficult, however, to separate the essence of
successful software solutionsfrom the details of a particular
implementation. Even when software is written using well-
structured object-oriented frameworks and components, it
can be hard to identify key roles and relationships. More-
over, OS platform features (such as the absence or presence
of multi-threading) or requirements (such as best-effort vs.
fault tolerance error handling) are often different. These dif-
ferences can mask the underlying architectura commonality

among software solutions for different applications in the
same domain.

Capturing and arti cul ating the essence and commonality of
successful communication software is important for severa
reasons:

o It helps guide the design choices of developers who
are building new communication systems — By under-
standing the potential traps and pitfallsin their domain,
developers can select suitable architectures, protocols,
and platform features without wasting time and effort
implementing inefficient or error-prone solutions.

o It preserves important design information for program-
mers who enhance and maintain existing software —
Often, this information is locked in the minds of the
origina developers. If this design information is not
documented explicitly, however, it will be lost over
time, thereby increasing mai ntenance costs and decress-
ing software quality.

The purpose of this paper isto illustrate an effective way to
document the essence of successful communication software
by describing key design patterns used to build application-
level Gateways, which route messages between Peers dis-
tributed throughout a communi cation system.

Design patterns represent successful solutionsto problems
that arise when building software [1]. Capturing and articu-
lating key design patterns helps to enhance software quality
by addressing fundamental challenges in large-scale system
development. These challenges include communication of
architectural knowledge among devel opers; accommodating
new design paradigms or architectural styles; resolving non-
functional forces such as reusability, portability, and exten-
sihility; and avoiding devel opment traps and pitfallsthat are
usualy learned only by costly trial and error.

This paper presents the object-oriented architecture and
design of an application-level Gat eway in terms of
the design patterns used to guide the construction of
reusable and Gat eway-specific frameworks and compo-
nents. Application-level Gateways have stringent require-
ments for reliability, performance, and extensibility. There-
fore, they are excellent exemplars for presenting the struc-
ture, participants, and consequences of key design patterns
that appear in many communication software systems.
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Figure 1: The Structure and Collaboration of Peers and the
Gateway

The patterns described in this paper were discovered while
building a wide range of communication systems including
on-line transaction processing systems, telecommunication
switch management systems [2], electronic medical imag-
ing systems[3], and parallel communication subsystems|[4].
Although the specific application requirements in these sys-
temswerequitedifferent, thecommunication softwaredesign
challenges were very similar. Therefore, although the exam-
ples in this paper focus on Gateways, the patterns embody
design expertise that can be reused broadly in the communi-
cation domain.

The remainder of this paper is organized as follows: Sec-
tion 2 outlines an object-oriented software architecture for
application-level Gateways, Section 3 examines the design
patternsthat form the basis for reusable communication soft-
ware, using application-level Gateways as an example; Sec-
tion 4 compares these patternswith those described in rel ated
work; and Section 5 presents concluding remarks.

2 An Object-Oriented Software Archi-
tecture for Application-level Gate-
ways

This paper examines framework components and design pat-
ternsthat comprise and motivatethe object-oriented architec-
ture of application-level Gateways developed by the author
and his colleagues. A Gateway is a Mediator [1] that de-
couples cooperating Peers throughout a network and allows
them to interact without having direct dependencies on each
other [5]. As shown in Figure 1, messages routed through
theGat eway contain payloads encapsulated in routing mes-
sages.

Figure2illustratesthe structure, associations, and internal
and external collaborationsamong objects within a software
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Figure 2: The Object-Oriented Gat eway Software Archi-
tecture

architecture for application-level Gateways.> This architec-
tureisbased on extensive experience devel opi ng connection-
oriented Gatewaysfor variouscommercia and research com-
munication systems. After building multiple Gateway sys
tems it became clear that the software architecture of these
systems was largely independent of the protocols used to
route messages to Peers. Thisresalization enabled the compo-
nentsdepicted in Figure 2 to bereused for the communi cation
software subsystems of many other projects. The ability to
reuse these components so widely stems from two factors:

¢ Understanding the actions and interactions of key de-
sign patterns within the domain of communication soft-
ware:  Patterns capture the structure and collaboration of
participantsin a software architecture at a higher level than
source code and obj ect-oriented design model s that focus on
individual objects and classes. Some of the communication
software patterns described in this paper have been docu-
mented individually [7, 8, 9]. Although individua pattern
descriptions capture val uable design experti se, complex com-
muni cation software systems embody scores of patterns. Un-
derstanding the rel ationships among these patternsis essen-
tial to document, motivate, and resolve difficult challenges
that arise when building communication software. There-
fore, Section 3 describes the interactions and relationships
among these patterns in terms of a family of design patterns
for communication software. These design patterns work
together to solve complex problems within the domain of
communi cation software.

1Relationships between componentsareillustrated throughout this paper
using Booch notation [6]. Inthisfigure solid cloudsindicate objects; nesting
indicates composition relationships between objects; and undirected edges
indicate an association exists between two objects.



¢ Developing an object-oriented framework that imple-
ments these design patterns. Recognizing the patterns
that commonly occur in many communication software sys-
tems helped shape the development of reusable framework
components. The Gat eway systems this paper is based
upon were implemented with the ADAPTIVE Communica
tion Environment (ACE) software [10]. ACE provides an
integrated framework of reusable C++ wrappers and compo-
nents that perform common communication software tasks.
These tasksinclude event demultiplexing, event handler dis-
patching, connection establishment, routing, dynamic con-
figuration of application services, and concurrency control.
In addition, the ACE framework contai nsimplementationsof
the design patterns described in Section 3. However, the pat-
terns are much richer than their implementation in ACE and
have been applied by many other communication systems, as
well.

This section describes how various ACE components have
been reused and extended to implement the application-
independent and appli cati on-specific componentsin the com-
munication Gat eway shown in Figure 2. Following this
overview, Section 3 examines the family of design patterns
that underly the ACE components.

2.1 Application-independent Components

Most of the components in Figure 2 are based on ACE
components that can be reused in other communication sys-
tems. The only components that are not widely reusable
arethel nput and Qut put Channel s, which implement
the application-specific details related to message formats
and the routing protocol. The behavior of the application-
independent componentsin the Gat eway isoutlined bel ow:

o Interprocess communication (IPC) components: The
SCOCK St r eam SOCCK Connect or , and SOCKAccept or
components encapsulate the socket network programming
interface [11]. These components simplify the development
of portableand correct communication software by shielding
devel opers from low-levd, tedious, and error-prone socket-
level programming. In addition, they form the foundation
for the higher-level ACE components and patterns described
bel ow.

e Service initialization components: The Connect or
and Accept or are factories [1] that implement active
and passive strategies for initializing network services,
respectively.? These components are based on the Connec-
tor pattern described in Section 3.2 and Acceptor pattern
described in Section 3.3. The Gat eway uses these com-
ponents to establish connections with Peer s and produce
initialized | nput and Cut put Channel s.

2Establishing connections between endpoints involves two roles: the
passiverole (which initializes an endpoint of communication at a particular
addressand waits passively for the other endpoint to connect with it) and the
active role (which actively initiates a connection to one or more endpoints
that are playing the passiverole).

