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In addition to requiring QoS guarantees, distributed appli-
Abstract cations must be flexible and reusable. Flexibility is needed to

strac respond rapidly to evolving functional and QoS requirements

Many real-time application domains can benefit from fle®f distributed applications. Reusability is needed to yield sub-
ible and open distributed architectures, such as those déantialimprovements in productivity and to enhance the qual-
fined by the CORBA specification. CORBA is an architd®. performance, reliability, and interoperability of distributed
ture for distributed object computing being standardized @pPplication software.
the OMG. Although CORBA is well-suited for conventional re- The  Common Object Request Broker Architecture
quest/response applications, CORBA implementations are ffPRBA) [1] is an emerging standard for distributed object
yet suited for real-time applications due to the lack of key qu&emputing (DOC) middleware. DOC middleware resides
ity of service (QoS) features and performance optimization§etween clients and servers. It simplifies application develop-

This paper makes three contributions to the design of regent by providing a uniform view of heterogeneous network
time CORBA systems. First, the paper describes the degi§f OS layers.
of TAO, which is our high-performance, real-time CORBA- Atthe heartof DOC middleware a@bject Request Brokers
compliant implementation that runs on a range of OS pldORBS), such as CORBA [1], DCOM [2], and Java RMI [3].
forms with real-time features including VxWorks, Chorus, S@RBs eliminate many tedious, error-prone, and non-portable
laris 2.x, and Windows NT. Second, it presents TAO'’s re@fpects of developing and maintaining distributed applications
time scheduling service that can provide QoS guarantees #§ing low-level network programming mechanisms like sock-
deterministic real-time CORBA applications. Finally, the p£ts [4]. In particular, ORBs automate common network pro-
per presents performance measurements that demonstratéJfRgming tasks such as object location, object activation, pa-
effects of priority inversion and non-determinism in convef@meter marshaling/demarshaling, socket and request demulti-

tional CORBA implementations and how these hazards &#€xing, faultrecovery, and security. Thus, ORBs facilitate the
avoided in TAO. development of flexible distributed applications and reusable

services in heterogeneous distributed environments.

1 Introduction 1.1 Overview of the CORBA Reference Model

Distributed computing helps improve application performan€®©RBA Object Request Brokers (ORBs) [1] allow clients to
through multi-processing; reliability and availability througimvoke operations on distributed objects without concern for
replication; scalability, extensibility, and portability througkhe following issues [5]:

modularity; and cost effectiveness though resources sharij o . .
and open systems. An increasingly important class of d ect location: CORBA objects either can be collocated

tributed applications require stringent quality of service (Qoﬁgt?ir:hethcelzfinr; Olre(rjriset:tt;l:ifr? Oornuseremote server, without af-
guarantees. These applications include telecommunicati g P '

- " i by NSE arant NCR.9628218 DARPProgramming language: The languages supported by
*This work was supported in part by gran - , .
contract 9701516, Boeing, Siemens, and Sprint. éORBA include C, C++, Java, Ada95, COBOL, and

Smalltalk, among others.



OS platform: CORBA runs on many OS platforms, includServant: This component implements the operations de-
ing Win32, UNIX, MVS, and real-time embedded systems likined by an OMG Interface Definition Language (IDL) in-
VxWorks, Chorus, and LynxOS. terface. In languages like C++ and Java that support object-
oriented (OO) programming, servants are implemented us-
Communication protocols and interconnects: The com- ing one or more class instances. In non-O0 languages, like
munication protocols and interconnects that CORBA can rGn servants are typically implemented using functions and
oninclude TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Ettstruct s. A client never interacts with a servant directly, but
ernet, embedded system backplanes, and shared memoryalways through an object identified by an object reference.

ORB Core: When a client invokes an operation on an ob-
ct, the ORB Core is responsible for delivering the request to
f?\létobject and returning a response, if any, to the client. For
objects executing remotely, a CORBA-compliant ORB Core
communicates via a version of the General Inter-ORB Proto-

Figure 1 illustrates the components in the CORBA 2.x reféiol (GIOP), most commonly the Internet Inter-ORB Protocol
ence model, all of which collaborate to provide the portabilitf}/OP) that runs atop the TCP transport protocol. An ORB

interoperability, and transparency outlined above. Each cdrfre is typically implemented as a run-time library linked into
both client and server applications.

Hardware: CORBA shields applications from side-effect
stemming from differences in hardware, such as storage la
and data type sizes/ranges.

INTERFACE IDL IMPLEMENTATION ORB Interface: An ORB is an abstraction that can be im-
REPOSITORY COMPILER REPOSITORY plemented various ways,g, one or more processes or a set of
' libraries. To decouple applications from implementation de-
tails, the CORBA specification defines an interface to an ORB.
REE) out args + return value This ORB interface provides standard operations to initialize
and shutdown the ORB, convert object references to strings
and back, and create argument lists for requests made through
thedynamic invocation interfacgll).

)
DII IDL ORB —— OBJECT
SRS INTERFACE ADAPTER
OMG IDL Stubs and Skeletons: IDL stubs and skeletons

[ % ] serve as a “glue” between the client and servants, respectively,

and the ORB. Stubs provide a strongly-typstitic invoca-
tion interface(Sll) that marshals application parameters into a
@ ORB-specivic terrAc () sTANDARD PROTOCOL common data-level representation. Conversely, skeletons de-

marshal the data-level representation back into typed parame-
Figure 1: Components in the CORBA 2.x Reference Modekrs that are meaningful to an application.

in args
operation() OBJECT
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. . . IDL Compiler:  An IDL compiler transforms OMG IDL
ponent in the CORBA reference model is outlined below: definitions into stubs and skeletons that are generated auto-
) ) ) L matically in an application programming language like C++
Client:  This program entity performs application tasks by java “In addition to providing programming language trans-
obtaining object references to objects and invoking Opeyency |DL compilers eliminate common sources of network

tions on them. Objects can be remote or collocated relasramming errors and provide opportunities for automated
tive to the client. Ideally, accessing a remote object ShOLHgmp”er optimizations [6].

be as simple as calling an operation on a local objeet,
object —operation(args) . Figure 1 shows the underDynamic Invocation Interface (DIl): The DIl allows
lying components described below that ORBs use to transffignts to generate requests at run-time, which is useful when
remote operation requests transparently from client to objeaf! application has no compile-time knowledge of the interface
it accesses. The DIl also allows clients to malederred syn-
Object: In CORBA, an object is an instance of an Interfagdronouscalls, which decouple the request and response por-
Definition Language (IDL) interface. The object is identifieons of two-way operations to avoid blocking the client until
by an object referencewhich uniquely names that instancéhe servant responds. In contrast, in CORBA 2.x, SlI stubs
across servers. ABbjectldassociates an object with its sefonly supportwo-wayi.e., request/response, aade-wayi.e.,
yant implementation, a-nd -iS unique Within the Scope ofan The (SMG has standardizéd a static asynchronous method invocation in-
Ject Adapter.. Over !tS l_lfe“m,e’ an ObJeCF has one or more s%ﬁ'?ace in the Messaging specification [7], which will appear in CORBA 3.0.
vants associated with it that implement its interface.



Dynamic Skeleton Interface (DSI): The DSl is the server’s Likewise, there is no interface for clients to inform an ORB
analogue to the client’s DIl. The DSI allows an ORB to delivehe rate at which to execute operations that have periodic pro-
requests to servants that have no compile-time knowledgece$sing deadlines.

the IDL interface they implement. Clients making requestsThe CORBA standard also does not define interfaces that
need not know whether the server ORB uses static skeletonallmw applications to specify admission control policies. For
dynamic skeletons. Likewise, servers need not know if cliefitstance, a video server might prefer to use available network
use the DIl or Sl to invoke requests. bandwidth to serve a limited number of clients and refuse ser-
yé'ce to additional clients, rather than admit all clients and pro-

Object Adapter: An Object Adapter associates servan id lity 1121, C | tock ¢ .
with objects, creates object references, demultiplexes incofigl® PoOr video quality [12]. Conversely, a stock quote service
ght want to admit a large number of clients and distribute all

ing requests to servants, and collaborates with the IDL skeld9! : N

ton to dispatch the appropriate operation upcall on a servﬂ(ﬁ"lable bandwidth and processing time equally among them.
CORBA 2.2 portability enhancements [1] define the Portallgck of QoS enforcement: Conventional ORBs do not pro-
Object Adapter (POA), which supports multiple nested POAje end-to-end QoS enforcement., from application-to-

per ORB. Object Adapters enable ORBs to support variogiss|ication across a network. For instance, most ORBs trans-
types of servants that possess similar requirements. This @@&- schedule, and dispatch client requests in FIFO order.
sign results in a smaller and simpler ORB that can suppoiitigwever, FIFO strategies can yield unbounded priority in-
wide range of object granularities, lifetimes, policies, impl§ersions [13, 14], which occur when a lower priority request
mentation styles, and other properties. blocks the execution of a higher priority request for an indefi-

Interface Repository: The Interface Repository providedlite period. Likewise, conventional ORBs do not allow appli-
run-time information about IDL interfaces. Using this inforcations to specify the priority of threads that process requests.
mation, it is possib|e for a program to encounter an Objectstandard ORBs also do not provide fine—grained control of
whose interface was not known when the program was cosffvant execution. For instance, they do not terminate servants
piled, yet, be able to determine what operations are valid on that consume excess resources. Moreover, most ORBxduse
object and make invocations on it using the DII. In additioRocresource allocation. Consequently, a single client can con-
the Interface Repository provides a common location to stéme all available network bandwidth and a misbehaving ser-
additional information associated with interfaces to CORBY&Nt can monopolize a server's CPU.

objects, such as type libraries for stubs and skeletons. Lack of realtime programming features: The CORBA

Implementation Repository: The Implementation Reposi-2.x specification does not define key features that are nec-
tory [8] contains information that allows an ORB to activatessary to support real-time programming. For instance, the
servers to process servants. Most of the information in the IBORBA General Inter-ORB Protocol (GIOP) supports asyn-

plementation Repository is specific to an ORB or OS envirozhronous messaging. However, no standard programming lan-
ment. In addition, the Implementation Repository providesgyaage mapping exists in CORBA 2.x to transmit client re-

common location to store information associated with servegsiests asynchronously, though the Messaging specification in

such as administrative control, resource allocation, secur@®@®RBA 3.0 will define this mapping. Likewise, the CORBA

and activation modes. specification does not require an ORB to notify clients when
transport layer flow control occurs, nor does it support timed

1.2 Limitations of CORBA for Real-time Ap- ©°Perations [15]. As aresult, itis hard to develop portable and
lications efficient real-time applications that behave determmlsthally

P when ORB endsystem or network resources are unavailable

Our experience using CORBA on telecommunication [ggmporarily.
avionics [10], and medical imaging projects [11] indicates thﬁack of performance optimizations: Conventional ORB

Itis We"’fg'tefl ffc;r (i?nve?ttlon?l RPQSter aSppllcatl'ons th%ﬁ'ndsystems incur significant throughput [11] and latency [16]
pOSSESS "best-etiort” quality ot service (Qo .) requiremen jerhead, as well as exhibiting many priority inversions and
However, conventional CORBA implementations are not y

suited for hiah-performance. real-time aoplications for the fa urces of non-determinism [17], as shown in Figure 2. These
ui I9n-p ' ! pplicat verheads stem from (1) non-optimized presentation layers
lowing reasons:

that copy and touch data excessively [6] and overflow proces-
Lack of QoS specification interfaces: The CORBA 2.x sor caches [18]; (2) internal buffering strategies that produce
standard does not provide interfaces to specify end-to-end @@8-uniform behavior for different message sizes [19]; (3) in-
requirements. For instance, there is no standard way for cliegffcient demultiplexing and dispatching algorithms [20]; (4)
to indicate the relative priorities of their requests to an ORBNg chains of intra-ORB virtual method calls [21]; and (5)



in args

operation()

grated middleware framework callethe ACE ORBTAO)

[22]. TAO is a high-performance, real-time CORBA-
compliant ORB endsystem developed using the ACE frame-
work [24], which is a highly portable OO middleware commu-
nication framework. ACE contains a rich set of C++ compo-
nents that implement strategic design patterns [25] for high-
performance and real-time communication systems. Since
TAO is based on ACE it runs on a wide range of OS platforms
including general-purpose operating systems, such as Solaris
and Windows NT, as well as real-time operating systems such
as VxWorks, Chorus, and LynxOS.

(SERVANT)

out args + return value
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Figure 2: Sources of Latency and Priority Inversion in Con-
ventional ORBs

1.3.1 Synopsis of TAO

The TAO project focuses on the following topics related to
real-time CORBA and ORB endsystems:

¢ |dentifying enhancements to standard ORB specifica-
tions, particularly OMG CORBA, that will enable appli-
cations to specify their QoS requirements concisely and
precisely to ORB endsystems [26].

Empirically determining the features required to build
real-time ORB endsystems that can enforce determin-
istic and statistical end-to-end application QoS guaran-
tees [23].

Integrating the strategies for /0O subsystem architectures
and optimizations [17] with ORB middleware to provide
end-to-end bandwidth, latency, and reliability guarantees

[ ]
lack of integration with underlying real-time OS and network
QoS mechanisms [22, 23, 17].

1.3 Overcoming CORBA Limitations for High-
performance and Real-time Applications

Meeting the QoS needs of next-generation distributed appli-
cations requires much more than defining IDL interfaces or,
adding preemptive real-time scheduling to an OS. Instead, it

to distributed applications.

Capturing and documenting the key design patterns [25]
necessary to develop, maintain, configure, and extend

requires a vertically and horizontally integrate&RB endsys-

temthat can deliver end-to-end QoS guarantees at multiple lev-

els throughout a distributed system. The key components in ain addition to providing a real-time ORB, TAO is an inte-

ORB endsystem include the network interfaces, operating sysated ORB endsystem that consists of a high-performance

tem 1/O subsystems, communication protocols, and commf@ subsystem [27, 28] and an ATM Port Interconnect Con-

middleware object services. troller (APIC) [29]. Figure 4 illustrates the main components
Implementing an effective framework for real-time CORBAn TAO’s ORB endsystem architecture.

requires ORB endsystem developers to address two types of

issues: QoS specificatiomnd QoS enforcementFirst, real- 1.3.2 Requirements for High-performance and Real-time

time applications must meet certain timing constraints to en- ORB Endsystems

sure the usefulness of the applications. For instance, a video- ] ] ) ] )
conferencing application may require an upper bound on tHae remainder of this section describes the requirements

propagation delay of video packets from the source to the d@@d features of ORB endsystems necessary to meet high-
tination. Such constraints are defined by ®eS specifica- Performance and real-time application QoS needs. It outlines
tion of the system. Thus, providing effective OO middlewat§y Performance optimizations and provides a roadmap for the
requires a real-time ORB endsystem that supports the me(aﬁ{B fegtures and opt|m|zat|ons presgnted in subsequent sec-
anisms and semantics for applications to specify their QB@NS. Figure 3 summarizes the material covered below.
requirements. Second, the architecture of the ORB endd$yslicies and mechanisms for specifying end-to-end appli-
tem must be designed carefullyeéaforcethe QoS parameterscation QoS requirements: ORB endsystems must allow ap-
specified by applications. plications to specify the QoS requirements of their IDL op-
Section 2 describes how we are developing such an irgeations using a small number of application-centric, rather

real-time ORB endsystems.



in args
operation()

out args + return value
<+«—O0

esevmmoy ETICIENT @Nd predictable real-time communication proto-
SERVANT £ wmuvr  cols and protocol engines: The throughput, latency, and re-
Dz liability requirements of multimedia applications like telecon-

— %m’m ferencing are more stringent and diverse than those found in
| semoumve, traditional applications like remote login or file transfer. Like-
ot [ ,NT(;‘,}FECE} (—%}?E‘ﬂ%‘ﬁ wise, the channel speed, bit-error rates, and services (such as

S isochronous and bounded-latency delivery guarantees) of net-

GIop a— mooms  WOrks like ATM exceed those offered by traditional networks

<l Lmswsrorr  like Ethernet. Therefore, ORB endsystems must provide a pro-
cowvEcTION OS KERNEL B tocol engine that is efficient, predictable, and flexible enough

CLIENT

e — .22 . to be customized for different application QoS requirements
— wmow and network/endsystem environments.
NETWORK APAPTER Section 2.2.1 outlines TAO's protocol engine, which pro-

vides real-time enhancements and high-performance opti-
Figure 3: Features and Optimizations for Real-time ORB Engizations to the standard CORBA General Inter-ORB Proto-
systems col (GIOP) [1]. The GIOP implementation in TAO'’s protocol

engine specifies (1) a connection and concurrency architecture

that minimizes priority inversion and (2) a transport protocol
than OS/network-centric parameters. Typical QoS paramigat enables efficient, predictable, and interoperable process-

ters include Computation time, execution period, and baﬂﬂg and communication among heterogeneous ORB endsys-
width/delay requirements. For instance, video-conferenciggns.

groupware [30, 12] may require high throughput astattisti- - , ) , .

cal real-time latency deadlines. In contrast, avionics missibfficient and predictable request demultiplexing and dis-
control platforms [10] may require rate-based periodic prBatching: ORB endsystems must demultiplex and dispatch
cessing withdeterministiceal-time deadlines. incoming client requests to the appropriate operation of the tar-

QoS specification is not addressed by the CORBA 2.x spgg-t gervant. In c;onver)tional ORBs, dgmultiplexing oceurs at
ification, though there is an OMG special interest group (S| ultiple layers, including the network interface, the protocol
devoted, to this topic. Section 3.3 explains how TAO allo ack, the user/kernel boundary, and several levels in an ORB’s

applications to specify their QoS requirements using a com Ibject Adapter. Demultiplexing client requests through all

nation of standard OMG IDL and QoS-aware ORB servicednese layers is expensive, particularly when a large number of

operations appear in an IDL interface and/or a large number

QoS enforcement from real-time operating systems and of.servants are managed by an ORB endsy;tem. Tg minimize
networks: Regardless of the ability tepecifyapplication this overhead, and to ensure predictable dispatching behav-
QoS requirements, an ORB endsystem cannot deliver end@6- TAO applies the perfect hashing and active demultiplex-
end guarantees to applications without network and OS sl optlm!zatlong [20] described in Section 2.3 to demultiplex
port for QoSenforcementTherefore, ORB endsystems mud€duests ir0(1) time.
be capable of scheduling resources such as CPUs, menpfiigient and predictable presentation layer: ORB pre-
and network connection bandwidth and latency. For instanggntation layer conversions transform application-level data
OS scheduling mechanisms must allow high-priority client rgrto a portable format that masks byte order, alignment, and
quests to run to completion and prevent unbounded priofrd length differences. Many performance optimizations
inversion. have been designed to reduce the cost of presentation layer
Another OS requirement is preemptive dispatching. For @ocnversions. For instance, [31] describes the tradeoffs be-
ample, a thread may become runnable that has a higher priavityen using compiled vs. interpreted code for presentation
than one currently running a CORBA request on a CPU. In théser conversions. Compiled marshaling code is efficient, but
case, the low-priority thread must be preempted by removirgjuires excessive amounts of memory. This can be problem-
it from the CPU in favor of the high-priority thread. atic in many embedded real-time environments. In contrast,
Section 2.1 describes the OS 1/0O subsystem and netwimtlerpreted marshaling code is slower, but more compact and
interface we are integrating with TAO. This infrastructure isan often utilize processor caches more effectively.
designed to scale up to support performance-sensitive appliSection 2.4 outlines how TAO supports predictable perfor-
cations that require end-to-end gigabit data rates, predictahbnce guarantees for both interpreted and compiled marshal-
scheduling of I/O within an ORB endsystem, and low latenayg operations via its GIOP protocol engine. This protocol
to CORBA applications. engine applies a number of innovative compiler techniques [6]



and optimization principles [18]. These principles include operformance and predictability. For instance, the de-layered
timizing for the common case; eliminating gratuitous wastactive demultiplexing scheme described in Section 2.3 can in-
replacing general purpose operations with specialized, effiease ORB performaneadpredictability by eliminating ex-
cient ones; precomputing values, if possible; storing redundeessive searching and avoiding priority inversions across de-
state to speed up expensive operations; passing informatrartiplexing layers [20].

between layers; and optimizing for the cache. . . L .
Y P g The remainder of this article is organized as follows: Sec-

Efficient and predictable memory management: Onmod- tion 2 describes the feature enhancements and optimizations
ern high-speed hardware platforms, data copying consumé&égaare developing for TAO; Section 3 discusses the design
significant amount of CPU, memory, and 1/0O bus resourca@d implementation of TAO's real-time Scheduling Service
[32]. Likewise, dynamic memory managementincurs a signift detail; Section 4 presents performance measurements that
icant performance penalty due to locking overhead and ngemonstrate TAO’s ability to support real-time QoS require-
determinism due to heap fragmentation. Minimizing dafaents; Sectior?? compares our work with related research
copying and dynamic memory allocation requires the collaprojects; and Section 5 presents concluding remarks.

oration of multiple layers in an ORB endsysteim,, the net-

work interfaces, 1/0 subsystem protocol stacks, ORB Core gnd .
Object Adapter, presentation layer, and application-spe(?ﬁc Architectural Components and Fea-

servants. tures for High-performance, Real-
Section 2.5 outlines TAO’s vertically integrated memory

management scheme that minimizes data copying and lock time ORB EndSyStemS

contention throughout its ORB endsystem. . .
g 4 TAO'’s ORB endsystem contains the network interface, 1/0

subsystem, communication protocol, and CORBA middleware
1.3.3 Real-time vs. High-performance Tradeoffs components shown in Figure 4. These components include the

There is a common misconception [33] that applications Wift%llowmg.

