
Applying a Pattern Language to Develop Application-level Gateways

Douglas C. Schmidt
schmidt@uci.edu

http://www.ece.uci.edu/�schmidt/
Department of Electrical & Computer Science

University of California, Irvine 92607

This paper appeared as a chapter in the bookDesign Pat-
terns in Communications, (Linda Rising, ed.), Cambridge Uni-
versity Press, 2000. An abridged version appeared in the jour-
nal Theory and Practice of Object Systems, special issue on
Patterns and Pattern Languages, Wiley & Sons, Vol. 2, No. 1,
December 1996..

Abstract

Developers of communication applications must address re-
curring design challenges related to efficiency, extensibility,
and robustness. These challenges are often independent of
application-specific requirements. Successful developers re-
solve these challenges by applying appropriate patterns and
pattern languages. Traditionally, however, these patterns have
been locked in the heads of expert developers or buried deep
within complex system source code. The primary contribution
of this paper is to describe a pattern language that underlies
object-oriented communication software. In addition to de-
scribing each pattern in this language, the paper illustrates
how knowledge of the relationships and trade-offs among the
patterns helps guide the construction of reusable communica-
tion frameworks and applications.

1 Introduction

Communication software is the set of services and protocols
that makes possible modern distributed systems and applica-
tions, such as web services, distributed objects, collaborative
applications, and e-commerce systems [1]. Building, main-
taining, and enhancing high-quality communication software
is hard, however. Developers must have a deep understand-
ing of many complex issues, such as service initialization and
distribution, concurrency control, flow control, error handing,
event loop integration, and fault tolerance. Successful com-
munication applications created by experienced software de-
velopers must embody effective solutions to these issues.

It is non-trivial to separate the essence of successful com-

munication software solutions from the details of particular
implementations. Even when software is written using well-
structured object-oriented (OO) frameworks and components,
it can be hard to identify key roles and relationships. More-
over, operating system (OS) platformfeatures, such as the ab-
sence or presence of multi-threading, or applicationrequire-
ments, such as best-effort vs. fault tolerance error handling,
are often different. These differences can mask the underly-
ing architectural commonality among software solutions for
different applications in the same domain.

Capturing the core commonality of successful communica-
tion software is important for the following reasons:

1. It preserves important design information for program-
mers who enhance and maintain existing software.Often, this
information only resides in the heads of the original develop-
ers. If this design information is not documented explicitly,
therefore, it can be lost over time, which increases software
entropy and decreases software maintainability and quality.

2. It helps guide the design choices of developers who are
building new communication systems.By documenting com-
mon traps and pitfalls in their domain, patterns can help de-
velopers select suitable architectures, protocols, and platform
features without wasting time and effort (re)implementing in-
efficient or error-prone solutions.

The goal of this paper is to demonstrate by example an
effective way to capture and convey the essence of success-
ful communication software by describing apattern language
used to build application-levelgateways, which route mes-
sages betweenpeersdistributed throughout a communication
system. Patterns represent successful solutions to problems
that arise when building software [2]. When related patterns
are woven together, they form a language that helps to

� Define a vocabulary for talking about software develop-
ment problems; and

� Provide a process for the orderly resolution of these prob-
lems.

1

PEERS

1: send_msg()

PEERS

4: send_msg()

GATEWAY

2: recv_msg()
3: route_msg()

Figure 1: The Structure and Dynamics of Peers and an
Application-level Gateway

Studying and applying patterns and pattern languages helps
developers enhance the quality of their solutions by ad-
dressing fundamental challenges in communication software
development. These challenges include communication of
architectural knowledge among developers; accommodating
new design paradigms or architectural styles; resolving non-
functional forces, such as reusability, portability, and exten-
sibility; and avoiding development traps and pitfalls that are
usually learned only by costly trial and error [3].

This paper presents the OO architecture and design of an
application-level gateway in terms of the pattern language
used to guide the construction of reusable and gateway-
specific frameworks and components. Application-level gate-
ways have stringent requirements for reliability, performance,
and extensibility. They are excellent exemplars, therefore, to
present the structure, participants, and consequences of key
patterns that appear in most communication software.

The pattern language described in this paper was discov-
ered while building a wide range of communication systems,
including on-line transaction processing systems, telecommu-
nication switch management systems [4], electronic medical
imaging systems [5], parallel communication subsystems [6],
avionics mission computers [7], and real-time CORBA object
request brokers (ORBs) [8]. Although the specific application
requirements in these systems were different, the communica-
tion software design challenges were similar. This pattern lan-
guage therefore embodies design expertise that can be reused
broadly in the domain of communication software, well be-
yond the gateway example described in this paper.

The remainder of this paper is organized as follows: Sec-
tion 1 outlines an OO software architecture for application-
level gateways; Section 3 examines the patterns in the pat-
tern language that forms the basis for reusable communica-
tion software, using application-level gateways as an example;
Section 4 compares these patterns with other patterns in the
literature; and Section 5 presents concluding remarks.

2 An OO Software Architecture for
Application-level Gateways

A gateway is a mediator [2] that decouples cooperating peers
throughout a network and allows them to interact without hav-
ing direct dependencies on each other. As shown in Figure 1,
messages routed through the gateway contain payloads encap-
sulated in routing messages. Figure 2 illustrates the structure,
associations, and internal and external dynamics among ob-

CONNECTION
REQUEST CONNECTION

REQUEST

OUTGOING
MESSAGES

Consumer
Handler

 Message
Queue SOCK

Stream

INCOMING
MESSAGES

 Acceptor

 SOCK
Acceptor

 Connector

 SOCK
Connector

 Supplier
Handler

 SOCK
Stream

 Routing
Table

Hash
Map

Manager

 Consumer
Handler

 Message
Queue SOCK

Stream

 Supplier
Handler

 SOCK
Stream

 Reactor

GATEWAY

Hash
Map

Manager

Figure 2: The OO gateway Software Architecture

jects within a software architecture for application-level gate-
ways. This architecture is based on extensive experience de-
veloping gateways for various research and production com-
munication systems. After building many gateway applica-
tions it became clear that their software architectures were
largely independent of the protocols used to route messages
to peers. This realization enabled the reuse of components de-
picted in Figure 2 for thousands of other communication soft-
ware projects [1]. The ability to reuse these components so
systematically stems from two factors:

1. Understanding the actions and interactions of key pat-
terns within the domain of communication software.Patterns
capture the structure and dynamics of participants in a soft-
ware architecture at a higher level than source code and OO
design models that focus on individual objects and classes.
Some of the communication software patterns described in this
paper have been documented individually [1]. Although indi-
vidual pattern descriptions capture valuable design expertise,
complex communication software systems embody scores of
patterns. Understanding the relationships among these pat-
terns is essential to document, motivate, and resolve difficult
challenges that arise when building communication software.
Therefore, Section 3 describes the interactions and relation-

2

ships among these patterns in terms of apattern languagefor
communication software. The patterns in this language work
together to solve complex problems within the domain of com-
munication software.

2. Developing an OO framework that implements these
patterns. Recognizing the patterns that commonly occur in
many communication software systems helped shape the de-
velopment of reusable framework components. The gateway
systems this paper is based upon were implemented using the
ADAPTIVE Communication Environment (ACE) framework
[9], which provides integrated reusable C++ wrapper facades
and components that perform common communication soft-
ware tasks. These tasks include event demultiplexing, event
handler dispatching, connection establishment, routing, dy-
namic configuration of application services, and concurrency
control. In addition, the ACE framework contains implemen-
tations of the patterns described in Section 3. The patterns are
much richer than their implementation in ACE, however, and
have been applied by many other communication systems, as
well.

This section describes how various ACE components have
been reused and extended to implement the application-
independent and application-specific components in the com-
munication gateway shown in Figure 2. Following this
overview, Section 3 examines the pattern language that un-
derly the ACE components.

2.1 Application-independent Components

Most components in Figure 2 are based on ACE compo-
nents that can be reused in other communication systems.
The only components that are not widely reusable are the
Supplier and Consumer Handlers , which implement
the application-specific details related to message formats
and the gateway’s routing protocol. The behavior of the
application-independent components in the gateway is out-
lined below:

Interprocess communication (IPC) components: The
SOCK Stream, SOCK Connector , andSOCK Acceptor
components encapsulate the socket network programming in-
terface [9]. These components are implemented using the
Wrapper Facadepattern [1], which simplifies the development
of portable communication software by shielding developers
from low-level, tedious, and error-prone socket-level program-
ming. In addition, they form the foundation for higher-level
patterns and ACE components described below.