To increase system flexibility, connections can be estab-
lished in two ways:

1. Fromthe Gat eway to the Peer s —whichistypicaly
donewhenever the Gat eway first starts up to establish
theinitial system configuration of Peer s;

2. FromaPeer totheGat eway —whichistypically done
oncethesystem isrunningwhenever anew Peer wants
to send or receive routing messages.

In alarge system, several scores of Peer s may be con-
nected to asingle Gat eway. Therefore, to expedite initial-
ization, the Gat eway’s Connect or can initiate al con-
nections asynchronously rather than synchronously. Asyn-
chrony helps decrease connection latency over long delay
paths (such as wide-area networks (WANS) built over satel-
lites or long-haul terrestria links). The underlying SOCK
Connect or [11] contained withinaConnect or provides
the low-level asynchronous connection mechanism. When a
SOCK Connect or connectstwo socket endpointsviaTCP
it produces a SOCK St r eamobject, which is then used to
exchange data between that Peer and the Gat eway.

o Event demultiplexing components: The React or is
an object-oriented event demultiplexing mechanism based
on the Reactor pattern [7] described in Section 3.1. It chan-
nels al external stimuli in an event-driven application to a
single demultiplexing point. This permits single-threaded
applications to wait on event handles, demultiplex events,
and dispatch event handlers efficiently. Events indicate that
something significant has occurred (e.g., the arrival of anew
connection or work request). The main source of eventsin
the Gat eway is routing messages that encapsulate various
payloads (such as commands, status messages, and bulk data
transmissions).

e Message demultiplexing components. The Map
Manager isaparameterized collection that efficiently maps
externa ids (e.g., Peer routing addresses) onto internal ids
(eg., Qut put Channel s). The Gat eway uses a Map
Manager to implement a Routi ng Tabl e that handles
the demultiplexing and routing of messages internaly to a
Gat eway. The Routi ng Tabl e maps addressing infor-
mation contained in routing messages sent by Peer s to the
appropriate set of Qut put Channel s.

e Message queueing components. The Message
Queue [10] provides a generic queueing mechanism. This
mechanism runs efficient and robustly in multi-threaded or
single-threaded environments. Developers can select the de-
sired concurrency strategy a the time a queue is instanti-
ated, TheGat eway usesMessage Queues tobuffer mes-
sages in Qut put Channel s while they are being routed
toPeers.

2.2 Application-specific Components

Only two of the components (I nput and CQut put
Channel s) in Figure 2 are specific to the Gat eway ap-
plication. These components implement the Router pattern



described in Section 3.4. | nput and Qut put Channel s
reside in the Gat eway, where they serve as proxies for the
original source and the intended destination(s) of routing
messages sent to hosts across the network. The behavior of
these two Gat eway -specific components is described be-
low:

e Input Channds: | nput Channel s are responsible
for routing incoming messages to their destination(s). The
React or notifiesan| nput Channel whenit detectsan
event on that connection’s communication endpoint. The
I nput Channel then receives and frames arouting mes-
sage from that endpoint, consults the Rout i ng Tabl e to
determinetheset of Qut put Channel destinationsfor the
message, and requests the selected Qut put Channel s to
forward the message to the appropriate Peer destinations.

e Output Channels. An Qut put Channel is respon-
sible for reliably delivering routing messages to their desti-
nations. It implements a flow control mechanism to buffer
bursts of routing messages that cannot be sent immediately
dueto transient network congestion or lack of buffer space at
areceiver. Flow control is atransport layer mechanism that
ensures asource Peer doesnot send data faster than adesti-
nation Peer can buffer and processthedata. For instance, if
adestination Peer runsout of buffer space, the underlying
TCP protocol instructs the associated Gat eway’'s Qut put

Channel to stop sending messages until the destination
Peer consumesits existing data.

A Gat eway integrates the application-specific and
application-independent components by inheriting from, in-
stantiating, and composing the ACE components described
above. As shown in Figure 3° | nput and Qut put
Channel s inherit from a common ancestor: the ACE Svc
Handl er class, which is produced by Connect or s and
Acceptors. TheSvc Handl er isalocal Proxy [1] for
aremotely connected Peer . It providesa SOCK St r eam
which enables Peer s to exchange messages via connected
Channel s.

AnCut put Channel usessan ACEMessage Queue
to chain unsent messages in the order they must be deliv-
ered when flow control mechanisms permit. Once a flow
controlled connection opens up, the ACE framework notifies
itsQut put Channel ,which startsdrainingtheMessage
Queue by sending messages to the Peer . If flow control
occurs again this sequence of stepsisrepeated until all mes-
sages are delivered.

To improve reliability and performance, the Gat eways
described in this paper utilize the Transmission Con-
trol Protocol (TCP). TCP provides a reliable, in-order,
non-duplicated bytestream service for application-level
Gat eways. Although TCP connections are inherently bi-
directional, data sent from Peer to the Gat eway use a

3Thisfigureillustrates additional Booch notation. Dashed cloudsindicate
classes; directed edges indicate inheritance relationships between classes;
and an undirected edge with a small circle at one end indicates either a
composition relation between two classes.
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Figure 3: Channel Inheritance Hierarchy

different connection than data sent from the Gat eway to
the Peer . There are several advantages to separating input
connections from output connectionsin this manner:

o It simplifies the construction of Gat eway Routi ng
Tabl es;

o It allows more flexibility in connection configuration
and concurrency strategies,

o It enhances reliability if errors occur on a connection
since | nput and Qut put Channel s can be recon-
nected independently.

3 A Family of Design Patterns for
Application-level Gateways

Section 2 illustrates the structure and functionality of an
application-level Gat eway. Although this architectura
overview helps to clarify the behavior of key components
in a Gat eway, it does not revea the deeper relationships
and roles that underly the various software components. In
particular, the architecture descriptions do not motivate why
a Gat eway is designed in this particular manner or why
certain components act and interact in certain ways. Under-
standing these relationships and roles is crucia to develop,
maintain, and enhance communi cation software.

An effective way to capture and articul ate these relation-
ships and roles is to describe the design patterns that reify
them. A design pattern is a recurring solution to a design
problem within a particular domain (such as business data
processing, telecommunications, graphical user interfaces,
databases, or distributed communication software). Study-
ing the patternsin Gat eway software isimportant to:

1. Identify successful solutions to common design chal-
lenges — The patterns underlying the Gat eway archi-
tecture transcend the particul ar details of the application
and resolve common challenges faced by communica
tion software developers. A thorough understanding of
the patterns presented below enables widespread reuse
of Gat eway software architecture in other systems,
even when reuse of its agorithms, implementations, in-
terfaces, or detailed designsisnot feasible [12].
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Figure 4: The Family of Patterns for Application-level
Gat eways

2. Reduce the effort of maintaining and enhancing
Gat eway software — The use of patterns helpsto cap-
ture and motivate the collaboration between multiple
classes and objects. This is important for developers
who must maintain and enhancea Gat eway . Although
the roles and relationships in a Gat eway design are
embodied in the source code, extracting them from the
surrounding implementation details can be costly and
error-prone.