“real-time” requirements are equivalent to application with /O subsystem: which send/receives requests to/from

“high-performance” requirements. This is not necessarily thkents in real-time across a network (such as ATM) or back-

case. For instance, an Internet audio-conferencing system playe (such as VME or compactPCl).

not require high bandwidth, but it does require predictably 10y gyn_time scheduler: which determines the priority at

latency to provide adequate QoS to usersinreal-time.  \hich requests are processed by clients and servers in an ORB
Other multimedia applications, such as teleconferencirég,dsystem_

have both real-time and high-performance requirements. Ap- ) _ _ _

plications in other domains, such as avionics and process conORB Core:  which provides a highly flexible, portable,

trol, have stringent periodic processing deadline requiremegfficient, and predictable CORBA inter-ORB protocol engine

in the worst-case. In these domains, achieving predictabilityflat delivers client requests to the Object Adapter and returns

the worst-case is often more important than high performafg&Ponses (if any) to clients.

in the average-case. 4. Object Adapter: which demultiplexes and dispatches
It is important to recognize that high-performance requirgtient requests optimally to servants using perfect hashing and

ments may conflict with real-time requirements. For instanggstive demultiplexing.

real-time scheduling policies often rely on the predictability of

endsystem operations like thread scheduling, demultiplexi

and message buffering. However, certain optimizations . ; .

improve performance at the expense of predictability. For iw_matlcally by TAQ's IDL compiler.

stance, using a self-organizing search structure to demultigdexviemory manager: which minimizes sources of dynamic

client requests in an ORB’s Object Adapter can increase themory allocation and data copying throughout the ORB end-

average-case performance of operations, which decreasesybgem.

predictability of.any. given operation in the qust-case. 7. QoS API: which allows applications and higher-level
To allow applications to select the appropriate tradeoffs l:@

RBA servi ify their rameter ing an
tween average-case and worst-case performance, TAO is q%gram;eingcniig:afpe“yt eir QoS parameters using an 0O

signed with an extensible software architecture based on Eey
communication patterns [25]. When appropriate, TAO em-TAQO's I/O subsystem and portions of its run-time scheduler
ploys algorithms and data structures that can optimize for baild memory manager run in the kernel. Conversely, TAO’s

Stubs and skeletons: which optimize key sources of mar-
aling and demarshaling overhead in the code generated au-
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ORB Endsystem 2.1 High-performance, Real-time 1/O Subsys-

tem

An 1/O subsystem is responsible for mediating ORB and ap-
plication access to low-level network and OS resources such
as device drivers, protocol stacks, and CPU(s). The key chal-
ORB Core, Object Adapter, stubs/skeletons, and portions@iges in building a high-performance, real-time I/O subsys-
its run-time scheduler and memory manager run in user-spaeg are to (1) make it convenient for applications to specify
their QoS requirements, (2) enforce QoS specifications and
minimize priority inversion and non-determinism, and (3) en-
The remainder of this section describes components 1aBle ORB middleware to leverage QoS features provided by
4, 5, and 6 and explains how they are implemented in TAGe underlying network and OS resources.
to meet the requirements of high-performance, real-time ORB )
endsystems described in Section 1.3. Section 3 focuses off Meet these challenges, we have developed a high-
components 2 and 7, which allow applications to specify Qfgrformance, real-time network 1/O subsystem that is cus-
requirements for real-time servant operations. This paper dRhized for TAO [17]. The components in this subsystem are

cusses both high-performance and real-time features in TAEPWN in Figure 5. They include (1) a high-speed ATM net-

since it is designed to support applications with a wide ran§@'K interface, (2) a high-performance, real-time 1/O subsys-

of QoS requirements. tem, (3) a real-time Scheduling Service and Run-Time Sched-
uler, and (4) an admission controller, as described below.



High-speed network interface: Atthe bottom of TAO’s /O Real-time Scheduling Service and Run-Time Scheduler:
subsystem is a “daisy-chained” interconnect containing oflee scheduling abstractions defined by real-time operating
or more ATM Port Interconnect Controller (APIC) chips [29]systems like VxWorks, LynxOS, and POSIX 1003.1c [38] im-
APIC can be used both as an endsystem/network interface pllethentations are relatively low-level. For instance, they re-
as an I/O interface chip. It sustains an aggregate bi-directiogaire developers to map their high-level application QoS re-
data rate of 2.4 Gbps. guirements into lower-level OS mechanisms, such as thread
Although TAO is optimized for the APIC 1/O subsystem, ipriorities and virtual circuit bandwidth/latency parameters.
is designed using a layered architecture that can run on cbhis manual mapping step is non-intuitive for many applica-
ventional OS platforms, as well. For instance, TAO has belé@n developers, who prefer to design in terms of objects and
ported to real-time interconnects, such as VME and compagerations on objects.
PCI backplanes [17] and multi-processor shared memory enTo allow applications to specify their scheduling require-
vironments, and QoS-enabled networks, such as IPv6 witlents in a higher-level, more intuitive manner, TAO provides
RSVP [34]. a Real-time Scheduling Service. This service is a CORBA ob-
ject that is responsible for allocating system resources to meet

Real-time /O Subsystem: Some general-purpose operaf—he QoS needs of the applications that share the ORB endsys-

ing systems like Solaris and Windows NT now support re gm- o , ] ) .
time scheduling. For example, Solaris 2.x provides a real-time*PPlications can use TAO's Real-time Scheduling Service

scheduling class [14] that attempts to bound the time requif@FPecify the processing requirements of their operations in
to dispatch threads in this thread class. However, genef8fMS of various parameters, such as computation @nyee-
purpose operating systems do not provide real-time 1/0 siod P, or deadlineD. If all operations can be scheduled, the
systems. For instance, the Solaris STREAMS [35] impleme?fzhed““r‘g S(.arv'lce assigns a priority to each request. At run-
tation does not support QoS guarantees since STREAMS pi&e. these priority assignments are then used by TAO’s Run-
cessing is performed at system thread priority, which is lowif® Scheduler. The Run-time Scheduler maps client requests

than all real-time threads [17]. Therefore, the Solaris 1/0 sUf! Particular servant operations into priorities that are under-
system is prone to priority inversion since low-priority reaflood by the local endsystem's OS thread dispatcher. The

time threads can preempt the 1/0 operations of high-priorﬁbspamher then grants priorities to real-time 1/O threads and

threads. Unbounded priority inversion is highly undesirablef¢"forms preemption so that schedulability is enforced at run-
many real-time environments. time. Section 3.2 describe the Run-Time Scheduler and Real-

TAO enhances the STREAMS model provided by Solartféne Scheduling Service in detail.

and real-time operating systems like VxWorks and LynxOAdmission Controller: To ensure that application QoS re-
TAO's real-time I/O (RIO) subsystem minimizes priority inquirements can be met, TAO performs admission control for
version and hidden schedulfhthat arise during protocol pro-its real-time 1/O scheduling class. Admission control allows
cessing. TAO minimizes priority inversion by pre-allocatingfhe OS to either guarantee the specified computation time or
pool of kernel threads dedicated to protocol processing. Theseefuse to admit the thread. Admission control is useful for
kernel threads are co-scheduled with a pool of applicatiggsl-time systems with deterministic and/or statistical QoS re-
threads. The kernel threads run at the same priority as ¢hgrements.
application threads, which prevents the real-time schedulingrhis paper focuses primarily on admission control for ORB
hazards outlined above. endsystems. Admission control is also important at higher-
To ensure predictable performance, the kernel threads legels in a distributed system, as well. For instance, admis-
long to areal-time 1/O scheduling class. This schedulingion control can be used for global resource managers [39, 40]
class uses rate monotonic scheduling (RMS) [36, 37] to stipat map applications onto computational, storage, and net-
port real-time applications with periodic processing behavigrork resources in a large-scale distributed system, such as a
Once a real-time 1/O thread is admitted by the OS kernship-board computing environment.
TAO's RIO subsystem is responsible for (1) computing its pri-

ority relative to other threads in the class and (2) dispatchi . .
the thread periodically so that its deadlines are met. Bgz Efficient and Predictable ORB Cores

The ORB Core is the component in the CORBA architecture
“Hidden scheduling occurs when the kernel performs work asythat manages transport connections, delivers client requests to

chronously without regard to its priority. STREAMS processing in Solaris j Object Adapter, and returns responses (if any) to clients
an example of hidden scheduling since the computation time is not accour?.'d ! ’

for by the application or OS scheduler. To avoid hidden scheduling, the kernél€ ORB que tYPica"y implements the ORB's transport end-
should perform its work at the priority of the thread that requested the worfoint demultiplexing and concurrency model, as well.




The key challenges to developing a real-time ORB Coobjects, and managing communication channels.
are (1) implementing an efficient protocol engine for CORBA
inter-ORB protocols like GIOP and IIOP, (2) determining g

suitable connection and concurrency model that can share " e .
aggregate processing capacity of ORB endsystem compon r@sp messages. In addition, the GIOP specification describes
ROW connections are managed and defines constraints on mes-

predictably among operations in one or more threads of c%n- e orderin
trol, and (3) designing an ORB Core that can be adapted easﬁ9 9:
to new endsystem/network environments and application Qpe CORBA Inter-ORB Protocol (IIOP) is a mapping of GIOP

requirements. The following describes how TAO’s ORB Counto the TCP/IP protocols. ORBs that use IIOP are able to

e GIOP Transport Assumptions: The GIOP specifica-
n describes what types of transport protocols can carry

is designed to meet these challenges. communicate with other ORBSs that publish their locations in
aninteroperable object referend¢OR) format.
2.2.1 TAO's Inter-ORB Protocol Engine Implementing GIOP/IIOP efficiently and predictably:  In

TAO’s protocol engine is a highly optimized, real-time versiog©"Pa 2.x, neither GIOP nor [IOP provide support for speci-
of the SunSoft IOP reference implementation [18] that is if£iNg or enforcing the end-to-end QoS requirements of appli-
tegrated with the high-performance 1/0 subsystem descrilfé?é]'or_‘§ This makes GIOP/IIOP unsuitable for real-time ap-
in Section 2.1. Thus, TAO’'s ORB Core on the client, servé}{lC&thﬂS that cannot tolerate the latency overhead and jitter
and any intermediate nodes can collaborate to process requst&P/IP transport protocols. For instance, TCP functional-
in accordance with their QoS attributes. This design allow¥ like adaptive retransmissions, deferred transmssmns, and
clients to indicate the relative priorities of their requests afi§layed acknowledgments can cause excessive overhead and
allows TAO to enforce client QoS requirements end-to-englatency for real-time applications. Likewise, routing proto-
To increase portability across OS/network platforms, TACES!s like IPv4 lack functionality like packet admission policies
protocol engine is designed as a separate layer in TAO's OR‘EQ rate cont'rol, vyh|ch can lead to excessive congestion and
Core. Therefore, it can either be tightly integrated with tfgissed deadlines in networks and endsystems.
high-performance, real-time 1/O subsystem described in Secl© address these shortcomings, TAO's ORB Core supports
tion 2.1 or run on conventional embedded platforms linked - Priority-based concurrency architecture, a priority-based
gether via interconnects like VME or shared memory. connection architecture, and a real-time inter-ORB protocol
Below, we outline the existing CORBA interoperability protRIOP), as described below.
tocols and describe how TAO implements these protocolsinag  TAQ’s priority-based concurrency architecture:

efficient and predictable manner. TAO’s ORB Core can be configured to allocate a real-time
thread for each application-designated priority level. Ev-
Overview of GIOP and IIOP: CORBA is designed to runery thread in TAO’s ORB Core can be associated with a
over multiple transport protocols. The standard ORB interdReactor , which implements the Reactor pattern [43] to pro-
erability protocol is known as the General Inter-ORB Protocwide flexible and efficient endpoint demultiplexing and event
(GIOP) [1]. GIOP provides a standard end-to-end interdpandler dispatching.
erability protocol between potentially heterogeneous ORBsWhen playing the role of a server, TAOReactor (s) de-
GIOP specifies an abstract interface that can be mappadtiplex incoming client requests to connection handlers that
onto transport protocols that meet certain requiremerngs, perform GIOP processing. These handlers collaborate with
connection-oriented, reliable message delivery, and untyg@®’s Object Adapter to dispatch requests to application-level
bytestream. An ORB supports GIOP if applications can uservant operations. Operations can either execute with one of
the ORB to send and receive standard GIOP messages. the following two models [44]:

The GIOP specification consists of the following elements: . . o
] o e Client propagation mode} The operation is run at the
e Common Data Representation (CDR) definition: The priority of the client that invoked the operation.

GIOP specification defines a common data representation o o
(CDR). CDR is a transfer syntax that maps OMG IDL types ® Server sets model The op,eratlon is run at the pponty
from the native endsystem format to a bi-canonical format, ©Of the thread in the server's ORB Core that received the
which supports both little-endian and big-endian binary data ©Peration.

Tormats' Data is transferred over the network in CDR enCOd'3The forthcoming real-time CORBA specification [41] will support this
INgs. capability.

e . 4In addition, TAO's ORB Core can be configured to support other concur-
¢ GIOP Message Formats: The GIOP specification de'rency architectures, including thread pool, thread-per-connection, and single-

fines messages for sending requests, receiving replies, locatitegded reactive dispatching [42].




The server sets priority model is well-suited for determinist these socket ports can then be processed by the appropriate
tic real-time applications since it minimizes priority inversiofixed-priority real-time threads.
and non-determinism in TAO’s ORB Core [45]. In addition, it Once a client connects, thfecceptor  in the server ORB
reduces context switching and synchronization overhead sineeates a new socket queue and a GIOP connection handler to
servant state must be locked only if servants interact acressvice that queue. TAO's I/O subsystem uses the port number
different thread priorities. contained in arriving requests as a demultiplexing key to asso-
TAQO's priority-based concurrency architecture is optimizetziate requests with the appropriate socket queue. This design
for statically configured, fixed priority real-time applicationgninimizes priority inversion through the ORB endsystem via
In addition, it is well suited for scheduling and analysis teckarly demultiplexind27, 28, 29], which associates requests
niques that associate priority witate, such as rate monotonicarriving on network interfaces with the appropriate real-time
scheduling (RMS) and rate monotonic analysis (RMA) [3@read that services the target servant. As described in Sec-
37]. For instance, avionics mission computing systems cotion ??, early demultiplexing is used in TAO to vertically in-
monly execute their tasks mates groupsA rate group assem-tegrate the ORB endsystem’s QoS support from the network
bles all periodic processing operations that occur at particutaterface up to the application servants.
rates,e.g, 20 Hz, 10 Hz, 5 Hz, and 1 Hz, and assigns them to

a pool of threads using fixed-priority scheduling. ¢ TAO'’s Real-time inter-ORB protocol (RIOP): TAO's

connection-per-priority scheme described above is optimized
e TAO's priority-based connection architecture: Fig- for fixed-priority applications that transfer their requests at
ure 6 illustrates how TAO can be configured with a priorityarticular rates through statically allocated connections ser-

based connection architecture. In this model, each cli¥ift€d at the priority of real-time server threads. Applications
that possess dynamic QoS characteristics, or that propagate the

priority of a client to the server, require a more flexible proto-
col, however. Therefore, TAO supports a real-time Inter-ORB
Protocol (RIOP).

RIOP is an implementation of GIOP that allows ORB end-
systems to transfer their QoS attributes end-to-end from clients
to servants. For instance, TAO’s RIOP mapping can transfer
the importanceof an operation end-to-end with each GIOP
message. The receiving ORB endsystem uses this QoS at-
tribute to set the priority of a thread that processes an operation
in the server.

To maintain compatibility with existing IIOP-based ORBs,
TAO'’s RIOP protocol implementation transfers QoS in-
Figure 6: TAO's Priority-based Connection and Concurrenfiyrmation in the service _context member of the
Architectures GIOP::requestHeader . ORBs that do not sup-

port TAO's RIOP extensions can transparently ignore the
thread maintains €onnector [46] in thread-specific stor- service _context member. Incidentally, the RIOP feature
age. EachConnector manages a map of pre-establishewlill be standardized as a QoS property in the asynchronous
connections to servers. A separate connection is maintainezssaging portion of the CORBA 3.0 specification.
for each thread priority in the server ORB. This design en-The TAO RIOP service _context passed with each
ables clients to preserve end-to-end priorities as requestsdhient invocation contains attributes that describe the opera-
verse through ORB endsystems and communication links [4%dn's QoS parameters. Attributes supported by TAO's RIOP

Figure 6 also shows how tHReactor that is associated extensions include priority, execution period, and communica-
with each thread priority in a server ORB can be configuredtion class. Communication classes supported by TAO include
use amcceptor [46]. TheAcceptor is a socket endpointisOCHRONOUSfor continuous mediasursT for bulk data,
factory that listens on a specific port number for clients to conESSAGE for small messages with low delay requirements,
nect to the ORB instance running at a particular thread prioriand MESSAGE STREAM for message sequences that must be
TAO can be configured so that each priority level has its oynocessed at a certain rate [28].

Acceptor port. For instance, in statically scheduled, rate- In addition to transporting client QoS attributes, TAO's
based avionics mission computing systems [47], ports 100R00P is designed to map CORBA GIOP on a variety of net-
10010, 10005, 10001 could be mapped to the 20 Hz, 10 Mmrks including high-speed networks like ATM LANs and
5 Hz, and 1 Hz rate groups, respectively. Requests arriviigV/IP WANS [48]. RIOP also can be customized for specific
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application requirements. To support applications that do mtX 5.x and 6.x, HP-UX 9.x, 10.x, and 11.x, DEC UNIX 4.x,
require complete reliability, TAO’s RIOP mapping can sele&X 4.x, Linux, SCO, UnixWare, NetBSD, and FreeBSD),
tively omit transport layer functionality and run directly atopeal-time operating systems.§, VxWorks, Chorus, LynxOS,
ATM virtual circuits. For instance, teleconferencing or certaand pSoS), and MVS OpenEdition.

types of imaging may not require retransmissions or bit-level ) ) ) )
error detection. Figure 7 illustrates the components in the client-side

and server-side of TAO's ORB Core. The client-
2.2.2 Enhancing the Extensibility and Portability of

TAO’s ORB Core
Although most conventional ORBs interoperate via IIOP ove CLIENT coiquﬁER OBJECT
TCP/IP, an ORB is not limited to running over these transport /’ \ (SERVANT)
For instance, while TCP can transfer GIOP requests reliably, S N L 2
its flow control and congestion control algorithms may pre- /’ 3
clude its use as a real-time protocol. Likewise, shared memory—Y Yy » SK‘EB%T(,;]@ Y
may be a more effective transport mechanism when clients ar| pmt | | IPL_ ORB PORTABLE
servants are collocated on the same endsystem. Therefore[ ]I{ J INTERFACE ADAPTER

key design challenge is to make an ORB Core extensible a
portable to multiple transport mechanisms and OS platform |
To increase extensibility and portability, TAO’s ORB Corg ! Connectio ConnegConnel Connectio
is based on patterns in the ACE framework [24]. Secf@n @¢ 5: requestl| | Hand) “pang Handler
describes the patterns used in TAO in detail. The followin RESPONSE »
outlines the patterns that are used in TAO’s ORB Core. a e
TAO’s ORB Core uses th&trategyand Abstract Factory '
patterns [49] to allow the configuration of multiple schedulin
algorithms, such as earliest deadline first or maximum urgen
first [50]. Likewise, theBridge pattern [49] shields TAO’s :
ORB Core from the choice of scheduling algorithm. TAO use Reactor Reactor
ACE components based on tiservice Configuratopattern
[51] to allow new algorithms for scheduling, demultiplexing
concurrency, and dispatching to be configured dynamical
i.e, at runtime. On platforms with C++ compilers that opti-
mize virtual function calls, the overhead of this extensibility is
negligible [10].
Other patterns are used in TAO's ORB Core to simplify

its connection and concurrency architectures. For instangge yses &Strategy _Connector to create and cache
theAcceptor-Connectguattern [46] defines ACE componentgonnection _Handler s that are bound to each server.
used in TAO to decouple the task of connection establishmgfkse connections can be pre-allocated during ORB initial-
from the GIOP processing tasks performed after connectiggiion. Pre-allocation minimizes the latency between client
establishment. TAO uses tiiReactorpattern [43], which de- jhyocation and servant operation execution since connections

fines an ACE component that simplifies the event-driven pegn pe establishealpriori using TAO's explicit binding oper-
tions of the ORB core by integrating socket demultiplexingion.

and the dispatching of the corresponding GIOP connection
handlers. Likewise, thActive Objecipattern [52] defines an On the server-side, thReactor detects new incoming
ACE component used in TAO to configure multiple concuconnections and notifies thetrategy _Acceptor . The
rency architectures by decoupling operation invocation frdBtrategy _Acceptor accepts the new connection and as-
operation execution. sociates it with aConnection _Handler that executes in
TAO ports easily to many OS platforms since it is built using thread with an appropriate real-time priority. The client’s
ACE components based on the patterns described above. Connection _Handler can pass GIOP requests (described
rently, ACE and TAO have been ported to a wide range of @% Section 2.2.1) to the serverSonnection _Handler .
platforms including Win32i(e., WinNT 3.5.x/4.x, Win95, and This handler upcalls TAO’s Object Adapter, which dispatches
WInCE), most versions of UNIXg.g, SunOS 4.x and 5.x, SGlthe requests to the appropriate servant operation.