Event demultiplexing components: The Reactor is an
OO event demultiplexing mechanism based on theReactor
pattern [1] described in Section 3.3. It channels all external

stimuli in an event-driven application through a single demul-
tiplexing point. This design permits single-threaded applica-
tions to wait on event handles, demultiplex events, and dis-
patch event handlers efficiently. Events indicate that some-
thing significant has occurred,e.g.,the arrival of a new con-
nection or work request. The main source of events in the
gateway are (1) connection events that indicate requests to es-
tablish connections and (2) data events that indicate routing
messages encapsulating various payloads, such as commands,
status messages, and bulk data transmissions.

Initialization and event handling components: Establish-
ing connections between endpoints involves two roles: (1) the
passive role, which initializes an endpoint of communication
at a particular address and waits passively for the other end-
point to connect with it and (2) theactive role, which actively
initiates a connection to one or more endpoints that are playing
the passive role. TheConnector andAcceptor are facto-
ries [2] that implement active and passive roles for initializing
network services, respectively. These components implement
the Acceptor-Connectorpattern, which is described in Sec-
tion 3.5. The gateway uses these components to establish con-
nections with peers and produce initializedSupplier and
Consumer Handlers .

To increase system flexibility, connections can be estab-
lished in the following two ways:

1. From the gateway to the peers, which is often done
to establish the initial system configuration of peerswhen the
gateway first starts up.

2. From a peer to the gateway, which is often done after
the system is running whenever a new peer wants to send or
receive routing messages.

In a large system, dozens or hundreds of peers may be
connected to a single gateway. To expedite initialization,
therefore, the gateway’sConnector can initiate all con-
nections asynchronously rather than synchronously. Asyn-
chrony helps decrease connection latency over long delay
paths, such as wide-area networks (WANs) built over satel-
lites or long-haul terrestrial links. The underlyingSOCK
Connector [9] contained within aConnector provides
the low-level asynchronous connection mechanism. When a
SOCK Connector connects two socket endpoints via TCP
it produces aSOCK Stream object, which is then used to
exchange data between that peer and the gateway.

Message demultiplexing components: The Map
Manager efficiently maps external ids, such as peer
routing addresses, onto internal ids, such asConsumer
Handlers . The gateway uses aMap Manager to imple-
ment aRouting Table that handles the demultiplexing
and routing of messages internally to a gateway. The
Routing Table maps addressing information contained

3

in routing messages sent by peers to the appropriate set of
Consumer Handlers .

Message queueing components:The Message Queue
[9] provides a generic queueing mechanism used by the gate-
way to buffer messages inConsumer Handlers while
they are waiting to be routed to peers. AMessage Queue
can be configured to run efficiently and robustly in single-
threaded or multi-threaded environments. When a queue is in-
stantiated, developers can select the desired concurrency strat-
egy. In multi-threaded environments,Message Queue s are
implemented using theMonitor Objectpattern [1].

2.2 Application-specific Components

In Figure 2 only two of the components–Supplier and
Consumer Handlers –are specific to the gateway appli-
cation. These components implement the Non-blocking
Buffered I/O pattern described in Section 3.6.Supplier and
Consumer Handlers reside in the gateway, where they
serve as proxies for the original source and the intended desti-
nation(s) of routing messages sent to hosts across the network.
The behavior of these two gateway-specific components is out-
lined below:

Supplier Handlers: Supplier Handlers are responsi-
ble for routing incoming messages to their destination(s). The
Reactor notifies aSupplier Handler when it detects
an event on that connection’s communication endpoint. After
the Supplier Handler has received a complete routing
message from that endpoint it consults theRouting Table
to determine the set ofConsumer Handler destinations
for the message. It then requests the selectedConsumer
Handler (s) to forward the message to the appropriate peer
destinations.

Consumer Handlers: A Consumer Handler is respon-
sible for delivering routing messages to their destinations reli-
ably. It implements a flow control mechanism to buffer bursts
of routing messages that cannot be sent immediately due to
transient network congestion or lack of buffer space at a re-
ceiver. Flow control is a transport layer mechanism that en-
sures a source peer does not send data faster than a destination
peer can buffer and process the data. For instance, if a destina-
tion peer runs out of buffer space, the underlying TCP proto-
col instructs the associated gateway’sConsumer Handler
to stop sending messages until the destination peer consumes
its existing data.

A gateway integrates the application-specific and
application-independent components by customizing, in-
stantiating, and composing the ACE components described
above. As shown in Figure 3Supplier and Consumer
Handlers inherit from a common ancestor: the ACESvc

Message
Queue

Svc
Handler

Supplier
HandlerConsumer

Handler

SOCK
Stream

Figure 3: Supplier and Consumer Handler Inheritance Hierar-
chy

Handler class, which is produced byConnectors and
Acceptors . EachSvc Handler is a local Proxy [2] for
a remotely connected peer. It contains aSOCK Stream,
which enables peers to exchange messages via connected
socket handles.

A Consumer Handler is implemented in accordance
with the Non-blocking Buffered I/O pattern. Thus, it uses an
ACEMessage Queue to chain unsent messages in the order
they must be delivered when flow control mechanisms permit.
After a flow controlled connection opens up, the ACE frame-
work notifies itsConsumer Handler , which starts drain-
ing theMessage Queue by sending messages to the peer.
If flow control occurs again this sequence of steps is repeated
until all messages are delivered.

To improve reliability and performance, the gateways de-
scribed in this paper utilize the Transmission Control Proto-
col (TCP). TCP provides a reliable, in-order, non-duplicated
bytestream service for application-level gateways. Although
TCP connections are inherently bi-directional, data sent from
peer to the gateway use a different connection than data sent
from the gateway to the peer. There are several advantages to
separating input connections from output connections in this
manner:

� It simplifies the construction of gatewayRouting
Tables ;

� It allows more flexible connection configuration and con-
currency strategies;

� It enhances reliability sinceSupplier andConsumer
Handlers can be reconnected independently if errors
occur on a connection.

3 A Pattern Language for Application-
level Gateways

Section 1 described the structure and functionality of
an application-level gateway. Although this architectural

4

overview helps to clarify the behavior of key components in
a gateway, it does not reveal the deeper relationships and roles
that underly these software components. In particular, the ar-
chitecture descriptions do not motivatewhy a gateway is de-
signed in this particular manner or why certain components
act and interact in certain ways. Understanding these relation-
ships and roles is crucial to develop, maintain, and enhance
communication software.

An effective way to capture and articulate these relation-
ships and roles is to describe thepattern languagethat gen-
erates them. Studying the pattern language that underlies the
gateway software provides the following two benefits:

1. Identify successful solutions to common design chal-
lenges.The pattern language underlying the gateway architec-
ture transcends the particular details of the application and re-
solves common challenges faced by communication software
developers. A thorough understanding of this pattern language
enables widespread reuse of gateway software architecture in
other systems, even when reuse of its algorithms, implemen-
tations, interfaces, or detailed designs is not feasible [10].

2. Reduce the effort of maintaining and enhancing gate-
way software.A pattern language helps to capture and mo-
tivate the collaboration between multiple classes and objects.
This is important for developers who must maintain and en-
hance a gateway. Although the roles and relationships in
a gateway design are embodied in the source code, extract-
ing them from the surrounding implementation details can be
costly and error-prone.

3.1 Strategic Patterns

Figure 4 illustrates the following fivestrategicpatterns that
form a portion of the language that generates connection-
oriented, application-level gateways:

� Reactor [1]: This pattern structures event-driven appli-
cations, particularly servers, that receive requests from multi-
ple clients concurrently but process them iteratively.

� Active Object [1]: This pattern decouples method ex-
ecution from method invocation to enhance concurrency and
simplify synchronized access to objects that reside in their own
threads of control.

� Component Configurator [1]: This pattern allows an
application to link and unlink its component implementations
at run-time without having to modify, recompile or statically
relink the application. It also supports the reconfiguration of
components into different processes without having to shut
down and re-start running processes.

� Acceptor-Connector [1]: This pattern decouples con-
nection establishment and service initialization from service
processing in a networked system.