Figure4 illustratesthe following strategic patternsrel ated
to connection-oriented, application-level Gat eways:

» Concurrency patterns:

e The Reactor pattern — which decouples event demul-
tiplexing and event handler dispatching from services
performed in response to events;

e The Active Object pattern — which decouples method
execution from method invocation.

e Serviceinitialization patterns:

e TheConnector pattern—which decouples active service
initialization from the tasks service performed once the
serviceisinitiaized;

e TheAcceptor pattern—which decouples passive service
initialization from the tasks performed once the service
isinitialized.

¢ Application-specific patterns:

e The Router pattern — which decouples input mecha
nisms from output mechanisms to route data correctly
without blocking a Gat eway.

These five patterns are strategic because they significantly
influence the software architecture for applicationsin a par-
ticular domain (in this case, the domain of communication
software and Gat eways). For example, the Router pattern
described in Section 3.4 decouples input mechanisms from
output mechanisms to ensure that message processing is not
disrupted or postponed indefinitely when a Gat eway expe-
riences congestion or failure. This pattern helpsto ensure a
consistently high quality of service for Gat eways that use
reliable transport protocols such as TCP/IP or IPX/SPX. A
thorough understanding of the strategic communi cation pat-
terns described in this paper is essentia to develop robust,
efficient, and extensible application-level Gateways.

Application-level Gateways also utilize many tactical pat-
terns, such as the following:

o Builder pattern — which providesafactory for building
complex objectsincrementally. The Gat eway usesthis
patternto create its Rout i ng Tabl e from a configu-
rationfile.

o Iterator pattern — which decouples sequentia access
to a container from the representation of the container.
TheGat eway usesthispatternto connect andinitialize
| nput and Qut put Channel s withPeer s.

o Template Method pattern—which specifies an algorithm
where some steps are supplied by a derived class. The
Gat eway uses this pattern to selectively override cer-
tain stepsinthe Connect or and Accept or inorder
to restart failed connections automatically.

o Adapter pattern — which transforms a non-conforming
interface into one that can be used by a client. The
Gat eway uses this pattern to treat different types of
routing messages (such as commands, status informa
tion, and bulk data) in a uniform manner.

o Proxy pattern—which providesaloca surrogate object
that actsin place of aremote object. TheGat eway uses
this pattern to shield the main Gat eway routing code
from delaysor errors caused by thefact that Peer s are
located on other host machines in the network.

Compared to strategic patterns (which are often domain-
specific and have broad design implications), tactical pat-
ternsare domain-independent and have ardatively localized
impact on a software design. For instance, Iterator is a tac-
tical pattern used in the Gat eway to process entries in the
Rout i ng Tabl e sequentially without violating data en-
capsulation. Although this pattern is domain-independent
and thus widely applicable, the problem it addresses does
not impact the application-level Gateway software design as
pervasively as strategic patterns like the Router. A thorough
understanding of tactical patternsis essentia to implement
highly flexible software that is resilient to changes in appli-
cation requirements and platform environments.

Although there are various forms for describing patterns,
they typically convey the following information [1]:

¢ Theintent of the pattern;
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Figure5: Structure and Participantsin the Reactor Pattern

¢ The design forces that motivate and shape the pattern;
e The solutionto these forces;
e Therelated classes and their rolesin the solution;

¢ The responsibilitiesand dynamic collaborations among
classes;

e The positive and negative consequences of using the
pattern;

o Guidance for implementors of the pattern;

o Example source code illustrating how the patternis ap-
plied;
o References to related work.

It isimportant to recognize that the strategic patternsin this
paper are much more generally applicable than the specific
use cases for the Gat eway described below. The references
[7, 8, 9] provide additional use cases for these patterns, along
with more detailed coverage of each pattern and sample im-
plementations.

3.1 TheReactor Pattern

Intent: The Reactor pattern decouples event demultiplex-
ing and event handler dispatching from the services per-
formed in response to events.

Motivation and Forces. Single-threaded applications
must be able to handl e events from multiple sources without
blocking on any single source. The Reactor pattern resolves
thefollowingforcesthat impact thedesign of single-threaded,
event-driven communication software:

1. The need to demultiplex multiple types of events from
multiple sources of events efficiently within a single
thread of control — A Reactor serializes the handling
of events from multiple sources within an application
process a the level of event demultiplexing. By us
ing the Reactor pattern, the need for more complicated
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Figure6: Object Interaction Diagram for the Reactor Pattern

threading, synchronization, or locking within an appli-
cation is often eliminated.

2. Theneed to extend application behavior without requir-
ing changes to the event dispatching framework — The
Resactor factors out the demultiplexing and dispatching
mechanisms from the event handler processing poli-
cies. The demultiplexing and dispatching mechanisms
are generaly independent of an application and are thus
reusable. In contrast, theevent handler policiesaremore
specific to an application. This separation of concerns
allows application policies to change without affecting
the lower-level framework mechanisms.

Structure, Participants, and Implementation: Figure 5
illustrates the structure and participants in the Reactor pat-
tern. The React or defines an interface for registering,
removing, and dispatching Concr et e Event Handl er
objects (such as | nput or Qut put Channel s in the
Gat eway). An implementation of this interface provides
a set of application-independent mechanisms. These mech-
anisms perform event demultiplexing and dispatching of
application-specific event handlers in response to events
(such asinput, output, signal, and timer events).

An Event Handl er specifies an abstract interface
used by the Reactor to dispaich calback methods
defined by objects that register to events of interest.
Each Concrete Event Handl er sdectivey imple-
ments callback method(s) to process eventsin an application-
specific manner.

Collaborations: Figure 6 illustrates the collaborations be-
tween participants in the Reactor pattern. These collabora
tions are divided into the following two modes:

1. Initialization mode — where Concrete Event
Handl er objectsareregistered with the React or ;

2. Event handling mode — where the React or invokes
upcalls on registered objects, which then handle events
in an application-specific way.

Usage TheReact or isused for thefollowing event dis-
patching operationsin aGat eway':
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¢ Inputevents—TheReact or dispatches each incoming
routing message to the | nput Channel associated
with its socket handle, at which point the message is
routed to the appropriate Qut put Channel (s). This
use-caseisshown inFigure 7.

e Output events — The React or ensures that outgoing
routing messages are eventually delivered on flow con-
trolled Qut put Channel s described in Section 3.4
and 3.5.

o Connection completion events — The React or dis
patches events that indicate the completion status of
connections that are initiated asynchronously. These
events are used by the Connect or described in Sec-
tion 3.2.

o Connection request events — The React or aso dis
patches events that indicate the arrival of passively
initiated connections. These events are used by the
Accept or described in Section 3.3.

The Reactor pattern has been used in many single-threaded
event-driven frameworks (such asthe Matif, Interviews[13],
SystemV STREAMS[14], the ACE object-oriented commu-
nication framework [10], and implementations of DCE and
CORBA). Inaddition, it forms the foundation for most of the
strategic patterns presented bel ow.

3.2 TheConnector Pattern

Intent: TheConnector pattern decouplesactiveserviceini-
tialization from the tasks performed once a serviceisinitial-
ized.