ORB CORE

Figure 7: Components in the TAO’s ORB Core
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2.2.3 Real-time Scheduling and Dispatching of Client Re-2.3.1 Conventional ORB Demultiplexing Strategies

quests , . , ,
A standard GIOP-compliant client request contains the iden-

gi_ty of its object and operation. An object is identified by an
tfj)ect key which is amctet sequence . An operation is
epresented as string . As shown in Figure 8, the ORB

TAO’'s ORB Core can be configured to implement cu
tom mechanisms that process client requests accordin
application-specific real-time scheduling policies. To pr
vide a guaranteed share of the CPU among application opera-
tions [28, 10], TAO’s ORB Core uses the real-time Scheduling

Service described in Section 3. One of the strategies provided

OPERATION]1
OPERATION2
OPERATIONK

by TAO’s ORB Core is variant of periodic rate monotonic ooe USER
scheduling implemented with real-time threads and real-ting: pispatca LAYER
upcalls (RTUs) [28]. OPERATION
TAO's ORB Core contains an object reference to its Rury e
Time Scheduler shown in Figure 4. This scheduler dispatch™ LETON I
client requests in accordance with a real-time scheduling pol- (SERVANT ] (SERVANT ]
icy configured into the ORB endsystem. The Run-Time ! 2) oo N
Scheduler maps client requests to real-time thread prioriti#PEMUX TO | : |
SERVANT
and connectors. (POAD (POAZJ -"(POAN)
TAO's initial implementation supports deterministic real- — I T

time applications [17]. In this case, TAO's Run-Time Schec3: DEMUX TO j
uler consults a table of request priorities generated off-line. , OBJECT ( ROOT POA ) ORB
run-time, TAO’s ORB Core dispatches threads to the CPU(s/\PAPTER ( ) LAYER
according to its dispatching mechanism. We are have extenQ: pemux To
TAO to support dynamically scheduling and applications wit 1/O HANDLE os
statistical QoS requirements [47]. KERNEL

1:DEMUX THRU LAYER

PROTOCOL STACK

2.3 Efficient and Predictable Object Adapters Figure 8: CORBA 2.2 Logical Server Architecture

The Object Adapter is the component in the CORBA archi- ] o
tecture that associates a servant with an ORB, demultipleR88System must perform the following demultiplexing tasks:

incoming client requests to the servant, and dispatches theﬁ@'ps 1 and 2: The OS protocol stack demultiplexes the in-
propriate operation of that servant. The key challenges assgying client request multiple times, g, from the network
ciated with designing an Object Adapter for real-time ORBsertace card, through the data link, network, and transport
are determining how to demultiplex client requests efficientmyers up to the user/kernel boundagyg, the socket) and
scalably, and predictably. then dispatches the data to the ORB Core.

TAO is the first CORBA ORB whose Object Adapter imple- _ o
ments the OMG POA (Portable Object Adapter) specificatiGhePS 3ha”d|_4- :rhebQRBkCore ulses ther?ddressmg informa-
[1]. The POA specification defines a wide range of featurd@n Isr:artvaenf 'g”ot Assoc ajl(rawctte g?g?nigggtr?i;raer ?hﬁggﬁsn'ﬁwizgﬁe
including: user- or system-supplied Object Ids, persistent : . : , . T
transient objects, explicit and on-demand activation, mumd%catmg the POA that contains the servant can involve multiple

servant— CORBA object mappings, total application contrdf€multiplexing steps through the POA hierarchy.

over object behavior and existence, and static and DSI s§fs, 5 and 6: The POA uses the operation name to find the
vants [53, 54]. appropriate IDL skeleton, which demarshals the request buffer

The demultiplexing and dispatching policies in TAO’s Olinto operation parameters and performs the upcall to code sup-
ject Adapter are instrumental to ensuring its predictabiliplied by servant developers.

and efficiency. This subsection describes how TAO’s Ob- ) . )
ject Adapter can be configured to use perfect hashing or acl "€ conventional layered ORB endsystem demultiplexing

tive demultiplexing to map client requests directly to sefTPlementation shown in Figure 8 is generally inappropriate
vant/operation tuples i®(1) time. for high-performance and real-time applications for the fol-

lowing reasons [55]:
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Decreased efficiency: Layered demultiplexing reduces peris then used to locate the operation. The primary benefit of
formance by increasing the number of internal tables thhis strategy is that servant and operation lookups req(ig

must be searched as incoming client requests ascend thrdirga in the worst-case.

the processing layers in an ORB endsystem. DemultiplexingTAO uses the GNWperf [56] tool to generate perfect
client requests through all these layers is expensive, particash functions for object keys and operation names. This per-
larly when a large number of operations appear in an IDL ifect hashing scheme is applicable when the keys to be hashed
terface and/or a large number of servants are managed bgr@nknowna priori. In many deterministic real-time systems,
Object Adapter. such as avionics mission control systems [10, 47], the servants

Increased priority inversion and non-determinism: Lay- a”q ope.ra.tions can be configured staticglly. For these appli-

ered demultiplexing can cause priority inversions becaR@dions, itis possible to use perfect hashing to locate servants

servant-level quality of service (QoS) information is inacce@nd operations.

sible to the lowest-level device drivers and protocol stacksAwctive demultiplexing: TAO also provides a more dynamic

the 1/0 subsystem of an ORB endsystem. Therefore, an @bmultiplexing strategy calledctive demultiplexingshown

ject Adapter may demultiplex packets according to their FIR@® Figure 9(B). In this strategy, the client passes an object key

order of arrival. FIFO demultiplexing can cause higher priathat directly identifies the servant and operatioifi) time

ity packets to wait for an indeterminate period of time while the worst-case. The client obtains this object key when it

lower priority packets are demultiplexed and dispatched [1€btains a servant’s object referenesy, via a Naming service
Conventional implementations of CORBA incur significa rTrad?ng service. Once the request arrives at the server ORB,

demultiplexing overhead. Forinstance, [21, 16] show that Cc%‘. e Object Adapter uses the Obje.Ct key thg CORBA r(_equgst

ventional ORBs spene-17% of the total server time process-.eader to locate the servant and its associated operation in a

ing demultiplexing requests. Unless this overhead is reduéé'ﬁle. step. . , . . .

and demultiplexing is performed predictably, ORBs cannot nlike perfect hashing, TAO'’s active demultiplexing strat-

provide uniform, scalable QoS guarantees to real-time ap y does ngt require .that al Obje?t Ids be knqavrpnon.
cations. is makes it more suitable for applications that incarnate and

etherealize CORBA objects dynamically.

2.3.2 TAO’s Optimized ORB Demultiplexing Strategies Both perfect hashing and active demultiplexing can demul-

o , ) tiplex client requests efficiently and predictably. Moreover,
To address the limitations with conventional ORBS, TAO Prgsese strategies perform optimally regardless of the number of

vides the demultiplexing strategies shown in Figure 9. TAQg (e connections, application-level servantimplementations,
and operations defined in IDL interfaces. [20] presents a de-

A 3 B) pE- . ; -
AR = ¢ ),;ARZIZETDHZZZ(:;NG ¢ )ﬁ,i;ixii’;E” AcmE tailed study of these and other request demultiplexing strate-
glgl |8 _Isl [5] [2] [5] gies forarange of target objects and operations.
% % % é § g § é TAO'’s Object Adapter uses the Service Configurator pattern
elei™ el 3 2 g 5 2| [51] to select perfect hashing or active demultiplexing dynam-
hash(operation) =N 2 = . . . . . ¥
L\ Bl 5 (| Sleoe| S loee | Sleee| 8| ically during ORB installation [25]. Both strategies improve
SKEL 1) \SKEL KEL S = Z | request demultiplexing performance and predictabéitpve
1'" JE ; Z% Z t d Itipl fi d predictabi
sl2| |5| [Z| |Z| the ORB Core.
(SERVANT 1) (SERVANT 2) "'(SERVANT N) 28] |8] (8] (8] To improve efficiency and predictabilitgelow the ORB
W . . . A . Core, TAO uses the ATM Port Interconnect Controller (APIC)
ash(object key) index(object key/operation)

described in Section 2.1 to directly dispatch client requests as-
CIEUEET AIDVACIES sociated with ATM virtual circuits [17]. This vertically in-
tegrated, optimized ORB endsystem architecture reduces de-

multiplexing latency and supports end-to-end QoS on either a
Figure 9: Optlmlzed CORBA Request Demultiplexing Stratg'er_request or per-connection basis.

gies

optimized demultiplexing strategies include the following: 2.4 Efficient and Predictable Stubs and Skele-

Perfect hashing: The perfect hashing strategy shown in Fig- tons

ure 9(A) is a two-step layered demultiplexing strategy. Th8tubs and skeletons are the components in the CORBA archi-
strategy uses an automatically-generated perfect hashing fiecture responsible for transforming typed operation param-
tion to locate the servant. A second perfect hashing functieters from higher-level representations to lower-level repre-
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sentations (marshaling) and vice versa (demarshaling). Martecution. As a result, the flow analysis optimizations de-
shaling and demarshaling are major bottlenecks in higderibed above can only be employed under certain circum-
performance communication subsystems [57] due to the sitancesg.g, for applications that can accept statistical real-
nificant amount of CPU, memory, and I/O bus resources théype service or when the worst-case scenarios are still suffi-
consume while accessing and copying data. Therefore, k@nt to meet deadlines.

challenges for a high-performance, real-time ORB are to de-
sign an efficient presentation layer that performs marshalin% L )
and demarshaling predictably, while minimizing the use 8:2 Efficient and Predictable Memory Manage-
costly operations like dynamic memory allocation and data ment

Coﬁ]qu—gb, presentation layer processing is performed lgpnventionaIORB endsystems suﬁ‘erfrom excessive dynamic
client-side stubs and server-side skeletons that are generdlg@ory managementand data copying overhead [21]. For in-
automatically by a highly-optimizing IDL compiler [6]. In Stance, many 1/0O sqbsystgms a_nd ORB Cores allocate a mem-
addition to reducing the potential for inconsistencies betwe®y Puffer for each incoming client request and the 1/0 sub-

client stubs and server skeletons, TAO’s IDL compiler su ystem typically copies its buffer to the buffer allocated by the
ports the following optimizations: RB Core. In addition, standard GIOP/IIOP demarshaling

code allocates memory to hold the decoded request parame-
Reduced use of dynamic memory: TAO's IDL compiler ters, Likewise, IDL skeletons dynamically allocate and delete
analyzes the storage requirements for all the messagesc@yies of client request parameters before and after upcalls,
changed between the client and the server. This enablesigi@ectively.
compiler to z_allocate sufficient storg@priori .to. avoid re- “In general, dynamic memory management is problematic
peated run-time tests that determine if sufficient storagesds real-time systems. For instance, heap fragmentation can
available. In addition, the IDL compiler uses the run-tim@e|q non-uniform behavior for different message sizes and
stack to allocate storage for unmarshaled parameters. giterent workloads. Likewise, in multi-threaded ORBs, the
Reduced data copying: TAO's IDL compiler analyzes locks required to protect the heap from race conditions in-
when it is possible to perform block copies for atomic dafgease the potential for priority inversion [45]. In general, ex-
types rather than copying them individually. This reduces esessive data copying throughout an ORB endsystem can sig-
cessive data access since it minimizes the number of load Biigantly lower throughput and increase latency and jitter.
store instructions. TAO is designed to minimize and eliminate data copying at
multiple layers in its ORB endsystem. For instance, TAO'’s

Re,]dut(?edl f“”Ctt.'OT‘ call O\learTesd: ;I—AOS IELL cotr)npllec:jr can pufrer management system uses the APIC network interface
seleclively optimize smafl Stubs VIiining, thereby reducing v, anpance conventional operating systems witte@-copy

the. overhead of function calls that would otherwise be incurrsgﬁer management system [29]. At the device level, the APIC
by invoking these small stubs. interacts directly with the main system bus and other 1/O de-
TAO’s IDL compiler supports multiple strategies for marvices. Therefore, it can transfer client requests between end-
shaling and demarshaling IDL types. For instance, TAGRstem buffer pools and ATM virtual circuits with no addi-
IDL compiler can generate either compiled and/or interpreté@nal data copying.
IDL stubs and skeletons. This design allows applications toThe APIC buffer pools for I/O devices described in Sec-
select between (lipterpretedstubs/skeletons, which can bdion 2.1 can be configured to suppaarly demultiplexing
somewhat slower, but more compact in size ancc(@hpiled of periodic and aperiodic client requests into memory shared
stubs/skeletons, which can be faster, but larger in size [31].among user- and kernel-resident threads. These APIs allow
Likewise, TAO can cache premarshaled application datéent requests to be sent/received to/from the network with-
units (ADUs) that are used repeatedly. Caching improves peut incurring any data copying overhead. Moreover, these
formance when ADUs are transferred sequentially in “requéstfers can be preallocated and passed between various pro-
chains” and each ADU varies only slightly from one transmisessing stages in the ORB, thereby minimizing costly dynamic
sion to the other. In such cases, it is not necessary to margh@amory management.
the entire request every time. This optimization requires thain addition, TAO uses the Thread-Specific Storage pattern
the real-time ORB perform flow analysis [58, 59] of applicgd60] to minimize lock contention resulting from memory al-
tion code to determine what request fields can be cached. location. TAO can be configured to allocate its memory from
Although these techniques can significantly reduce marshhlead-specific storage. In this case, when the ORB requires
ing overhead for the common case, applications with strimemory it is retrieved from a thread-specific heap. Thus, no
real-time service requirements often consider only worst-céseks are required for the ORB to dynamically allocate this

14



memory. Service. This service is responsible for allocating CPU re-
sources to meet the QoS needs of the applications that share
. . . . the ORB endsystem. For real-time applications with deter-
3 Supporting Real-time Scheduling in ministic QoS requirements, the Scheduling Service guarantees
CORBA that all processing requirements will be met. For real-time ap-
plications with statistical QoS requirements, the Scheduling

Section 2 described the architectural components used in TAGSViCe ries to meet system processing requirements within
to provide a high-performance ORB endsystem for real-tirH?ee gleswed tolerance, while also trying to maximize CPU uti-
CORBA. TAO’s architecture has been realized with minimafation. . _ _ ' _
changes to CORBA. However, the CORBA 2.x specification 1 N€ initial design and implementation of TAO's real-time
does not yet address issues related to real-time scheduﬁ?ﬁéﬂedm'”g Service [23] targeted deterministic real-time appli-
Therefore, this section provides in-depth coverage of the cafAHONS that require off-line, static scheduling on a single CPU.

ponents TAO uses to implement a Real-time Scheduling ddpwever, the Scheduling Service is also useful for dynamic
vice. based on standard CORBA features. and distributed real-time scheduling, as well [47]. Therefore,

the Scheduling Service is defined as a CORBA obijeet,
] o ) ~as an implementation of an IDL interface. This design en-
3.1 Synopsis of Application Quality of Service aples the Scheduling Service to be accessed either locally or
Requirements remotely without having to reimplement clients that use it.

. . . TAO's Real-time Scheduling Service has the following off-
The TAO ORB endsystem [23] is designed to support vafl- o and ondline responsibilities:

. ) . C
ous classes of quality of service (Qo0S) requirements, mclug-

ing applications with deterministic and statistical real-timgg.jine scheduling feasibility analysis: TAO’s Scheduling
requirements. Deterministic real-time applications, such @gyyice performs off-line feasibility analysis of all IDL opera-
avionics mission computing systems [10], must meet periogligns that register with it. This analysis results in a determina-
deadlines. These types of applications commonly use stgtg of whether there are sufficient CPU resources to perform

scheduling and analysis techniques, such as rate monotggigritical operations, as discussed in Section 3.5.
analysis (RMA) and rate monotonic scheduling (RMS).

Statistical real-time applications, such as teleconfereilequest priority assignment: Request priorityis the rela-
ing and video-on-demand, can tolerate minor fluctuationstive priority of a requestto any other. It is used by TAO to
scheduling and reliability guarantees, but nonetheless requispatch requests in order of their prioritfrthread priority
QoS guarantees. These types of applications commonly issthe priority that corresponds to that of the thread that will
dynamic scheduling techniques [47], such as earliest deadim@ke the request. During off-line analysis, the Scheduling
first (EDF), minimum laxity first (MLF), or maximum urgencyService 1) assigns a request priority to each request and 2) as-
first (MUF). signs each request to one of the preconfigured thread priorities.

Deterministic real-time systems have traditionally beekt run-time, the Scheduling Service provides an interface that
more amenable to well-understood scheduling analysis tealews TAO's real-time ORB endsystem to access these priori-
niques. Consequently, our research efforts were initially diies. Priorities are the mechanism for interfacing with the local
rected toward static scheduling of deterministic real-time symidsystem’s OS dispatcher, as discussed in Section 3.4.
tems. However, the architectural features and optimizations o . ) )
that we studied and developed are applicable to real-time syd> high-level depiction of the steps involved in the off-line
tems with statistical QoS requirements, such as constraiﬁé‘&‘ on-line roles of TAO's Sche_dullng Service is shown in
latency multimedia systems or telecom call processing. THigure 10. In step 1, the Scheduling Service constructs graphs
paper describes the static scheduling service we initially devéidependent operations using the QoS information registered
oped for TAO. It then follows the progression of our scheduith it by the application. This QoS information is stored in

ing research towards dynamic scheduling, for both deternfil-Info  structures described in Section 3.3.3. In step 2, it
istic and statistical real-time systems. identifies threads by looking at the terminal nodes of these de-

pendency graphs and populatedininfo repository in step
o ] 3. In step 4 it assesses schedulability and assigns priorities,
3.2 Responsibilities of a Real-time Schedulinggenerating the priority tables as compilable C++ code in step

Service 5. These five steps occur off-line during the (static) schedule

This SulbseCtiQr.‘ exami.nes the analysis F:apabilities .andA requestis the run-time representation of an operation in an IDL inter-
scheduling policies provided by TAO’s Real-time Schedulirigee that is passed between client and server.
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3:rouae | OFF-LINE | per-connection basis [29]. Likewise, research on real-time op-
RT_INFO SCHEDULER . T — .
REPOSITORY erating systems has focused largely on avoiding priority inver-
% sion and non-determinism in synchronization and scheduling
wramony || Mechanisms for multi-threaded applications [13].
4 ASSESS Determining how to map the insights and mechanisms pro-
saupurasy— duced by QoS work at the network and OS layers onto an OO
sassevoseesp — programming model is a key challenge when adding QoS sup-

PRIORITIES AND

mencnqueee POt to ORB middleware [15, 40]. This subsection describes

struct RT_Info {
Time worstcase_exec_time_;
Period period_;
Criticality criticality_;
Importance importance_;

1: CONSTRUCT CALL -
CHAINS OF RT_OPERATIONS

DEPENDS UPON =
EXECUTES AFTER

2: IDENTIFY THREADS

RT RT

RT o ! :
Opeaton| | peraion| | operation | 00 JRun-mive o s the real-time OO programming model used by TAO. TAO sup-
R - Priority/ ports the specification of QoS requirements on a per-operation
<— . - .
Subpriority i ina TAO's r I-time IDL hem .
[C)C)C)C)] AR basis using TAO'’s real-time schemas
= = F = MOde M()IIPAT

SELECTOR

1/0 SUBSYSTEM

3.3.1 Overview of QoS Specification in TAO

) ) ] ] Several ORB endsystem resources are involved in satisfying
Flgure 10: Steps Involved with Off-line and On-line SChed“éfpplication QoS requirements, including CPU cycles, mem-
Ing ory, network connections, and storage devices. To support

end-to-end scheduling and performance guarantees, real-time
configuration process. Finally, the priority tables generatedolr|$BS muit aIIovngpohcatlons to specify their QoS require- i
step 5 are used at run-time in step 6 by TAO's ORB endsyste;n&fnts sothatan subsystem can guarantee resource avail-

TAO’s real-time Scheduling Service guarantees that Ilgy&a“;gfni'slfmﬁgﬁ d,thdeetsecr;r;::r:??erse;;térge _?%’Ztreerfgsr’é
RT_Operations in the system are dispatched with suffi- pacity 1S typicarly ' '

cient time to meet their deadlines. To accomplish this, thhﬁeegt?%S;tot:ecgtrantzlrjrtr:?r?atclbr?iirzesqowtrheaci ?P%‘OCZGPS;C§|IGCH;”FG-
Scheduling Service can be implemented to perform variqus . . . Y ca
€ allocated accordingly. To accomplish this, applications

real-time scheduling policies. [23] describes the rate monQ. specify their CPU capacity requirements to TAO's off-

tonic scheduling implementation used by TAO’s Schedullrﬁ%e Scheduling Service.