Builder IteratorAdapter Template
MethodProxy Wrapper

Facade
Monitor
Object

TACTICAL PATTERNS

STRATEGIC
PATTERNS

Acceptor-
Connector

Non-blocking
Buffered I/O

Active
Object

Component
Configurator

Reactor

Figure 4: A Pattern Language for Application-level gateways

� The Non-blocking Buffered I/O pattern: This pattern
decouples input mechanisms and output mechanisms so that
data can be routed correctly and reliably without blocking ap-
plication processing unduly.

The five patterns in this language are strategic because they
significantly influence the software architecture for applica-
tions in a particular domain, which in this case is the domain
of communication software and gateways. For example, the
Non-blocking Buffered I/O pattern described in Section 3.6
ensures that message processing is not disrupted or postponed
indefinitely when a gateway experiences congestion or failure.
This pattern helps to sustain a consistent quality-of-service
(QoS) for gateways that use reliable connection-oriented trans-
port protocols, such as TCP/IP or IPX/SPX. A thorough under-
standing of the strategic communication patterns described in
this paper is essential to develop robust, efficient, and exten-
sible communication software, such as application-level gate-
ways.

3.2 Tactical Patterns

The application-level gateway implementation also uses many
tacticalpatterns, such as the following:

� Adapter [2]: This pattern transforms a non-conforming
interface into one that can be used by a client. The gateway
uses this pattern to treat different types of routing messages,
such as commands, status information, and bulk data, uni-
formly.

� Builder [2]: This pattern provides a factory for building
complex objects incrementally. The gateway uses this pattern
to create itsRouting Table from a configuration file.

5

� Iterator [2]: This pattern decouples sequential access
to a container from the representation of the container. The
gateway uses this pattern to connect and initialize multiple
Supplier andConsumer Handlers with their peers.

� Monitor Object [1]: This pattern synchronizes concur-
rent method execution to ensure that only one method at a time
runs within an object. It also allows an object’s methods to
schedule their execution sequences co-operatively. The gate-
way uses this pattern to synchronize the multi-threaded con-
figuration of itsMessage Queue s.

� Proxy [2]: This pattern provides a local surrogate object
that acts in place of a remote object. The gateway uses this
pattern to shield the main gateway routing code from delays
or errors caused by the fact that peers are located on other host
machines in the network.

� Template Method [2]: This pattern specifies an al-
gorithm where some steps are supplied by a derived class.
The gateway uses this pattern to selectively override certain
steps in itsConnector andAcceptor components that that
failed connections can be restarted automatically.

� Wrapper Facade [1]: This pattern encapsulates the
functions and data provided by existing non-OO APIs within
more concise, robust, portable, maintainable, and cohesive OO
class interfaces. The ACE framework uses this pattern to pro-
vide an OS-independent set of concurrent network program-
ming components used by the gateway.

Compared to the five strategic patterns outlined above,
which are domain-specific and have broad design implica-
tions, these tactical patterns are domain-independent and have
a relatively localized impact on a software design. For in-
stance, Iterator is a tactical pattern used in the gateway to pro-
cess entries in theRouting Table sequentially without vi-
olating data encapsulation. Although this pattern is domain-
independent and thus widely applicable, the problem it ad-
dresses does not impact the application-level gateway soft-
ware design as pervasively as strategic patterns, such as Non-
blocking Buffered I/O or Reactor. A thorough understanding
of tactical patterns is essential, however, to implement highly
flexible software that is resilient to changes in application re-
quirements and platform environments.

The remainder of this section describes each of the strate-
gic patterns in detail and explains how they are used in the
gateway.

3.3 The Reactor Pattern

Intent: The Reactor pattern structures event-driven applica-
tions, particularly servers, that receive requests from multiple
clients concurrently but process them iteratively.

Motivation and forces: Single-threaded applications must
handle events from multiple sources without blocking indef-
initely on any particular source. The following forces im-
pact the design of single-threaded, event-driven communica-
tion software:

1. The need to demultiplex multiple types of events from
multiple sources of events efficiently within a single thread of
control. Often, events from multiple sources within an appli-
cation process must be handled at the event demultiplexing
level. By handling events at this level, there may be no need
for more complicated threading, synchronization, or locking
within an application.

2. The need to extend application behavior without re-
quiring changes to the event dispatching framework.Demul-
tiplexing and dispatching mechanisms are often application-
independent and can therefore be reused. In contrast, the event
handler policies are more application-specific. By separating
these concerns, application policies can change without affect-
ing lower-level framework mechanisms.

Solution: Apply the Reactor pattern to wait synchronously
for the arrival of indication events on one or more event
sources such as connected socket handles. Integrate the mech-
anisms that demultiplex and dispatch the events to services
that process them. Decouple these event demultiplexing and
dispatching mechanisms from the application-specific pro-
cessing of indication events within the services.

Structure, participants, and implementation: Figure 5 il-
lustrates the structure and participants in the Reactor pattern.
The Reactor defines an interface for registering, remov-

handle_events()
register_handler(eh, type)
remove_handler(eh, type)

handle_event(type)
get_handle()

An

1

select (handles)
foreach h in handles loop
 table[h]->handle_event (type)
end loop

n

1

APPLICATION-SPECIFIC

APPLICATION-INDEPENDENT

1

1

Handles

Reactor

Event Handler

Concrete
Event

Handler

Figure 5: Structure and Participants in the Reactor Pattern

ing, and dispatching concrete event handler objects, such as
Supplier or Consumer Handlers in the gateway. An

6

implementation of this interface provides a set of application-
independent mechanisms. These mechanisms perform event
demultiplexing and dispatching of application-specific event
handlers in response to various types of input, output, and
timer events.

An Event Handler specifies an abstract interface used
by a Reactor to dispatch callback methods defined by ob-
jects that register to events of interest. A concrete event han-
dler is a class that inherits fromEvent Handler and se-
lectively overrides callback method(s) to process events in an
application-specific manner.

Dynamics: Figure 6 illustrates the dynamics among partic-
ipants in the Reactor pattern. These dynamics can be divided

main
program

REGISTER HANDLER

DISPATCH

 HANDLER(S)

RUN EVENT LOOP

EXTRACT HANDLE

INITIALIZE

callback :
Event_Handler

handle_events()

handle_event(event_type)

Reactor

get_handle()

Reactor()

select()

Handles

WAIT FOR EVENTS

IN
IT

IA
LI

Z
A

T
IO

N

M
O

D
E

E
V

E
N

T
 H

A
N

D
LI

N
G

M
O

D
E

register_handler(callback, event_type)

Figure 6: Dynamics for the Reactor Pattern

into the following two modes:

1. Initialization mode, where Concrete Event
Handler objects are registered with theReactor ;

2. Event handling mode, where theReactor invokes up-
calls on registered objects, which then handle events in an
application-specific way.

Usage: The Reactor is used for the following types of
event dispatching operations in a gateway:

1. Input events. The Reactor dispatches each incom-
ing routing message to theSupplier Handler associated
with its socket handle, at which point the message is routed
to the appropriateConsumer Handler (s). This use-case is
shown in Figure 7.

2. Output events. The Reactor ensures that outgoing
routing messages are reliably delivered over flow controlled
Consumer Handlers , as described in Section 3.6 and 3.7.

3. Connection completion events. The Reactor dis-
patches events that indicate the completion status of connec-
tions that are initiated asynchronously. These events are used
by theConnector component described in Section 3.5.

Reactor

REGISTERED

OBJECTS

F
R

A
M

E
W

O
R

K

LE
V

E
L

K
E

R
N

E
L

LE
V

E
L

A
P

P
LI

C
A

T
IO

N

LE
V

E
L

Timer
Queue Signal

Handlers

Handle
Table

 Consumer
Handler

 Event
Handler

 Consumer
Handler

Event
Handler

 Supplier
Handler

1: handle_event()

4: send(msg)

2: recv(msg)
3: route(msg) Event

Handler

OS EVENT DEMULTIPLEXING INTERFACE

Figure 7: Using the Reactor Pattern in the gateway

4. Connection request events. The Reactor also dis-
patches events that indicate the arrival of passively initiated
connections. These events are used by theAcceptor com-
ponent described in Section 3.5.

The Reactor pattern has been used in many single-threaded
event-driven frameworks, such as the Motif, Interviews [11],
System V STREAMS [12], the ACE OO communication
framework [9], and implementations of CORBA [8]. In ad-
dition, it provides the event demultiplexing infrastructure for
all of the other strategic patterns presented below.

