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Abstract

Many real-time application domains can benefit from flex-
ible and open distributed architectures, such as those de-
fined by the CORBA specification. CORBA is an architec-
ture for distributed object computing being standardized by
the OMG. Although CORBA is well-suited for conventional re-
quest/response applications, CORBA implementations are not
yet suited for real-time applications due to the lack of key qual-
ity of service (QoS) features and performance optimizations.

This paper makes three contributions to the design of real-
time CORBA systems. First, the paper describes the design
of TAO, which is our high-performance, real-time CORBA-
compliant implementation that runs on a range of OS plat-
forms with real-time features including VxWorks, Chorus, So-
laris 2.x, and Windows NT. Second, it presents TAO’s real-
time scheduling service that can provide QoS guarantees for
deterministic real-time CORBA applications. Finally, the pa-
per presents performance measurements that demonstrate the
effects of priority inversion and non-determinism in conven-
tional CORBA implementations and how these hazards are
avoided in TAO.

1 Introduction

Distributed computing helps improve application performance
through multi-processing; reliability and availability through
replication; scalability, extensibility, and portability through
modularity; and cost effectiveness though resources sharing
and open systems. An increasingly important class of dis-
tributed applications require stringent quality of service (QoS)
guarantees. These applications include telecommunication

�This work was supported in part by NSF grant NCR-9628218, DARPA
contract 9701516, Boeing, Siemens, and Sprint.

systems command and control systems, multimedia systems,
and simulations.

In addition to requiring QoS guarantees, distributed appli-
cations must be flexible and reusable. Flexibility is needed to
respond rapidly to evolving functional and QoS requirements
of distributed applications. Reusability is needed to yield sub-
stantial improvements in productivity and to enhance the qual-
ity, performance, reliability, and interoperability of distributed
application software.

The Common Object Request Broker Architecture
(CORBA) [1] is an emerging standard for distributed object
computing (DOC) middleware. DOC middleware resides
between clients and servers. It simplifies application develop-
ment by providing a uniform view of heterogeneous network
and OS layers.

At the heart of DOC middleware areObject Request Brokers
(ORBs), such as CORBA [1], DCOM [2], and Java RMI [3].
ORBs eliminate many tedious, error-prone, and non-portable
aspects of developing and maintaining distributed applications
using low-level network programming mechanisms like sock-
ets [4]. In particular, ORBs automate common network pro-
gramming tasks such as object location, object activation, pa-
rameter marshaling/demarshaling, socket and request demulti-
plexing, fault recovery, and security. Thus, ORBs facilitate the
development of flexible distributed applications and reusable
services in heterogeneous distributed environments.

1.1 Overview of the CORBA Reference Model

CORBA Object Request Brokers (ORBs) [1] allow clients to
invoke operations on distributed objects without concern for
the following issues [5]:

Object location: CORBA objects either can be collocated
with the client or distributed on a remote server, without af-
fecting their implementation or use.

Programming language: The languages supported by
CORBA include C, C++, Java, Ada95, COBOL, and
Smalltalk, among others.
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OS platform: CORBA runs on many OS platforms, includ-
ing Win32, UNIX, MVS, and real-time embedded systems like
VxWorks, Chorus, and LynxOS.

Communication protocols and interconnects: The com-
munication protocols and interconnects that CORBA can run
on include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Eth-
ernet, embedded system backplanes, and shared memory.

Hardware: CORBA shields applications from side-effects
stemming from differences in hardware, such as storage layout
and data type sizes/ranges.

Figure 1 illustrates the components in the CORBA 2.x refer-
ence model, all of which collaborate to provide the portability,
interoperability, and transparency outlined above. Each com-
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Figure 1: Components in the CORBA 2.x Reference Model

ponent in the CORBA reference model is outlined below:

Client: This program entity performs application tasks by
obtaining object references to objects and invoking opera-
tions on them. Objects can be remote or collocated rela-
tive to the client. Ideally, accessing a remote object should
be as simple as calling an operation on a local object,i.e.,
object !operation(args) . Figure 1 shows the under-
lying components described below that ORBs use to transmit
remote operation requests transparently from client to object.

Object: In CORBA, an object is an instance of an Interface
Definition Language (IDL) interface. The object is identified
by an object reference, which uniquely names that instance
across servers. AnObjectIdassociates an object with its ser-
vant implementation, and is unique within the scope of an Ob-
ject Adapter. Over its lifetime, an object has one or more ser-
vants associated with it that implement its interface.