Service. A .
In general, scheduling research on real-time systems that

Below, we outline the information that the service requires nsider resources other than CPU capacity relies upon on-

to build and execute a feasible system-wide schedule. A feiﬁﬁ'é scheduling [61]. Therefore, we focus on the specification

ble schedule is one that is schedulable on the available sys‘ﬁgpu resource requirements. TAO’s QoS mechanism for ex-
resou;ces; _|nt(r)]ther_t\(vorlds,t|t ﬁfm .be t\;]er_lflsd tgl".ﬂ hone of ssing CPU resource requirements can be readily extended
oper'a |on§ in the critical set wi m|§s eir deadiines. to other shared resources, such as network and bus bandwidth,

It is desirable to schedule operations that are not part of m?ce scheduling and analysis capabilities have matured.
critical set if the dynamic behavior of the system results INThe remainder of this subsection explains how TAO sup-
additional available CPU resources, but scheduling of a n%’rts QoS specification for the purpose of CPU scheduling
critical operation shouldeverresult in an operation from thefor IDL operations that implement real-time operations. We
critical set failing to execute before deadline. _outline our Real-time IDL (RIDL) schemaRT_Operation

To S|_mpI|fy the presentation, we focus on ORB Schedullﬁmerface and itRT_Info struct . These schemas convey
for a smgle_CPl). The dlstrlputed schedu_llng problem is n@tos information,e.g, CPU requirements, to the ORB on a
addressed in this presentation. [47] outlines the approachgsoperation basis. We believe that this is an intuitive QoS
we are investigating with TAO. specification model for developers since it maps directly onto

the OO programming paradigm.

3.3 Specifying QoS Requirements in TAO using
Real-time IDL Schemas 3.3.2 The RT_Operation Interface

Invoking operations on objects is the primary collaboratigr'® RT-Operation  interface is the mechanism for convey-
mechanism between components in an OO system [15]. H#}t CPU requirements from processing tasks performed by ap-
ever, QoS research at the network and OS layers has Rligation qperatlons to TAQ's Scheduling Service, as shown in
addressed key requirements and usage characteristics oftesgollowing CORBA IDL interface.

middleware. For instance, re'search on QOS for ATM networkSGThe remainder of th®T_Scheduler module IDL description is shown
has focused largely on policies for allocating bandwidth oriresection 3.5.1.
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module RT_Scheduler

{
/I Module TimeBase defines the OMG Time Service.
typedef TimeBase:: TimeT Time; // 100 nanoseconds
typedef Time Quantum;

typedef long Period; // 100 nanoseconds

enum Importance

/I Defines the importance of the operation,

/I which can be used by the Scheduler as a

/I "tie-breaker" when other scheduling

/I parameters are equal.

{
VERY_LOW_IMPORTANCE,
LOW_IMPORTANCE,
MEDIUM_IMPORTANCE,
HIGH_IMPORTANCE,
VERY_HIGH_IMPORTANCE

3

typedef long handle_t;
/I RT_Info's are assigned per-application
/I unique identifiers.

struct Dependency_Info
{
long number_of_calls;
handle_t rt_info;
/I Notice the reference to the RT_Info we
/I depend on.

h
typedef sequence<Dependency_Info> Dependency_Set;

typedef long OS_Priority;
typedef long Sub_Priority;
typedef long Preemption_Priority;

struct RT_Info
/I = TITLE
1 Describes the QoS for an "RT_Operation®.

/I = DESCRIPTION

/I The CPU requirements and QoS for each
/I "entity" implementing an application

/I operation is described by the following

/I information.

/I Application-defined string that uniquely
/I identifies the operation.
string entry_point_;

/I The scheduler-defined unique identifier.
handle_t handle_;

/I Execution times.
Time worstcase_execution_time_;
Time typical_execution_time_;

/I To account for server data caching.
Time cached_execution_time_;

/I For rate-base operations, this expresses
/I the rate. 0 means "completely passive",
/I i.e., this operation only executes when

/I called.
Period period_;

/I Operation importance, used to “break ties".
Importance importance_;

/I For time-slicing (for BACKGROUND
/I operations only).
Quantum quantum_;

/I The number of internal threads contained
/I by the operation.
long threads_;

/I The following attributes are defined by
/I the Scheduler once the off-line schedule
/I is computed.

/I The operations we depend upon.
Dependency_Set dependencies_;

/I The OS por processing the events generated
/I from this RT_Info.
OS_Priority priority_;

/I For ordering RT_Info's with equal priority.
Sub_Priority subpriority_;

/I The queue number for this RT_Info.
Preemption_Priority preemption_priority_;
h
h

As shown above, thBT_Operation interface contains type
definitions and its key feature, th&T_Info struct , Which
is described below.

3.3.3 The RT.Info Struct

Applications that use TAO must specify all their scheduled re-
source requirements. This QoS information is currently pro-
vided to TAO before program execution. In the case of CPU
scheduling, the QoS requirements are expressed using the fol-
lowing attributes of aflRT_Info IDL struct

Worst-case execution time: The worst-case execution time,

C, is the maximum execution time that tRI_Operation
requires. Itis used in conservative scheduling analysis for ap-
plications with strict real-time requirements.

Typical execution time: The typical execution time is the
execution time that thRT_Operation  usually requires. The
typical execution time may be useful with some scheduling
policies, e.g, statistical real-time systems that can relax the
conservative worst-case execution time assumption. How-
ever, it is not currently used in TAO’s deterministic real-time
Scheduling Service.

Cached execution time: If an operation can provide a
cached result in response to service requests, then the cached
execution time is set to a non-zero value. During execution,
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for periodic functions, the worst-case execution cost is only R SERVANTS

incurred once per period if caching is enabliegl, if this field o R Operation || Work | o ouger msearcurn
is non-zero. The scheduling analysis incorporates caching by i oo} | 0Pt | [ 0 v
only including one term with the worst-case execution time [ OFCUNE e
for the operation, per period, no matter how many times it is ( SITHET DT } S 08
called, and by using the cached execution time for all other _ # 3: REQUEST QUEUED
calls. L >Z/ ACCORDING TO

REQUEST PRIORITY

Period: The period is the minimum time between successi|' . e e ; RUN-TIME

iterations of the operation. If the operation executes as an| s~ [STERLE

tive object [51] with multiple threads of control, then at lea; _‘5‘222.231“..3;:_; Subprioriy

one of those threads must execute at least that often. - Mode /O SUBSYSTEM
A period of 0 indicates that the operation is totalbac-

tive, i.e,, it doe; not specify a period. Reactive operationg are  figure 11: TAO Run-time Scheduling Participants

always called in response to requests by one or more clients.

Although the Run-Time Scheduler in TAO need not treat re-

active operations as occurring periodically, it must account f@éns to TAO’s Scheduling Service. This information is used

their execution time. by TAO to (1) validate the feasibility of a schedule and (2)

Criticality: The operation criticality is an enu-allocate ORB endsystgm and networ.k resources to process

meration value ranging from lowest criticalityi.e, RT-Operations . A singleRT.Info instance is required

VERY_LOW_CRITICALITY, up to highest criticality, i.e, for €achRT Operation

VERY_HIGH_CRITICALITY. Certain scheduling strategies

implemented in the Scheduling Service (notably maximum W4 gyerview of TAO’s Scheduling Model

gency first [50]) consider criticality as the primary distinction

between operations when assigning priority. TAO's on-line scheduling model includes the following partic-

Importance: The operation importance is an endPants, asshowninFigure 11:
meration value ranging from lowest importancege.

VERY_LOW_IMPORTANCE, up to highest importancei.e.,

VERY_HIGH_IMPORTANCE. The Scheduling Service use
importance as a “tie-breaker” to order the execution
RT_Operations when data dependencies or other fact
such as criticality do not impose an ordering.

2:RUN-TIME SCHEDULER
DETERMINES PRIORITY
OF REQUEST

1:1/0 SUBSYSTEM
RECEIVES REQUEST
FROM CLIENT

Work _Operation: A Work_Operation is a unit of work

that encapsulates application-level processing or communi-

%H?tion activity. For example, utility functions that read
ut, print output, or convert physical units can be
ork_Operations . In some real-time environments, a

Work_Operation is called amoduleor process but we

Quantum: Operations within a given priority may be timeavoid these terms because of their overloaded usage in OO

sliced,i.e., preempted at any time by the ORB endsystem dead OS contexts.

patcher resumed at a later time. If a time quantum is specified ] . )

for an operation, then that is the maximum time that it wiff T-Operation: An RT Operation  is a type of

be allowed to run before preemption, if there are any othdOrk-Operation  that has timing constraints.  Each

runnable operations at that priority. This time-sliced schedffT-Operation is considered to be an operation defined on

ing is intended to provide fair access to the CPU for lo/f/t CORBA IDL interface, that has its own QoS information

est priority operations. Quantum is not currently used in tgRecified in terms of the attributes in its run-time information
Scheduling Service. (RT.Info ) descriptor. Thus, an application-level object with

multiple operations may require multipRT_Operation

Dependency Info: This is an array of handles to othefgiances, one for each distinct class of QoS specifications.
RT.Info instances, one for eadRT_Operation that this

one directly depends on. The dependencies are used dufingad: Threads are units of concurrent execution. A
scheduling analysis to identify threads in the system: edbhead can be implemented with various threading APIs,
separate dependency graph indicates a thread. In additiongtige a Solaris or POSIX thread, an Ada task, a VxWorks
number of times that the dependent operation is called is spask, or a Windows NT thread. All threads are contained
ified, for accurate execution time calculation. within RT_Operation s. An RT_Operation containing
one or more threads is attive objec{52]. In contrast, an
The RIDL schemas outlined above can be used to spBd-Operation that contains zero threads ispassive ob-
ify the run-time execution characteristics of object opergct Passive objects only execute in the context of another

18



RT_Operation , i.e, they “borrow” the calling operation’'s3.5.1 Off-line Scheduling Service Interface

thread of control t . . .
read of confrotfo run The key types and operations of the IDL interface for TAO's

OS dispatcher: The OS dispatcher uses request priorities @df-line Scheduling Service are defined below
select the next runnable thread that it will assign to a CPU. It
removes a thread from a CPU when the thread blocks,
therefore is no longer runnable, or when the threagrés ~ exception DUPLICATE_NAME {}:
emptedy a higher priority thread. Withreemptive dispatch- // The application is trying to
ing, any runnable thread with a priority higher than any run-// register the same task again.
n@ng thre:_ad _wiII preempt a lower priority thread. Then, the exception UNKNOWN_TASK {}:
higher priority, runnable thread can be dispatched onto thg The RT Info handle was not valid.
available CPU. _

Our analysis assumédixed priority, i.e, the OS does not *<Pion NOT_SCHEDULED {};

. L. e application is trying to obtain
unilaterally change the pr|or|ty.of a t.hread. TAO curren_tly /I scheduling information, but none
runs on a variety of platforms, including real-time operating// is available.
systems, such as VxWorks and LynxOS, as well as general- _

: : : : exception UTILIZATION_BOUND_EXCEEDED {};

purpose operating systems with real-time extensions, such 3 ception
Solaris 2.x [14] and Windows NT. All these platforms provide  |NSUFFICIENT_PRIORITY_LEVELS {};
fixed priority real-time scheduling. Thus, from the point of exception TASK_COUNT_MISMATCH {};
view of an OS dispatcher, the priority of each thread is con-x Zéﬁgldel:ﬂz while computing off-line
stant. The fixed priority contrasts with the operation of time- g
shared OS schedulers, which typicadlgelong-running pro-  typedef sequence<RT_Info> RT_Info_Set;
cesses by decreasing their priority over time [62].

ule RT_Scheduler

interface Scheduler
RT_Info: As described in Section 3.3, &iT_Info  struc- Z = ?ESCT'PT'S’\I'OI | the RT Inf
e : ) : o is class holds al e _Info’s
ture specifies aRT'_Ope.:ratlon sschgdullng'characterlstlcs /I for a single application.
such as computation time and execution period. {

. . . . handle_t create (in string entry_point)
Run-Time Scheduler: At run-time, the primary visible ves- raises (DUPLICATE_NAME):

tige of the Scheduling Service is the Run-Time Scheduler. The // Creates a new RT_Info entry for the
Run-Time Scheduler maps client requests for particular ser- // function identifier "entry_point",

. . - hat derstood by the local /I it can be any string, but the fully
vant qperatlons Into priorities tha a':e un e _y Il qualified name function name is suggested.
OS dispatcher. Currently, these priorities are assigned stati- // Returns a handle to the RT_Info.
cally prior to run-time and are accessed by TAO’s ORB end-

system via ar(1) time table lookup. handle_t lookup (in string entry_point);

/I Lookups a handle for entry_point.
RT_Info get (in handle_t handle)

3.5 Overview of TAO’s Off-line Scheduling raises (UNKNOWN_TASK):
Service /I Retrieve information about an RT_Info.

To meet the demands of statically scheduled, deterministic void set (in handle_t handle,

. ; . . . in Time time,
real-time systems, TAO’s Scheduling Service uséfsline in Time typical_time,

schedulingwhich has the following two high-level goals: in Time cached_time,

. . . in Period period,
1. Schedulability analysis: If the operations cannot be in Importance importance,
scheduled because one or more deadlines could be missed, in Quantum quantum,
then the off-line Scheduling Service reports that prior to run- in long threads)

. raises (UNKNOWN_TASK);
time. /I Set the attributes of an RT_Info.

. . . /I Notice that some values may not
2. Request priority assignment: If the operations can be /I be modified (like priority).

scheduled, the Scheduling Service assigns a priority to each
request. This is the mechanism that the Scheduling Service void add__delze”%fncyh il
uses to convey execution order requirements and constraints (in_handle_t handle,

to TAO’s ORB endsystem dispatcher. "The remainder of thRT_Scheduler module IDL description is shown
in Section 3.3.2.
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struct RT Info

{

in handle_t dependency,
in long number_of_calls)

raises (UNKNOWN_TASK);
/I Adds <dependency> to <handle>

RT
Operation

wc_exec_time ;
cached exec time ;
period_;

importance_;

void  priority dependencies_; OFF-LINE

(in handle_t handle, v - SCHEDULER | ppLication

out OS_Priority priority, INTERFACE

out Sub_Priority subpriority,

out Preemption_Priority p_priority) RT,

raises (UNKNOWN_TASK, NOT_SCHEDULED); f R;*T—M‘;Y priviecep | Operation

void entry_point_priority il INTERFACE

(in string entry_point,

out OS_Priority priority, RT RT RT

Operation | | Operation | | Operation

out Sub_Priority subpriority,

out Preemption_Priority p_priority) [ OBJECT ADAPTER

raises (UNKNOWN_TASK, NOT_SCHEDULED);
/I Obtain the run time priorities.

interface Scheduler

{
register_operation();
schedule();

void compute_scheduling
(in long minimum_priority,
g‘utlogg_m?g_'rggtm m’?g;’)”ty' Figure 12: TAO's Two Scheduling Service Interfaces
raises (UTILIZATION_BOUND_EXCEEDED,
INSUFFICIENT_PRIORITY_LEVELS,
TASK_COUNT_MISMATCH); priorities, when it is invoked, and what is stored in its internal
/I Computes the scheduling priorities, database.
/I returns the RT_Info’s with their
/I priorities properly filled. This info

priority();

>

/I can be cached by a Run_Time_Scheduler 3.5.2 RT.Operation Priority Assignments
/I service or dumped into a C++ file for ) ] ) ) o
/I compilation and even faster (static) The off-line Scheduling Service assigns priorities to each
1 lookup. RT_Operation . Because the current implementation of the
. b Scheduling Service utilizes a rate monotonic scheduling pol-

icy, priorities are assigned based on an operation’s rate. For
Not shown are accessors to system configuration data #s¢hRT_Operation in the repository, a priority is assigned
the scheduler contains, such as the number of operationsleeskd on the following rules:
threads in the system. There is alsai@stroy ~operation Rule 1: If the RT.Info::period of an operation is non-

that the application calls when a program exits. This OPER0, TAO's off-line Scheduling Service uses this informa-
tion allows the scheduler to release its dynamically aIIocatE io map the period to a thread priority. For instance, 100
resources. . L sec periods may map to priority O (the highest), 200 msec

In general, the Scheduling Service interface need not Siods may map to priority 1, and so on. With rate mono-

viewed by application programmers; the only interface th Shic scheduling, for example, higher priorities are assigned to

need to use is th&RT.Info interface, described in Sec- .
. S . S shorter periods.
tion 3.3.3. This division of the Scheduling Service interface P

into application and privileged sections is shown in Figure 13ule 2: If the operation does not have a rate requirement,

The privileged interface is only used by common TAO séi€. its RT.Info::period is 0, then its rate requirement
vices, such as: must be implied from theoperation _dependencies _
field stored in theRT.Info struct . The RT.nfo
e The Event Channel in TAO's Real-time Event Servicgryct  with the smallest period, ie, with the fastest rate,
[10], which registers itRT_Operations  with the off- iy the RT.Info::operation _dependencies _ list will
line Scheduling Service; be treated as the operation’s implied rate requirement, which
o Application-level schedulable operations that do not uise then mapped to a priority. The priority values com-
the Event Channel; puted by the off-line Scheduling Service are stored in the
e TAO’s real-time ORB endsystem, which accesses th L Infor:priority - field, which the Run-Time Sched-

er can query at run-time via thiority operation.

The final responsibility of TAO's off-line Scheduling Ser-
The remainder of this subsection clarifies the operationwe is to verify the schedulability of a system configuration.

TAQO'’s Scheduling Service, focusing on how it assigns requéstis validation process provides a definitive answer to the

interfaces to determine client request dispatch prioritieg.
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guestion “given the current system resources, what is the lowewewrme
est priority level whose operations all meet their deadlines? ‘::f‘“ s
The off-line Scheduling Service uses a repositorRdfinfo s
structures shown in Figure 14 to determine the utilization re-;
quired by each operation in the system. By comparing th

total required utilization for each priority level with the known

1: APPLICATIONS CONSTRUCT
RT_INFOS

dependencies_;
©2: COMPILE AND LINK PROGRAM

(use -DSCHEDCONFIG=1)

RT
Operation

RT
Operation

RT
Operation

® 3: RUN CONFIGURATION PROGRAM

resources, an assessment of schedulability can be calculatiu.22rECT ADAPTER ) 2 APPLCAIONS RATER WL O
TAO's off-ine Schedulin i | ) s
! ing Service currently uses tht_J € X
RT.Info attributes of applicatioRT_Operations  to build = = STTNE
. . . - . — = C: PROGRAM INFORMS ORB THAT
the static schedule and assign priorities according to the /0 SUBSYSTEM SCHEDULER
IOWing steps: @ OFF-LINE SCHEDULER'S TASKS: l<—@ 4: COMPLETE PROGRAM
A: ASSESSES SCHEDULABILITY A: ORB CALLS SCHEDULER'S
. . e RT_INFO
1. Extract RT _Infos: Extract allRT_Info instances for all B e s | RepoSITORY g, s () eon

theRT_Operations in the system. CONTAINING PRIORITIES

2. Identify real-time threads: Determine all the real- Figyre 13: Scheduling Steps During a Configuration Run
time threads by building and traversing operation dependency

graphs.

. . L to conditionally compiléRT_Info s only during configuration
3. Determine schedulability and priorities: Traverse the " y b y aunng guratl

dependency graph for each thread to calculate its executio?h'e application should use thiestroy  operation to no-

time and perlqu. Then,'assess SChe(.jUI.a.b'“ty based Ontl%ethe Scheduling Service when the program is about to exit
thread properties and assign request priorities.

so that it can release any resources it holds. It is necessary to
4. Generate request priority table: Generate a table ofrelease memory during configuration runs in order to permit
request priority assignments. This table is subsequently i@peated runs on OS platforms, such as VxWorks, that do not
tegrated into TAO's run-time system and used to schediféease heap-allocated storage when a program terminates.
application-level requests. For consistency in application code, the Scheduling Ser-

) . . . vice configuration and run-time interfaces are identical. The
These steps are described further in the remainder of this fedule operation is essentially o-opin the run-time

tion. version; it merely performs a few checks to ensure that all op-
erations are registered and that the number of priority values
3.5.3 Extract RT_Infos are reasonable.

The Scheduling Service is a CORBA object that can be ac- _ .
cessed by applications duriegnfiguration runs To use the 3.5.4 Identify Real-time Threads

Scheduling Service, users must instantiate Bidnfo in- - age, collecting all of theRT_Info instances, the Schedul-

sta?_tlatlon fp reacRT_Otperatlfotr;] n t?e styste_IrTJA.é\ Corg'%i g Service identifies threads and performs its schedulabil-
uration run 1s an execution ot the application, 1AL, and. fg/ analysis. Athreadis defined by a directed acyclic graph
services which is used to provide the services with any inf a3

RT_Operations . An RT.nfo instance is associated

mation needed for static configuration. The interactions Qﬁi'th each RT.Operation by the application developer:
tween the and Scheduling Service during a configuration 8% Info crer;ltion has been automated using the inforn’1a-

are shown in Figure 13. tion available to TAO’s Real-time Event ServicBT.Info s

i Ihg.RT‘IT]fO iljstantiationsé Ste2p %h are ‘I‘.OmP”e‘?' ar?gontain dependency relationships and other informagan,
inked Into the main program, Step 2. The application Is t ﬁﬂportance which determines possible run-time ordering of

executed, Step 3. It_registe'rs ea%EOperation W_ith el- RT_Operation invocations. Thus, graphof dependencies
ther TAO (currently, via TAO’s Real-time Event Service), Stefpom eachRT Operation  can be generated mechanically,

3A, or directly with the Scheduling Sgrvic_:e, Stepl3B, for Opeﬂ'sing the following algorithm:
ations that do not use TAO. The application notifies TAO, Step
3C, which in turn notifies the Scheduling Service, when dll Build a repository of RT_Info instances: This task con-
registrations have finished. TAO invokes the off-line scheduists of the following two steps:
ing process, Step 4A. Finally, the application exits, Step 4B.

With off-line scheduling, thRT_Info s are not needed at e Visit eachRT.Info instance; if not already visited, add
run-time. Therefore, one space-saving optimization would be to repository, and

21



¢ Visit the RT.Info of each dependent operation, depth CALL-CHAIN 23 Ms/20 Hz => PRIORITY 1
first, and add a link to the dependent operation’s internal  rgar /
(to the Scheduling Servic®ependency _Info array.