3.4 The Component Configurator Pattern

Intent: The Component Configurator pattern allows an ap-
plication to link and unlink its component implementations at
run-time without having to modify, recompile or statically re-
link the application. It also supports the reconfiguration of
components into different processes without having to shut
down and re-start running processes.

Motivation and forces: The following forces impact the de-
sign of highly flexible and extensible communication soft-
ware:

1. The need to defer the selection of a particular imple-
mentation of a component until very late in the design cycle.
Deferring these configuration decisions until installation-time
or run-time significantly increases the design choices available
to developers. For example, run-time context information can
be used to guide implementation decisions and components
can be (re)configured into applications dynamically.

2. The need to build complete applications by composing
or scripting multiple independently developed components.

7

Much of the recurring component configuration and initial-
ization behavior of applications should be factored out into
reusable methods. This separation of concerns allows new
versions of components to be linked into an application at run-
time without disrupting currently executing components.

Solution: Apply the Component Configurator pattern to de-
couple component interfaces from their implementations and
make applications independent of the point(s) in time at which
component implementations are configured into application
processes.

Structure, participants, and implementation: Figure 8 il-
lustrates the structure and participants of the Component Con-
figurator pattern. This pattern reuses the Reactor pattern’s

Reactor1n

Concrete
Component

R
E

A
C

T
IV

E
LA

Y
E

R
C

O
N

F
IG

U
R

A
T

IO
N

LA
Y

E
R

A
P

P
LI

C
A

T
IO

N
LA

Y
E

R

1

1

Component
Config

n

Component

A

suspend()
resume()
init()
fini()
info()

1
Component
Repository

1

Event
Handler

Figure 8: Structure and Participants in the Component Config-
urator Pattern

Reactor andEvent Handler for its event demultiplex-
ing and dispatching needs. TheComponent is a subclass
of Event Handler that adds interfaces for initializing and
terminating C++ objects when they are linked and unlinked
dynamically. Application-specific components inherit from
Component and selectively override itsinit and fini
methods to implement custom initialization and termination
behavior, respectively.

The Component Repository records which
Components are currently linked and active. The
Component Config is a facade [2] that orchestrates
the behavior of the other components. It also provides a single
access point for linking, activating, suspending, resuming,
and unlinkingComponents into and out of an application at
run-time.

Dynamics: Figure 9 illustrates the dynamics between partic-
ipants in the Component Configurator pattern. These dynam-

Component
Configmain()

REGISTER COMPONENT

START EVENT LOOP

INCOMING EVENT

FOREACH EVENT DO

STORE IN REPOSITORY

CONFIGURE

FOREACH COMP ENTRY DO

comp :
Component Reactor

run_event_loop()

handle_events()

handle_input()

Component_Config()

Component
Repository

insert()
EXTRACT HANDLE

INITIALIZE COMPONENT
init(argc, argv)

fini()

DYNAMICALLY LINK
COMPONENT

link_comp()

unlink_comp()

SHUTDOWN EVENT handle_close()

UNLINK SERVICE
remove()

register_handler(comp)

get_handle()

remove_handler(comp)

C
O

N
F

IG
U

R
A

T
IO

N

M
O

D
E

E
V

E
N

T
 H

A
N

D
LI

N
G

M
O

D
E

process_directives()

CLOSE SERVICE

Figure 9: Dynamics for the Component Configurator Pattern

ics can be divided into the following two modes:

1. Configuration mode, which dynamically links or un-
links Components to and from an application.

2. Event handling mode, which process incoming events
using patterns such as Reactor or Active Object [1].

Usage: The Component Configurator pattern is used in
the gateway as shown in Figure 10. TheReactive
Gateway component is a single-threaded implementation
of the gateway that can be dynamically linked via com-
mands in a configuration script. To dynamically replace
this component with a multi-threaded implementation, the
Component Config need only reconsult itscomp.conf
file, unlink the Reactive Gateway , dynamically link
the Thread-per Connection Gateway or Thread
Pool Gateway , and initialize the new implementation. The
Component Config facade uses dynamic linking to imple-
ment the Component Configurator pattern efficiently.

Component
Config

COMPONENT

CONFIGURATOR

RUNTIME

 Component
Repository

 Reactor

Component

 Reactive
Gateway

 Component

 Thread Pool
Gateway

DLLS

 Component

 Thread-per
Connection
Gateway

dynamic Gateway component_Object *
 gateway:make_Gateway() "-ORBport 2001"

comp.conf
FILE

Figure 10: Using the Component Configurator Pattern in the
gateway

8

The Component Configurator pattern is used in the Win-
dows NT Service Control Manager (SCM), which allows a
master SCM process to initiate and control administrator-
installed service components automatically. In general, mod-
ern operating systems, such as Solaris, Linux, and Windows
NT, provide support for dynamically-configured kernel-level
device drivers that implement the Component Configurator
pattern. Another use of the Component Configurator pat-
tern is the applet mechanism in Java, which supports dynamic
downloading, initializing, starting, stopping, and terminating
of Java applets.

3.5 The Acceptor-Connector Pattern

Intent: The Acceptor-Connector pattern decouples connec-
tion establishment and service initialization from service pro-
cessing in a networked system.

Motivation and forces: Connection-oriented applications,
such as our application-level gateway, and middleware, such
as CORBA, are often written using lower-level network pro-
gramming interfaces, like sockets [13]. The following forces
impact the initialization of services written using these lower-
level interfaces:

1. The need to reuse connection establishment code for
each new service.Key characteristics of services, such as the
communication protocol or the data format, should be able to
evolve independently and transparently from the mechanisms
used to establish the connections. Since service characteristics
change more frequently than connection establishment mecha-
nisms, separating these concerns helps to reduce software cou-
pling and increase code reuse.

2. The need to make the connection establishment code
portable across platforms that contain different network
programming interfaces. Parameterizing the Acceptor-
Connector’s mechanisms for accepting connections and per-
forming services helps to improve portability by allowing the
wholesale replacement of these mechanisms. This makes the
connection establishment code portable across platforms that
contain different network programming interfaces, such as
sockets but not TLI, or vice versa.

3. The need to enable flexible service concurrency poli-
cies. After a connection is established, peer applications use
the connection to exchange data to perform some type of ser-
vice, such as remote login or HTML document transfer. A
service can run in a single-thread, in multiple threads, or mul-
tiple processes, regardless regardless of how the connection
was established or how the services were initialized.

4. The need to ensure that a passive-mode I/O handle is
not accidentally used to read or write data.By strongly decou-
pling the connection establishment logic from the service pro-

cessing logic, passive-mode socket endpoints cannot be used
incorrectly,e.g.,by trying to read or write data on a passive-
mode listener socket used to accept connections. This elimi-
nates an important class of network programming errors.

5. The need to actively establish connections with large
number of peers efficiently.When an application must estab-
lish connections with a large number of peers efficiently over
long-delay WANs it may be necessary to use asynchrony and
initiate and complete multiple connections in non-blocking
mode.

Solution: Apply the Acceptor-Connector pattern to decou-
ple the connection and initialization of peer services in a net-
worked application from the processing these peer services
perform after they are connected and initialized.

Structure, participants, and implementation: Fig-
ure 11 illustrates the layering structure of participants in
the Acceptor-Connector pattern. TheAcceptor and

1n

Event
Handler

Connector
connect_svc_handler()
activate_svc_handler()
handle_event()
connect(sh, addr)

SVC_HANDLER
PEER_CONNECTOR

Concrete
Connector

Concrete_Svc_Handler
SOCK_Connector1SOCK_Stream

open()

n

R
E

A
C

T
IV

E
LA

Y
E

R
C

O
N

N
E

C
T

IO
N

LA
Y

E
R

A
P

P
LI

C
A

T
IO

N
LA

Y
E

R

handle_event()

A

connect_svc_handler
 (sh, addr);1:

PEER_STREAM

open() A

INITIALIZES

activate_svc_handler
 (sh);2:

n

Reactor

Svc Handler

Concrete
Svc Handler

Acceptor
create_svc_handler()
accept_svc_handler()
activate_svc_handler()
handle_event()

SVC_HANDLER
PEER_ACCEPTOR

Concrete
Acceptor

Concrete_Svc_Handler
SOCK_Acceptor1

A

sh = create_svc_handler();
accept_svc_handler(sh);
activate_svc_handler(sh);

INITIALIZES

Figure 11: Structure and Participants in the Acceptor-
Connector Pattern

Connector components are factories that assemble the
resources necessary to connect and activateSvc Handler s.
Svc Handler s are components that exchange messages
with connected peers.

