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This paper appeared as a chapter in the bbekign Pat- munication software solutions from the details of particular
terns in Communicationglinda Rising, ed.), Cambridge Uni-implementations. Even when software is written using well-
versity Press, 2000. An abridged version appeared in the jatructured object-oriented (OO) frameworks and components,
nal Theory and Practice of Object Systerapecial issue onit can be hard to identify key roles and relationships. More-
Patterns and Pattern Languages, Wiley & Sons, Vol. 2, No.oYer, operating system (OS) platfofeatures such as the ab-
December 1996.. sence or presence of multi-threading, or applicatequire-
ments such as best-effort vs. fault tolerance error handling,
b are often different. These differences can mask the underly-
Abstract ing architectural commonality among software solutions for

Developers of communication applications must address féferent applications in the same domain. _
curring design challenges related to efficiency, extensibility, Capturing the core commonality of successful communica-
and robustness. These challenges are often independeritodfsoftware is important for the following reasons:
application-specific requirements. Successful developers re; It preserves important design information for program-
solve these challenges 'b.y applying appropriate patterns M r.s who enhance and maintain existing softw&en, this
pattern Iangu.ages. Traditionally, however, these patter_ns ha}x?ormation only resides in the heads of the original develop-
been locked in the heads of expert developers or buried d%

of this paper is to describe a pattern language that underlig
object-oriented communication software. In addition to de-
scribing each pattern in this language, the paper illustrates 2. |t helps guide the design choices of developers who are
how knowledge of the relationships and trade-offs among ##lding new communication systenBy documenting com-
patterns helps guide the construction of reusable communiggon traps and pitfalls in their domain, patterns can help de-
tion frameworks and applications. velopers select suitable architectures, protocols, and platform
features without wasting time and effort (re)implementing in-

. efficient or error-prone solutions.

1 Introduction

The goal of this paper is to demonstrate by example an
Communication software is the set of services and protoc8ffective way to capture and convey the essence of success-
that makes possible modern distributed systems and applfghcommunication software by describingattern language
tions, such as web services, distributed objects, collaborati€d to build application-levajateways which route mes-
app“cationS, and e-commerce Systems [1] Bu”d'ng' maﬁrﬁ.ges betWeepeerSdiStribUted throughout a communication
taining, and enhancing high-quality communication softwap¥stem. Patterns represent successful solutions to problems
is hard, however. Developers must have a deep understdfat arise when building software [2]. When related patterns
ing of many complex issues, such as service initialization af@ woven together, they form a language that helps to
distribution, concurrency control, flow control, error handing,
event loop integration, and fault tolerance. Successful com
munication applications created by experienced software de-
velopers must embody effective solutions to these issues. e Provide a process for the orderly resolution of these prob-

It is non-trivial to separate the essence of successful com- lems.

o Define a vocabulary for talking about software develop-
ment problems; and
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throughout a network and allows them to interact without hav-

]
B
[ ] A gateway is a mediator [2] that decouples cooperating peers

2 2= Dl’{ o ) P
! ] [ ing direct dependencies on each other. As shown in Figure 1,
N % GATEWAY \ ] ] messages routed through the gateway contain payloads encap-
(/ — = sulated in routing messages. Figure 2 illustrates the structure,
. . associations, and internal and external dynamics among ob-
Figure 1: The Structure and Dynamics of Peers and an

Application-level Gateway
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Studying and applying patterns and pattern languages helg
developers enhance the quality of their solutions by ad
dressing fundamental challenges in communication softwar
development. These challenges include communication o
architectural knowledge among developers; accommodatin
new design paradigms or architectural styles; resolving non
functional forces, such as reusability, portability, and exten-—1
sibility; and avoiding development traps and pitfalls that are xowe

usually learned only by costly trial and error [3]. M
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This paper presents the OO architecture and design of an
application-level gateway in terms of the pattern language
used to guide the construction of reusable and gateway- = )
specific frameworks and components. Application-level gate-  Figure 2: The OO gateway Software Architecture
ways have stringent requirements for reliability, performance, o _ o
and extensibility. They are excellent exemplars, therefore J§§tS Within a software architecture for application-level gate-
present the structure, participants, and consequences of Ways- This architecture is based on extensive experience de-

patterns that appear in most communication software. veloping gateways for various research and production com-
munication systems. After building many gateway applica-

The pattern language described in this paper was disctiwns it became clear that their software architectures were
ered while building a wide range of communication systenmargely independent of the protocols used to route messages
including on-line transaction processing systems, telecomrtaipeers. This realization enabled the reuse of components de-
nication switch management systems [4], electronic medig#lted in Figure 2 for thousands of other communication soft-
imaging systems [5], parallel communication subsystems [@fre projects [1]. The ability to reuse these components so
avionics mission computers [7], and real-time CORBA objesystematically stems from two factors:
request brokers (ORBSs) [8]. Although the specific application , i ) )
requirements in these systems were different, the communicat: Understanding the actions and interactions of key pat-
tion software design challenges were similar. This pattern [4RNS Within the domain of communication softwaRatterns
guage therefore embodies design expertise that can be reG88#re the structure and dynamics of participants in a soft-

broadly in the domain of communication software, well b&/are architecture at a higher level than source code and OO
yond the gateway example described in this paper.' design models that focus on individual objects and classes.

Some of the communication software patterns described in this
The remainder of this paper is organized as follows: Sgmaper have been documented individually [1]. Although indi-
tion 1 outlines an OO software architecture for applicatiomidual pattern descriptions capture valuable design expertise,
level gateways; Section 3 examines the patterns in the matmplex communication software systems embody scores of
tern language that forms the basis for reusable communigatterns. Understanding the relationships among these pat-
tion software, using application-level gateways as an exampéans is essential to document, motivate, and resolve difficult
Section 4 compares these patterns with other patterns indhallenges that arise when building communication software.
literature; and Section 5 presents concluding remarks. Therefore, Section 3 describes the interactions and relation-



ships among these patterns in terms pi#tern languagdor stimuli in an event-driven application through a single demul-
communication software. The patterns in this language wadidlexing point. This design permits single-threaded applica-
together to solve complex problems within the domain of cortiens to wait on event handles, demultiplex events, and dis-
munication software. patch event handlers efficiently. Events indicate that some-
. . thing significant has occurred,g.,the arrival of a new con-

2. Developmgl an 0O framework that implements theﬁ%cgongor work request. Thegmain source of events in the
patterns. Recognizing the patterns that commonly occur | teway are (1) connection events that indicate requests to es-

many communication software systems helped shape thet Blish connections and (2) data events that indicate routing

\Slslsct)gnr::?;igf;ae;:?gigs;e%%rﬁ v?/ce):rrzpi(r)r?;gi.er;rtzz g:ﬁgs gssages encapsulating various payloads, such as commands,
o . us messages, and bulk data transmissions.
ADAPTIVE Communication Environment (ACE) framework 9

[9], which provides integrated reusable C++ wrapper facadg#ialization and event handling components: Establish-

and components that perform common communication sdfg connections between endpoints involves two roles: (1) the
ware tasks. These tasks include event demultiplexing, evieagsive rolewhich initializes an endpoint of communication
handler dispatching, connection establishment, routing, @j-& particular address and waits passively for the other end-
namic configuration of application services, and concurrerRgint to connect with it and (2) thective role which actively
control. In addition, the ACE framework contains implemeriitiates a connection to one or more endpoints that are playing
tations of the patterns described in Section 3. The patternst@fepassive role. Th€onnector andAcceptor are facto-
much richer than their implementation in ACE, however, arits [2] that implement active and passive roles for initializing

have been applied by many other communication systemsn@gvork services, respectively. These components implement
well. the Acceptor-Connectopattern, which is described in Sec-

tion 3.5. The gateway uses these components to establish con-

This section describes how various ACE components h&fftions with peers and produce initializdpplier  and

been reused and extended to implement the applicatigsumer Handlers o ,
independent and application-specific components in the com1© Increase system erX|b|I|t¥, connections can be estab-
munication gateway shown in Figure 2. Following thilShed in the following two ways:

overview, Section 3 examines the pattern language that unt. From the gateway to the peerw/hich is often done

derly the ACE components. to establish the initial system configuration of peerswhen the
gateway first starts up.
2.1 Application-independent Components 2. From a peer to the gatewayvhich is often done after

o the system is running whenever a new peer wants to send or
Most components in Figure 2 are based on ACE comp@geive routing messages.

nents that can be reused in other communication systems.