— DEPENDENCIES RT_OPE RATION]

operation’ || | [, [ [ [ [ [ ] swmn
2. Find terminal nodes of dependent operation graphs: peration
As noted in Section 3.5.2, identification of real-time threads 7"~ / 15 ms/10 Hz => PRIORITY 2
involves building and traversing operation dependency graphs. = P
The terminal nodes of separate dependent operation graphsin| RT RT_OreRaTioNy
dicate, and are used to identify, threads. The operation de- |Operation | | | | | | | | | 3 ws/10 Hz
pendency graphs capture data dependegwgy, if operation
A calls operation B, then operation A needs some data that
operation B produces, and therefore operation A depends on| work DERENDENCIED RT_OPERATION3
operation B. If the two operations execute in the context of a || Operation | | | | | | | | | 10 ms

single thread, then operation B must execute before operation
A. Therefore, the terminal nodes of the dependency graphs de-
lineate threads.

3. Traverse dependent operation graphs: After identi- PassiveRT_Operations , i.e, those without any internal
fying the terminal nodes of dependent operation graphs, theeads of their own, do not appear as terminal nodes of de-
graphs are traversed to identify the operations that comppgedent operation graphs. They may appear further down a
each thread. Each traversal starts from a dependent operat@pendent operation graph, in which case their worst-case and
graph terminal node, and continues towards the dependentigpical execution times are added to the corresponding execu-
eration’s roots until termination. An operation may be part tibn times of the calling thread. However, cached execution
more than one thread, indicating that each of the threads riieaes may be added instead, for periodic functions, depending
call that operation. on whether result caching is enabled and whether the operation
The algorithm described above applies several restrictidr&s been visited already in the current period.
on the arrangement of operation dependencies. First, a threakhe algorithm for identifying real-time threads may appear
may be identified by only one operation; this correspontiscomplicate the determination of operation execution times.
directly to a thread having a single entry point. Many OBor instance, instead of specifying a thread’s execution time,
thread implementations support only a single entry paiat, an operation’s execution time must be specified. However, this
a unique function which is called when the thread is startet:sign is instrumental in supporting an OO programming ab-
This restriction imposes no additional constraints on thosaction that provides QoS specification and enforcement on
platforms. a per-operation basis. The additional information is valuable
The second restriction is that cycles are prohibited in de-accurately analyze the impact of object-level caching and to
pendency relationships. Again, this has a reasonable interprevide finer granularity for reusinBT_Info s. In addition,
tation. If there was a cycle in a dependency graph, there wothiis approach makes it convenient to measure the execution
be no bound, known to the scheduler, on the number of tini#ses of operations; profiling tools typically provide that in-
the cycle could repeat. To alleviate this restriction, the applidarmation directly.
tion can absorb dependency graph cycles into an operation that
encapsulates them. IBT_Info would reflect the (bounded)3.5.5 Determine Schedulability and Priorities

number of internal dependency graph cycles in its worst-case . ) ,
execution time. Starting from terminal nodes that identify threads, the

. . _ _RT.Info dependency graphs are traversed to determine
TheRT.Info I’epOSItOI’y that the SChedu|II’lg Service bu”%read propertiesl as follows:

is depicted in Figure 14.
The Scheduling ServiceRT_Info repository includes the

Figure 14: TheRT.Info Repository

Traverse each graph: summing the worst case and typical
execution times along the traversal. To determine the period at

RT.Info reference and an array of tHeT_Operations ; o )
that it depends upon. The®T Operation dependenciesWh'Ch the thread must run, save the minimum period of all of
' § e non-zero periods of all of tiRT_Info s visited during the

are depicted by blocks with arrows to the dependent opetrt}:\-
tions. TheDependency _Info arrays are initialized while traversal.
first traversing theRT.Info instances, to identify threadsAssign priorities: depending on the scheduling strategy
Terminal nodes of the dependent operation graphs are idesed, higher priority is assigned to higher criticality, higher
tified; these form the starting point for thread identification. rate,etc.
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Based on the thread properties, and the scheduling stéht- Performance Experiments
egy used, schedule feasibility is assessed. For example, with

RMA, EDF, or MLF, if the total CPU utilization is below theq - oot experience pinpointing performance bottlenecks in
utilization bound, then the schedule for the set of threads,i$yqjeware like Web servers [63], and CORBA ORBs [21]
feasible. With MUF, if utilization by all operations in theyemongtrates the efficacy of a measurement-driven research
critical set is below the utilization bound, then the sched thodology. This section describes the results of an experi-
is feasible, even though schedulability of operations outsigt that jllustrates why conventional ORBs are unsuited for

the critical set may or may not be guaranteed. If the schegljications with real-time requirements. Future work will in-
ule is feasible, request priorities are assigned according to§ Etigate the real-time performance of TAO in detail
scheduling strategy,e., for RMS requests with higher rates

are assigned higher priorities, for MUF requests with higher

criticality levels are assigned higher prioritietc.
Co ¢, .. G

:i Requests
The Scheduling Service generates a table of request prio| cJijent
assignments. Every thread is assigned a unique integer ide

fier. This identifier is used at run-time by TAO’s ORB endsy: E E
tem to index into the request priority assignment table. The ' x \ '
AT,

3.5.6 Generate Request Priority Table

priorities can be accesseddi(1) time because all scheduling

analysis is performed off-line. ATM Switch
UItrag Ultra

Output from the Scheduling Service is produced in the for...
of an initialized static table that can be compiled and linked ) )
into the executable for run-timee., other than configuration, Figure 15: Testbed for ORB analysis
runs. The Scheduling Service provides an interface for the
TAO’s ORB endsystem to access the request priorities con-
tained in the table.

The initial configuration run may contain, at worst, initiah 1 Measuring ORB Priority Inversion
estimates oRT_Operation  execution times. Likewise, it

may include some execution times based on code S|mulatﬁn . L .
. . oo ; is experiment measures tbegree of priority inversiornn
or manual instruction counts. Successive iterations should in- Lo . -
ORB. Priority inversion is the condition that occurs when

clude actual measured execution times. The more accuratet he . . L .
) . . he execution of a high priority thread is blocked by a lower
input, the more reliable the schedulability assessment.

priority thread. Priority inversion often occurs when threads

Off-line configuration runs can be used to fill in theunning at different priorities share common I/O channels. Itis
Dependency _Info arrays and calibrate the execution timésard to eliminate priority inversion completely; if it cannot be
of theRT.Info instances for each of tHeT_Operations . avoided,bounded priority inversiors desirable. This means
The initial implementation of the Scheduling Service requirgsat the amount of time a higher priority task is waiting due to
that this input be gathered manually. TAO’s Real-time Eveaower priority task must have a tight upper bound.

Service [10] fills in theDependency _Info arrays for its 114 describes one approach to control priority inversion,
suppliers. Therefore, applications that manage all of their regls,  y jority inheritance Priority inheritance temporarily in-
time activity through TAO's Event Service do not require Manieaqes the priority of a lower priority task when the system
ual collection of dependency information. detects that a higher priority task cannot proceed due to de-
One user of the Scheduling Service has written a thin layemdencies on a lower priority task. However, this basic pri-
interface for calibrating thRT_Info execution times on Vx- ority inheritance protocol can run into problems as well, such
Works, which provides a system call for timing the executias formation of deadlock, and of chained blocking [64]. To
of a function. During a configuration run, conditionally comaddress these problengjority ceiling protocols can be em-
piled code issues that system call for ed&hOperation ployed. These protocols involve assigningeadling priority to
and stores the result in tfT_Info  structure. the shared resource [64].
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4.1.1 Experimental Setup guests since they do not performamission contrglas dis-

. ) , o cussed in Section 1.2.
The experimental testbed is depicted in Figure 15. The exper-

iments was conducted using a Bay Networks LattisCell 10114 ) o
ATM switch connected to two dual-processor UltraSPARC-2sl-2  Results for MT-Orbix and VisiBroker

running SunOS 5.5.1. The LattisCell 10114 is a 16 Port, O@g), 10 16 and Figure 17 plot the response times experienced
155 Mbs/port_ switch. Each UltraSPARC-2 contains 2 1@)@ the high-priority clientCy, and the average response time
MHz CPUs with a 1 Megabyte cache per-CPU, 256 Mbytes @i ienced by the low-priority clients, ...C,,, as we in-
RAM, and an ENI-155s-MF ATM adaptor card that SUppOr§ease the value of. These figures indicate that both Orbix

155 Megabits per-sec (Mbps) SONET multi-mode fiber. The,y visibroker exhibit extensive priority inversion. In particu-
Maximum Transmission Unit (MTU) on the ENI ATM adap1ar as the number of low priority clients increases, the latency

tor is 9,180 bytes. Each ENI card has 512 Kbytes of on-bogjitk e eq by the high priority client increases rapidly. Since

memory. A maximum of 32 Kbytes is allotted per ATM Viry, o sarver uses a higher real-time priority thread to handle high
tual circuit connection for receiving anq transmlttmg fr,am‘?ﬁiority client requests, the latency seen by the higher priority
(for a total of 64 K). This allows up to eight switched virtugljjents shoulchotbe affected by the presence of lower priority
connections per card. requests.

We selected two popular commercial multi-threaded 1 jncrease in the latency observed by the high priority

CORBA implementations for the priority inversion testgjient is due to priority inversion in various layers of the ORB
lona’s MT-Orbix v2.2, and Visigenic’s Visibroker v2.0. Theendsystems as described below:

test used one high priority cliedt, andn low priority clients,
Ci ... C,. The priority of the clients is determined as fols OS I/O Subsystem: The Solaris /0O subsystem does not
lows: each client makes time-constrained two-way CORB#erformpreemptible prioritized protocol processinige., the
operation invocations.e., the client requires the operation inprotocol processing of lower priority packetsrist deferred
vocation to complete within a predefined amount of time, redue to the arrival of a higher priority packet. Thus, incom-
ferred to as thdeadline The high-priority client has an earliering packets are processed according to tbeder of arrival
deadline than the low-priority clients. Therefore, its operatisather than theipriority. For instance, if a low priority re-
invocations must complete earlier than the low-priority clientguest arrives before a high priority request, the /0O subsystem
The server uses the thread-per-session concurrency motiéiprocess the lower priority packeeforethe higher priority
In this model, a new thread is created to handle each cligagket. The amount of time spent in the low-priority servant
connection. The server supports the notion of the client pigpresents the priority inversion. TAO addresses these prob-
ority using the Active Object pattern [52], as follows. Eaclgms using the Gigabit Real-time I/O Subsystem discussed in
client requests the creation of a servant object using théction 2.1.
create _servant method provided by a Server Factory, ORB Core:

The client indicates its priority as an argument to this methad The ORB Core implements the GIOP proto-
priority arg . col. It thus sends/receives GIOP packets to/from the 1/O sub-
The Factory creates a neservantobject for each client. It

m and isr nsible for pr ing th kets. Cur-
also creates a new thread, called sieevant threadto handle system and is responsible for processing these packets. Cu

all future requests from this client. The priority indicated brent GIOP mappings (such as 11OP) do not communicate re-

the client when it calls thereate _servant  method is used a/uest priority with each request. Therefore, the ORB Core is

by the Factory t lect an ropriate priority for & nt unaware of the priority of the request. Hence, the ORB Core
y the actory'to select an appropriate prionty Tor Seevant ¢, 11 orpix and VisiBroker process GIOP packets in their
thread For the high priority client, the server uses thighest

: o . ; . . order of arrival, which leads to priority inversion. TAO imple-
real-time priority available with the Solaris operating system, h Ldi di ion 2.2 hich
For the low priority client, the server uses tlogvest real-time mentst ERIQP proto.co ISCUSSEd 1N Section ; '.1’W ich can

o . . include QoS information with each request. This information
priority available on Solaris.

o , can be used to perform prioritized protocol processing, thus
As the number of low-priority clients increases, the numbﬁﬂeviating priority inversion in TAO's ORB Core
of low-priority requests on the server also increases. When '

the load becomes high, these low-priority clients begin to con©Object Adapter: The Object Adapter for MT-Orbix and
tend with high-priority requests made b}yy. ORBs that avoid VisiBroker do not perform prioritized demultiplexing of re-
priority inversion by implementing preemptive GIOP protocgjuests. In addition, these ORB implementations perfiagm
processing can satisfy the deadline of the high priority cliemted demultiplexingvhich causes priority inversion and other
even in the presence of heavy low priority load. As shovperformance penalties [20]. Section 2.3 describes the design
in the results below, however, conventional ORBs allow a&f TAO’s real-time Object Adapter and how it eliminates pri-
unlimited number of low priority clients to make CORBA reerity inversion.
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These results illustrate the non-deterministic performance '
seen by applications running atop conventional ORBs that lack
real-time features. In addition, the results show that priority in-
version is a significant problem in these ORBSs, and thus they o
are unsuitable for applications with deterministic real-time re- ' /

quirements. o7 /
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Figure 17: Priority Inversion in Visibroker

0.2 == atency for High Priority Client [~
/ == _atency for Low Priority Client
01 / tiplex events, dispatch them to the servant, and for the servant
to handle these requests. Figure 18 depicts this latency ob-
T e b 5w s m m w = o sgrved py the high priority client as the number of low priority
Number of Low Priority Clients clients increase. These results illustrate that the latency ob-

served by the high priority client is not significantly adversely

affected as the number of low priority clients increases. There-
fore, the Event Channel correctly handles the priorities of the
clients and does not suffer from priority inversion. These re-
4.1.3 Results for TAO’s Real-time Event Channel sults serve as proof of concepof the prioritized request pro-

To illustrate how TAO addresses the priority inversion proggssmg _capab!lmes n TA.OS real—tlmg Opject Adapter. .
Real-time middleware is an emerging field of study. An in-

lems discussed above, we performed an experiment SimilFfjlerasin number of research efforts are focusing on integratin
to the above with the TAO Real-time Event Channel [1 9 9 9 9

As discussed in Section 3, the Event Channel currently i 0S and real-time scheduling into middleware like CORBA.

plements several key features of TAO’s Real-time Objec IS sectlon. compares our work on TAO with related QoS
Adapter (ROA), such as real-time dispatching of requegt]éddleware integration research.
(events), and real-time scheduling of clients/servants (supp©RBA-related QoS research: Krupp, etal, [65] at
ers/consumers). MITRE Corporation were among the first to elucidate the re-
Similar to the experiments performed with Orbix and Visguirements of real-time CORBA systems. A system consist-
ibroker, we created a high priority client amdlow priority ing of a commercial off-the-shelf RTOS, a CORBA-compliant
clients. Each client had its own servant object. Thus t@RB, and a real-time object-oriented database management
CORBA clients used in the tests with Orbix and Visibrokesystem is under development [66]. Similar to the initial ap-
were modeled as Event suppliers and CORBA servants wereach provided by TAO, their initial static scheduling ap-
modeled as Event consumers. The Event Channel Schedaleach uses RMS, though a strategy for dynamic deadline
assigns appropriate real-time priorities to the servants, simitamnotonic scheduling support has been designed [67].
to the Server Factory in the experiments performed with OrbixWolfe, et al,, are developing a real-time CORBA system at
and Visibroker. the US Navy Research and Development Laboratories (NRaD)
Our experiment measured tlatencyobserved by the chan-and the University of Rhode Island (URI) [68]. The sys-
nel clientsj.e., the time taken for the Event Channel to demutem supports expression and enforcement of dynamic end-

Figure 16: Priority Inversion in Orbix
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1 municating changes in QoS characteristics between applica-
/ tions, middleware, and the underlying endsystems and net-

09 work. The QuO model uses the concept afannectiorbe-

/ tween a client and an object to define QoS characteristics.
o These characteristics are treated as first-class objects. Objects
o / can be aggregated to enable characteristics to be defined at var-
' '/-( ious levels of granularitye.g, for a single method invocation,
06 for all method invocations on a group of objects, and similar

combinations. The QuO model also uses several QoS defini-
tion languages (QDLs) that describe the QoS characteristics
of various objects, such as expected usage patterns, structural
/ details of objects, and resource availability.

Normalized Latency
o
@

I
IS

The QuO architecture differs from our work on real-time
e Latency for High Prorty Gt QoS provisioning in TAO since QuO does not provide hard
S Latency for Low Priory Clent real-time guarantees of ORB endsystem CPU scheduling. Fur-
thermore, the QuO programming model involves the use of
o1 several QDL specifications, in addition to OMG IDL, based
./-/ . [y on the separation of concerns advocated by Aspect-Oriented
o —r—e—em Y Programming (AoP) [69]. We believe that although the
L et i Y AOP paradigm is powerful, the proliferation of definition lan-
guages may be overly complex for common application use-
cases. Therefore, the TAO programming model focuses on
theRT_Operation andRT.Info QoS specifiers, which can

- : . L _be expressed in standard OMG IDL and integrated seamlessly
to-end timing constraints through timed distributed operatlg\ﬂth the existing CORBA programming model

invocations TDMIs) [15]. A TDMI corresponds to TAQ's The Realize project at UCSB [39] supports soft real-time

RT.Operation . [23]. Likewise, an'R'I"_Envwonmer?t &psource management of CORBA distributed systems. Real-
structure contains QoS parameters similar to those in TAQ'S . - ) .
ize aims to reduce the difficulty of developing real-time sys-

RT.Info . > the d :
diff b dth hesi tems and to permit distributed real-time programs to be pro-

One difference etween TAO andt e.URI approlr?lc es IIS ta?émmed, tested, and debugged as easily as single sequential
TDMIs express required timing constrairsy, deadlines rel- programs. The key innovations in Realize are its integration of

ativ_e to the current timg, whereﬁ_ST_Operation S publish _distributed real-time scheduling with fault-tolerance, of fault-
their resourcee.g, CPU time, requirements. The difference ity g ance with totally-ordered multicasting, and of totally-

approaches may reflect the different time scales, seconds Sfdered multicasting with distributed real-time scheduling,

sus milliseconds, respectively, and scheduling requiremeqishin the context of object-oriented programming and exist-

dynamic versus static, of the initial application targets. HOWs standard operating systems. Realize can be hosted on top
ever, the approaches should be equivalent with respect to a0 [39]

tem schg(_julabnny and analysis. . The Epiq project [70] defines an open real-time CORBA

_ Inaddition, NRaD/URI supply a new CORBA Global Priorgcheme that provides QoS guarantees and run-time scheduling
ity Service (analogous to TAO's Scheduling Service), and aygsinility. Epiq explicitly extends TAO's off-line scheduling
ment the CORBA Concurrency and Event Services. The initighye| 1o provide on-line scheduling. In addition, Epiq allows
implementation useEDF within importance levedlynamic, jients to be added and removed dynamically via an admis-

on-line scheduling, supported by global priorities. A globg|o, test at run-time. The Epiq project is work-in-progress and
priority is associated with eacdfDMI, and all processing assOempjirical results are not yet available.

ciated with the TDMI inherits that priority. In contrast, TAO’s
initial Scheduling Service was static and off-line; it uses inNon-CORBA-related QoS research: The ARMADA
portance as a “tie-breaker” following the analysis of other rgroject [71, 72] defines a set of communication and mid-
quirements such as data dependencies. Both NRaD/URI gRrsivare services that support fault-tolerant and end-to-end
TAO readily support changing the scheduling policy by eguarantees for real-time distributed applications. ARMADA
capsulating it in their CORBA Global Priority and Schedulingrovides real-time communication services based on the
Services, respectively. X-kernel and the Open Group’s MK microkernel. This infras-
The QuO project at BBN [40] has defined a model for cortructure provides a foundation for constructing higher-level

03

0.2

Figure 18: TAO Event Channel Performance

26



real-time middleware services. served real-time embedded software development projects that
TAO differs from ARMADA in that most of the real-time in- have lagged in terms of design and development methodolo-

frastructure features in TAO are integrated into its ORB Cougies (and languages) loiecadesThese projects are extremely

In addition, TAO implements the OMG’s CORBA standard;ostly to evolve and maintain. Moreover, they are so special-

while also providing the hooks that are necessary to integriied that they cannot be adapted to meet new market opportu-

with an underlying real-time I/O subsystem and OS. Thusties.

the real-time services provided by ARMADAs communica- The flexibility and adaptability offered by CORBA make

tion system can be utilized by TAO’s ORB Core to supportivery attractive for use in real-time systems. |If the real-

vertically and horizontally integrated real-time system. time challenges can be overcome, and the progress reported
Rajkumar,et al,, [73] at the Carnegie Mellon Universityin this paper indicates that they can, then the use of Real-time

Software Engineering Institute, developed a real-time PUBORBA is compelling. Moreover, the solutions to these chal-

lisher/Subscriber model. Itis functionally similar to the TAO'$enges will sufficiently complex, yet general, that it will be

Real-time Event Service [10]. For instance, it uses real-timell worth re-applying them to other projects in domains with

threads to prevent priority inversion within the communicatigtringent QoS requirements.

framework. The C++ source code for TAO and ACE is freely available at
The CMU model does not utilize any QoS specificationgvw.cs.wustl.edu/  ~schmidt/TAO.html . This re-

from publishers (event suppliers) or subscribers (event cégrse also contains the real-time ORB benchmarking test suite

sumers). Therefore, scheduling is based on the assignmeiesicribed in SectioR?.

request priorities, which is not addressed by the CMU model. TAO is currently being deployed at Boeing in St.