Motivationand Forces:  Connection-oriented applications
(like a Gat eway) and middleware (like CORBA or Dis-
tributed COM) are often written using lower-level network
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Figure8: Structureand Participantsin the Connector Pattern

programminginterfaces (likesockets[15] and TLI [16]). The
Connector pattern resolves the following forces that impact
theactiveinitialization of serviceswritten using these lower-
level interfaces:

1. The need to reuse active connection establishment code
for each new service — The Connector pattern permits
key characteristics of services (such as the communi-
cation protocol or the data format) to evolve indepen-
dently and transparently from the mechanisms used to
establish the connections. Since service characteristics
change more frequently than connection establishment
mechanisms this separation of concerns reduces soft-
ware coupling and increases code reuse.

2. The need to make the connection establishment code
portableacross platformsthat contain different network
programminginterfaces— Thisis particularly important
for asynchronous connection establishment, which is
hard to program portably and correctly using lower-
level network programming interfaces like sockets and
TLI.

3. Theneed to enableflexible service concurrency policies
—Onceaconnectionisestablished, peer applicationsuse
the connection to exchange data to perform some type
of service (e.g., remote login, WWW HTML document
transfer, etc.). A service can runin a single-thread, in
multiple threads, or multiple processes, regardless of
how the connection was established or how the services
wereinitialized.

4. The need to actively establish connections with large
number of peers efficiently — The Connector pattern can
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tern

employ asynchrony to initiate and complete multiple
connections in non-blocking mode. By using asyn-
chrony, the Connector pattern enables applications to
actively establish connections with a large number of
peers efficiently over long-delay WANS.

Structure, Participants, and Implementation: Figure 8
illustrates the layering structure of participants in the Con-
nector pattern.* The Connect or is afactory that assem-
bles the resources necessary to connect and activate a Svc
Handl er ,whichisaProxy that exchanges messageswithits
Peer . The Connect or 'sinitidization strategy can estab-
lish connections with Peer s either synchronously or asyn-
chronously.

The participants in the Connection Layer of the Connec-
tor pattern leverage off the Reactor pattern. For instance,
the Connect or 's asynchronous initialization strategy es-
tablishes a connection after the React or notifiesit that a
previoudy initiated connection regquest to a Peer has com-
pleted. Using the Reactor pattern enables multiple Svc
Handl er s to be initialized actively within a single thread
of control.

To increase flexibility, the implementation of a
Connect or can be parameterized by a particular type
of PEER CONNECTOR and SVC HANDLER. The PEER
CONNECTOR supplies the underlying transport mechanism
(such as C++ wrappers for sockets or TLI) used by the
Connect or to actively establish a connection. The SVC
HANDL ER specifies an abstract interface for defining a ser-
vice that communicates with a connected Peer. A Svc
Handl er can be parameterized by a PEER STREAMend-
point. TheConnect or associatesthisendpointtoitsPeer
when a connection is actively established.

4In this figure the dashed rectangles indicate template parameters and a
dashed directed edge indicates template instantiation.

By inheriting from Event Handl er (shown in Fig-
ure5),aSvc Handl er canregister withaReact or and
use the Reactor pattern to handle its I/O events within the
same thread of control as the Connect or. Conversdly, a
Svc Handl er canusetheActive Object pattern and handle
its /O events within a separate thread. Section 3.5 evaluates
the tradeoffs between these different patterns.

Parameterized types are used to decouple the Connector
pattern’s connection establishment strategy from the type of
service and the type of connection mechanism. Develop-
ers supply template arguments for these types to produce
ApplicationLayer Connect or s (such asthe Connect or
used by the Gat eway toinitidizeits| nput and Qut put
Channel s). Thisenables the wholesale replacement of the
SVC HANDLER and PEER CONNECTORtypes, without &f -
fecting the Connector pattern’s serviceinitialization strategy.

Notethat asimilar degree of decoupling could beachieved
via inheritance and dynamic binding by using the Abstract
Factory or Factory Method patterns described in [1]. Pa
rameterized types were used to implement this pattern since
they improverun-timeefficiency. Ingenera, templatestrade
compile- and link-time overhead and space overhead for im-
proved run-time performance.

Collaborations:  The collaborations among participantsin
the Connector pattern are divided into three phases:

1. Connection initiation phase — which actively con-
nects one or more Svc Handl er s with their peers.
Connections can be initiated synchronously or asyn-
chronoudly. The Connect or 'sconnect methodim-
plements the strategy for actively establishing connec-
tions.

2. Service initialization phase — which activates a Svc
Handl er by calling its open method when its con-
nection completes successfully. The open method of
theSvc Handl er then performs service-specific ini-
tialization.

3. Sarvice processing phase — which performs the
application-specific service processing using the data
exchanged between the Svc Handl er and its con-
nected Peer .

Figure 9 illustrates these three phases of collaboration us-
ing asynchronous connection establishment. Note how the
connection initiation phase is temporally separated from the
service initiaization phase. This enables multiple connec-
tioninitiationsto proceed in parallel withinasinglethread of
control. The collaborationfor synchronousconnection estab-
lishment issimilar. In this case, the Connect or combines
theconnectioninitiationand serviceinitidization phasesinto
asingle blocking operation.

Ingeneral, synchronous connection establishment isuseful
for the following situations:

o If the latency for establishing a connection is very low
(e.g., establishing aconnectionwith aserver onthesame
host viathe loopback device);



o |f multiple threads of control are available and it is
feasible to use a different thread to connect each Svc
Handl er synchronously;

o |f aclient application cannot perform useful work until
aconnection is established.

In contrast, asynchronous connection establishment is useful
for the following situations:

o If the connection latency is high and there are many
peersto connect with (e.g., establishing alarge number
of connections over a high-latency WAN);

¢ |f only asinglethread of control isavailable (e.g., if the
OSplatform doesnot provide application-level threads);

o If the client application must perform additional work
(such asrefreshing aGUI) whilethe connectionisinthe
process of being established.

It is often the case that network services like the Gat eway
must be developed without knowing if they will connect
synchronously or asynchronously. Therefore, components
provided by a general-purpose network programming frame-
work must support multiple synchronous and asynchronous
use-Cases.

The Connector pattern increases the flexibility and reuse
of networking framework components by separating the
connection establishment logic from the service process-
ing logic. The only coupling between a Connect or and
aSvc Handl er occursin the service initialization phase,
whentheConnect or invokestheopen method of theSvc
Handl er . At thispoint, the Svc Handl er can perform
itsservice-specific processing using any suitabl eapplication-
level protocol or concurrency policy. For instance, when
messages arrive at a Gat eway, the React or can be used
to dispatch | nput Channel s to frame the messages, de-
termine outgoing routes, and deliver the messages to their
Qut put Channel s. However, a different type of con-
currency mechanism (such as Active Objects described in
Section 3.5) can be used by the Qut put Channel s to
send the data to the remote destinations.

Usage: The Connector pattern is used by the Gat eway
to simplify the task of connecting to a large number of
Peers. Peer addresses are read from a configuration file
during Gat eway initialization. The Gat eway uses the
Builder pattern [1] to bind these addresses to dynamically
dlocated Channel s. Since Channel s inherit from Svc
Handl er, al connections can be initiated asynchronously
using the Iterator pattern[1]. The connections are then com-
pleted in parallel using the Connect or .