The only components that are not widely reusable are thd" & large system, dozens or hundreds of peers may be
Supplier and Consumer Handlers , which implement connected to a single gateway. To expedite initialization,
the application-specific details related to message form#grefore, the gateway’€onnector ~ can initiate all con-
and the gateway’s routing protocol. The behavior of tfections asynchronously rather than synchronously. Asyn-

application-independent components in the gateway is otifony helps decrease connection latency over long delay
lined below: paths, such as wide-area networks (WANSs) built over satel-

lites or long-haul terrestrial links. The underlyir@0CK
Interprocess  communication (IPC) components: The Connector [9] contained within aConnector ~ provides
SOCK Stream, SOCK Connector , andSOCK Acceptor  the low-level asynchronous connection mechanism. When a
components encapsulate the socket network programmingSmCK Connector connects two socket endpoints via TCP
terface [9]. These components are implemented using f#hgroduces aSOCK Stream object, which is then used to
Wrapper Facadeattern [1], which simplifies the developmenéxchange data between that peer and the gateway.
of portable communication software by shielding developer, . . )
from low-level, tedious, and error-prone socke’[-levelprograBfessage demultiplexing ~ components: The  Map

ming. In addition, they form the foundation for higher-lev a?agerddefflmently Tapst eXtE’;mgl ids, hsé(;: as peer
patterns and ACE components described below. routing addresses, onto internal 1ds, suc sumer
Handlers . The gateway usesMap Manager to imple-

Event demultiplexing components: The Reactor is an ment aRouting Table that handles the demultiplexing
OO0 event demultiplexing mechanism based on Reactor and routing of messages internally to a gateway. The
pattern [1] described in Section 3.3. It channels all exterrbuting Table  maps addressing information contained
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in routing messages sent by peers to the appropriate set of y o FARSEEN
Consumer Handlers . " ——e¢ Svc

; N \_ Handler )
Message queueing components;The Message Queue == \ -
[9] provides a generic queueing mechanism used by the gate- - _
way to buffer messages iGonsumer Handlers  while A “N'\ / 4 Ny
they are waiting to be routed to peers.Message Queue \/\ :J C F\ ./ Supplier'. _
can be configured to run efficiently and robustly in single- - ( I-?gr?glrgre ) \\Handler/)
threaded or multi-threaded environments. When a queue is in- N = N\ e

- S

stantiated, developers can select the desired concurrency %riﬁhre 3: Supplier ar\l
egy. In multi-threaded environmentdgssage Queues are
implemented using thlonitor Objectpattern [1].

d Consumer Handler Inheritance Hierar-
chy

2.2 Application-specific Components Handler class, which is produceq b€onnectors and
P P P Acceptors . EachSvc Handler is a local Proxy [2] for

In Figure 2 only two of the componentSupplier and a remotely connected peer. It contain$S®CK Stream,
Consumer Handlers -—are specific to the gateway appliwhich enables peers to exchange messages via connected
cation. These components implement the Non-blockisgcket handles.

Buffered I/O pattern described in Section 33&pplier and A Consumer Handler is implemented in accordance
Consumer Handlers reside in the gateway, where thewith the Non-blocking Buffered 1/O pattern. Thus, it uses an
serve as proxies for the original source and the intended de&GE Message Queue to chain unsent messages in the order
nation(s) of routing messages sent to hosts across the netwibrdy must be delivered when flow control mechanisms permit.
The behavior of these two gateway-specific componentsis Qfter a flow controlled connection opens up, the ACE frame-
lined below: work notifies itsConsumer Handler , which starts drain-

ing theMessage Queue by sending messages to the peer.
H élow control occurs again this sequence of steps is repeated
until all messages are delivered.

Supplier Handlers: Supplier Handlers are responsi-
ble for routing incoming messages to their destination(s). T
Reactor notifies aSupplier Handler when it detects
an event on that connection’s communication endpoint. Afterto improve reliability and performance, the gateways de-
the Supplier Handler has received a complete routingcribed in this paper utilize the Transmission Control Proto-
message from that endpoint it consults Rauting Table col (TCP). TCP provides a reliable, in-order, non-duplicated
to determine the set ad€onsumer Handler destinations pytestream service for application-level gateways. Although
for the message. It then requests the sele@edsumer TCP connections are inherently bi-directional, data sent from
Handler (s) to forward the message to the appropriate pgrfer to the gateway use a different connection than data sent
destinations. from the gateway to the peer. There are several advantages to

Consumer Handlers: A Consumer Handler is respon- separating input connections from output connections in this

sible for delivering routing messages to their destinations réli2nner:
ably. It implements a flow control mechanism to buffer bursts.
of routing messages that cannot be sent immediately due to
transient network congestion or lack of buffer space at a re-
ceiver. Flow control is a transport layer mechanism that en-® It allows more fle_xible connection configuration and con-
sures a source peer does not send data faster than a destinatiorfUrrency strategies;

peer can buffer and process the data. For instance, if a desting- |t enhances reliability sincBupplier ~andConsumer

tion peer runs out of buffer space, the underlying TCP proto- Handlers can be reconnected independently if errors
col instructs the associated gatewa@@nsumer Handler occur on a connection.

to stop sending messages until the destination peer consumes

its existing data.

It simplifies the construction of gatewaRouting
Tables ;

A gateway integrates the application-specific ar% A Pattern Language for Appllcatlon-

application-independent components by customizing, in- |level Gateways

stantiating, and composing the ACE components described

above. As shown in Figure Supplier andConsumer Section 1 described the structure and functionality of
Handlers inherit from a common ancestor: the ACR¥c an application-level gateway. Although this architectural



overview helps to clarify the behavior of key components in Acceptor-
a gateway, it does not reveal the deeper relationships and roles
that underly these software components. In particular, the ar- | Connector
chitecture descriptions do not motivakdy a gateway is de-

Non-blocking
Buffered 1/0
@,

signed i.n this pgrticular manner or why cer.tain compone, Component Active
act and interact in certain ways. Understanding these relat Configurator Obiect
ships and roles is crucial to develop, maintain, and enharce jec
communication software. u\

An effective way to capture and articulate these relatic~
ships and roles is to describe thattern languagehat gen- STRATEGIC Reactor
erates them. Studying the pattern language that underlies PATTERNS
gateway software provides the following two benefits:

1. Identify successful solutions to common design chIACTICAL PATTERNS

lenges.The pattern language underlying the gateway archit :

ture transcends the particular details of the application ang Adapter | Builder |Iterator I\th;]gcC){ Proxy Tﬁgﬁl&tje Vggg%eé
solves common challenges faced by communication software
developers. A thorough understanding of this pattern langudgjgure 4: A Pattern Language for Application-level gateways
enables widespread reuse of gateway software architecture in

other systems, even when reuse of its algorithms, implemen-

tations, interfaces, or detailed designs is not feasible [10]. . ® The No.n—blocklng Buffered VO pattern:  This pattern
decouples input mechanisms and output mechanisms so that

2. Reduce the effort of maintaining and enhancing gatgata can be routed correctly and reliably without blocking ap-
way software. A pattern language helps to capture and mgtication processing unduly.
tivate the collaboration between multiple classes and objects.
This is important for developers who must maintain and en-The five patterns in this language are strategic because they
hance a gateway. Although the roles and relationshipssignificantly influence the software architecture for applica-
a gateway design are embodied in the source code, extré@gs in a particular domain, which in this case is the domain
ing them from the surrounding implementation details can BEcommunication software and gateways. For example, the
costly and error-prone. Non-blocking Buffered I/O pattern described in Section 3.6

ensures that message processing is not disrupted or postponed
. indefinitely when a gateway experiences congestion or failure.
3.1 Strategic Patterns This pattern helps to sustain a consistent quality-of-service