The participants in the Connection Layer of the Acceptor-
Connector pattern leverage off the Reactor pattern. For in-
stance, theConnector ’s asynchronous initialization strat-
egy establishes a connection after theReactor notifies it
that a previously initiated connection request to a peer has
completed. Using the Reactor pattern enables multipleSvc
Handlers to be initialized asynchronously within a single
thread of control.

To increase flexibility,Acceptor andConnector com-
ponents can be parameterized by a particular type of IPC

9

mechanism andSVC HANDLER. The IPC mechanism sup-
plies the underlying transport mechanism, such as C++ wrap-
per facades for sockets or TLI, used to establish a connection.
TheSVC HANDLERspecifies an abstract interface for defin-
ing a service that communicates with a connected peer. A
Svc Handler can be parameterized by aPEER STREAM
endpoint. TheAcceptor andConnector components as-
sociate this endpoint to its peer when a connection is estab-
lished.

By inheriting fromEvent Handler , a Svc Handler
can register with aReactor and use the Reactor pattern to
handle its I/O events within the same thread of control as the
Acceptor or Connector . Conversely, aSvc Handler
can use the Active Object pattern and handle its I/O events in
a separate thread. Section 3.7 evaluates the tradeoffs between
these two patterns.

Parameterized types are used to decouple the Acceptor-
Connector pattern’s connection establishment strategy from
the type of service and the type of connection mechanism. De-
velopers supply template arguments for these types to produce
Application LayerAcceptor or Connectors , such as the
Connector used by the gateway to initialize itsSupplier
andConsumer Handlers . This design enables the whole-
sale replacement of theSVC HANDLERand IPC mechanism,
without affecting the Acceptor-Connectorpattern’s service ini-
tialization strategy.

Note that a similar degree of decoupling could be achieved
via inheritance and dynamic binding by using the Abstract
Factory or Factory Method patterns described in [2]. Pa-
rameterized types were used to implement this pattern since
they improve run-time efficiency. In general, templates trade
compile- and link-time overhead and space overhead for im-
proved run-time performance.

Dynamics: Figure 12 illustrates the dynamics among par-
ticipants for theAcceptor component of the pattern. These
dynamics are divided into the following three phases:

1. Endpoint initialization phase, which creates a passive-
mode endpoint encapsulated byPEER ACCEPTORthat is
bound to a network address, such as an IP address and port
number. The passive-mode endpoint listens for connection
requests from peers. This endpoint is registered with the
Reactor , which drives the event loop that waits on the end-
point for connection requests to arrive from peers.

2. Service activation phase.Since anAcceptor inherits
from an Event Handler the Reactor can dispatch the
Acceptor ’s handle event method when connection re-
quest events arrive. This method performs theAcceptor ’s
Svc Handler initialization strategy, which (1) assembles
the resources necessary to create a newConcrete Svc
Handler object, (2) accepts the connection into this object,

Server

REGISTER HANDLER

START EVENT LOOP

CONNECTION EVENT

REGISTER HANDLER
FOR CLIENT I/O

FOREACH EVENT DO

EXTRACT HANDLE

INITIALIZE PASSIVE

ENDPOINT

acc :
Acceptor

handle_event()

handle_close()

reactor :
Reactor

select()

sh :
Svc_Handler

handle_event()

register_handler(sh)

get_handle()
EXTRACT HANDLE

DATA EVENT

CLIENT SHUTDOWN

svc()PROCESS MSG

open()

CREATE, ACCEPT,
AND ACTIVATE OBJECT

SERVER SHUTDOWN handle_close()

 SOCK
Acceptor

handle_events()

get_handle()

register_handler(acc)

sh = make_svc_handler()
accept_svc_handler (sh)
activate_svc_handler (sh)

open()

E
N

D
P

O
IN

T
IN

IT
IA

LI
Z

A
T

IO
N

P
H

A
S

E

S
E

R
V

IC
E

IN
IT

IA
LI

Z
A

T
IO

N
P

H
A

S
E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

Figure 12: Dynamics for theAcceptor Component

and (3) activates theSvc Handler by calling itsopen hook
method.

3. Service processing phase.After theSvc Handler is
activated, it processes incoming event messages arriving on
the PEER STREAM. A Svc Handler can process incom-
ing event messages using patterns such as the Reactor or the
Active Object [1].

The dynamics among participants inConnector compo-
nent of the pattern can be divided into the following three
phases:

1. Connection initiation phase, which actively connects
one or moreSvc Handlers with their peers. Connec-
tions can be initiated synchronously or asynchronously. The
Connector ’s connect method implements the strategy for
establishing connections actively.

2. Service initialization phase, which activates aSvc
Handler by calling its open method when its connec-
tion completes successfully. Theopen method of theSvc
Handler then performs service-specific initialization.

3. Service processing phase, which performs the
application-specific service processing using the data ex-
changed between theSvc Handler and its connected
peer.

Figure 13 illustrates these three phases of dynamics us-
ing asynchronousconnection establishment. Note how the
Connector ’s connection initiation phase is separatedtempo-
rally from the service initialization phase. This design enables
multiple connection initiations to proceed in parallel within a
single thread of control. The dynamics for synchronous con-
nection establishment is similar. In this case, theConnector

10

Client

FOREACH CONNECTION

 INITIATE CONNECTION

 ASYNC CONNECT

 INSERT IN REACTOR

START EVENT LOOP

FOREACH EVENT DO

handle_events()

select()

CONNECTION COMPLETE

INSERT IN REACTOR

con :
Connector

handle_event()

reactor :
Reactor

sh :
Svc_Handler

handle_event()

register_handler(sh)

get_handle()
EXTRACT HANDLE

DATA ARRIVES

svc()PROCESS DATA

connect(sh, addr)

connect()

ACTIVATE OBJECT

register_handler(con)

 SOCK
Connector

C
O

N
N

E
C

T
IO

N
IN

IT
IA

T
IO

N
 P

H
A

S
E

S
E

R
V

IC
E

IN
IT

IA
LI

Z
A

T
IO

N
P

H
A

S
E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

activate_svc_handler(sh)

connect_svc_handler(sh, addr)

open()

Figure 13: Dynamics for the AsynchronousConnector
Component

combines the connection initiation and service initialization
phases into a single blocking operation.

In general, synchronous connection establishment is useful
for the following situations:

� If the latency for establishing a connection is very low,
such as establishing a connection with a server on the
same host via the loopback device.

� If multiple threads of control are available and it is
feasible to use a different thread to connect eachSvc
Handler synchronously.

� If a client application cannot perform useful work until a
connection is established.

In contrast, asynchronous connection establishment is useful
for the following situations:

� If the connection latency is high and there are many peers
to connect with,e.g., establishing a large number of con-
nections over a high-latency WAN.

� If only a single thread of control is available,e.g.,if the
OS platform does not provide application-level threads.

� If the client application must perform additional work,
such as refreshing a GUI, while the connection is in the
process of being established.

It is often the case that network services, such as our
application-level gateway, must be developed without know-
ing if they will connect synchronously or asynchronously.
Therefore, components provided by a general-purpose net-
work programming framework must support multiple syn-
chronous and asynchronous use-cases.

The Acceptor-Connector pattern increases the flexibility
and reuse of networking framework components by separat-
ing the connection establishment logic from the service pro-
cessing logic. The only coupling between (1)Acceptor and
Connector components and (2) aSvc Handler occurs in
the service initialization phase, when theopen method of the
Svc Handler is invoked. At this point, theSvc Handler
can perform its service-specific processing using any suitable
application-level protocol or concurrency policy.

For instance, when messages arrive at a gateway, the
Reactor can be used to dispatchSupplier Handlers
to frame the messages, determine outgoing routes, and de-
liver the messages to theirConsumer Handlers . How-
ever,Consumer Handlers can send the data to the remote
destinations using a different type of concurrency mechanism,
such as Active Objects described in Section 3.7.