Figure 10 illustrates the rel ationship between participants
in the Connector pattern after four connections have been
established. Three other connections that have not yet
completed are owned by the Connect or. As shown in
this figure, the Connect or maintains a table of the three
Channel s whose connections are pending completion. As

ACTIVE
CONNECTIONS

Figure 10: Using the Connector Pettern in the Gat eway

connections complete, the Connect or removes each con-
nected Channel fromitstableand activatesit. Inthesingle-
threaded implementation| nput Channel s register them-
selves with the React or once they are activated. Hence-
forth, when routing messages arrive, | nput Channel s
receive and forward them to Qut put Channel s, which
deliver the messages to their destinations (these activitiesare
described in Section 3.4).

In addition to establishing connections, a Gat eway can
use the Connect or in conjunction with the React or to
ensure that connections are restarted if network errors occur.
This enhances the Gat eway’s fault tolerance by ensuring
that channel s are automatically reinitiated when they discon-
nect unexpectedly (eg., if a Peer crashes or an excessive
amount of data is queued at an Qut put Channel due
to network congestion). If a connection fails unexpectedly,
an exponential-backoff algorithm can be implemented using
the timer-based dispatching capabilities of the React or to
restart the connection efficiently.

3.3 TheAcceptor Pattern

Intent: TheAcceptor pattern decoupl espassiveserviceini-
tialization from the tasks performed once the service isini-
tialized.

Motivationand Forces:  The Acceptor pattern resolvesthe
following forces that impact the passiveinitialization of ser-

vices written using lower-level network programming inter-
faces like socketsand TLI:

1. Theneedtoreusepassiveconnection establishment code
for each new service— The Acceptor pattern permitskey
characteristics of services (such as the communication
protocol or thedataformat) to evolveindependently and
transparently from the mechanisms used to establish the
connections. Since service characteristics change more
frequently than connection establishment mechanisms
this separation of concerns helps reduce software cou-
pling and increases code reuse.
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Figure 11: Structureand Participantsin the Acceptor Pattern

2. The need to make the connection establishment code
portableacross platformsthat contain different network
programming interfaces — Parameterizing the Accep-
tor's mechanisms for accepting connections and per-
forming services helps to improve portability by allow-
ing the wholesale replacement of these mechanisms.
This makes the connection establishment code portable
acrossplatformsthat contai n different network program-
ming interfaces (such as sockets but not TLI, or vice
versa).

3. Theneed to enabl e flexible service concurrency policies
—Onceaconnectionisestablished, peer applicationsuse
the connection to exchange data to perform some type
of service (eg., remote login, WWW HTML document
transfer, etc). A service can run in a single-thread,
in multiple threads, or multiple processes, regardless
regardless of how the connection was established or
how the services were initiaized.

4. The need to ensure that a passive-mode I/O handleis
not accidentallyused toread or writedata—By strongly
decoupling the Accept or fromthe Svc Handl er,
passive-mode listener endpoints cannot be used incor-
rectly (eg., to try to read or write data on a passive-
mode listener socket used to accept connections). This
eliminates an important class of network programming
errors.

TheAcceptor patternisthe*dua” of the Connector pattern
described in Section 3.2. However, the Connector pattern es-
tablishes connections actively, whereas the Acceptor pattern
establishes connections passively. The consequences of this
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Figure12: Object Interaction Diagram for the Acceptor Pat-
tern

differencein connectionrolesisillustrated by theforcesthese
two patterns resolve. For instance, note that the first three
forces resolved by the Acceptor pattern are essentially the
same as for the Connector pattern, with only the passive and
active roles reversed. However, the final force resolved in
each pattern is different due to the inverse connection roles
played by each pattern.

Structure, Participants, and Implementation: Figure1l
illustrates the layering structure of participants in the Ac-
ceptor pattern, which is nearly identical to the Connector
layering structure in Figure 8. The Accept or isafactory
that assembles the resources necessary to create, accept, and
activateaSvc Handl er. TheSvc Handl er inthe Ac-
ceptor pattern playsthe sameroleasin the Connector pattern,
i.e,itisaloca Proxy for aremotely connected Peer .

TheConnection Layer intheAcceptor pattern | everagesoff
the Reactor pattern. For instance, the Accept or 'sinitia-
ization strategy establishes a connection after the React or
notifies it that a new connection request has arrived from
a Peer . Using the Reactor pattern enables multiple Svc
Handl er s to beinitialized passively within a singlethread
of control.

To increase flexibility, the implementation of an
Accept or can be parameterized by a particular type
of PEER CONNECTOR and SVC HANDLER. The PEER
ACCEPTOR supplies the underlying transport mechanism
(such as C++ wrappers for sockets or TLI) used by the
Accept or to passively establish a connection. The SVC
HANDL ER specifies an abstract interface for defining a ser-
vice that communicates with a connected Peer. A SVC
HANDL ER can be parameterized by a PEER STREAMend-
point. The Accept or associates thisendpoint to its Peer
when a connection is established passively.

As with the Connector pattern,aSvc Handl er can use
either the Reactor pattern or Active Object pattern to handle



: Input
Acceptor

N\

PASSIVE
: Output ( LISTENERS
™

: Reactor

ACTIVE
CONNECTIONS

Figure 13: Using the Acceptor Pattern in the Gat eway

its 1/0 events. Likewise, the implementation of the Accep-
tor pattern presented above also uses parameterized types.
Parameterized types enhance portability since the Acceptor
pattern’s connection establishment strategy isindependent of
the type of service and the type of IPC mechanism. De-
velopers can supply concrete arguments for these types to
produce Application Layer Concr et e Accept or (such
as the Accept or used by the Gat eway and Peer s to
passively initializel nput and Qut put Channel s).

Collaboration: Figure 12 illustrates the collaboration
among participants in the Acceptor pattern. These collab-
orations are divided into three phases:

1. Endpoint initialization phase —which creates a passive-
mode endpoint (encapsulated by PEER ACCEPTOR)
that isbound to anetwork address (such as an | P address
and port number). The passive-mode endpoint listens
for connection requests from Peer s. This endpoint is
registered with the React or, which drives the event
loop that waits on the endpoint for connection requests
to arrive from Peer s.

2. Service activation phase — Since an Accept or in-
herits from an Event Handl er the React or can
dispatch the Accept or’s handl e_event method
when connection events arrive. This method performs
the Accept or’s Svc Handl er initidization strat-
egy. Thisstrategy assembles the resources necessary to
create anew Concrete Svc Handl er object, ac-
cept the connectioninto thisobject, and activatetheSvc
Handl er by calingitsopen method.

3. Service processing phase — once activated, the Svc
Handl er processesincoming event messages arriving
onthePEER STREAM A Svc Handl er will process
incoming event messages using a concurrent event han-
dling pattern such as the Reactor or the Active Object

[9].
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Figure 14: Structure and Participantsin the Router Pattern

Usage: Figure 13 illustrates how the Acceptor pattern is
used by the Gat eway. The Gat eway uses this pattern
when it plays the passive connection role. In this case,
Peer s connect to Gat eway, which uses the Acceptor pat-
tern to decouple the passive initidization of | nput and
Qut put Channel s fromtherouting tasks performed once
aChannel isinitialized.