Figure 4 illustrates the following fivetrategicpatterns that (Q0S) for gateways that use reliable connection-oriented trans-

form a portion of the language that generates connecti®@!tprotocols, such as TCP/IP or IPX/SPX. A thorough under-
oriented, application-level gateways: standing of the strategic communication patterns described in

this paper is essential to develop robust, efficient, and exten-
Sible communication software, such as application-level gate-
ays.

e Reactor [1]: This pattern structures event-driven appl
cations, particularly servers, that receive requests from m
ple clients concurrently but process them iteratively.

e Active Object [1]: This pattern decouples method ex- .
ecution from method invocation to enhance concurrency a%t? Tactical Patterns

simplify synchronized access to objects that reside in their OWhe application-level gateway implementation also uses many

threads of control. tactical patterns, such as the following:

e Component Configurator [1]: This pattern allows an . )
application to link and unlink its component implementations ® Adapter [2]:  This pattern transforms a non-conforming
at run-time without having to modify, recompile or staticall{iterface into one that can be used by a client. The gateway
relink the application. It also supports the reconfiguration Bes this pattern to treat different types of routing messages,
components into different processes without having to sR4EN @ commands, status information, and bulk data, uni-

down and re-start running processes. formly.

e Acceptor-Connector [1]: This pattern decouples con- e Builder[2]: This pattern provides a factory for building
nection establishment and service initialization from servicemplex objects incrementally. The gateway uses this pattern
processing in a networked system. to create itdRouting Table  from a configuration file.

5



e lterator [2]:  This pattern decouples sequential accebtotivation and forces: Single-threaded applications must
to a container from the representation of the container. Tindle events from multiple sources without blocking indef-
gateway uses this pattern to connect and initialize multiptgtely on any particular source. The following forces im-
Supplier andConsumer Handlers with their peers.  pact the design of single-threaded, event-driven communica-

. . . . tion software:
e Monitor Object [1]:  This pattern synchronizes concur-

rent method execution to ensure that only one method atatimé. The need to demultiplex multiple types of events from
runs within an object. It also allows an object’s methods toultiple sources of events efficiently within a single thread of
schedule their execution sequences co-operatively. The gatatrol. Often, events from multiple sources within an appli-

way uses this pattern to synchronize the multi-threaded coation process must be handled at the event demultiplexing
figuration of itsMessage Queues. level. By handling events at this level, there may be no need

, ) _ for more complicated threading, synchronization, or locking
e Proxy [2]:  This pattern provides a local surrogate objegfiinin an application.

that acts in place of a remote object. The gateway uses this
pattern to shield the main gateway routing code from delays2. The need to extend application behavior without re-
or errors caused by the fact that peers are located on other huging changes to the event dispatching framewdkemul-
machines in the network. tiplexing and dispatching mechanisms are often application-
] N independent and can therefore be reused. In contrast, the event
 Template Method [2]: This pattern specifies an alyandier policies are more application-specific. By separating

gorithm where some steps are supplied by a derived claggse concerns, application policies can change without affect-
The gateway uses this pattern to selectively override Certiyy lower-level framework mechanisms.

stepsinitConnector andAcceptor componentsthatthat
failed connections can be restarted automatically. Solution: Apply the Reactor pattern to wait synchronously
] for the arrival of indication events on one or more event

e Wrapper Facade [1]: This pattern encapsulates thgqyrces such as connected socket handles. Integrate the mech-
functions and data provided by existing non-OO APIs withilhisms that demultiplex and dispatch the events to services
more concise, robust, portable, maintainable, and cohesive (4G} process them. Decouple these event demultiplexing and
class interfaces. The ACE framework uses this pattern to pspatching mechanisms from the application-specific pro-
vide an OS-independent set of concurrent network prografssing of indication events within the services.
ming components used by the gateway.

) ) ) Structure, participants, and implementation: Figure 5 il-
Compared to the five strategic patterns outlined aboygstrates the structure and participants in the Reactor pattern.

vyhich are domgin-specific and have'br.oad design impliegye Reactor defines an interface for registering, remov-
tions, these tactical patterns are domain-independent and have

a relatively localized impact on a software design. Forin SO
stance, Iterator is a tactical pattern used in the gateway to| Select (handles) < /~ Concrete
L . . . . | foreach h in handles loop -, N (L \

cess entries in thBouting Table  sequentially without vi-| “apiefn]->handle_event (typd) = ¢4  Event
olating data encapsulation. Although this pattern is domjend loop ’C;,/\ R Handler
independent and thus widely applicable, the problem it ad- /o/V % T
dresses does not impact the application-level gateway soft- ‘//VO ‘9%\
ware design as pervasively as strategic patterns, such as $on/ \\~—/‘\\ S %
blocking Buffered 1/0 or Reactor. A thorough understandj=" _R€actor - Y,
of tactical patterns is essential, however, to implement hig\ohandle_events() Yel QV)
flexible software that is resilient to changes in application p register_handler(eh, ty:%r/]_\\__/_\
quirements and platform environments. ( remove_handler(eh, type) " Eyent Handler \\

The remainder of this section describes each of the stra.. Q> Ty ———————
gic patterns in detail and explains how they are used in the 1 - 1 \ handle_event(typ/;g)
gateway. AT ( ¢ get_handle() -

il Hendes ) A\

3.3 The Reactor Pattern Figure 5: Structure and Participants in the Reactor Pattern

Intent:  The Reactor pattern structures event-driven appliGag and dispatching concrete event handler objects, such as
tions, particularly servers, that receive requests from mU'“@ﬁppner or Consumer Handlers in the gateway. An
clients concurrently but process them iteratively.



implementation of this interface provides a set of applicati REGISTERED
independent mechanisms. These mechanisms perform i OBJECTS

. . . . L . Consumetf | Consume -

demultiplexing and dispatching of application-specific ev Handler || Handler |4: send(msg) Supplie

handlers in response to various types of input, output, 2: recv(msg) Handler

timer events. :

3: route(msg Event

Handler

LEVEL

APPLICATION

An Event Handler specifies an abstract interface used
by aReactor to dispatch callback methods defined by ob-
jects that register to events of interest. A concrete event I~
dler is a class that inherits frofBvent Handler and se-
lectively overrides callback method(s) to process events it
application-specific manner.

RAMEWOR
LEVEL

Lo
Dynamics: Figure 6 illustrates the dynamics among partic-

ipants in the Reactor pattern. These dynamics can be divided | 05 EVENT DEMULTIPLEXING INTERFACE |
o -
main callback : Reactor Handles E % i
program  Event_Handler ‘ § - =\ 1AE
3 Reactor() Figure 7: Using the Reactor Pattern in the gateway
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% RUN EVENT LOOP > patches events that indicate the arrival of passively initiated
S WAT FOR EVENTS | select) | connections. These events are used byAbeeptor com-
; g DISPATCH | ‘H handle_event(event_typ ponent described in Section 3.5.
& HANDLER(5) | The Reactor pattern has been used in many single-threaded
Figure 6: Dynamics for the Reactor Pattern event-driven frameworks, such as the Motif, Interviews [11],
System V STREAMS [12], the ACE OO communication
into the following two modes: framework [9], and implementations of CORBA [8]. In ad-

dition, it provides the event demultiplexing infrastructure for
1. Initialization mode where Concrete Event all of the other strategic patterns presented below.
Handler objects are registered with tfeactor ;
, _ 3.4 The Component Configurator Pattern
2. Eventhandling modavhere theReactor invokes up-
calls on registered objects, which then handle events inlatent. The Component Configurator pattern allows an ap-
application-specific way. plication to link and unlink its component implementations at
run-time without having to modify, recompile or statically re-
Usage: The Reactor is used for the following types oflink the application. It also supports the reconfiguration of
event dispatching operations in a gateway: components into different processes without having to shut
down and re-start running processes.