Usage: Figure 14 illustrates how theAcceptor compo-
nent of the Acceptor-Connector pattern is used by the gateway
when it plays the passive connection role. In this case, peers

: Supplier
Acceptor

: Reactor

ACTIVE

CONNECTIONS

: Svc
Handler

: Supplier
Handler

: Svc
Handler

: Consumer
Handler

: Svc
Handler

: Consumer
Handler

: Svc
Handler

: Supplier
Handler

PASSIVE

LISTENERS: Consumer
Acceptor

Figure 14: Using theAcceptor Component in the gateway

connect to gateway, which uses theAcceptor to decou-
ple the passive initialization ofSupplier andConsumer
Handlers from the routing tasks performed after a handler
is initialized.

Figure 15 illustrates how theConnector component of
the Acceptor-Connector pattern is used by the gateway to sim-
plify the task of connecting to a large number of peers. In
this case, peer addresses are read from a configuration file
during gateway initialization. The gateway uses the Builder
pattern [2] to bind these addresses to dynamically allocated
Consumer Handlers or Supplier Handlers . Since
these handlers inherit fromSvc Handler , all connections
can be initiated asynchronously using the Iterator pattern [2].
The connections are then completed in parallel using the
Connector .

Figure 15 shows the state of theConnector after four
connections have been established. Three other connections
that have not yet completed are owned by theConnector .

11

PENDING

CONNECTIONS

ACTIVE

CONNECTIONS

 Svc
Handler

 Reactor

 Svc
Handler

 Svc
Handler

 Svc
Handler Svc

Handler Svc
Handler

 Connector

Hash_Map

Figure 15: Using theConnector Component in the gateway

As shown in this figure, theConnector maintains a ta-
ble of the threeHandlers whose connections are pend-
ing completion. As connections complete, theConnector
removes each connectedChannel from its table and acti-
vates it. In the single-threaded implementationSupplier
Handlers register themselves with theReactor after
they are activated. Henceforth, when routing messages ar-
rive, Supplier Handlers receive and forward them to
Consumer Handlers , which deliver the messages to their
destinations (these activities are described in Section 3.6).

In addition to establishing connections, a gateway can use
theConnector in conjunction with theReactor to ensure
that connections are restarted if network errors occur. This en-
hances the gateway’s fault tolerance by ensuring that channels
are automatically reinitiated when they disconnect unexpect-
edly, e.g., if a peer crashes or an excessive amount of data
is queued at aConsumer Handler due to network con-
gestion. If a connection fails unexpectedly, an exponential-
backoff algorithm can restart the connection efficiently by us-
ing the timer dispatching capabilities of theReactor .

The intent and general architecture of the Acceptor-
Connector pattern is found in network server management
tools like inetd [13] and listen [14]. These tools uti-
lize a master Acceptor process that listens for connections on
a set of communication ports. Each port is associated with
a communication-related service (such as the standard Inter-
net servicesftp , telnet , daytime , andecho). When
a service request arrives on a monitored port, the Acceptor
process accepts the request and dispatches an appropriate pre-
registered handler that performs the service.

3.6 The Non-blocking Buffered I/O Pattern

Intent: The Non-blocking Buffered I/O pattern decouples
input mechanisms and output mechanisms so that data can be
routed correctly and reliably without blocking application pro-
cessing unduly.

Motivation and forces: Message routing in a gateway must
not be disrupted or postponed indefinitely when congestion or

failure occurs on incoming and outgoing network connections.
Thus, the following forces must be resolved when building
robust connection-oriented gateways:

1. The need to prevent misbehaving connections from dis-
rupting the QoS of well-behaved connections.Input connec-
tions can fail because peers disconnect. Likewise, output con-
nections can flow control as a result of network congestion.
In these types of cases, the gateway must not perform block-
ing send or recv operations on any single connection since
(1) the entire gateway can hang indefinitely or (2) messages
on other connections cannot be sent or received and the QoS
provided to peers will degrade.

2. The need to allow different concurrency strategies for
processing input and output.Several concurrency strategies
can be used to process input and output, including (1) single-
threaded processing using the Reactor pattern (Section 3.3)
and (2) multi-threaded processing using the Active Object pat-
tern (Section 3.7). Each strategy is appropriate under different
situations, depending on factors such as the number of CPUs,
context switching overhead, and number of peers.

Solution: Apply the Non-blocking Buffered I/O pattern to
decoupling input processing from output processing to prevent
blocking and allow customized concurrency strategies to be
configured flexibly into an application.

Structure, participants, and implementation: Figure 16
illustrates the layer structuring of participants in the Non-
blocking Buffered I/O pattern. The I/O Layer provides an

Routing
Table

find()

Consumer
Handler

send_msg()
put()

Supplier
Handler

recv_msg()

1

n

I/O
LA

Y
E

R
R

O
U

T
IN

G
LA

Y
E

R

Message
Queue

EVENT SOURCES AND SINKS

Figure 16: Structure and Participants in the Non-blocking
Buffered I/O Pattern

event source forSupplier Handlers and an event sink
for Consumer Handlers . A Supplier Handler uses
a Routing Table to map routing messages onto one or
moreConsumer Handlers . If messages cannot be deliv-
ered to their destination peers immediately they are buffered
in aMessage Queue for subsequent transmission.

Since Supplier Handlers are decoupled from
Consumer Handlers their implementations can vary

12

independently. This separation of concerns is important since
it allows the use of different concurrency strategies for input
and output. The consequences of this decoupling is discussed
further in Section 3.7.

Dynamics: Figure 17 illustrates the dynamics among par-
ticipants in the Non-blocking Buffered I/O pattern. These dy-

Routing
Table

recv_msg()

find ()

I/O
Layer

Supplier
Handler

FIND DESTINATIONS

ROUTE MSG

main()

SEND MSG
(QUEUE IF FLOW
CONTROLLED)

put()

wakeup()
FLOW CONTROL

ABATES

DEQUEUE AND SEND
MSG (REQUEUE IF
FLOW CONTROLLED)

 Consumer
Handler

RECV MSG

send_msg()

IN
P

U
T

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

R
O

U
T

E
S

E
LE

C
T

IO
N

P
H

A
S

E

O
U

T
P

U
T

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

dequeue()

enqueue()

send_msg()

schedule_wakeup()

Figure 17: Dynamics for the Non-blocking Buffered I/O Pat-
tern

namics can be divided into three phases:

1. Input processing phase, where Supplier
Handlers reassemble incoming TCP segments into
complete routing messageswithout blocking the application
process.

2. Route selection phase. After a complete message
has been reassembled, theSupplier Handler consults
a Routing Table to select theConsumer Handler (s)
responsible for sending the routing messages to their peer des-
tinations.

3. Output processing phase, where the selected
Consumer Handlers transmit the routing messages
to their destination(s)without blocking the application
process.

Usage: The other strategic patterns in this paper–i.e., Re-
actor, Connector, Acceptor, and Active Object–can be ap-
plied to many types of communication software. In contrast,
the Non-blocking Buffered I/O pattern is more coupled with
gateway-style applications that route messages between peers.
A primary challenge of building a reliable connection-oriented
gateway centers on avoiding blocking I/O. This challenge cen-
ters primarily on reliably managingflow controlthat occurs on
the connections used byConsumer Handlers to forward
messages to peers. If the gateway blocked indefinitely when
sending on a congested connection then incoming messages
could not be routed, even if those messages were destined for
non-flow controlledConsumer Handlers .

The remainder of Section 3.6 describes how the Non-
blocking Buffered I/O pattern can be implemented in a single-
threaded, reactive version of the gateway (Section 3.7 exam-
ines the multi-threaded, Active Object version of the Non-
blocking Buffered I/O pattern). In this implementation, the
Non-blocking Buffered I/O pattern uses aReactor as a
cooperative multi-tasking scheduler for gateway I/O opera-
tions on different connections within a single thread. Single-
threading eliminates the following overhead:

� Synchronization– e.g., access to shared objects like the
Routing Table need not be serialized; and

� Context switching– e.g., all message routing can occur
within a single thread.

In the reactive implementation of the Non-blocking
Buffered I/O pattern, theSupplier Handlers and
Consumer Handlers are descendants ofEvent
Handler . This layered inheritance design enables the
gateway to route messages by having theReactor dispatch
thehandle event methods ofSupplier andConsumer
Handlers when messages arrive and flow control conditions
subside, respectively.

Using the Reactor pattern to implement the Non-blocking
Buffered I/O pattern involves the following steps:

1. Initialize non-blocking endpoints. The Supplier
and Consumer Handler handles are set into non-
blocking mode after they are activated by anAcceptor or
Connector . The use of non-blocking I/O is essential to
avoid blocking that can otherwise occur on congested network
links.