Theintent and general architecture of the Acceptor pattern
isfoundin network server managementtoolslikei net d [15]
andl i st en[16]. Thesetoolsutilizeamaster Acceptor pro-
cess that listens for connections on a set of communication
ports. Each port isassociated with a communication-related
service (such asthestandard Internet servicesf t p,t el net,
dayti me, and echo). When a service request arrives on
a monitored port, the Acceptor process accepts the request
and dispatches an appropriate pre-registered handler that per-
forms the service.

3.4 TheRouter Pattern

Intent: The Router pattern decouples multiple sources of
input from multiple sources of output to route data correctly
without blocking a Gat eway .

Motivation and Forces. Message routing in a Gat eway
must not be disrupted or postponed indefinitely when con-
gestion or failure occurs on incoming and outgoing network
links. The Router pattern resolves the following forces that
arise when building robust connection-oriented Gat eways:

1. The need to prevent misbehaving connections from dis-
rupting the quality of service for well-behaved connec-
tions — If outgoing connections can flow control as a
result of network congestion, or input connections can
fail because Peer s disconnect, the Gat eway must not
performblockingsend or r ecv operationson any sin-
gle channdl. Otherwise, messages on other channels
could not be sent or received and the quality of service
providedto Peer s would degrade.

2. The need to allow different concurrency strategies
for Input and Output Channels — Several concur-



rency strategies for processing | nput and Qut put
Channel s are described in this paper including (1)
single-threaded processing using the Reactor pattern
and (2) multi-threaded processing using the Active Ob-
ject pattern. Each strategy is appropriate under differ-
ent situations, depending on factors such as the num-
ber of CPUs, context switching overhead, and number
of Peers. By decoupling | nput Channel s from
Qut put Channel s the Router pattern alows cus
tomized concurrency strategiesto beconfigured flexibly
intoaGat eway.

Structure, Participants, and | mplementation: Figure 14
illustrates the layer structuring of participantsin the Router
pattern. The I/O Layer provides an event source for | nput
Channel s and an event sink for Qut put Channel s.
An | nput Channel uses a Routing Tabl e to map
routing messages onto one or more Qut put Channel s.
If messages cannot be delivered to their destination Peer s
immediately they are buffered in a Message Queue for
subsequent transmission.

Because | nput Channels ae decoupled from
Qut put Channel s their implementations can vary inde-
pendently. This separation of concerns isimportant since it
allows different concurrency strategies to be used for input
and output. The consequences of thisdecouplingisdiscussed
further in Section 3.5.

Collaborations. Figure 15 illustrates the collaboration
among participants in the Router pattern. These collabo-
rations can be divided into three phases:

1. Input processing phase—wherel nput Channel sre-
assembl eincoming TCP segmentsinto completerouting
messages,

2. Route selection phase — where | nput Channel s
consult a Routi ng Tabl e to sdect the Qut put
Channel s responsible for sending the routing mes-
Sages;

3. Output processing phase —where the selected Qut put
Channel s transmit the routing messages to their des-
tination(s) without blocking the process.

Usage: Theother strategic patternsinthispaper (i.e., Reac-
tor, Connector, Acceptor, and Active Object) can be applied
to many other types of communication software. In con-
trast, the Router patternistightly coupled with the Gat eway
application. A primary challenge of building a reliable
connection-oriented Gat eway centers on avoiding block-
ing 1/O. This is necessary to reliably manage flow control
on Qut put Channel s. If the Gat eway blocked indefi-
nitely when sending on acongested connection thenincoming
messages could not be routed, even if those messages were
destined for non-flow controlled Qut put Channel s.
Theremainder of this section describeshow the Router pat-
tern can beimplemented in asingle-threaded, Reactor version
of the Gat eway (Section 3.5 examines the multi-threaded,
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Figure15: Object Interaction Diagram for the Router Pattern

ActiveObject version of the Router pattern). The Router pat-
tern uses a React or as a cooperative multi-tasking sched-
uler for Gat eway 1/Ooperations, just likethe Connector and
Acceptor patterns. The React or alows multipleeventson
different connections to be demultiplexed within a single
thread of control. The use of single-threading eliminates
the overhead of synchronization (since access to shared ob-
jectslikethe Rout i ng Tabl e need not be serialized) and
context switching (since message routing occursin a single
thread).

In the Reactor version of the Router pattern, the | nput
Channel s and CQut put Channel s inherit indirectly
from Event Handl er. This enables the Gat eway
to route messages by having the React or dispatch
the handl e_event methods of | nput and Qut put
Channel s when messages arrive and flow control condi-
tions subside, respectively.

Using the Reactor pattern to implement the Router pattern
involvesthe following steps:

1. Initialize non-blocking endpoints — The | nput and
Qut put Channel handles are set into non-blocking
mode after they are activated by an Accept or or
Connect or. The use of non-blocking 1/0 is essen-
tial to avoid subtle errors that can occur on faulty or
congested network links.

2. Input message reassembly and routing — Routing mes-
sagesarereceivedinfragmentsby | nput Channel s.
If an entire message is not immediately available, the
I nput Channel must buffer the fragment and return
control to the event loop. This is essentid to prevent
“head of line” blockingon| nput channel s. When
anl nput Channel successfully receives and frames
an entire message it uses the Rout i ng Tabl e tode-
termine the appropriate set of Qut put Channel s
that will deliver the message.

3. Messagedelivery — The selected Qut put Channel s
try to send the message to the destination Peer . Mes-
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sages must be delivered reliably in “first-in, first-out”
(FIFO) order. To avoid blocking, all send operations
inQut put Channel s must check to make sure that
the network link is not flow controlled. If it is not, the
message can be sent successfully. This path is depicted
by theQut put Channel intheupper right-hand cor-
ner of Figure 16. If thelink isflow controlled, however,
the Router pattern must use a different strategy. This
pathisdepicted by theQut put Channel inthelower
right-hand corner of Figure 16.

To handle flow controlled connections, the Qut put
Channel inserts the message it is trying to send into
itsMessage Queue. It theninstructsthe React or
to call back to the Qut put Channel when the flow
control conditions abate, and returnsto the main event
loop. When it is possible to try to send again, the
React or dispatches the handl e_event method on
the Qut put Channel , which then retries the opera-
tion. This sequence of steps may be repeated multiple
times until the entire message is transmitted success
fully.

Notethat the Gat eway aways returns control to itsmain
event loop immediately after every 1/0 operation, regardless
of whether it sent or received an entire message. This is
the essence of the Router pattern — it correctly routes the
messagesto peerswithout blocking onany singlel/O channdl.

3.5 TheActive Object Pattern

Intent: The Active Object pattern decouples method exe-
cution from method invocation to enable concurrent execu-
tion of methods.

13

/e .
\ ) =T — loop {
/’ Client /‘ m = actQueue.remove()

¢~ Interface }dispatch (m)
% ResultHandle m1() /] // NN -

I ResultHandle m2() | ’Scheduler \ - -

\\ ResultHandle m3() / _—

PN

N e \_dispatch()~
> ml'0 // // Actlvatlon \
{ m2( 1 \_ Queue /
VISIBLE w3 () o U |
T0 S~ insert() )\
CLIENTS *\ remove() |
1
n
INVISIBLE s (S
T0 - Resource \ I 'Method .
CLIENTS Representatlon ! __ Objects ‘}

—_—— T -

SN/

\.