. L. ”?p“t events The Reactgr dispatches each INCOM1otivation and forces:  The following forces impact the de-
ing routing message to tf&upplier Handler associated

with its socket handle, at which point the message is rou(sslgn of highly flexible and extensible communication soft-

. : \Wware:
to the appropriat€onsumer Handler (s). This use-case is _ _ .
shown in Figure 7. 1. The need to defer the selection of a particular imple-

mentation of a component until very late in the design cycle.
2. Output events The Reactor ensures that outgoingDeferring these configuration decisions until installation-time
routing messages are reliably delivered over flow controlletrun-time significantly increases the design choices available
Consumer Handlers , as described in Section 3.6 and 3.70 developers. For example, run-time context information can
be used to guide implementation decisions and components
3. Connection completion eventsThe Reactor dis- can be (re)configured into applications dynamically.

patches events that indicate the completion status of conneé  the need to build complete applications by composing

tions that are initiated asynchronously. These events are ysedcripting multiple independently developed components.
by theConnector component described in Section 3.5.



Much of the recurring component configuration and initiaBynamics: Figure 9 illustrates the dynamics between partic-
ization behavior of applications should be factored out infjpants in the Component Configurator pattern. These dynam-
reusable methods. This separation of concerns allows new

versions of components to be linked into an application at run- main) o SoTP Reactor CCMmponent Component

SHUTDOWN EVENT

lustrates the structure and participants of the Component ( <
figurator pattern. This pattern reuses the Reactor patte¢ £

H
MODE

i

I
I
I
| handle_close }
I
I

remove_handler(comp)

| 1 unlink_comp()
! fini() | — || remove()
|

CLOSE SERVICE

UNLINK SERVICE

. . . ) . Component Config ‘ Repository
time without disrupting currently executing components. CONFIGURE f__!component_Config() L !
> FOREACH COMP ENTRY DO } process_directives(3=s— }

. . o link
Solution:  Apply the Component Configurator pattern to ¢ £ DYNAMICALLY LINK b | ink_compO_ | 1
. S . < init(argc, argv) | |
couple component interfaces from their implementations § g ™Tauze comPonenT register_handler(comp) !
k lications independent of the point(s) in time atwk & =~ ~o°T SOMPONENT —y i !
make app : p : p ! Whg EXTRACT HANDLE |« get handie( _ !
component implementations are configured into applica 3 STORE IN REPOSITORY ! i insert)_, |
processes. START EVENT LOOP l run_event_loop() l > }
10 | | handle_eventsb I
Z FOREACH EVENT DO | handle | ) Aﬂ—‘ }
Structure, participants, and implementation: Figure 8il- 3 INCOMING EVENT D.M |
Z |
|
|
|
|
|
|
|

EVEN

Zz P I I ‘ i
Eg (/ Concrete (> Figure 9: Dynamics for the Component Configurator Pattern
£z ! Component
:t( P e ics can be divided into the following two modes:
/ e 1. Configuration modewhich dynamically links or un-
P =L N links Components to and from an application.
! = “Component . _ _ .
- ( Componerlt/) ) Config [ 2 Event handling modewhich process incoming events
e \ “suspend() (\ —-@—---01 using patterns such as Reactor or Active Object [1].
&g \; .’,?{f(‘;m%‘} ) ! Usage: The Component Configurator pattern is used in
3% finif ¥~ L1 the gateway as shown in Figure 10. TiReactive
‘-%L \lnfo,()/ n ) /Componie‘n’t? Gateway component is a single-thrgaded'implem.entation
O ! Repository of the gateway that can be dynamically linked via com-
ST mands in a configuration script. To dynamically replace
this component with a multi-threaded implementation, the
S /’\\"‘\\ - Component Config need only reconsult itsomp.conf
sy { Event )//;/ T N file, unlink the Reactive Gateway , dynamically link
o3 ( Hand!gr/,n 10 R,ef‘cf‘BLf the Thread-per Connection Gateway or Thread

N~ -

quoI Gateway , and initialize the new implementation. The
@omponent Config facade uses dynamic linking to imple-
ment the Component Configurator pattern efficiently.

Figure 8: Structure and Participants in the Component Con
urator Pattern

Reactor andEvent Handler for its event demultiplex-
ing and dispatching needs. TK@mponent is a subclass COMPONENT
of Event Handler that adds interfaces for initializing and | 1" ®-FTOR
terminating C++ objects when they are linked and unlinked

dynamically. Application-specific components inherit from gompqnent
Component and selectively override itmit  and fini epos

Thread-per
Cannection
ateway

Reactive
Gateway

methods to implement custom initialization and termination
behavior, respectively.

The Component Repository records  which
Components are currently linked and active.  The comp.confa —  Obiect
. . . ynamic Gateway component_Object *
Component Config is a facade [2] that orchestrates CILE gateway-make_Gateway() "-ORBport 2%)1"

the behavior of the other components. It also provides a single
access point for linking, activating, suspending, resumiriggure 10: Using the Component Configurator Pattern in the
and unlinkingComponents into and out of an application atgateway

run-time.



The Component Configurator pattern is used in the Wicessing logic, passive-mode socket endpoints cannot be used
dows NT Service Control Manager (SCM), which allows iacorrectly,e.g.,by trying to read or write data on a passive-
master SCM process to initiate and control administratonode listener socket used to accept connections. This elimi-
installed service components automatically. In general, madtes an important class of network programming errors.
ern operating systems, such as Solaris, Linux, and Window
NT, provide support for dynamically-configured kernel-leve|
device drivers that implement the Component Configuraﬁ
pattern. Another use of the Component Configurator p
tern is the applet mechanism in Java, which supports dynam
downloading, initializing, starting, stopping, and terminatirwl
of Java applets.

%. The need to actively establish connections with large
umber of peers efficienthyWhen an application must estab-

h connections with a large number of peers efficiently over
ng-delay WANSs it may be necessary to use asynchrony and
ifiate and complete multiple connections in non-blocking
ode.

Solution: Apply the Acceptor-Connector pattern to decou-
ple the connection and initialization of peer services in a net-
worked application from the processing these peer services
Intent:  The Acceptor-Connector pattern decouples conng@erform after they are connected and initialized.

tion gstgbl|shment and service initialization from service Pr8tucture,
cessing in a networked system.

3.5 The Acceptor-Connector Pattern

participants, and implementation: Fig-
ure 11 illustrates the layering structure of participants in
Motivation and forces: Connection-oriented applicationsthe Acceptor-Connector pattern.  Th&cceptor — and
such as our application-level gateway, and middleware, such

as CORBA, are often written using lower-level network prz /,1\ /"~ {soucstean] ff
gramming interfaces, like sockets [13]. The following forc £ " Concrete \ Concrete ¢ { Concrete /
impact the initialization of services written using these low Acceptor ) | U el { Connector >

level interfaces: 3

¢
\
)
{
N

LAYER

o~ \\\/0/,)43[1()»\ /J \r S~
| | |
|

APPLICA

B sy
ffffffffff /. -] SVC_HANDLER !

1. The need to reuse connection establishment code for 7> sverawer | / | PEER_ CONNECTOR |

I
|
|
| PEER_ACCEPTOR | | [ o7 S |
|
|

. .. . v LT
each new serviceKey characteristics of services, such as the v acceptor X w28 Connector \

) A . [ NS N [ | \connect_svc_handle?()
communication protocol or the data format, should be ablj 3 \\}}g[;i};t—_i"vi—_';%”nﬂgfg)\] S "Eegg,g@@ i | activate_svc_handler()
evolve independently and transparently from the mechani 5gs /_activate_svc_handiery Svc Handler { (phandle_event) -

>/ connect(sh, addo
So_ - A

r T TN

/ . | connect_svc_handler ‘
;1| T sh, addn;

. ac\\vateisvcihandlev
2| ey

. . . . w > \Ohandle_event() Py —
used to establish the connections. Since service character 2<:sv-_ -2~ <’ NP0 S
\ -

—~

change more frequently than connection establishment me & . a-
sh = create_svc_handler()

nisms, separating these concerns helps to reduce software co acept. sl
. - activate_svc_handler(sh);
pling and increase code reuse. —