2. Input message reassembly and routing.Routing mes-
sages are received in fragments bySupplier Handlers .
If an entire message is not immediately available, the
Supplier Handler must buffer the fragment and re-
turn control to the event loop. This is essential to prevent
“head of line” blocking onSupplier channels . When
a Supplier Channel successfully receives and frames an
entire message it uses theRouting Table to determine the
appropriate set ofConsumer Handlers that will deliver
the message.

3. Message delivery. The selected Consumer
Handlers try to send the message to the destination
peer. Messages must be delivered reliably in “first-in, first-
out” (FIFO) order. To avoid blocking, allsend operations
in Consumer Handlers must check to make sure that
the network link is not flow controlled. If it isnot, the
message can be sent successfully. This path is depicted by
the Consumer Handler in the upper right-hand corner
of Figure 18. If the link is flow controlled, however, the
Non-blocking Buffered I/O pattern implementation must use

13

 Routing
Table

Supplier
Handler

7: put (msg)

1: handle_event()
2: recv_msg(msg)

3: find()

Message
Queue

Consumer
Handler

5: nonblk_put(msg)
6: send_msg(msg)

ROUTE
ID

Subscriber
Set

4:
 p

ut
 (m

sg
) Consumer

Handler

8: nonblk_put(msg)
9: send_msg(msg)
10: enqueue(msg)
11: schedule_wakeup()

12: wakeup()
13: dequeue(msg)
14: send_msg(msg)

Message
Queue

Figure 18: Using the Non-blocking Buffered I/O Pattern in a
Single-threaded Reactive gateway

a different strategy. This path is depicted by theConsumer
Handler in the lower right-hand corner of Figure 18.

To handle flow controlled connections, theConsumer
Handler inserts the message it is trying to send into its
Message Queue . It then instructs theReactor to call
back to theConsumer Handler when the flow control
conditions abate, and returns to the main event loop. When
it is possible to try tosend again, theReactor dispatches
thehandle event method on theConsumer Handler ,
which then retries the operation. This sequence of steps may
be repeated multiple times until the entire message is transmit-
ted successfully.

Note that the gateway always returns control to its main
event loop immediately after every I/O operation, regardless
of whether it sent or received an entire message. This is the
essence of the Non-blocking Buffered I/O pattern – it correctly
routes the messages to peers without blocking on any single
I/O channel.

3.7 The Active Object Pattern

Intent: The Active Object pattern decouples method execu-
tion from method invocation to enhance concurrency and sim-
plify synchronized access to objects that reside in their own
threads of control.

Motivation and forces: All the strategic patterns used by
the single-threaded gateway in Section 3.6 are layered upon
the Reactor pattern. The Acceptor-Connector and Non-
blocking Buffered I/O patterns both use the Reactor as a
scheduler/dispatcher to initialize and route messages within a
single thread of control. In general, the Reactor pattern forms

the central event loop in single-threaded reactive systems.
For example, in the single-threaded gateway implementation,
theReactor provides a coarse-grained form of concurrency
control that serializes the invocation of event handlers at the
level of event demultiplexing and dispatching within a pro-
cess. This eliminates the need for additional synchronization
mechanisms within a gateway and minimizes context switch-
ing.

The Reactor pattern is well-suited for applications that use
short-duration callbacks, such as passive connection establish-
ment in the Acceptor pattern. It is less appropriate, however,
for long-duration operations, such as blocking on flow con-
trolled Consumer Handlers during periods of network
congestion. In fact, much of the complexity in the single-
threaded Non-blocking Buffered I/O pattern implementation
stems from using the Reactor pattern as a cooperative multi-
tasking mechanism. In general, this pattern does not ade-
quately resolve the following force that impacts the design of
applications, such as the gateway, that must communicate si-
multaneously with multiple peers:

1. The need to ensure that blocking read and write oper-
ations on one endpoint do not detract from the QoS of other
endpoints. Network services are often easier to program if
blocking I/O is used rather than reactive non-blocking I/O [1].
The simplicity occurs because execution state can be localized
in the activation records of a thread, rather than be decentral-
ized in a set of control blocks maintained explicitly by appli-
cation developers.

Proxy
Future m1()
Future m2()
Future m3()

Scheduler
dispatch()
enqueue()

INVISIBLE
TO

CLIENTS

VISIBLE
TO

CLIENTS

1

1 2: insert(M1)

1: enqueue(new M1)

3: dispatch()

loop {
 m = act_queue_.remove()
 if (m.guard()) m.call()
 else act_queue.insert (m);
}

Servant
1

m1()
m2()
m3()

Activation
List

insert()
remove()

1

1

nMethod
Request

guard()
call()4: m1()

1 1

M1

M3

M2

Figure 19: Structure and Participants in the Active Object Pat-
tern

Solution: Apply the Active Object pattern to decouple
method invocation on an object from method execution.
Method invocation should occur in the client’s thread of con-
trol, whereas method execution should occur in a separate

14

thread. Moreover, design the decoupling so the client thread
appears to invoke an ordinary method.

Structure, participants, and implementation: Figure 19
illustrates the structure and participants in the Active Ob-
ject pattern. TheProxy exports the active object’s public
methods to clients. TheScheduler determines the next
method to execute based on synchronization and scheduling
constraints. TheActivation List maintains a queue of
pendingMethod Requests . TheScheduler determines
the order in which theseMethod Requests are executed
(a FIFO scheduler is used in the gateway to maintain the order
of message delivery). TheServant maintains object state
shared by the implementation methods.

Dynamics: Figure 20 illustrates the dynamics among par-
ticipants in the Active Object pattern. These dynamics are di-

INVOKE

DEQUEUE SUITABLE
 METHOD REQUEST

RETURN RESULT

EXECUTE

Client

Proxy Activation
List

M
E

T
H

O
D

 O
B

JE
C

T

C
O

N
S

T
R

U
C

T
IO

N

S
C

H
E

D
U

LI
N

G
/

E
X

E
C

U
T

IO
N

C
O

M
P

LE
T

IO
N

m1()

Servant

 Scheduler

CREATE METHOD
REQUEST

reply_to_future()

future()RETURN FUTURE

INSERT INTO
 ACTIVATION QUEUE

enqueue(new M1)

remove(M1)

insert(M1)

M1

call()

dispatch(M1)

m1()

guard()

Figure 20: Dynamics for the Active Object Pattern

vided into the following three phases:

1. Method Request construction.In this phase, the client
application invokes a method defined by theProxy . This trig-
gers the creation of aMethod Request , which maintains
the argument bindings to the method, as well as any other
bindings required to execute the method and return a result.
A binding to aFuture object is returned to the caller of the
method.

2. Scheduling/execution.In this phase theScheduler
acquires a mutual exclusion lock, consults theActivation
Queue to determine whichMethod Requests(s) meet
the synchronization constraints. TheMethod Request is
then bound to the currentServant and the method is allowed
to access/update theServant ’s state.

3. Return result. The final phase binds the result of the
Method Request to a Future [15], which passes return
values back to the caller when the method finishes executing.

A Future is a synchronization object that enforces “write-
once, read-many” synchronization. Subsequently, any read-
ers that rendezvous with theFuture will evaluate the future
and obtain the result value. TheFuture and theMethod
Request can be garbage collected when they are no longer
needed.

Usage: The gateway implementation described in Sec-
tion 3.6 is single-threaded. It uses the Reactor pattern im-
plementation of the Non-blocking Buffered I/O Pattern as a
cooperative multi-tasking scheduler that dispatches events of
interest to a gateway. After implementing a number of single-
threaded gateways it became clear that using the Reactor pat-
tern as the basis for all gateway routing I/O operations was
error-prone and hard to maintain. For example, it was hard
to remember why control must be returned promptly to the
Reactor ’s event loop when I/O operations cannot proceed.
This misunderstanding became a common source of errors in
single-threaded gateways.

To avoid these problems, a number of multi-threaded
gateways were built using variations of the Active Ob-
ject pattern. This pattern allowsConsumer Handlers
to block independently when sending messages to peers.
The remainder of this section describes howConsumer
Handlers can be multi-threading using the Active Object
pattern.1 This modification simplified the implementation
of the Non-blocking Buffered I/O pattern substantially since
Consumer Handlers can block in their own active ob-
ject thread without affecting otherHandlers . Implementing
theConsumer Handlers as active objects also eliminated
the subtle and error-prone cooperative multi-tasking program-
ming techniques required when using theReactor to sched-
ule Consumer Handlers .