Figure 17: Structure and Participants in the Active Object
Pattern

Motivation and Forces:  All the strategic patterns used by
thesingle-threaded Gat eway in Section 3.4 arelayered upon
the Reactor pattern. The Connector, Acceptor, and Router
patterns all use the Reactor as a scheduler/dispatcher to ini-
tialize and route messages within a single thread of control.
Ingenera, the Reactor pattern formsthe central event loopin
single-threaded reactive systems. For example, inthesingle-
threaded Gat eway implementation, theReact or provides
a coarse-grained form of concurrency control that seriaizes
theinvocation of event handlers at the level of event demul-
tiplexing and dispatching within a process. This eiminates
the need for additiona synchronization mechanismswithina
Gat eway and minimizes context switching.

The Reactor pattern iswell-suited for applicationsthat use
short-duration callbacks (such as passive connection estab-
lishment in the Acceptor pattern). Itislessappropriate, how-
ever, for long-duration operations (such as blocking on flow
controlled Qut put Channel s during periods of network
congestion). In fact, much of the complexity in the single-
threaded Router patternimplementation stems fromusing the
Reactor pattern as a cooperative multi-tasking mechanism. It
ismuch easier, therefore, to implement the output portion of
the Router pattern with the Active Object pattern. Thispattern
alows Qut put Channel s to block independently when
sending messages to Peer s.

The Active Object pattern resolvesthefollowingforcethat
impactsthe design of applicationslikeaGat eway that must
communicate simultaneously with multiple Peer s:

e The need to allow blocking read and write operations
on one endpoint that do not detract from the quality of
service of other endpoints. Network services are gener-
ally easier to programif blocking 1/0 isused rather than
reactive non-blocking I/O [17]. The increased simplic-
ity occurs since the execution state can be localized in
the activation records of athread of control, rather than
being decentralized in aset of control blocks maintained
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Figure 18: Object Interaction Diagram for the Active Object
Pattern

by application devel opers.

Structure, Participants, and Implementation: Figure 17
illustrates the structure and participants in the Active Ob-
ject pattern. The d i ent | nt erface presents the pub-
lic methods available to clients. The Schedul er deter-
mines next method to execute based on synchronization
and scheduling constraints. The Acti vati on Queue
maintains a list of pending Met hod Cbj ects. The
Schedul er determinesthe order in whichthese Met hods
hj ect s are executed (a FIFO scheduler is used in the
Gat eway to maintain the order of message delivery). The
Resour ce Represent ati on mantains context infor-
mation shared by the implementation methods.

Collaborations. Figure 18 illustrates the collaborations
among participantsin the Active Object pattern. These col-
[aborations are divided into the following phases:

1. Method Object construction — in this phase the client
application invokes a method defined by the Cl i ent
I nt er face. Thistriggersthe creation of a Met hod
hj ect, which maintains the argument bindings to
the method, as well as any other bindings required to
execute the method and return aresult. For example, a
bindingto a Resul t Handl e object returned to the
caler of themethod. A Resul t Handl e isreturned
to the client unless the method is “oneway,” in which
casenoResul t Handl e isreturned.

2. Scheduling/execution — in this phase the Schedul er
acquires a mutual exclusion lock, consults the
Acti vati on Queue to determine which Met hod
hj ect (s) meet the synchronization constraints.
The Met hod bj ect is then bound to the current
Resour ce Represent ati onandthemethodisal-
lowed to access/update this representation and create a
Result Handl e.

3. Return result — the fina phase binds the Resul t
Handl e value, if any, to a future [18, 19] object that
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Figure 19: Using the Router Pattern in a Multi-thread
Active Object Gat eway

passes return values back to the caller when the method
finishes executing. A futureisa synchronization object
that enforces “write-once, read-many” synchronization.
Subsequently, any readers that rendezvous with the fu-
turewill evaluate the future and obtain the result value.
The future and the Met hod Obj ect will be garbage
collected when they are no longer needed.

Usage: The Gat eway implementation described in Sec-
tion 3.4 issingle-threaded. It usesthe Reactor pattern imple-
mentation of theRouter Pattern asacooperativemulti-tasking
scheduler that dispatches events of interest to a Gat eway.
After implementing anumber of single-threaded Gat eway's
it became clear that using the Reactor pattern as the basis for
all Gat eway routing 1/O operations was error-prone and
hard to maintain. For example, maintenance programmers
frequently did not recognize theimportance of returning con-
trol tothe React or 'sevent loop immediately when 1/0 op-
erations cannot proceed. This misunderstanding became a
common source of errorsin single-threaded Gat eways.

To avoid these problems, a number of multi-threaded
Gat eways were built using variations of the Active Ob-
ject pattern. The remainder of this section describes how
Qut put Channel s can be multi-threading using the Ac-
tive Object pattern.> This modification greatly simplified
the implementation of the Router pattern since Qut put
Channel s can block in their own thread of control with-
out affecting other Channel s. Implementing the Qut put
Channel s as Active Objects dso diminated the sub-
tle and error-prone cooperative multi-tasking programming
techniques required when using the React or to schedule
Qut put Channel s.

Figure 19 illustrates the Active Object version of the
Router pattern. Note how much simpler isit compared with

SWhile it is possible to apply the Active Object pattern to the | nput
Channel s this has less impact on the Gat eway design because the
React or already supports non-blocking input.



the Reactor solutionin Figure 16. The simplification occurs
primarily since the complex output scheduling logic moved
into the Active Objects, rather than being the responsibility
of the application programmer.

It is also possible to observe the difference in complexity
between the single-threaded and multi-threaded Gat eways
by examining the source code that implements the Router
pattern in production Gat eway systems. ® However, using
source code to identify the reasons behind this complexity
is hard due to al the error handling and protocol-specific
detailsthat surround the implementation. These details tend
to disguise the key insight: the main difference between the
complexity of the single-threaded and multi-threaded solu-
tions arise from the choice of the Reactor pattern vs. the
Active Object pattern. This paper has explicitly focused on
the interactions and tradeoffs between these patterns in or-
der to clarify the consequences of different design choices.
In general, documenting the interactions and relationships
between closdly related patterns is a very challenging and
unresolved topic that is currented be addressed by the pat-
terns community.

4 Related Work

[1, 5, 20] identify, name, and catalog many fundamental
object-oriented design patterns. This section examines how
the patterns described in this paper relate to other patternsin
the literature. Note that many of the tactical patterns form
the basisfor implementing the strategic patterns presented in
this paper.

The Reactor pattern is related to the Observer pattern [1].
In the Observer pattern, multiple dependents are updated au-
tomatically when a subject changes. In the Reactor pattern,
a handler is dispatched automatically when an event occurs.
Thus, the Reactor dispatches a single handler for each event
(though there can be multiple sources of events). The Reac-
tor pattern aso provides a Facade [1]. The Facade pattern
presents an interface that shields applications from complex
relationshipswithinasubsystem. The Reactor pattern shields
applications from complex mechanisms that perform event
demultiplexing and event handler dispatching.