. . L~
2. The need to make the connection establishment (2¢2 -/ Event i —
portable across platforms that contain different netwc £z \ h'*"’;”ﬂ % Reactor
. . .. andle_event| e
programming interfaces. Parameterizing the Acceptoi™ pande-even) -

Connector's mechanisms for accepting connections and gégure 11: Structure and Participants in the Acceptor-
forming services helps to improve portability by allowing th€onnector Pattern

wholesale replacement of these mechanisms. This makes the

connection establishment code portable across platforms fa@@nector ~ components are factories that assemble the

contain different network programming interfaces, such Egsources necessary to connect and actate Handler s.
sockets but not TLI, or vice versa. Svc Handler s are components that exchange messages

3. Th d ble flexibl . vlvith connected peers.
: e need to enable flexible service concurrency po "The participants in the Connection Layer of the Acceptor-

cies. After a connection is established, peer applications Y6nnector pattern leverage off the Reactor pattern. For in-
the conne;]ctlon to eXChIa”QG datHa_Iflc\;lEe(;form some typiz of Ehnce, theConnector s asynchronous initialization strat-
vice, such as remote login or ocument transter. A, otaplishes a connection after fReactor notifies it

Service can run in asingle-thread, in multiple threads, or m lat a previously initiated connection request to a peer has

tiple processes, regardless reggrdless of.h.o.w _the COnnec&‘ﬂ’ﬂpleted. Using the Reactor pattern enables mulfie

was established or how the services were initialized. Handlers to be initialized asynchronously within a single
4. The need to ensure that a passive-mode I/0O handlghsead of control.

not accidentally used to read or write datdy strongly decou-  To increase flexibilityAcceptor andConnector com-

pling the connection establishment logic from the service pfmenents can be parameterized by a particular type of IPC



mechanism an&VC HANDLERThe IPC mechanism sup- Server , 3¢¢:  SOCK sh: reactor .

. . A Acceptor Acceptor  Svc_Handler Reactor
plies the underlying transport mechanism, such as C++ w jopen(); i

. = % INITIALIZE PASSIVE open()i } i
per facades for sockets or TLI, used to establish a connec z E ENDPOINT o handier(acc). ‘
. pn . . register_handler(acc,
The SVC HANDLERpecifies an abstract interface for defi g N < REGISTER HANDLER ‘ IR ; “
i i i i Z T O EXTRACT HANDLE . get_handle() |
ing a service that communicates with a connected peer § £ ' nandle_evens) | :
Svc Handler can be parameterized byREER STREAN, £ ~ S/°TEENTLoor | i T i ——
. FOREACH EVENT DO
endpoint. TheAcceptor andConnector componentsas ! ! ! | handle_event()
sociate this endpoint to its peer when a connection is esy 2, eIV AT sh =make_svc_handler()
lished SN2 A Achare omect | Seivate e, handier by
B .. h t f E t H dl S H dl % 3 E AND ACTIVATE OBJECT } ‘ ‘_ ;| register handler(s )
0n = !

Yy |n. erl |ng romeven andler , asSvC Ranaler E REFglngEEmNBbER | | | —
can register with &eactor and use the Reactor pattern ._ £ oxracT HawoLe | | | IR
handle its I/O events within the same thread of control as *~g ! ! ! handle_event()

w = DATA EVENT | | |
Acceptor or Connector . Conversely, &vc Handler 024 PROCESS MSG ! ! ! E svc()
. . . w <
can use the Active Object pattern and handle its I/0 even' & © T 1 1 1 | handie cl
. & 8 O CLIENT SHUTDOWN | | | 1nandle_close() |
a separate thread. Section 3.7 evaluates the tradeoffs bet ™ & SERVER SHUTDOWN | o ! handle_close()

these two patterns.

Parameterized types are used to decouple the Acceptor-
Connector pattern’s connection establishment strategy from
the type of service and the type of connection mechanism. @ad (3) activates thBvc Handler by calling itsopen hook
velopers supply template arguments for these types to produmeghod.

Application LayerAcceptor or Connectors |, such as the i i .
Connector used by the gateway to initialize i8upplier 3. Service processing phaskiter theSve Handler  is
andConsumer Handlers . This design enables the whole@ctivated, it processes incoming event messages arriving on
sale replacement of tt8&VC HANDLERNd IPC mechanism,the PEER STREAMA Svc Handler  can process incom-
without affecting the Acceptor-Connector pattern’s service iffld €vent messages using patterns such as the Reactor or the
tialization strategy. Active Object [1].

Note that a similar degree of decoupling could be achievedry,q dynamics among participants@nnector compo-

via inheritance and dynamic binding by using the Abstrgghn; of the pattern can be divided into the following three
Factory or Factory Method patterns described in [2]. Pﬁ‘hases:

rameterized types were used to implement this pattern since

they improve run-time efficiency. In general, templates tradel. Connection initiation phasewhich actively connects
compile- and link-time overhead and space overhead for iome or moreSvc Handlers  with their peers. Connec-
proved run-time performance. tions can be initiated synchronously or asynchronously. The

) ) ) ) Connector ’'sconnect method implements the strategy for
Dynamics: Figure 12 illustrates the dynamics among PaLstablishing connections actively.

ticipants for theAcceptor component of the pattern. These
dynamics are divided into the following three phases: 2. Service initialization phasewhich activates aSvc
Handler by calling its open method when its connec-

1. Endpoi.nt initialization phasewhich creates a pass'iveﬁon completes successfully. Thpen method of theSve
mode endpoint encapsulated BEER ACCEPTORat is pjangler  then performs service-specific initialization.
bound to a network address, such as an IP address and port

number. The passive-mode endpoint listens for connectior8. Service processing phasewhich performs the
requests from peers. This endpoint is registered with thgplication-specific service processing using the data ex-
Reactor , which drives the event loop that waits on the endhanged between th&vc Handler and its connected
point for connection requests to arrive from peers. peer.

Figure 12: Dynamics for thAcceptor Component

2. Service activation phas&ince amAcceptor inherits  Figure 13 illustrates these three phases of dynamics us-
from anEvent Handler the Reactor can dispatch the ing asynchronougonnection establishment. Note how the
Acceptor 's handle _event method when connection re-Connector ’s connectioninitiation phase is separatehpo-
guest events arrive. This method performs Ateeeptor ’'s rally from the service initialization phase. This design enables
Svc Handler initialization strategy, which (1) assemblesultiple connection initiations to proceed in parallel within a
the resources necessary to create a K@omcrete Svc single thread of control. The dynamics for synchronous con-
Handler object, (2) accepts the connection into this objectection establishment is similar. In this case,@wanector

10



. con : SOCK sh: reactor : H ihili
Client  contector Comnector Sve. Handler  Reactor The Acceptor-Connector pattern increases the flexibility

connect(sh, addr) | ! | and reuse of networking framework components by separat-
|

P
Q = FOREACH CONNECTION | . . . . .
EOB  mate connection c‘onnect‘_svc_handler(sh, adt) ing the conpectlon establlshment logic from the service pro-
o 'L_Eg ASYNG CONNECT Connectm | i cessing logic. The only coupling between Abceptor and
62 INSERT IN REACTOR i ;fegistef_hand'er(@ﬁ) Connector componentsand (2)&c Handler occursin
© U ! lhandle_events) | the service initialization phase, when thygen method of the
START EVENT LOOP 1 ! 1 = » | .. . .
z } } | selectg—y—]| SVC Handler isinvoked. At this point, th&vc Handler
w Q FOREACH EVENT DO | | | . . .ps . . .
O o CompLeTe | i | handle_event() can perform its service-specific processing using any suitable
% § g | <] activate_svc_handler(sh) application-level protocol or concurrency policy.
n< ACTIVATE OBJECT open() i i
= register_handler(sh For instance, when messages arrive at a gateway, the
Zz INSERT IN REACTOR

|
|
|
| ! get_handie( Reactor can be used to dispat@upplier Handlers
Jgethandey) | . .
FXTRACT HANDLE L to frame the messages, determine outgoing routes, and de-
| |
| |
|
|
|
|

handle_event( liver the messages to thetonsumer Handlers . How-
?‘ ever,Consumer Handlers can send the data to the remote

! | ‘ sve0 || destinations using a different type of concurrency mechanism,

Figure 13: Dynamics for the Asynchrono@onnector such as Active Objects described in Section 3.7.