Figure 21 illustrates the Active Object version of the Non-
blocking Buffered I/O pattern. Note how much simpler is it
compared with the Reactor solution in Figure 18. This sim-
plification occurs since the complex output scheduling logic is
moved into the Active Objects, rather than being the responsi-
bility of application developers.

It is also possible to observe the difference in complexity
between the single-threaded and multi-threaded gateways by
examining the source code that implements the Non-blocking
Buffered I/O pattern in production gateway systems. It is hard
to identify the reasons for this complexity simply by inspect-
ing the source code due to all the error handling and protocol-
specific details surrounding the implementation. These details
tend to disguise the key insight:the main difference between
the complexity of the single-threaded and multi-threaded solu-
tions arise from the choice of the Reactor pattern rather than

1While it is possible to apply the Active Object pattern to theSupplier
Handlers this has less impact on the gateway design because theReactor
already supports non-blocking input.

15

Routing
Table

Supplier
Handler

Message
Queue

Consumer
Handler

4: put (msg)

1: handle_event ()
2: recv_msg(msg)

3: find()

Message
Queue

 Consumer
Handler

5: send_msg(msg)

5: send_msg(msg)

ACTIVE

ACTIVE

ROUTE
ID

Subscriber
Set

Figure 21: Using the Non-blocking Buffered I/O Pattern in a
Multi-threaded Active Object gateway

the Active Object pattern.
This paper has explicitly focused on the interactions and

tradeoffs between the Reactor and Active Object patterns to
clarify the consequences of different design choices. In gen-
eral, documenting the interactions and relationships between
closely related patterns is a challenging and unresolved topic
that is being addressed by the patterns community.

4 Related Patterns

[2, 16, 1] identify, name, and catalog many fundamental archi-
tectural and design patterns. This section examines how the
patterns described in this paper relate to other patterns in this
literature. Note that many of the tactical patterns outlined in
Section 3.2 form the basis for implementing the strategic pat-
terns presented in this paper.

The Reactor pattern is related to the Observer pattern [2].
In the Observer pattern,multiple dependents are updated au-
tomatically when a subject changes. In the Reactor pattern,
a handler is dispatched automatically when an event occurs.
Thus, the Reactor dispatches asinglehandler for each event,
although there can be multiple sources of events. The Reac-
tor pattern also provides a Facade [2]. The Facade pattern
presents an interface that shields applications from complex
relationships within a subsystem. The Reactor pattern shields
applications from complex mechanisms that perform event de-
multiplexing and event handler dispatching.

The Component Configurator pattern is related to the
Builder and Mediator patterns [2]. The Builder pattern pro-
vides a factory for constructing complex objects incremen-
tally. The Mediator coordinates interactions between its as-
sociates. The Component Configurator pattern provides a fac-

tory for configuring and initializing components into an appli-
cation at run-time. At run-time, the Component Configurator
pattern allows the components offered by an application to be
incrementally modified without disturbing executing compo-
nents. In addition, the Component Configurator pattern co-
ordinates the interaction between components configured into
an application and external administrators that want to update,
suspend, resume, or remove components at run-time.

The Acceptor-Connector pattern is related to the Template
Method, Strategy, and Factory Method patterns [2]. In the
Template Method pattern, an algorithm is written such that
some steps are supplied by a derived class. In the Factory
Method pattern, a method in a subclass creates an associate
that performs a particular task, but the task is decoupled from
the protocol used to create the task. TheAcceptor and
Connector components in the Acceptor-Connector pattern
are factories that use template methods or strategies to create,
connect, and activate handlers for communication channels.
The intent of the Acceptor-Connector pattern is similar to the
Client/Dispatcher/Server pattern described in [16]. They both
are concerned with separating active connection establishment
from the subsequent service. The primary difference is that the
Acceptor-Connector pattern addresses both passive/active and
synchronous/asynchronous connection establishment.

The Non-blocking Buffered I/O pattern is related to the Me-
diator pattern [2], which decouples cooperating components
of a software system and allows them to interact without hav-
ing direct dependencies among each other. The Non-blocking
Buffered I/O pattern is specialized to resolve the forces asso-
ciated with network communication. It decouples the mech-
anisms used to process input messages from the mechanisms
used to process output mechanisms to prevent blocking. In ad-
dition, the Non-blocking Buffered I/O pattern allows the use of
different concurrency strategies for input and output channels.

5 Concluding Remarks

This paper illustrates the application of pattern language that
enables widespread reuse of design expertise and software
components in production communication gateways. The pat-
terns in this language illustrate the structure of, and collabora-
tion between, objects that perform core communication soft-
ware tasks. The tasks addressed by these patterns include
event demultiplexing and event handler dispatching, connec-
tion establishment and initialization of application services,
concurrency control, and routing.

The pattern language and ACE framework components de-
scribed in this paper have been reused by the author and
his colleagues in many production communication software
systems ranging from telecommunication, electronic medical
imaging, and avionics projects [10, 5, 7] to academic research

16

projects [9, 8]. In general, this pattern language has aided the
development of components and frameworks in these systems
by capturing the structure and dynamics of participants in a
software architecture at a level higher than (1) source code
and (2) OO design models that focus on individual objects and
classes.

An in-depth discussion of our experiences and lessons
learned using patterns appeared in [4]. An ACE-based ex-
ample of single-threaded and multi-threaded gateways that il-
lustrates all the patterns in this paper is freely available at
www.cs.wustl.edu/ �schmidt/ACE.html .

References
[1] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,Pattern-

Oriented Software Architecture: Patterns for Concurrency and Dis-
tributed Objects, Volume 2. New York, NY: Wiley & Sons, 2000.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: El-
ements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[3] J. O. Coplien and D. C. Schmidt, eds.,Pattern Languages of Program
Design. Reading, MA: Addison-Wesley, 1995.

[4] D. C. Schmidt, “Experience Using Design Patterns to Develop Reuse-
able Object-Oriented Communication Software,”Communications of
the ACM (Special Issue on Object-Oriented Experiences), vol. 38, Oc-
tober 1995.

[5] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and Performance
of an Object-Oriented Framework for High-Performance Electronic
Medical Imaging,” inProceedings of the2nd Conference on Object-
Oriented Technologies and Systems, (Toronto, Canada), USENIX, June
1996.

[6] D. C. Schmidt and T. Suda, “Measuring the Performance of Paral-
lel Message-based Process Architectures,” inProceedings of the Con-
ference on Computer Communications (INFOCOM), (Boston, MA),
pp. 624–633, IEEE, April 1995.

[7] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,” inProceedings of
OOPSLA ’97, (Atlanta, GA), ACM, October 1997.

[8] D. C. Schmidt and C. Cleeland, “Applying a Pattern Language to De-
velop Extensible ORB Middleware,” inDesign Patterns in Communica-
tions (L. Rising, ed.), Cambridge University Press, 2000.

[9] D. C. Schmidt, “Applying Design Patterns and Frameworks to Develop
Object-Oriented Communication Software,” inHandbook of Program-
ming Languages(P. Salus, ed.), MacMillan Computer Publishing, 1997.

[10] D. C. Schmidt and P. Stephenson, “Experiences Using Design Patterns
to Evolve System Software Across Diverse OS Platforms,” inProceed-
ings of the9th European Conference on Object-Oriented Programming,
(Aarhus, Denmark), ACM, August 1995.

[11] M. A. Linton, J. Vlissides, and P. Calder, “Composing User Interfaces
with InterViews,” IEEE Computer, vol. 22, pp. 8–22, February 1989.

[12] D. Ritchie, “A Stream Input–Output System,”AT&T Bell Labs Techni-
cal Journal, vol. 63, pp. 311–324, Oct. 1984.

[13] W. R. Stevens,UNIX Network Programming, First Edition. Englewood
Cliffs, NJ: Prentice Hall, 1990.

[14] S. Rago, UNIX System V Network Programming. Reading, MA:
Addison-Wesley, 1993.

[15] R. H. Halstead, Jr., “Multilisp: A Language for Concurrent Sym-
bolic Computation,”ACM Trans. Programming Languages and Systems,
vol. 7, pp. 501–538, Oct. 1985.

[16] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture - A System of Patterns. Wiley
and Sons, 1996.

17