In contrast, TAO’s Scheduling Service and real-time Evepouis, MO, where it is being used to develop oper-

Service utilize QoS parameters from suppliers and consungifgn flight programs for next-generation avionics sys-

to assure resource access via priorities. One interesting as{ggos.  Source code for the TAO ORB is available at

of the CMU Publisher/Subscriber model is the separationwWww.cs.wustl.edu/  ~schmidt/TAO.html

priorities for subscription and data transfer. By handling these

activities with different threads, with possibly different priori-

ties, the impact of on-line scheduling on real-time processiﬁngnOWIGdgementS

n minimized. . . .
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All operations are periodic Multiple operation priority levels: TAQO's real-time
Scheduling Service generates operation priorities as its
S o output. It assigns an OS-specific priority to each thread in the
Context switching time is negligible application,e.g, using RMS. Each operation in the thread is
There is a single operation priority level then assigned the priority of that thread. For operations in
more than one thread, the highest priority is assigned. RMA
. i ) can be applied when there are multiple priority levels if there
Operation periods are related harmonicalgnd is preemption, which is supported by TAO’s Object Adapter.
All operation deadlines are at the ends of periods If preemption is not immediate, then it must be accounted for
in the analysis; an example is the analysis of RTUs [28].
Given the above restrictions, and knowledge of the com- | )
putation time,C;, and period,P;, of each operation, then Multiple CPUs: Currently, our RMA analysis assumes

the schedulability tests simply a comparison of the sum of AO'S Object Adapter dispatches client requests on a single
the utilizations """, %, over each of the operations in the CPU. Therefore, all work can be scheduled on that CPU in

program with 1. If the sum of the utilizations is less than étolation. The first step towards scheduling on multiple CPUs
equal to 1, the operation set is schedulable; otherwise, it is f}

|l be to allocate threads manually to the separate CPUs and
Many of these restrictions can be relaxed for TAO in detdP. schedule each CPU separately, considering interprocessor
ministic real-time environments, as follows:

communication as interrupts. Further refinement of the anal-

. _ ~ysis will take the actual priority of interprocessor events into
Interdependent operations: When operations are not indezccount.

pendent, scheduling analysis must (conservatively) consider

the time that a thread may be blocked by one of lower priorf@Peration periods are related harmonically: If operation

due to synchronization. With sufficient analysis of system p&€riods are not related harmonically, thentiftiézation bound

ticipants and their behaviors, this blocking can be eliminatéd- the maximum utilization below which the operation set is

by explicit specification of dependencies and resultant exegyaranteed to be schedulableyis< (2!/™ — 1), wheren is

tion ordering. In practice, however, such explicit dependeri€¢ number of operations in the set. This function approaches

specification only may be feasible for deterministic real-tinf693 asn grows large. However, if all of the operation peri-

systems that can be analyzed statically. In such systems, thedgare related harmonicallg.¢, 30 Hz, 15 Hz, 5 Hz, etc.),

activity can effectively be determined prior to run-time. Ouhe utilization bound is 1. Intuitively, this is because the oper-

RT.Info IDL struct supports this type of off-line analysisation periods “fit” into the largest operation period. For appli-
In statistical real-time systems that have dynamically charf@tions that can have harmonically related operation periods,

ing resource requirements, operation interdependenciesiti® clearly advantageous to use these harmonic relations to

harder to analyze. For instance, there is a potentigifiority Maximize CPU utilization.

inversionif threads of different priorities can synchronize. Tg\“ operation deadlines are at the ends of periods: Prepe-
achieve optimum resource utilization, it is best to prevent th )

N ) X §5d operation deadlines can be modeled by adjusting the uti-
situations. However, if they can occur, the analysis must (chx

servatively) consider the time that a thread may be blocked %’;\tlon bound.
a lower priority due to synchronization.

There are no interrupts

e Thereis a single CPU

Lo . - . A.1.1 PurelyD i h li i
Aperiodic operations: Aperiodic operations can be mod- urely Dynamic Scheduling Strategies

eled as periodic operations, assuming the worst (fastest) pisis section reviews two well known purely dynamic schedul-
sible rate that the operations can execute. ing strategies, Earliest Deadline First (EDF) [36, 37], and Min-
Interrupts:  Interrupts can be handled in the analysis givdfium Laxity First (MLF) [50]. These strategies are illustrated
their execution times and maximum possible rate. The uslfafFigure 19 and discussed below. In addition, Figure 19
drawback, however, is that the analysis is conservative. It 4EPICts the hybrid static/dynamic Maximum Urgency First
sumes that the interrupts will occur at that maximum possitdUF) [50] scheduling strategy discussed in Section A.1.2.

rate; while necessary, this assumed rate is usually not realized

in practice. The result is reduced effective CPU utilization bEarliest Deadline First (EDF): EDF [36, 37] is a dynamic
cause the CPU must be “reserved” for interrupts that may geheduling strategy that orders dispatélé®perations based
always occur. on time-to-deadline, as shown in Figure 19. Operation execu-

Context switching: Context switching time can be ac_tions with closer deadlines are dispatched before those with

counted by charging each switch to the execution time of thes, dispatchis a particular execution of asperation
thread that is swapped out.
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eoF ([l e Advantages: From a scheduling perspective, the main
MLE 7 [T advantage of EDF and MLF is that they overcome the utiliza-

tion limitations of RMS. In particular, the utilization phasing
vur [ICZA]

penalty described in Secti@? that can occur in RMS is not a
factor since EDF and MLF prioritize operations according to
TIME AXIS —» . . . ..
their dynamic run-time characteristics.

- OPERATION A! OPERATION B: EDF and MLF also handle harmonic and non-ha_rmonic
HIGH CRITICALITY LOW CRITICALITY periods comparably. Moreover, they respond flexibly to
40 USEC TO DEADLINE 35 USEC TO DEADLINE invocation-to-invocation variations in resource requirements,
25 USEC EXECUTION 25 USEC EXECUTION allowing CPU time unused by one operation to be reallo-

cated to other operations. Thus, they can produce schedules
that are optimal in terms of CPU utilization [36]. In addi-
tion, both EDF and MLF can dispatch operations within a sin-
gle static priority level and need not prioritize operations by

[ oPerATION C:
LOW CRITICALITY
30 USEC TO DEADLINE

10 USEC EXECUTION rate [36, 50].
¢ Disadvantages: From a performance perspective, one
Figure 19: Dynamic Scheduling Strategies disadvantage to purely dynamic scheduling approaches like

MLF and EDF is that their scheduling strategies require higher
overhead to evaluate at run-time. In addition, these purely dy-
more distant deadlines. The EDF scheduling strategy is imamic scheduling strategies offer no control owgrich op-
voked whenever a dispatch of an operation is requested. €ha&tions will miss their deadlines if the schedulable bound is
new dispatch may or may not preempt the currently executigiceeded. As operations are added to the schedule to achieve
operation, depending on the mapping of priority componethtigiher utilization, the margin of safety fall operations de-
into thread priorities discussed in Section B.5.5. creases. Therefore, the risk of missing a deadline increases for

A key limitation of EDF is that an operation with the earevery operation as the system become overloaded.
liest deadline is dispatched whether or not there is sufficient
time remaining to complete its exe_cution prior to the_ deadlir]g_.l_z Maximum Urgency First
Therefore, the fact that an operation cannot meet its deadline
will not be detected unt@fterthe deadline has passed. The Maximum Urgency First (MUF) [50] scheduling strat-

If the operation is dispatched even though it cannot cofgy supports both the deterministic rigor of the static RMS
plete its execution prior to the deadline, the operation casheduling approach and the flexibility of dynamic scheduling
sumes CPU time that could otherwise be allocated to other epproaches such as EDF and MLF. MUF is the default sched-
erations. If the result of the operation is only useful to the agler for the Chimera real-time operating system (RTOS) [74].
plication prior to the deadline, then the entire time consum®&dO supports a variant of MUF in its strategized CORBA
by the operation is essentially wasted. scheduling service framework, which is discussed in Sec-

tion B.
Minimum Laxity First (MLF):  MLF [50] refines the EDF  \jyF can assign both statiand dynamic priority compo-
strategy by taking into account operation execution time. fftnis |n contrast, RMS assigns all priority components stat-
dispatches the operation whdagity is least, as shown in Fig-jca|ly and EDF/MLF assign all priority components dynami-
ure 19. Laxity is defined as the time-to-deadline minus thgyly. The hybrid priority assignment in MUF overcomes the
remaining execution time. drawbacks of the individual scheduling strategies by combin-

Using MLF, itis possible to detect that an operation will NG4g techniques from each, as described below:
meet its deadlingrior to the deadline itself. If this occurs,

a scheduler can reevaluate the operation before allocating@hicality:  In MUF, operations with highecriticality are

CPU for the remaining computation time. For example, oAgsigned to higher static priority levels. Assigning static prior-
strategy is to simply drop the operation whose laxity is nisies according to criticality prevents operations critical to the
sufficient to meet its deadline. This strategy may decrease #plication from being preempted by non-critical operations.

chance that subsequent operations will miss their deadlinegrdering operations by application-defined criticality re-
especially if the system is overloaded transiently. flects a subtle and fundamental shift in the notion of prior-

ity assignment. In particular, RMS, EDF, and MLF exhibit
a rigid mapping from empirical operation characteristics to a
Evaluation of EDF and MLF: single priority value. Moreover, they offer little or no control
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over which operations will miss their deadlines under overloatder will always be the same. This, in turn, helps improve the
conditions. reliability and testability of the system.
In contrast, MUF gives applications the ability to distin-

guish operations arbitrarily. MUF allows control owghich  The variant of MUF used in TAO's strategized scheduling
operations will miss their deadlines. Therefore, it can proteghjice enforces a complete dispatching ordering by providing
a criticalsubsebf the entire set of operations. This fundameny, importance  field in the TAORT.Info  CORBA opera-

tal shift in the notion of priority assignment leads to the geggp, QoS descriptor [23], which is shown in Secti®h TAO's
eralization of scheduling and analysis techniques discussegd'ﬂedu"ng service usémportance , as well as a topologi-

Section B and Appendi®?. cal ordering of operations, to assign a unique static subpriority

Dynamic Subpriority:  An operation’s dynamic subpriorityfor each operation within a given criticality level.

is evaluated whenever it must be compared to another opefhcidentally, the original definition of MUF in [50] uses
ation’s dynamic subpriority. For example, an operation’s d{j2e termsdynamic priorityanduser priority, whereas we use
namic subpriority is evaluated whenever it is enqueued intBe termdynamic subpriorityandstatic subpriorityfor TAO's
dequeued from a dynamically ordered dispatching queue. S&fieduling service. We selected different terminology to indi-
the instant of evaluation, dynamic subpriority in MUF is gate the subordination to static priority. These terms are inter-
function of the the laxity of an operation. changeable when referring to MUF, however.

An example of such a simple dynamic subpriority function Itis not strictly necessary to know all operations in advance
is the inverse of the operation’s laxityOperations with the in order to schedule them using the canonical definitions of
smallest positive laxities have the highest dynamic subpridrDF or MLF. However, the real-time applications we have
ties, followed by operations with higher positive laxities, foworked with do exhibit this useful property. If all operations
lowed by operations with the most negative laxities, followedf€ known in advance, off-line analysis of schedule feasibility
by operations with negative laxities closer to zero. AssigniffgPossible for RMS, EDF, MLF, and MUF.
dynamic subpriority in this way provides a consistent order-The output of each of the scheduling strategies in TAO is
ing of operations as they move through fendingandlate aschedule This schedule defines a set of operation dispatch-
dispatching queues, as described below. ing priorities, dispatching subpriorities, and a minimum criti-

By assigning dynamic subpriorities according to laxitgal dispatching priority. Our goal in this appendix is to present
MUF offers higher utilization of the CPU than the staticall feasibility analysis technique for these schedules, that is in-
scheduled strategies. MUF also allows deadline failuresd@pendent of the specific strategy used to produce a particular
be detectedeforethey actually occur, except when an opschedule. Such an analysis technique must establish invari-
eration that would otherwise meet its deadline is preemp@is that hold across all urgency and dispatching priority map-
by a higher criticality operation. Moreover, MUF can applpings. By doing this, the off-line schedule feasibility analysis
various types of error handling policies when deadlines df@ decouples the application from the details of a particular
missed [50]. For example, if an operation has negative I@¢heduling strategy, and (2) allows alternative strategies to be
ity prior to being dispatched, it can be demoted in the prioriggmpared for a given application .
gueue, allowing operations that can still meet their deadlined’he remainder of this appendix is organized as follows.
to be dispatched instead. Section A.2 discusses the notion of a schedui@me size

. . . o . Section A.3 describes how we measure a schedule’s CPU uti-
Stat|.c S.“bp”o“tYi In MUF' static subpr|or|ty|s a static, yization. Finally, Section A.4 describes the generalized sched-
appl|cat|on-speC|f|c, pptlonal priority. [tis useq Fo qrder th?%feasibility analysis technique, which is based on a sched-
dispatches Of, opera’upn; that have thg same qut!callty and Ie’s utilization, frame size, and the respective priorities of the
same dynamic subpriority. Thus, static subpriority has lowgﬁerations.
precedence than either criticality or dynamic subpriority.

Assigning a unique static subpriority to operation that have
the same criticality ensures a total dispatching ordering of g8:2 Frame Size
erations at run-time, for any operation laxity values having the
same criticality. A total dispatching ordering ensures that fbpe frame size for a schedule is the minimum time that can
a given arrival pattern of operation requests, the dispatchfigitain all possible phasing relationships between all opera-
tions. The frame size provides an invariant for the largest time
%To avoid division-by-zero errors, any operation whose laxity is in thgithin which all operation executions will fit. This assumes,

range-te can be assigned (negative) dynamic subpriority/c wheree is ¢ o\ r5a that the scheduling parameters, such as rates and
the smallest positive floating point number that is distinguishable from zero.

Thus, when the laxity of an operation reachgisis considered to have missedVOr'St-case exeCUtiqn times, spgcified by applications are not
its deadline. exceeded by operations at run-time.
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When the periods of all operations are integral multiples divided by the frame size itself. TAO's strategized scheduling
one another.g, 20 Hz, 10 Hz, 5 Hz, and 1 Hz, the operationservice calculates the maximum total utilization for a given
are said to béarmonically related Harmonically related op- schedule by summing, over all operations, the fraction of each
erations have completely nested phasing relationships. Thyseration’s period that is consumed by its worst-case execu-
the arrival pattern of each subsequently shorter period fits 8&n time, according to the following formula:
actly within the next longer period. For harmonically related
operations, the frame size is simply the longest operation pe- u = % Cr/Tk
riod. i

Operations that are not harmonically related come into andvhere, for each operatidn C}, is its worst case execution
out of phase with one another. Therefore, they do not exhiliihe, andT}, is its period.
the nesting property. Instead, the pattern of arrivals only re4n addition to total utilization, TAO’s scheduling service
peats after all periods come back into the same phasing reldlculates the CPU utilization by the set of critical opera-
tionships they had at the beginning. tions. This indicates the percentage of time the CPU is al-

This observation leads to the invariant that covers both faeated to operations whose completion prior to deadline is to
harmonic and non-harmonic cases. The frame size in bbthenforced. Operations whose assigned dispatching priority
cases is the product of all non-duplicated factors of all operagreater than or equal to the minimum critical priority bound
tion periods. For non-harmonic cases, we calculate this vadie considered to be in the critical set. In the RMS, EDF, and
by starting with a frame size of one time unit and iteratingLF scheduling strategies, the entire schedule is considered
through the set of unique operation periods. For each unigyigical, so the critical set utilization is the same as total uti-
period, we (possibly) expand the frame size by multiplyingation.
the previous frame size by the greatest common divisor of thef the total utilization exceeds tteehedulable boundAQ’s
previous frame size and the operation period. For harmosiheduling service also stores the priority level previous to the
cases, all operation periods are factors of the longest operaging that exceeded the schedulable bound. This previous prior-
period. Therefore, the longest operation period is the fraingelevel is called theminimum guaranteed priority leveDp-
size. erations having dispatching priority greater than or equal to

Figure 20 depicts the relationships between operation peie minimum guaranteed priority level are assured of meet-
ods and frame size for both the harmonic and non-harmojnig their deadlines. In contrast, operations having dispatching
cases. For harmonically related operation rates, all of thority immediately below the minimum guaranteed priority
level may execute prior to their deadlines, but are not assured

Harmonically 100\ ms \ \ \ \ of doing so. If the total utilization does not exceed the schedu-
related periods 200 ms lable bound, the lowest priority level in the system is the min-
1000 ms imum guaranteed priority level, and all operations are assured

Frame size = 1000 ms of meeting their deadlines.

SRl A4 Schedule Feasibility

Non-harmonically 500 ms

related periods opsms | | | It may or may not be possible to achievéeasibleschedule
[ hwoms || | thatutiizes 100% of the CPU. Achieving 100% utilization de-

Erame size = 7000 ms pends on the phasing relationships between operations in the
Figure 20: Frame Size Examples for Harmonic and Nofchedule, and the scheduling strategy itself. The maximum
Harmonic Cases percentage of the CPU that can be utilized is calledtmedu-

lable bound

smaller periods fit evenly into the largest period. There-The schedulable bound is a function of the scheduling strat-
fore, the largest operation perigglthe frame size. For non-egy and in some cases of the schedule itself. A schedule is
harmonically related rates, the frame size is larger than fieasibleif and only if all operations in the critical set are as-
largest operation period, because it is a multiple of all of tisgred of meeting their deadlines. The critical set is identified

operation periods. by the minimum critical priority. All operations having dis-
patching priority greater than or equal to the minimum critical
A.3  Utilization priority are in the critical set.

The schedulability of each operation in the critical set de-
Total CPU utilization is the sum of the actual execution timgends on the worst-case operation arrival pattern, which is
used by all operation dispatches over the schedule frame siadied thecritical instant The critical instant for an operation
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occurs when the delay between its arrival and its completiemels.
is maximal [36]. For the preemptive-by-urgency dispatching
model described in Section B.5.6, the critical instant for
operation occurs when it arrives simultaneously with all oth
operations.

For other dispatching models, the critical instant for a giv{ 1~2
operation differs slightly. It occurs only when the operation &
rives immediately after another operation that will cause itt[ T,=15 |:| |:|
greatesadditionalpreemption delay was dispatched. Furthe
it only occurs when the operation arrives simultaneously w
all operations other than the one causing it additional preer| Lower Priority Operations
tion delay. If an operation is schedulable at its critical insta
it is assured of schedulability under any other arrival patte Ta=7 l l
of the same operations.