Component Usage: Figure 14 illustrates how thécceptor compo-

nent of the Acceptor-Connector pattern is used by the gateway

i . .. .. . .when it plays the passive connection role. In this case, peers
combines the connection initiation and service initialization
: Consumeny
Handler

DATA ARRIVES

PROCESS DATA

|
|
|
|
|
|
|
| T
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|

SERVICE
PROCESSING
PHASE

phases into a single blocking operation.
In general, synchronous connection establishment is useful
for the following situations:

: Supplier,
Handler

: Consume
Handler
e If the latency for establishing a connection is very low, : Supplier

such as establishing a connection with a server on the Acceptor

same host via the loopback device.

e If multiple threads of control are available and it is  {_— "\ 200
feasible to use a different thread to connect eSeh _Acceptor )

Handler synchronously.

/‘

ACTIVE
CONNECTIONS

. Supplier|
Handler

i

: Reactor
¢ If a client application cannot perform useful work until a

connection is established. Figure 14: Using thé\cceptor Component in the gateway

In contrast, asynchronous connection establishment is useful )
for the following situations: connect to gateway, which uses tAeceptor to decou-
ple the passive initialization ddupplier —and Consumer

o Ifthe connection latency is high and there are many peg@ndlers from the routing tasks performed after a handler

to connect withe.g, establishing a large number of conlS initialized. -
nections over a high-latency WAN. Figure 15 illustrates how th€onnector component of

) . , , the Acceptor-Connector pattern is used by the gateway to sim-
¢ If only a single thread of cpntrol |s'ava'ulable,g.,|f the plify the task of connecting to a large number of peers. In
OS platform does not provide application-level threadsy,ig case, peer addresses are read from a configuration file
o If the client application must perform additional workguring gateway initialization. The gateway uses the Builder
such as refreshing a GUI, while the connection is in tip@ttern [2] to bind these addresses to dynamically allocated
process of being established. Consumer Handlers or Supplier Handlers . Since
these handlers inherit frol8vc Handler , all connections
It is often the case that network services, such as @an be initiated asynchronously using the Iterator pattern [2].
application-level gateway, must be developed without knowhe connections are then completed in parallel using the
ing if they will connect synchronously or asynchronouslZonnector
Therefore, components provided by a general-purpose nefrigure 15 shows the state of tlf@@onnector after four
work programming framework must support multiple syreonnections have been established. Three other connections
chronous and asynchronous use-cases. that have not yet completed are owned by @@nector

11



failure occurs on incoming and outgoing network connections.
Thus, the following forces must be resolved when building
robust connection-oriented gateways:

1. The need to prevent misbehaving connections from dis-

Connector

PENDING
CONNECTIONS

ACTIVE rupting the QoS of well-behaved connectioirgut connec-

CONNECTIONS tions can fail because peers disconnect. Likewise, output con-

nections can flow control as a result of network congestion.
In these types of cases, the gateway must not perform block-

ing send orrecv operations on any single connection since
(1) the entire gateway can hang indefinitely or (2) messages
Figure 15: Using th€onnector Componentin the gatewayon other connections cannot be sent or received and the QoS

provided to peers will degrade.

As shown in this figure, th&Connector maintains a ta- 2. The need to allow different concurrency strategies for
ble of the threeHandlers whose connections are pendprocessing input and outputSeveral concurrency strategies
ing completion. As connections complete, fBennector  can be used to process input and output, including (1) single-
removes each connect&hannel from its table and acti- threaded processing using the Reactor pattern (Section 3.3)
vates it. In the single-threaded implementatmpplier and (2) multi-threaded processing using the Active Object pat-
Handlers register themselves with thReactor after tern (Section 3.7). Each strategy is appropriate under different
they are activated. Henceforth, when routing messagessiitiations, depending on factors such as the number of CPUs,
rive, Supplier Handlers receive and forward them tocontext switching overhead, and number of peers.

Consumer Handlers , which deliver the messages to theigo|ution:  Apply the Non-blocking Buffered 1/0 pattern to
destinations (these activities are described in Section 3.6). decoupling input processing from output processing to prevent

In addition to establishing connections, a gateway can Yj§cking and allow customized concurrency strategies to be
theConnector in conjunction with theReactor to ensure configured flexibly into an application.

that connections are restarted if network errors occur. This en- " ) . .

hances the gateway’s fault tolerance by ensuring that chanigfscture. participants, and implementation: ~ Figure 16
are automatically reinitiated when they disconnect unexpé P_strgtes the layer structuring of participants in the Non-
edly, e.g.,if a peer crashes or an excessive amount of g&yqeking Buffered 1/O pattern. The I/O Layer provides an

is queued at &onsumer Handler due to network con- e
gestion. If a connection fails unexpectedly, an exponential- 2 Routing .
backoff algorithm can restart the connection efficiently by us- \ __Table 1 { ’\/

ing the timer dispatching capabilities of tReactor .

The intent and general architecture of the Acceptor- , -
Connector pattern is found in network server management ~’Supplier), / Consumer )
tools likeinetd [13] andlisten  [14]. These tools uti- \_Handler | \ Handler (
lize a master Acceptor process that listens for connections on price ey / send msg() 7

S . . . 7 put() -
a set of communication ports. Each port is associated with \/X \\/\’f

| find() ,‘\ s
- T $

——~ 7/ —_—

ROUTING
LAYER

a communication-related service (such as the standard Inter-
net servicedtp , telnet , daytime , andecho). When o
a service request arrives on a monitored port, the Acceptor =
process accepts the request and dispatches an appropriatﬁzpre—

registered handler that performs the service. gure 16

EVENT SOURCES AND SINKS

LAYER

Structure and Participants in the Non-blocking
Buffered I/O Pattern

3.6 The Non-blocking Buffered 1/0 Pattern event source foBupplier Handlers and an event sink

, for Consumer Handlers . A Supplier Handler uses
Intent: The Non-blocking Buffered I/O pattern decoupleg Routing Table to map routing messages onto one or

input mechanisms and output mechanisms so that data CthBPeConsumer Handlers . If messages cannot be deliv-

routed correctly and reliably without blocking application prosyeq to their destination peers immediately they are buffered

cessing unduly. in aMessage Queue for subsequent transmission.
Motivation and forces: Message routing in a gateway must Since Supplier Handlers are decoupled from
not be disrupted or postponed indefinitely when congestion@onsumer Handlers  their implementations can vary
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independently. This separation of concerns is important sinc8he remainder of Section 3.6 describes how the Non-
it allows the use of different concurrency strategies for inpbiiocking Buffered I/O pattern can be implemented in a single-
and output. The consequences of this decoupling is discudbedaded, reactive version of the gateway (Section 3.7 exam
further in Section 3.7. ines the multi-threaded, Active Object version of the Non-

Dynamics: Figure 17 illustrates the dynamics among pak|)_locking Buffered 1/O pattern). In this implementation, the

ticipants in the Non-blocking Buffered 1/O pattern. These d{ion-plocking Buffered 1/O pattern uses Reactor as a
cooperative multi-tasking scheduler for gateway 1/0O opera-

g maing  ROUtng Consumer Supplier  1/0 tions on differe;nt connections yvithin a single thread. Single-
53t Table' Handler Handler Layer threading eliminates the following overhead:
P ‘ il

OT | I . . . .
= 2% Recv mse i i ! 1 ev-ms90 || o Synchronizatior- e.g, access to shared objects like the

& b ! Routing Table need not be serialized; and

ROUTE MSG } } find 0 } ) ] )
w B, o oesThaToNs | 1t pne o C'czkr:'text S'W|t|ch$g— ed.g, all message routing can occur
5 E:{S_) . i isend In% ‘ within a single thread.
UEUE IF FLOW

ot conroliep) 1] e”q“e“e@ In the reactive implementation of the Non-blocking

o Lo I schedule_wakeup() | Buffered 1/0 pattern, theSupplier Handlers and
2, FLOW CONTROL b P | wakeup() Consumer Handlers are descendants ofEvent
,@ﬂ 2 ABATES b dequeuel) Handler . This layered inheritance design enables the
20%  meleranmee i Es‘go gateway to route messages by havingReactor  dispatch

& FLOW CONTROLLED )| | i U thehandle _event methods oSupplier andConsumer
Figure 17: Dynamics for the Non-blocking Buffered I/O Patdandlers when messages arrive and flow control conditions
tern subside, respectively.