The mechanism the Reactor uses to dispatch Event
Handl er s issimilar to the Factory Calback pattern [21].
The intent of both patterns is to decoupling event reception
from event processing. The primary different isthe purpose
of the pattern — the Factory Callback is a creationa pattern,
whereas the Reactor dispatching isabehaviora pattern.

The Connector pattern is a variation of the Template
Method and Factory Method patterns [1]. In the Template
Method pattern, an algorithmis written such that some steps
are supplied by a derived class. In the Factory Method pat-
tern, amethod in asubclass creates an associate that performs
aparticular task, but the task is decoupled from the protocol

6An ACE-based example of single-threaded and multi-threaded
Gat eways that illustrates all the patterns in this paper is freely available
viatheWWW atht t p: / / www. ¢s. wust | . edu/ ~schmi dt .
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used to create the task. The Connector pattern is a Factory
that use Template Methods to create, connect, and activate
handlersfor communication channels. In the Connector pat-
tern, theconnect method implements astandard algorithm
for initiating a connection and activating a handler when the
connectionisestablished. Theintent of the Connector pattern
issimilar tothe Client/Dispatcher/Server pattern described in
[5]. They both are concerned with separating active connec-
tion establishment from the subsequent service. The primary
difference is that the Connector pattern addresses both syn-
chronous and asynchronous connection establishment.

The Acceptor pattern can aso be viewed as a variation of
the Strategy and Factory Method patterns[1]. The Acceptor
patternis a connection factory that embodies the strategy for
create service handlers, accepting connections into service
handlers, and activating service handles to process data ex-
changed across communication channels. The Accept or
implements the algorithm that passively listens for connec-
tion requests, then creates and activates a handler when the
connection is established. The handler performs a service
using data exchanged on the connection. Thus, theserviceis
decoupled from the network programming interface and the
transport protocol used to establish the connection.

The Router pattern isavariant of the Mediator pattern[1],
which decouples cooperating components of a software sys-
tem and allowsthem to interact without having direct depen-
dencies among each other. The Router patternis speciaized
to resol ve theforcesassociated with network communication.
It decoupl es the mechanisms used to process input messages
from the mechanisms used to process output mechanisms to
prevent blocking. In addition, the Router pattern allows the
use of different concurrency strategies for input and output
channels.

5 Concluding Remarks

This paper illustrates how a family of patterns have been
applied to facilitate widespread reuse of design exper-
tise and software components in production communication
Gat eways. These patternsillustrate the structure of, and
collaboration between, objects that perform core communi-
cation software tasks. The tasks addressed by these patterns
include event demultiplexing and event handler dispatching,
connection establishment and initiali zation of application ser-
vices, concurrency control, and routing.

The family of design patterns and the ACE framework
components described in this paper have been reused by the
author and his colleagues in many production communica
tion software systems ranging from telecommunication and
electronic medical imaging projects [12, 3] to academic re-
search projects[10]. Ingeneral, patternsaid the devel opment
of componentsand frameworksinthese systems by capturing
the structure and collaboration of participantsin a software
architecture at a higher level than (1) source code and (2)
object-oriented design models that focus on individua ob-
jectsand classes.



Our experience applying adesign pattern-based reuse strat-
egy has been quite positive[2]. For instance, we' ve signifi-
cantly reduced the software maintenance and training effort
for the production communication systems by documenting
the intent, structure, and behavior of ACE components in
terms of the patterns they reify. Focusing on patterns has
also enabled us to reuse software architecture even when
reuse of algorithms, implementations, interfaces, or detailed
designs was not feasible due to differences in OS platforms
[12]. An in-depth discussion of our experiences and lessons
learned using patterns appeared in [2].

Acknowledgements

I would like to thank Steve Berczuk, Chris Clegland, Tim
Harrison, Hans Rohnert, and the anonymous referees for
contributing valuable suggestions that helped improve the
quality of this paper.

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

D. C. Schmidt, “ ExperienceUsing Design Patternsto Develop
Reuseable Object-Oriented Communication Software,” Com-
munications of the ACM (Special Issue on Object-Oriented
Experiences), vol. 38, October 1995.

|. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” in Proceedings
of the 24 Conference on Object-Oriented Technologies and
Systems, (Toronto, Canada), USENIX, June 1996.

D. C. Schmidt and T. Suda, “Measuring the Performance of
Parallel Message-based Process Architectures,” in Proceed-
ings of the Conferenceon Computer Communications (INFO-
COM), (Boston, MA), pp. 624-633, IEEE, April 1995.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture- A Systemof
Patterns. Wiley and Sons, 1996.

G. Booch, Object Oriented Analysis and Design with Ap-
plications (2" Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

D. C. Schmidt, “ Acceptor and Connector: Design Patternsfor
Initializing Communication Services,” in The 1°* European
Pattern Languagesof Programming Conference (Washington
University technical report \WUCS-97-07), July 1997.

R. G. Lavenderand D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Proceed-
ings of the 2"¢ Annual Conference on the Pattern Languages
of Programs, (Monticello, lllinais), pp. 1-7, September 1995.

D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the

(2]

(3]

[4]

(5]

(6]

(8]

[10]

16

[11]

[12]

[13]

[14]
[19]
[16]

[17]

(18]

(19]

[20]

[21]

6" USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Program-
ming,” in Proceedings of the 1°* Conference on Object-
Oriented Technologies and Systems, (Monterey, CA),
USENIX, June 1995.

D. C. Schmidt and P. Stephenson, “Experiences Using De-
sign Patterns to Evolve System Software Across Diverse OS
Platforms,” in Proceedings of the 9" European Conference
on Object-Oriented Programming, (Aarhus, Denmark), ACM,
August 1995.

M. A. Linton, J. Vlissides, and P. Calder, “Composing User
Interfaces with InterViews,” |IEEE Computer, vol. 22, pp. 8—
22, February 1989.

D. Ritchig, “ A Stream Input—Output System,” AT& T Bell Labs
Technical Journal, vol. 63, pp. 311-324, Oct. 1984.

W. R. Stevens, UNIX Network Programming, First Edition.
Englewood Cliffs, NJ: Prentice Hall, 1990.

S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-Async: an
Architectural Pattern for Efficient and Well-structured Con-
current 1/0,” in Pattern Languages of Program Design (J. O.
Coplien, J. Vlissides, and N. Kerth, eds.), Reading, MA:
Addison-Wesley, 1996.

R. H. Halstead, Jr., “Multilisp: A Language for Concur-
rent Symbolic Computation,” ACM Trans. Programming Lan-
guages and Systems, vol. 7, pp. 501-538, Oct. 1985.

B. Liskov and L. Shrira, “Promises: Linguistic Support for
Efficient Asynchronous Procedure Calls in Distributed Sys-
tems,” in Proceedingsof the SSIGPLAN' 88 Conferenceon Pro-
gramming Language Design and Implementation, pp. 260—
267, June 1988.

J. O. Coplien and D. C. Schmidt, eds., Pattern Languages of
ProgramDesign. Reading, MA: Addison-Wesley, 1995.

S. Berczuk, “ A Pattern for Separating Assembly and Process-
ing,” in Pattern Languagesof ProgramDesign (J. O. Coplien
and D. C. Schmidt, eds.), Reading, MA: Addison-Wesley,
1995.