A key research challenge in assessing schedule feasib| T4=29 .
is determining whether each operation has sufficient time
complete its execution prior to deadline. The deadline for| T5=10
operation at its critical instant falls exactly at the critical ir|
stant plus its period. Not only must a given operation be al
to complete execution in that period, it must do so in the tin
that is not used by preferentially dispatched operations. All
operations that have higher dispatching priority than the cur-
rent operation will be dispatched preferentially. All operations
that have the same _dispatching priority, but _have deadlines aéhoosing the fourth operation, with peridd, as the cur-
or prior o the deadlme of the current qperatlon, must also %%t operation, the number of arrivals of each of the higher pri-
considered to be d|spf51tched preferenuglly._ . ority operations is as expectely /T, ] = [9/2] = [4.5] =

The goal of assessing schedule feasibility off-line in a way. [T,/Ts] = [9/15] = [0.6] = 1. The number of dead-

.. . 4 2 . .

that (1) is mdppendent of a particular 'stratggy, and' (2) “fhes of operations having the same priority level is also as
rectly determines whether each operation will meet its dea pected:| T, /Ts] = |9/7] = [1.3] = 1 and |T}/Ty| =
line, motivates the following analysis. TAQO's strategize |49J — |1.0] = 1and|Ty/Ts| = [9/10] = [0.9] = 0.

scheduling service performs this analysis for each operat Maving established the time consumed by an operation hav-

off-line. We call the operation upon which the analysis | : . . - .
being performed theurrent operation The number of ar- Ejg higher dispatching priority than the current operation as

Higher Priority Operations

Figure 21: Schedulability of the Current Operation

. : : : ¢/Th|Ch + min (T, — |Tc/Th]Th, Ch), and the time con-
nvalg, d“r"?g thg perlo'd of th? curr'en.t operation, of an o umed by an operation having the same dispatching priority as
erat!on hav!ng higher dispatching priority than the current Ofie current operation a8, /T, | Cs, it is now possible to state
eration is given by T./T |, whereT, andT, are the respec- e invariant that must hold for all operations having dispatch-

tive periods of the current operation and the higher priorii[{;{g priority A to be schedulable:

operation. The time consumed by the higher priority oper-

ation during the period of the current operation is given by V{jkeS |y =NA(pE >=N}

|T./Th]Cr + min (T, — |T¢/Th]|Th,Cr), where themin

function returns the minimum of the values, af{ is the Cwepaiyy + 2 1Tj/Te]Cr +

computation time used for each dispatch of the higher prior- p(k)>=X

ity operation. <=Tj
Similarly, the number of deadlines of another operation hav- > min (T — |T;/Ty | T}, Ck)

ing the same dispatching priority as the current operation is p(k)>A

given by |T../Ts |, whereTy is the period of the other opera- S is the set of all operations in the schedule. The func-
tion having the same dispatching priority as the current opetian p(j) simply returns the priority assigned to operatipn
tion. The time consumed by the other same priority operatiof,.,.q(; is the worst-case preemption delay for operation
over the period of the current operation is given By/7T, |Cs, Operationj suffers a preemption delay if and only if it arrives
whereC is the computation time used by the other same pwhile an operation in the same dispatching priority level that
ority operation [36]. Figure 21 illustrates the various possibiides not have a deadline within operatigs period is exe-
relationships between the periods of operations in two priorityting. Operations that have deadlines within operajien
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period must be counted anyway, and thus do not impose 8yl  Overview of TAO
additionaldelay, should operatiofarrive while they are ex-

ecuting. The worst-case preemption delay for operafids: TAO is a high-performance, real-time ORB endsystem tar-

the longest execution time of any operation that has a lon g}eﬁ f%r i?pl'cat\:\?r:f’ W'EE dfte;fmr'tr,','f“c ?rndetr?t“Stl'l?r? | ?_Xg
period: if there are no such operatiof§yepa(; is zero. Oelglé :ndesysst,eerlr? coit;?\s tﬁz neet%orkﬁgtjer?acg SS cgmmu
For each current operation having dispatching priaki o . S ’ i

P g cisp g priokitp Elcanon protocol, and CORBA-compliant middleware com-

be schedulable, the following must hold. All deadlines of o ¢ d feat h i Fi 29 TAO s th
erations having the same dispatching priority or higher, incl 2Nents and features snown in Figure 2. supports the

ing the deadline of the current operation itself, plus. ,q(;) in args

plus any time scheduled for higher priority operations that a s operation() OBJECT

rive within but do not have a deadline within the period of CLIENT * {pr out args + return value (SERVANT)
<+—O0

the current operations, must be schedulable within the peried

of the current operation. This invariant is evaluated for each

decreasing dispatching priority level of a schedule, from the \ S.EIL]?:%ON Y
highest to the lowest. The lowest dispatching priority level for RIDL ORB RUN-TIME REAL-TIME
which the invariant holds is thus identified as the minimum sTuBs SCHEDULER (—f A‘,’,‘?,ffETR]
priority for which schedulability of all operations can be guar-

anteed, known as theinimum guaranteed priority [ é ]

In summary, the schedule feasibility analysis techniqug .
presented in this appendix establishes and uses invarial A
that hold across all urgency and dispatching priority ma
pings. This gives applications the ability to examine differ HIGH-SPEED
ent scheduling strategies off-line, and discard those that 0 M ———
produce feasible schedules for their particular operation char-
acteristics. Further, it decouples applications from the detgil§yre 22: Components in the TAO Real-time ORB Endsys-
of any particular scheduling strategy, so that changes in stratgn
gies to not require changes in their operation characteristics.

standard OMG CORBA reference model [1], with the follow-

. , . ing enhancements designed to overcome the shortcomings of
B The DeS|gn of TAO's Strateglzed conventional ORBs [45] for high-performance and real-time

Scheduling Service applications:
. . ) ) . Real-time IDL Stubs and Skeletons: TAO's IDL stubs and
TAO’s scheduling service provides real-time CORBA applicke|etons efficiently marshal and demarshal operation param-
tions with the flexibility to specify and use different schedusiers, respectively [75]. In addition, TAO’s Real-time IDL
ing strategies, according to their specific QoS requiremenigDL) stubs and skeletons extend the OMG IDL specifica-

and available OS features. This flexibility allows CORBA aRyons to ensure that application timing requirements are speci-
plications to extend the set of available scheduling strategi@gj and enforced end-to-end [68].

withoutimpacting strategies used by other applications. More-

over, it shields application developers from unnecessary G&al-time Object Adapter: - An Object Adapter associates
tails of their scheduling strategies. In addition, TAO’s schedGE"vants with the ORB and demultiplexes incoming requests
ing service provides a common framework to compare existiffgServants. TAO's real-time Object Adapter [76] uses perfect

scheduling strategies and to empirically evaluate new straﬁ shing [56] and active demultiplexing [20] optimizations to

gies is-patch servant operations in constaxt) time, regardless
This section outlines the design goals and architecture

o&the number of active connections, servants, and operations
TAO's strategized scheduling service framework. After brieffefinéd in IDL interfaces.

describing TAO in Section B.1, Section B.2 discusses tdRB Run-time Scheduler: A real-time scheduler [44]
design goals of TAO'’s strategized scheduling service. Setaps application QoS requirements, such as include bounding
tion B.3 offers an overview of its architecture and operatioand-to-end latency and meeting periodic scheduling deadlines,
Section B.4 describes the design forces that motivate TA@SORB endsystem/network resources, such as ORB endsys-
flexible Scheduling Service architecture. Finally, Section Bt&m/network resources include CPU, memory, network con-
discusses the resulting architecture in detail. nections, and storage devices. TAO’s run-time scheduler sup-

OS KERNEL
REAL-TIME 1/0

SUBSYSTEM

HIGH-SPEED
NETWORK NETWORK INTERFACE
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ports both static [23] and dynamic [77] real-time scheduling CRITICAL HIGH UTILIZATION

strategies. . ]

Real-time ORB Core: An ORB Core delivers client re- NON- )
. . [ ] /4
guests to the Object Adapter and returns responses (if any) to CRITICAL l

clients. TAO’s real-time ORB Core [45] uses a multi-threaded, 7 ISOLATE MISSED DEADLINES
preemptive, priority-'based copr)ection and concurrency archi- NOT 2 LY
tecture [75] to provide an efficient and predictable CORBA SCHEDULED Vs

[IOP protocol engine. ] m
DEADLINE — 7

Real-time 1/O subsystem: TAQO's real-time 1/O subsystem
[17] extends support for CORBA into the OS. TAO’s I/O sub-

TIME AXIS —&

system assigns priorities to real-time 1/O threads so that the ADAPTATION TO
schedulability of application components and ORB endsystem APPLICATION CHARACTERISTICS
resources can be enforced. TAO also runs efficiently and rel- o A B
atively predictably on conventional I/O subsystems that lack , [ ]
advanced QoS features. E -D
High-speed network interface: At the core of TAO’s I/O FIRST APPLICATION SECOND APPLICATION

ﬂgure 23: Design Goals of TAO’s Dynamic Scheduling Ser-
of one or more ATM Port Interconnect Controller (APIC ice

chips [29]. APIC is designed to sustain an aggregate bi-

directional data rate of 2.4 Gbps. In addition, TAO runs

on conventional real-time interconnects, such as VME backeal 2. Preserving scheduling guarantees: The lower pair
planes, multi-processor shared memory environments, as wéltimelines in Figure 23 demonstrates our second research
as Internet protocols like TCP/IP. goal: preserving scheduling guarantees for critical opera-

ions This timeline depicts a statically scheduled timeline, in

. . t
TAO i dey elqped atop lower-level middleware .Cal.le\g/hich the worst-case execution time of the critical operation
A.‘CE [78], which implements core concurrency and d'smb\’hust be scheduled. In the lower timeline, priority is based on
tlpn patterns [49] for communication software. ACE P'Sraditional scheduling parameters, such as rate and laxity. In
vides reusable C++ wrapper facades and framework compex upper timeline, criticality is also included. Both timelines

nents_ that sup.por.t the QoS requwementg of hlgh-performarbceepict schedule overrun. When criticality is considered, only
real-time applications. ACE runs on a wide range of OS pl%tén-critical operations miss their deadlines.

forms, including Win32, most versions of UNIX, and real-time
operating systems like Sun/Chorus ClassiX, LynxOS, and MZoal 3. Adaptive scheduling: The sets of operation blocks
Works. at the bottom of Figure 23 demonstrate our third research goal:

providing applications with the flexibility to adapt to varying
B.2 Design Goals of TAO’s Scheduling Service application requirements and platform featurdss this exam-

ple, the first and second applications use the same five oper-
To alleviate the limitations with existing scheduling strategi@sions. However, the first application considers operations A
described in Sectiof??, our research on CORBA real-timeand E critical, whereas the second application considers op-
scheduling focuses on enabling applications tonilximize erations B and D critical. By allowing applications to select
total utilization, (2) preserve scheduling guarantees for critiwhich operations are critical, it should be possible to provide
cal operationgwhen the set of critical operations can be ideseheduling behavior that is appropriate to each application’s
tified), and (3)adapt flexibly to different application and platindividual requirements.
form characteristics These three goals are illustrated in Fig-
ure 23 and summarized below:

subsystem is a “daisy-chained” network interface consistiz

These goals motivate the design of TAO’s strategized
scheduling service framework, described in Section B.3. For
Goal 1. Higher utilization: ~ The upper pair of timelines inthe real-time systems [10, 23, 17, 45] that TAO has been ap-
Figure 23 demonstrates our first research gbl@jher utiliza- p||ed to, it has been possib|e to |dent|fy a core set of oper-
tion. This timeline shows a case where a critical operatigfions whose execution before deadlinesritical to the in-
execution did not, in fact, use its worst-case execution tiMggrity of the system. Therefore, the TAO’s scheduling ser-
With dynamic scheduling, an additional non-critical operatigjice is designed to ensure that critical CORBA operations will

could be dispatched, thereby achieving higher resource utiligget their deadlines, even when the total utilization exceeds
tion.
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the schedulable bound. execution in the system. Nodes with incomiaigd outgoing

If it is possible to ensure deadlines will be met, then addiegges can fulfill both roles.
operations to the schedule to increase total CPU utilization ) . )
will not increase the risk of missing deadlines. The risk wifftep 3: In this step, TAO's scheduling service assesses
only increase for those operations whose execution priorsgedulability. A set of operations is considesetiedulable
deadline isnot critical to the integrity of the system. In thigif all operations in the critical set are guaranteed to meet their

way, the risk to the whole system is minimized when it @eadlines. Schedulability is assessed according to whether
loaded for higher utilization. CPU utilization by operations in and above the minimum crit-

ical priority is less than or equal to the schedulable bound.

B.3 TAO's Strategized Scheduling Service Step 4. Next, TAO's scheduling service assigns static pri-
Framework orities and subpriorities to operations. These values are as-

signed according to the specific strategy used to configure the

TAO’s scheduling service framework is designed to supporseheduling service. For example, when the TAO scheduling
variety of scheduling strategies, including RMS, EDF, MLEervice is configured with the MUF strategy, static priority
and MUF. This flexibility is achieved in TAO via th8trat- is assigned according to operation criticality. Likewise, static
egydesign pattern [49]. This pattern encapsulates a familysefopriority is assigned according to operation importance and
scheduling algorithms within a fixed interface. Within TAO’slependencies.
strategized scheduling service, the scheduling strategies them-
selves are interchangeable and can be varied independentfytep 5: Based on the specific strategy used to configure it,

The architecture and behavior of TAO’s strategized schedlffO’s scheduling service divides the dispatching priority and
ing service is illustrated in Figure 24. This architectudspatching subpriority components into statically and dynam-
evolved from our earlier work on a CORBA scheduling sei€ally assigned portions. The static priority and static subpri-
vice [23] that supported purely static rate monotonic sched@lity values are used to assign the static portions of the dis-
ing. The steps involved in configuring and processing requegching priority and dispatching subpriority of the operations.
are described below. Steps 1-6 typically occur off-line duriddiese dispatching priorities and subpriorities reside in TAO’s
the schedule configuration process, whereas steps 7-10 oBduthfo  repository.
on-line, underscoring the hybrid nature of TAO’s scheduli

n
architecture. SC{ep 6: Based on the assigned dispatching priorities, and

in accordance with the specific strategy used to configure the
Step 1: A CORBA application specifies QoS informatioroff-line scheduling service, the number and types of dispatch-
and passes it to TAO's scheduling service, which is impl#gg queues needed to dispatch the generated schedule are as-
mented as a CORBA objedte., it implements an IDL inter- signed. For example, when the scheduling service is config-
face. The application specifies a set of value3_(nfo s) ured with the MLF strategy, there is a single queue, which
for the characteristics of each of its schedulable operatiorses laxity-based prioritization. As before, this configuration
(RT_Operation s). In addition, the application specifies ininformation resides in thRT_Info  repository.

vocation dependencies between these operations. ) ] o )
Step 7: At run-time start up, the configuration information

Step 2: At configuration time, which can occur either offin theRT.Info repository is used by the scheduling service’s
line or on-line, the application passes this QoS informatiem-time scheduler component, which is collocated within an
into TAO’s scheduling service via itigput interface TAO’'s ORB endsystem. The ORB uses the run-time scheduler to re-
scheduling service stores the QoS information in its repositarigve (1) the thread priority at which each queue dispatches
of RT_Info descriptors. TAO's scheduling service’s input ineperations and (2) the type of dispatching prioritization used
terface is described further in Section B.5.1. by each queue. The scheduling service’s run-time component
TAO’s scheduling service constructs operation dependemeyvides this information to the ORB via itaitput interface
graphs based on information registered with it by the appdis described in Section B.5.2.
cation. The scheduling service then identifies threads of exe-
cution by examining the terminal nodes of these dependef®égP 8: Inthis step, the ORB configures dgspatching mod-
graphs. Nodes that have outgoing edges but no incomifigs i-e., the I/O subsystem, the ORB Core, and/or the Event
edges in the dependency graph are catledsumers Con- Service. The information from the scheduling service’s out-
sumers are dispatched after the nodes on which they dep@hd.interface is used to create the correct number and types
Nodes that have incoming edges but no outgoing edges @réueues, and associate them with the correct thread priori-

called suppliers Suppliers correspond to distinct threads é#es that service the queues. This configuration process is de-
scribed further in Section B.5.3.
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struct RT_Info

{ = -
o time (soeouier's [ amneame | O F-LINE
criticality : INPUT SCHEDULER 3. ASSESS SCHEDULABILITY
importance ; INTERFACE) @ 4. ASSIGN STATIC PRIORITYAND STATIC SUBPRIORITY
dependencies ;
: RT_INFO 5. MAP STATIC PRIORITY, DYNAMIC SUBPRIORITY, AND
EEROSTORY STATIC SUBPRIORITYINTO DISPATCHING PRIORITY
1. SPECIFY RT_OPERATION 2. POPULATE SCHEDULING AND DISPATCHING SUBPRIORITY
CHARACTERISTICSAND RT_INFO STRATEGY 6. ASSIGN DISPATCHING QUEUE CONFIGURATION
DEPENDENCIES REPOSITORY
8. CONFIGURE QUEUES BASED — - - ON-LINE
ON DISPATCHING QUEUE | Opeﬂion| | Opsation” Operation (mHEDULER‘S TELTE
CONFIGURATION ( OBJECT ADAPTER )  output ScHEDULER | - SUPPLY DISPATCHING QUEUE
B DG GRS ASS E INTERFACE) T CONFIGURATION TO THE ORB
DYNAMIC PORTIONS OF LRI_Tuml;l; 9. SUPPLY STATIC PORTIONS OF
DISPATCHING SUBPRIORITY e DISPATCHING PRIORITYAND
(AND POSSIBLY O SUEEEE DISPATCHING SUBPRIORITY
DISPATCHING PRIORITY) ORB ENDSYSTEM TO THE ORB

Figure 24: Processing Steps in TAO’s Dynamic Scheduling Service Architecture

Step 9: When an operation request arrives from a client at This improves the system’s reliability and maintainabil-
run-time, the appropriate dispatching module must identify the ity, as described below.

dispatching queue to which the request belongs and initializg
the request’s dispatching subpriority. To accomplish this, the
dispatching module queries TAO’s scheduling service’s output
interface, as described in Section B.5.2. The run-time sched-
uler component of TAO'’s scheduling service first retrieves the
static portions of the dispatching priority and dispatching sub-TAO’s scheduling strategy framework is designed to mini-
priority from theRT_Info repository. It then supplies the dismize unnecessary constraints on the values application devel-
patching priority and dispatching subpriority to the dispatcbpers specify to the input interface described in Section B.5.1.
ing module. For instance, one (hon-recommended) way to implement the

Step 10: If the dispatching queue where the operation r MS, EDF, and MLF strategies in TAO's scheduling service

quest is placed was configured adymamic queuén step 8, rarrlleV\;orIt( Wou_llgih.be to gnp(ljement;[ them_asl th_;ll’la?rtls of lthe
the dynamic portions of the request’s dispatching subpriorg}}fh stra egt)./. rl1$ car: 'et' onesoy ﬁanlpu a Itnhg €va ueﬁ
(and possibly its dispatching priority) are assigned. This queue e operation characteristics [50]. However, this approac

first does this when it enqueues the request. This queue tWQHId tightly couple applications to the MUF scheduling strat-

updates these dynamic portions as necessary when other é’:md t'he str.ate.fgy be;lr&g ergulalze:[d. tiahtl lina the b
ations are enqueued or dequeued. ere is a significant drawback to tightly coupling the be-

havior of a scheduling service to the characteristics of appli-
The remainder of this section describes TAO’s strategizeation operations. In particular, if the value of one opera-
scheduling service framework in detail. Section B.4 motivattisn characteristic used by the application changes, developers
why TAO allows applications to vary their scheduling strateggust remember to manually modify other operation character-
and Section B.5 shows how TAO'’s framework design achievstics specified to the scheduling service in order to preserve
this flexibility. the same mapping. In general, we prefer to shield application
developers from such unnecessary details.
B.4 Motivation for TAO’s Strategized Schedul- To achigve'this encapsglation, TAQ'S scheduling.service al-
ing Architecture Ipws appllcat|9n§ to spemfy the en'tlre set of possible opera-
tion characteristics using its input interface. In the schedul-
The flexibility of the architecture for TAO's strategizedng strategies implemented in TAO, mappings between the in-
scheduling service is motivated by the following two goals: put and output interfaces are entirely encapsulated within the
strategies. Therefore, they need not require any unnecessary
1. Shield application developers from unnecessary impleanipulation of input values. This decouples them from oper-
mentation details of alternative scheduling strategiesation characteristics they need not consider.

. Decouple the strategy for priority assignment from the
dispatching model so the two can be varied independently
— This increases the system'’s flexibility to adapt to vary-
ing application requirements and platform features.
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Additional decoupling within the scheduling strategies e Output Interface: As discussed in Section B.5.2, the
themselves is also beneficial. Thus, each scheduling strategtput interface consists of the two operations shown in Fig-
in TAO specifies the following two distinct levels in its mapure 26. One operation returns the dispatching module config-
ping from input interface to output interface: uration information (step 7 of Figure 24). The other returns

the dispatching priority and dispatching subpriority compo-
1. Urgency assignment: The first level assignsirgency nents assigned to an operation (step 9 of Figure 24). Sec-
components,i.e.,, static priority, dynamic subpriority, andtion B.5.3 describes how TAO’s dispatching modules use in-
static subpriority, based on (1) the operation characterisfioemation from TAO'’s scheduling service’s output interface to
specified to the input interface and (2) the selected schedwhnfigure and manage dispatching queues, as well as dispatch
ing strategye.g, MUF, MLF, EDF, or RMS. operations according to the generated schedule.
: . o . Variable mappings: The variable portion of TAO'’s schedul-
2. Dlspatchlng (sub.)prlorllty .aSS|gnm_ent: The secoqd ing service framework is implemented by the following two
level assigns dispatching priority and dispatching subpriority-. . .
) . stinct mappings:
in the output interface based on the urgency components as-
signed in the first level. e Input Mapping: The input mapping assigns urgen-
cies to operations according to the desired scheduling strat-

By decoupling (1) the strategy for urgency assignment fromgy. Section B.5.4 describes how each of the strategies im-
(2) the assignment of urgency to dispatching priority and digemented in TAO maps from the input interface to urgency
patching subpriority, TAO allows the scheduling strategy andlues.
the undgrlying dispatghing model _to vary independently. This, Output Mapping: The output mapping assigns dis-
decoupling allows a given scheduling strategy to be used onaj hing priority and dispatching subpriority according to the
OS that supports either preemptive or non-preemptive threggye ying dispatching model. Section B.5.5 describes how
ing models, with only minor modification to the scheduling,q o,tnut mapping translates the assigned urgency values into
strategy. In addition, it facilitates comparison of schedyle annropriate dispatching priority and dispatching subprior-
ing strategies over a range of dispatching models, from fuily \ a1,es for the output interface. Section B.5.6 describes al-

preemptive-by-urgency, through preemptive-by-priority-band,haiives to the output mapping used in TAO and discusses

to entirely non-preemptive. These models are discussed Qéry design issues related to these alternatives.
ther in Section B.5.6.

The remainder of this section describes how TAO's schedul-
. . ing service implements these fixed interfaces and variable
B.5 Enhancing TAO’s Scheduling Strategy mgppings. P

Flexibility

The QoS requirements of applications and the haf@>-1 TAO'S Scheduling Service Input Interface

ware/software features of platforms and networks on whig jllustrated in steps 1 and 2 of Figure 24, applications use
they are hosted often vary significantly. For instance, TAO's scheduling service input interface to convey QoS infor-
scheduling strategy that is ideal for telecommunication cadtion that prioritizes operations. TAO’s scheduling service

processing may be poorly suited for avionics mission compjgput interface consists of the CORBA IDL interface opera-
ing [10]. Therefore, TAO's scheduling service framework igons shown in Figure 25 and outlined below.

designed to allow applications to vary their scheduling strate- e Thi tion tak i ith th i
gies. TAO supports this flexibility by decoupling tfieedpor- create(): IS operation takes a string wi € operation

tion of its scheduling framework from thariableportion, as name as an Input pargmeter. It creates a Réuinfo de-
follows: scriptor for that operation name and returns a handle for that

descriptor to the caller. If aRT.Info descriptor for that

Fixed interfaces: The fixed portion of TAO’s strategizedOperatlon name al'ready existsieate  raises thepupLI-

scheduling service framework is defined by the following o\ TE-NAME exception.

interfaces: add_dependency(): This operation takes twBT_Info de-

scriptor handles as input parameters. It places a dependency

¢ Input Interface:  As discussed in Section B.5.1, the inen the second handle’s operation in the first handRd’dnfo

put interface consists of the three operations shown in Fagscriptor. This dependency informs the scheduler that a flow

ure 25. Application can use these operations to manipulafeontrol passes from the second operation to the first. If ei-

QoS characteristics expressed with TA®$.Info  descrip- ther of the handles refers to an invaRil_Info descriptor,

tors [23] (steps 1 and 2 of Figure 24). add _dependency raises theJNKNOWN_TASK exception.
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interface Scheduler interface Scheduler

{ {

... ...