_ o . Using the Reactor pattern to implement the Non-blocking

namics can be divided into three phases: Buffered 1/O pattern involves the following steps:

1. Input processing phase where Supplier 1. Initialize non-blocking endpoints. The Supplier

Handlers  reassemble incoming TCP segments inghd Consumer Handler handles are set into non-
complete routing messagesthout blocking the application pjocking mode after they are activated by Acceptor  or
process. Connector . The use of non-blocking I/O is essential to

2. Route selection phase After a complete messageavoid blocking that can otherwise occur on congested network
has been reassembled, tBepplier Handler consults links.

aRouting Table to select theConsumer Handler (s) 2. |nput message reassembly and routifRputing mes-
rgsppnableforsendmg the routing messages to their peergga-es are received in fragments®ypplier Handlers
tinations. If an entire message is not immediately available, the
3. Output processing phase where the selectedSupplier Handler must buffer the fragment and re-
Consumer Handlers  transmit the routing messagegurn control to the event loop. This is essential to prevent
to their destination(s)without blocking the application “head of line” blocking onSupplier channels . When
process. aSupplier Channel successfully receives and frames an

Usage: The other strategic patterns in this pape-Re- entire message it uses tReuting Table to determine the

actor, Connector, Acceptor, and Active Object—can be %Qpropriate set o€onsumer Handlers that will deliver

plied to many types of communication software. In contra$t® MeSSade:

the Non-blocking Buffered I/O pattern is more coupled with 3. Message delivery.  The selected Consumer
gateway-style applications that route messages between pétandlers try to send the message to the destination
A primary challenge of building a reliable connection-orientgzter. Messages must be delivered reliably in “first-in, first-
gateway centers on avoiding blocking I/O. This challenge cesut” (FIFO) order. To avoid blocking, abend operations

ters primarily on reliably managirftpw controlthat occurs on in Consumer Handlers must check to make sure that
the connections used yonsumer Handlers to forward the network link is not flow controlled. If it isot, the
messages to peers. If the gateway blocked indefinitely whmassage can be sent successfully. This path is depicted by
sending on a congested connection then incoming messdgesConsumer Handler in the upper right-hand corner
could not be routed, even if those messages were destinedfoFigure 18. If the linkis flow controlled, however, the
non-flow controlledConsumer Handlers . Non-blocking Buffered I/O pattern implementation must use
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the central event loop in single-threaded reactive systems.
For example, in the single-threaded gateway implementation,
theReactor provides a coarse-grained form of concurrency

5: nonblk_put(msg) ~ control that serializes the invocation of event handlers at the

6: send_msg(msg)  level of event demultiplexing and dispatching within a pro-
cess. This eliminates the need for additional synchronization
mechanisms within a gateway and minimizes context switch-
ing.

The Reactor pattern is well-suited for applications that use
short-duration callbacks, such as passive connection establish-
ment in the Acceptor pattern. It is less appropriate, however,
Supplier 7:put(msg) 8 ggrr]‘gmm%E%S%) for long-duration operations, such as blocking on flow con-

trolled Consumer Handlers during periods of network

Handler 10 enqueue( msgi g b i
11: schedule_wakeup() congestion. In fact, much of the complexity in the single-
1: handle_event() Ié__;/;k_éab() threaded Non-blocking Buffered 1/O pattern implementation
2: recv_msg(msg) 13: dequeue(msg) stems from using the Reactor pattern as a cooperative multi-
14:send_msg(MsQ)  (aqking mechanism. In general, this pattern does not ade-
Figure 18: Using the Non-blocking Buffered I/O Pattern in guately resolve the following force that impacts the design of
Single-threaded Reactive gateway applications, such as the gateway, that must communicate si-

multaneously with multiple peers:

Consumer
Routing Handler

Table

ROUTE
ID )
Subscriber

Set
3: find() (&q\
S
-

M

Consumer
Handler

a different strategy. This path is depicted by bensumer 1. The need to ensure that blocking read and write oper-
Handler in the lower right-hand corner of Figure 18. ations on one endpoint do not detract from the QoS of other
To handle flow controlled connections, ti@onsumer endpoints. Network services are often easier to program if

Handler inserts the message it is trying to send into it¥ocking I/O is used rather than reactive non-blocking 1/0 [1].
Message Queue. It then instructs theReactor to call The simplicity occurs because execution state can be localized
back to theConsumer Handler when the flow control in the activation records of a thread, rather than be decentral-
conditions abate, and returns to the main event loop. WHzed in a set of control blocks maintained explicitly by appli-

it is possible to try tasend again, theReactor dispatches cation developers.

thehandle _event method on the&Consumer Handler

which then retries the operation. This sequence of steps may _,3 loop {
be repeated multiple times until the entire message is transml TN —>$ m = act_queue_.remove
roxy if (m.guard())m.call()
ted successfully. /— else act_queue.inserh).
Note that the gateway always returns control to its mi Futureml() \ 1: enqueue(newll)

Futurem2() / \\// P —

event loop immediately after every I/O operation, regardl{

N —~
. : : .| Futurem3 =7 3 dISpatch() )
of whether it sent or received an entire message. This is', uturem3() y ScheduIeH he /Actlvatlon
- 1 N List /
essence of the Non-blocking Buffered I/O pattern — it correctly \ ) {
tes the messages to peers without blocking on any single.e d'SpatCho//l 1{ insert()
rou g p g Yy gTO enqueue( \\ remove() )
/O channel. CLIENTS 1=~ 2insertyIl) ’/f:/\
3 S
. - / ~_ /«\,\\, -
3.7 The Active Object Pattern SELE \Serva tg Method ( Mz\\
. . T \ m1() / / R v J
Intent:  The Active Object pattern decouples method execl- < enrs | M20) equest /\»4\,\
; ; : ; 4* guard() | / \
tion from method invocation to enhance concurrency and sim- \m30, — I e—— (M3}
. . . . . . - 4: ml() ~.ca OA,/ ~
plify synchronized access to objects that reside in their own -
threads of control. Figure 19: Structure and Participants in the Active Object Pat-

Motivation and forces: All the strategic patterns used b);ern

the single-threaded gateway in Section 3.6 are layered upon

the Reactor pattern. The Acceptor-Connector and Nd@wplution: Apply the Active Object pattern to decouple
blocking Buffered 1/0 patterns both use the Reactor asmethod invocation on an object from method execution.
scheduler/dispatcher to initialize and route messages withiNlathod invocation should occur in the client’s thread of con-
single thread of control. In general, the Reactor pattern fortnsl, whereas method execution should occur in a separate
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thread. Moreover, design the decoupling so the client threéad-uture

appears to invoke an ordinary method.

Structure, participants, and implementation:
illustrates the structure and participants in the Active O
ject pattern. TheProxy exports the active object’s public
methods to clients. Th&cheduler

determines the next

Figure 19

is a synchronization object that enforces “write-
once, read-many” synchronization. Subsequently, any read-
ers that rendezvous with thuture  will evaluate the future
nd obtain the result value. Thauture and theMethod
‘equest can be garbage collected when they are no longer
needed.

method to execute based on synchronization and schedulilsgge: The gateway implementation described in Sec-

constraints. Théctivation List

pendingMethod Requests
the order in which thes®ethod Requests

. TheScheduler

maintains a queue oftion 3.6 is single-threaded. It uses the Reactor pattern im-

determines plementation of the Non-blocking Buffered I/O Pattern as a
are executed cooperative multi-tasking scheduler that dispatches events of

(a FIFO scheduler is used in the gateway to maintain the ordeerest to a gateway. After implementing a number of single-

of message delivery). Th&ervant
shared by the implementation methods.

maintains object statethreaded gateways it became clear that using the Reactor pat-

tern as the basis for all gateway routing 1/0 operations was
error-prone and hard to maintain. For example, it was hard

Dynamics: Figure 20 illustrates the dynamics among pafs remember why control must be returned promptly to the

ticipants in the Active Object pattern. These dynamics are Eiéactor

Client Scheduler M1

_ Proxy ACtl'_‘i’;t'on Servant
O

o] 1 I I I I
2 E INVOKE 1m0 \ \ \
3 I I I I
o  CREATE METHOD ienqueue(new M1) | \ \
o % REQUEST ; — | | ‘

4 uture()! I I I
E §  RETURN FUTURE 0} } } }

INSERT INTO } insert(M.l) } }

T z  ACTIVATION QUEUE | | | |
£ 9 | guard() | | |
5 5 DEQUEUE SUITABLE | | I reTr— |
@ 2 METHOD REQUEST | remove(M1) | |

< | > | |
9] )
» *  Execute } . dlsp‘atch(M}) }

z call()

8 I I I mi() I

= I 1 > »!

§ RETURN RESULT reply_to_future() ! ! }

s bl T T 1

3 I I I I

s) I I I

L

Y

Figure 20: Dynamics for the Active Object Pattern

vided into the following three phases:

's event loop when I/O operations cannot proceed.
This misunderstanding became a common source of errors in
single-threaded gateways.

To avoid these problems, a number of multi-threaded
gateways were built using variations of the Active Ob-
ject pattern. This pattern allonSonsumer Handlers
to block independently when sending messages to peers.
The remainder of this section describes h@@nsumer
Handlers can be multi-threading using the Active Object
patternt This modification simplified the implementation
of the Non-blocking Buffered 1/O pattern substantially since
Consumer Handlers can block in their own active ob-
ject thread without affecting othéfandlers . Implementing
theConsumer Handlers as active objects also eliminated
the subtle and error-prone cooperative multi-tasking program-
ming techniques required when using fReactor to sched-
ule Consumer Handlers

Figure 21 illustrates the Active Object version of the Non-
blocking Buffered 1/O pattern. Note how much simpler is it

1. Method Request constructiom this phase, the clientcompared with the Reactor solution in Figure 18. This sim-
application invokes a method defined by Bvexy . This trig- plification occurs since the complex output scheduling logic is
gers the creation of Method Request , which maintains moved into the Active Objects, rather than being the responsi-
the argument bindings to the method, as well as any othéity of application developers.
bindings required to execute the method and return a resultt is also possible to observe the difference in complexity
A binding to aFuture object is returned to the caller of thebetween the single-threaded and multi-threaded gateways by

method.

2. Scheduling/executionin this phase th&cheduler
acquires a mutual exclusion lock, consults &wativation

Queue to determine whichMethod Requests(s)
the synchronization constraints. TMethod Request
then bound to the curreBervant and the method is allowed

to access/update tig&ervant 's state.

meet

examining the source code that implements the Non-blocking
Buffered I/O pattern in production gateway systems. It is hard
to identify the reasons for this complexity simply by inspect-
ing the source code due to all the error handling and protocol-
specific details surrounding the implementation. These details

IS tend to disguise the key insighthe main difference between

the complexity of the single-threaded and multi-threaded solu-
tions arise from the choice of the Reactor pattern rather than

3. Return result. The final phase binds the result of the Iwhile it is possible to apply the Active Object pattern to Spplier

Method Request to aFuture [15], WhiCh' passes retum_HandIers this has less impact on the gateway design becauseehetor
values back to the caller when the method finishes executi@igady supports non-blocking input.
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tory for configuring and initializing components into an appli-
cation at run-time. At run-time, the Component Configurator
pattern allows the components offered by an application to be
incrementally modified without disturbing executing compo-
nents. In addition, the Component Configurator pattern co-
ordinates the interaction between components configured into
an application and external administrators that want to update,

Consumer
Handler

f Subscriber
Set
/;ut (msg)

Routing
Table

5: send_msg(msg)

%
ACTIVE

ROUTE
ID

3: find() suspend, resume, or remove components at run-time.
Consumer The Acceptor-Connector pattern is related to the Template
> Handler Method, Strategy, and Factory Method patterns [2]. In the

Template Method pattern, an algorithm is written such that
some steps are supplied by a derived class. In the Factory
Method pattern, a method in a subclass creates an associate

Supplier
Handler

&3

1: handle_event () 5: send_msg(msg) that performs a particular task, but the task is decoupled from

2: recv_msg(msg) the protocol used to create the task. TAeceptor and
Figure 21: Using the Non-blocking Buffered 1/0O Pattern in @onnector components in the Acceptor-Connector pattern
Multi-threaded Active Object gateway are factories that use template methods or strategies to create,

connect, and activate handlers for communication channels.
The intent of the Acceptor-Connector pattern is similar to the
the Active Object pattern. Client/Dispatcher/Server pattern described in [16]. They both

This paper has explicitly focused on the interactions aage concerned with separating active connection establishment
tradeoffs between the Reactor and Active Object patternsrism the subsequent service. The primary difference is that the
clarify the consequences of different design choices. In geeceptor-Connector pattern addresses both passive/active and
eral, documenting the interactions and relationships betw%@ﬁchronous/asynchronous connection establishment.
closely related patterns is a challenging and unresolved topighe Non-blocking Buffered I/O pattern is related to the Me-
that is being addressed by the patterns community. diator pattern [2], which decouples cooperating components

of a software system and allows them to interact without hav-

ing direct dependencies among each other. The Non-blocking
4 Related Patterns Buffered 1/O pattern is specialized to resolve the forces asso-

ciated with network communication. It decouples the mech-
[2, 16, 1] identify, name, and catalog many fundamental archirisms used to process input messages from the mechanisms
tectural and design patterns. This section examines how {8ed to process output mechanisms to prevent blocking. In ad-
patterns described in this paper relate to other patterns in Hitfon, the Non-blocking Buffered 1/O pattern allows the use of
literature. Note that many of the tactical patterns outlined different concurrency strategies for input and output channels.
Section 3.2 form the basis for implementing the strategic pat-
terns presented in this paper.

The Reactor pattern is related to the Observer pattern 8. Concluding Remarks
In the Observer pattermultiple dependents are updated au-
tomatically when a subject changes. In the Reactor patteFhis paper illustrates the application of pattern language that
a handler is dispatched automatically when an event occansables widespread reuse of design expertise and software
Thus, the Reactor dispatchesiaglehandler for each event,components in production communication gateways. The pat-
although there can be multiple sources of events. The Re&ens in this language illustrate the structure of, and collabora-
tor pattern also provides a Facade [2]. The Facade patt#on between, objects that perform core communication soft-
presents an interface that shields applications from compleare tasks. The tasks addressed by these patterns include
relationships within a subsystem. The Reactor pattern shiedgdent demultiplexing and event handler dispatching, connec-
applications from complex mechanisms that perform event dien establishment and initialization of application services,
multiplexing and event handler dispatching. concurrency control, and routing.

The Component Configurator pattern is related to theThe pattern language and ACE framework components de-
Builder and Mediator patterns [2]. The Builder pattern preeribed in this paper have been reused by the author and
vides a factory for constructing complex objects incremehis colleagues in many production communication software
tally. The Mediator coordinates interactions between its aystems ranging from telecommunication, electronic medical
sociates. The Component Configurator pattern provides a fiaeaging, and avionics projects [10, 5, 7] to academic research
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projects [9, 8]. In general, this pattern language has aided the
development of components and frameworks in these systems
by capturing the structure and dynamics of participants in a

software architecture at a level higher than (1) source code
and (2) OO design models that focus on individual objects and

classes.

An in-depth discussion of our experiences and lessons
learned using patterns appeared in [4]. An ACE-based ex-
ample of single-threaded and multi-threaded gateways that il-
lustrates all the patterns in this paper is freely available at
www.cs.wustl.edu/ ~schmidt/ACE.html
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