I/l Create anew RT_Info descriptor for entry_point 1] Get configur ation information for the queue that will dispatch all

handle_t create ( in string entry_point ) /I RT_Operationsthat are assigned dispatching priority d_priority

raises ( DUPLICATE_NAME); void dispatch_configuration (in Digpatching_Priority d_priority,

out OS Priority os priority,
out Dispatching_Typed_type)

/] Add dependency to handle's RT_I nfo descriptor raises ( UNKNOWN_DISPATCH_PRIORITY,

void add_dependency (in handle_t handle, NOT_SCHEDULED );

in handle_t dependency )
raises ( UNKNOWN_TASK );
/I Get static dispatching subpriority and dispatching
Il priority assigned to the handle's RT_Operation

1l Set values of operation characteristics void priority (in handle_t handle,

/l'in handl€'s RT_Info descriptor out Dispatching_Subpriority d_subpriority,

void set (in handle_t handle, out Dispatching_Priority d_priority)
in Criticality criticality, raises ( UNKNOWN_TASK,
in Timeworstcase exec_time, NOT_SCHEDULED );
in Period_period,
in Importanceimportance ) ...

raises ( UNKNOWN_TASK ); }
} .. Figure 26: TAO Scheduling Service Output IDL Interface

Figure 25: TAO Scheduling Service Input IDL Interface  g¢riptor handle as an input parameter and returns the assigned
dispatching subpriority and dispatching priority as output pa-
set(): This operation takes aRT Info descriptor handle "@Meters. , _
njhe run-time component of TAO’s scheduling service re-

and values for several operation characteristics as input paral

eters. Theset operation assigns the values of operation ch&€Ves the dispatching priority and dispatching subpriority

acteristics in the handleRT Info descriptor to the passed’@ues stored in th®T.Info _ repository by its off-line com-
inputvalues. Ifthe passed handle refers to an inRlidnfo ponent (step 5 of Figure 24). If the passed handle does not

descriptorset raises theJNKNOWN_TASK exception. refer to a validRT.Info descriptor,priority raises the
UNKNOWN_TASK exception. If a schedule has not been gen-

. . eratedpriorit raises thevOT_SCHEDULEDexception.
B.5.2 TAO's Scheduling Service Output Interface P y P

The output interface for TAO’s scheduling service consistsBf5.3 Integrating the TAO's Scheduling Service with Its
the CORBA IDL interface operations shown in Figure 26. Dispatching Modules

The first operationdispatch _configuration , pro- ) , , )
P disp d P noted in Sectior??, a key research challenge is to imple-

vides configuration information for queues in the dispatchi - X
modules used by the ORB endsystem (step 7 of Figure 24)] ﬁntdlspatchmg modules that can enforce end-to-end QoS re-
lirements. This section (1) shows these dispatching modules

takes a dispatching priority value as an input parameter. It firem ) X : )
turns the OS thread priority and dispatching type correspoﬂa‘—’v'thm TAO's overall architecture, (2) describes the internal

ing to that dispatching priority level. The run-time schedul@H€u€ing mechanism of TAO's dispatching modules, and (3)
component of TAO's scheduling service retrieves these VHISCUSSeS the issue of run-time control over dispatching prior-
ues from theRT.Info  repository, where they were stored b{fY Within these dispatching modules.
TAO's off-line scheduling component (step 6 of Figure 24). Architectural placement:  The output interface of TAO’s
The UNKNOWN_DISPATCHPRIORITY exception will be scheduling service is designed to work with dispatching mod-
raised if the dispatch _configuration operation is ules in any layer of the TAO architecture. For example, TAO’s
passed a dispatching priority that is not in the scheakal-time extensions to the CORBA Event Service [10] uses
ule. Likewise, if a schedule has not been genghe scheduler outputinterface, as does its I/O subsystem [17].
ated, thadispatch _configuration operation raises theFigure 27(A) illustrates dispatching in TAO's real-time Event
NOT_SCHEDULEDexception. Service [10]. The client application pushes an event to TAO's
The second operatiomriority , provides dispatching Event Service. The Event Service’s dispatching module en-
priority and dispatching subpriority information for an opegueues events and dispatches them according to dispatching
ation request (step 9 of Figure 24). It takesRihInfo de- priority and then dispatching subpriority. Each dispatched
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CLIENT APPLICATION o 1: CLIENT PUSHESEVENT TO DISPATCHING TYPE
ab TG G G e E/ENT CHANNEL 2: ECDISPATCHING MODULE dispatching priority and
RT RT RT dispatching subpriority)
EVENT CHANNEL Operstion | | Operation | | Oparation ENQUEUESAND DISPATCHES DISPATCHING
CLIENT STUB__ | ) OBJECT ADAPTER EVENTSACCORDING TO E E n SUBPRIORITY
PRIORITY (selects order
3 CONTROL FLOWSDOWN 2 in the queue)
5 _~ = B
THROUGH CLIENT SDEORB, g T R
1/0 SUBSYSTEM AND UP THROUGH SERVER %
CLIENT SDEORBTOTHE s
RT_OPERATION SERVANT —v
DISPATCHING
A.EVENT CHANNEL DISPATCHING QUEUE \ /
':' XXX
CLIENT APPLICATION o i i 1: CONTROL FLOWSFROM RROXXXXX
Operation | | Operation | | Operation CLIENT DOWN THROUGH DISPATCHING PRIORITY
CLIENT STUB OBJECT ADAPTER CLIENT SIDE ORB, AND UP (selects which queue)
ORB COR ORB COR TO 1/OSUBSYSTEM ON
THE SERVER SIDE
e 2: 1/0 SUBSYSTEM ENQUEUES REXZXXR  SUPPLIED BY CONFIGURED QUEUE
XX

O B 0s AND DISPATCHESOPERATION IN THE DISPATCHING MODULE

CLIENT SER.VER REQUESTSACCORDING TO
PRIORITY

3: CONTROL ALOWSUPTHROUGH

SERVERSIDEORBTO THE Figure 28: Example Queueing Mechanism in a TAO Dispatch-
B. 1/0 SUBSYSTEM DISPATCHING RT_OPERATION SERVANT mg Module

- SUPPLIED BY SCHEDULING SERVICE

Figure 27: Alternative Placement of Dispatching Modules o ) ) .
mize priority inversions, operations are dispatched from the

gueue with the highest thread priority, preempting any oper-
event results in a flow of control down through the ORB lagtion executing in a lower priority thread [10]. To minimize
ers on the client and back up through the ORB layers on tireemption overhead, there is no preemption within a given
server, where the operation is dispatched. priority queue.
Figure 27(B) illustrates dispatching in TAO's I/O subsys- The following three values are defined for the dispatching
tem [17]. The client application makes direct operation catigoe:

to the ORB, which passes requests down through the OBBATIC _DISPATCHING:  This type specifies a queue that

layers on the client and back up to the I/O subsystem layg{i; considers the static portion of an operation’s dispatching
on the server. The I/O subsystem'’s dispatching module S0bpriority.

gueues operation requests and dispatches them according to ) ) »
their dispatching priority and dispatching subpriority, respedEADLINE _DISPATCHING:  This type specifies a queue

tively. Each dispatched operation request results in a ﬂOWtBi;lt considers the dynamic and static portions of an operation’s

control up through the higher ORB layers on the server, whé&igPatching subpriority, and updates the dynamic portion ac-

the operation is dispatched. cording to the time remaining until the operation’s deadline.
LAXITY _DISPATCHING: Thistype specifies a queue that
considers the dynamic and static portions of an operation’s dis-

Internal architecture:  Figure 28 illustrates the generahaiching subpriority, and updates the dynamic portion accord-
gueueing mechanism used by the dispatching moduleqn@to the operation’s laxity.

TAO’s ORB endsystem. In addition, this figure shows how i ) ) .
the output information provided by TAO's scheduling servicEn€ deadline- and laxity-based queues update operation dis-
is used to configure and operate a dispatching module. patching subpriorities whenever an operation is enqueued or

During system initialization, each dispatching module of€dqueued.
tains the thread priority and dispatching type for each of Run-time dispatching priority: ~ Run-time control over dis-
queues from the scheduling service’s output interface, as platching priority can be used to achieve the preemptive-by-
scribed in Section B.5.2. Next, each queue is assignedrgency dispatching model discussed in Section B.5.6. How-
unique dispatching priority number, a unique thread priorigyer, this model incurs greater complexity in the dispatching
and an enumerated dispatching type. Finally, each dispateiodule implementation, which increases run-time overhead.
ing module has an ordered queue of pending dispatches Pesrefore, once an operation is enqueued in TAO's dispatch-
dispatching priority. ing modules, none of the queues specified by the above dis-
To preserve QoS guarantees, operations are inserted intgttehing types exerts control over an operation’s dispatching
appropriate dispatching queue according to their assigned giserity at run-time.
patching priority. Operations within a dispatching queue areAs noted in Section B.5.5, all the strategies implemented
ordered by their assigned dispatching subpriority. To mini- TAO map static priority directly into dispatching priority.
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Compared with strategies that modify an operation’s dispatch-
ing priority dynamically, this mapping simplifies the dispatch-
ing module implementation since queues need not maintain
references to one another or perform locking to move mes-
sages between queues. In addition, TAO'’s strategy imple-
mentations also minimize run-time overhead since none of the
gueues specified by its dispatching types update any dynamic
portion of an operation’s dispatching priority. These charac-
teristics meet the requirements of real-time avionics systems
to which TAO has been applied [47, 10, 23, 45].

It is possible, however, for an application to define strate-

CRITICALITY DEPENDENCIES IMPORTANCE

EXECUTION TIME PERIOD

gies thatdo modify an operation’s dispatching priority dy- STATIC DYNAMIC STATIC
namically. A potential implementation of this is to add a new PRIORITY  SUBPRIORITY SUBPRIORITY
constant to the enumerated dispatching types. In addition, an Figure 29: MUF Input Mapping

appropriate kind of queue must be implemented and used to
configure the dispatching module according to the new dis-
patching type. Supporting this extension is simplified by tl@ecording tdaxity. Laxity is a function of the operation’s pe-
flexible design of TAO’s scheduling service framework. riod, execution time, arrival time, and the time of evaluation.

MLF mapping: The MLF mapping shown in Figure 30 as-
B.5.4 Input Mappings Implemented in TAO’s Scheduling signs a constant (zero) value to the static priority of each op-
Service eration. This results in a single static priority. The minimum

In each of TAO’s scheduling strategies, an input mapping as-
signs urgency to an operation according to a specific schedul-
ing strategy. Input mappings for MUF, MLF, EDF, and RMS
have been implemented in TAO’s strategized scheduling ser-
vice. Below, we outline each mapping.

In each mapping, static subpriority is assigned first using
importance and second using a topological ordering based on
dependencies. The canonical definitions of MLF, EDF, and

CRITICALITY DEPENDENCIES IMPORTANCI

EXECUTION TIME

CONSTANT

RMS do not include a minimal static ordering. Adding it to
TAQO's strategy implementations for these strategies has no ad-
verse effect, however. This is because MLF, EDF, and RMS I | |
require thatall operations are guaranteed to meet their dead-
lines for the schedule to be feasible, undayordering of op- StaTic Dynamic Sratic

. . . . . .. . PRIORITY ~ SUBPRIORITY SUBPRIORITY
erations with otherwise identical priorities. Moreover, static _ _
ordering has the benefit of ensuring determinism for each pos- Figure 30: MLF Input Mapping

sible assignment of urgency values.
critical priority is this lone static priority. The MLF strategy

MUF mapping: The mapping from operation characterisgssigns the dynamic subpriority of each operation according
tics onto urgency for MUF is shown in Figure 29. Static priofp its |axity.

ity is assigned according to criticality in this mapping. There o , -
are only two static priorities since we use only two criticalityCF Mapping: - The EDF mapping shown in Figure 31 also

levels in TAO's MUF implementation. The critical set in thi€SSIgNS & constant (zero) value to the static priority of each

version of MUF is the set of operations that were assigned fi€ration. Moreover, the EDF strategy assigns the dynamic
high criticality value. subpriority of each operation according totitee-to-deadline

When MUF is implemented with only two criticality IeveIsWhiCh is a function of its period, its arrival time, and the time

the minimum critical priority is the static priority correspond‘—)f evaluation.

ing to the high criticality value. In the more general version ®8MS mapping: The RMS mapping shown in Figure 32 as-

MUF [50], in which multiple criticality levels are possible, theigns the static priority of each operation according teés

critical set may span multiple criticality levels. riod, with higher static priority for each shorter period. The
Dynamic subpriority is assigned in the MUF input mappingeriod for aperiodic execution must be assumed to be the worst
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CRITICALITY DEPENDENCIES IMPORTANCE

EXECUTION TIME

PERIOD

CONSTANT

I | l

STATIC DyNAMIC StATIC
PRIORITY  QuBpPRIORITY SUBPRIORITY

Figure 31: EDF Input Mapping

CRITICALITY DEPENDENCIES IMPORTANCE

EXECUTION TIME PERIOD

CONSTANT

SrATIC DyNAMIC STATIC
PRIORITY  SUBPRIORITY SUBPRIORITY

Figure 32: RMS Input Mapping

case. In RMS, all operations are critical, so the minimum crit-
ical priority is the minimum static priority in the system. The
RMS strategy assigns a constant (zero) value to the dynamic
subpriority of each operation.

This section explored the well known RMS, EDF, MLF, and
MUF priority mappings. These mappings reflect opposing de-
sign forces of commonality and difference. TAO's strategized
scheduling service leverages the commonality among these
mappings to make its implementation more uniform. The dif-
ferences between these mappings provide hot spots for adap-
tation to the requirements of specific applications.

B.5.5 Output Mapping Implemented in TAO’s Schedul-
ing Service

The need to correctly specify enforcable end-to-end QoS re-
quirements for different operations motivates both the input
and output mappings in TAO's strategized scheduling service.
The input mappings described in Section B.5.4 specify pri-
orities and subpriorities for operations. However, there is
no mechanism to enforce these priorities, independent of the
specific OS platform dispatching models. In each of TAO'’s
scheduling strategies, an output mapping transforms these pri-
ority and subpriority values into dispatching priority and sub-
priority requirements that can be enforced by the specific dis-
patching models in real systems.

As described in Section B.5.3, operations are distributed
to priority dispatching queues in the ORB according to their
assigned dispatching priority. Operations are ordered within
priority dispatching queues according to their designated dis-
patching subpriority. The scheduling strategy’s output map-
ping assigns dispatching priority and dispatching subpriority
to operations as a function of the urgency values specified by
the scheduling strategy’s input mapping.

Figure 33 illustrates the output mapping used by the
scheduling strategies implemented in TAO. Each mapping is

STATIC DYNAMIC STATIC
PRIORITY  SUBPRIORITY SUBPRIORITY

DISPATCHING DISPATCHING
PRIORITY  SUBPRIORITY

Figure 33: Output Mapping Implemented in TAO

described below.

Dispatching Priority:  In this mapping, static priority maps
directly to dispatching priority. This mapping corresponds
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to the priority band dispatching model described in Sec-Another application might run on a platform thddessup-
tion B.5.2. Each unique static priority assigned by the inppibrt preemptive multi-threading and a large number of distinct
mapping results in a distinct thread priority in TAO’s ORB rethread priorities. Where thread preemption and a very large
guest dispatching module. number of thread priorities are supported, one alternative is a
Dispatching Subpriority: Dynamic subpriority and static diSPatching model that is preemptive bgency This design
subpriority map to dispatching subpriority. TAO’s strategizeg@Y incur higher run-time overhead, but can allow finer pre-
scheduling service performs this mapping efficiently at rufMPtion granularity. The application in this second example
time by transforming both dynamic and static subprioriti&@ight accept the additional time and space overhead needed
into a flat binary representation. A binary integer format & Preemptively dispatch operations by urgency, in exchange
lengthk bits is used to store the dispatching subpriority valufr reducing the amount of priority inversion incurred by the
Because the range of dynamic subpriority values and ff{gPatching module.
number of static subpriorities are known prior to run-time, a P&pending on (1) whether the OS supports thread preemp-
fixed number of bits can be reserved for each. Dynamic sdi§": (2) the number of distinct thread priorities supported, and
priority is stored in them highest order bits, wherer = 3) thg preemption granularity desired by the appllcatlon,.sev—
Mg(ds)], andds is the number of possible dynamic Subprf,eral dispatching mode.Is can bg supported by the output inter-
orities. Static subpriority is stored in the nextower order faceé of TAO's scheduling service. Below, we examine three
bits, wheren = [lg(ss)], andss is the number of static Sub_.canpmcal variations supported by TAO, which are illustrated
priorities. in Figure 34.
TAO'’s preemption subpriority mapping scheme preserves
the ordering of operation dispatches according to their as- "i "i —’i "2 —’2 —’i
signed urgencyvalues. Static subpriorities correspond to 0§ § 1 N
thread priorities. Thus, an operation with higher static priority CREEMPTIVE-BY-URGENCY
will always preempt one with lower static subpriority. Opera-

tions with the same static priority are ordered first by dynamic _,2
subpriority and second by static subpriority. —>2 —>2 —>2
B.5.6 Alternative Output Mappings -

Itis useful to consider the consequences of the specific output

mapping described in Section B.5.5 and to evaluate the uses  PreaMPTIVE-BY-PRIORITY-BAND

and implications of alternative output mappings. The schedul-

ing strategies implemented in TAO strike a balance between NON-PREEMPTIVE
preemption granularity and run-time overhead. This design  Figure 34: Dispatching Models supported by TAO
is appropriate for the hard real-time avionics applications we

have developed.

However, TAO's strategized scheduling architecture is déreemptive-by-urgency: One consequence of the input and
signed to adapt to the needs of a range of applications, not fugiput mappings implemented in TAO is that the purely dy-
hard real-time avionics systems. Different types of applicaamic EDF and MLF strategies are non-preemptive. Thus, a
tions and platforms may require different resolutions of kégwly arrived operation will not be dispatched until the opera-
design forces. tion currently executing has run to completion, even if the new

For example, an application may run on a platform tigts operation has greater urgency. By assigning dispatching prior-
not support preemptive multi-threading. Likewise, other plaity according to urgency, all scheduling strategies can be made
forms do not support thread preemption and multiple threfadly preemptive.
priority levels. In such cases, TAO'’s scheduling service frame-This dispatching model maintains the invariant that the
work assigns all operations the same constant dispatching Ipighest urgency operation that is able to execute is execut-
ority and maps the entire urgency tuple directly into the diigg at any given instant, modulo the OS dispatch latency over-
patching subpriority [50]. This mapping correctly assigns disead [14]. This model can be implemented only on platforms
patching priorities and dispatching subpriorities for a notiat (1) support fully preemptive multitasking and (2) provide
preemptive dispatching model. On a platform without prat least as many distinct real-time thread priorities as the num-
emptive multi-threading, the application could thus dispatbler of distinct operation urgencies possible in the application.
all operations in a single thread of execution, from a singleThe preemptive-by-urgency dispatching model can achieve
priority queue. very fine-grained control over priority inversions incurred by
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the dispatching modules. This design potentially reduces the
time bound of an inversion to that for a thread context switch
plus any switching overhead introduced by the dispatching
mechanism itself. Preemptive-by-urgency achieves its preci-
sion at the cost of increased time and space overhead, however.
Although this overhead can be reduced for applications whose
operations are known in advance, using techniques like perfect
hashing [56], overhead from additional context switches will
still be incurred.

Preemptive-by-priority-band: This model divides the
range of all possible urgencies into fixed priority bands. It
is similar to the non-preemptive dispatching model used by
message queues in the UNIX System V STREAMS /O sub-
system [79, 17]. This dispatching model maintains a slightly
weaker invariant than the preemptive-by-urgency model. At
any given instant, an operation from the highest fixed-priority
band that has operations able to execute is executing.

This dispatching model requires thread preemption and
at least a small number of distinct thread priority levels.
These features are now present in many operating systems.
The preemptive-by-priority-band model is a reasonable choice
when it is desirable or necessary to restrain the number of dis-
tinct preemption levels.

For example, a dynamic scheduling strategy can produce a
large number of distinct urgency values. These values must
be constrained on operating systems, such as like Windows
NT [80], that support only a small range of distinct thread pri-
orities. Operations in the queue are ordered by a subpriority
function based on urgency. The strategies implemented TAO's
strategized scheduling service use a form of this model, as de-
scribed in Section B.5.5.

Non-preemptive: This model uses a single priority queue
and is non-preemptive. It maintains a still weaker invariant:
the operation executing at any instant had the greatest urgency
at the time of last dispatch. As before, operations are ordered
according to their urgency within the single dispatching queue.
Unlike the previous models, however, this model can be used
on platforms that lack thread preemption or multi-threading.
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