Servant: This component implements the operations de-
fined by an OMG Interface Definition Language (IDL) in-
terface. In languages like C++ and Java that support object-
oriented (OO) programming, servants are implemented us-
ing one or more class instances. In non-OO languages, like
C, servants are typically implemented using functions and
struct s. A client never interacts with a servant directly, but
always through an object identified by an object reference.

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request to
the object and returning a response, if any, to the client. For
objects executing remotely, a CORBA-compliant ORB Core
communicates via a version of the General Inter-ORB Proto-
col (GIOP), most commonly the Internet Inter-ORB Protocol
(IIOP) that runs atop the TCP transport protocol. An ORB
Core is typically implemented as a run-time library linked into
both client and server applications.

ORB Interface: An ORB is an abstraction that can be im-
plemented various ways,e.g., one or more processes or a set of
libraries. To decouple applications from implementation de-
tails, the CORBA specification defines an interface to an ORB.
This ORB interface provides standard operations to initialize
and shutdown the ORB, convert object references to strings
and back, and create argument lists for requests made through
thedynamic invocation interface(DII).

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs provide a strongly-typed,static invoca-
tion interface(SII) that marshals application parameters into a
common data-level representation. Conversely, skeletons de-
marshal the data-level representation back into typed parame-
ters that are meaningful to an application.

IDL Compiler: An IDL compiler transforms OMG IDL
definitions into stubs and skeletons that are generated auto-
matically in an application programming language like C++
or Java. In addition to providing programming language trans-
parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated
compiler optimizations [6].

Dynamic Invocation Interface (DII): The DII allows
clients to generate requests at run-time, which is useful when
an application has no compile-time knowledge of the interface
it accesses. The DII also allows clients to makedeferred syn-
chronouscalls, which decouple the request and response por-
tions of two-way operations to avoid blocking the client until
the servant responds. In contrast, in CORBA 2.x, SII stubs
only supporttwo-way, i.e., request/response, andone-way, i.e.,
request-only operations.1

1The OMG has standardized a static asynchronous method invocation in-
terface in the Messaging specification [7], which will appear in CORBA 3.0.
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Dynamic Skeleton Interface (DSI): The DSI is the server’s
analogue to the client’s DII. The DSI allows an ORB to deliver
requests to servants that have no compile-time knowledge of
the IDL interface they implement. Clients making requests
need not know whether the server ORB uses static skeletons or
dynamic skeletons. Likewise, servers need not know if clients
use the DII or SII to invoke requests.

Object Adapter: An Object Adapter associates servants
with objects, creates object references, demultiplexes incom-
ing requests to servants, and collaborates with the IDL skele-
ton to dispatch the appropriate operation upcall on a servant.
CORBA 2.2 portability enhancements [1] define the Portable
Object Adapter (POA), which supports multiple nested POAs
per ORB. Object Adapters enable ORBs to support various
types of servants that possess similar requirements. This de-
sign results in a smaller and simpler ORB that can support a
wide range of object granularities, lifetimes, policies, imple-
mentation styles, and other properties.

Interface Repository: The Interface Repository provides
run-time information about IDL interfaces. Using this infor-
mation, it is possible for a program to encounter an object
whose interface was not known when the program was com-
piled, yet, be able to determine what operations are valid on the
object and make invocations on it using the DII. In addition,
the Interface Repository provides a common location to store
additional information associated with interfaces to CORBA
objects, such as type libraries for stubs and skeletons.

Implementation Repository: The Implementation Reposi-
tory [8] contains information that allows an ORB to activate
servers to process servants. Most of the information in the Im-
plementation Repository is specific to an ORB or OS environ-
ment. In addition, the Implementation Repository provides a
common location to store information associated with servers,
such as administrative control, resource allocation, security,
and activation modes.

1.2 Limitations of CORBA for Real-time Ap-
plications

Our experience using CORBA on telecommunication [9],
avionics [10], and medical imaging projects [11] indicates that
it is well-suited for conventional RPC-style applications that
possess “best-effort” quality of service (QoS) requirements.
However, conventional CORBA implementations are not yet
suited for high-performance, real-time applications for the fol-
lowing reasons:

Lack of QoS specification interfaces: The CORBA 2.x
standard does not provide interfaces to specify end-to-end QoS
requirements. For instance, there is no standard way for clients
to indicate the relative priorities of their requests to an ORB.

Likewise, there is no interface for clients to inform an ORB
the rate at which to execute operations that have periodic pro-
cessing deadlines.

The CORBA standard also does not define interfaces that
allow applications to specify admission control policies. For
instance, a video server might prefer to use available network
bandwidth to serve a limited number of clients and refuse ser-
vice to additional clients, rather than admit all clients and pro-
vide poor video quality [12]. Conversely, a stock quote service
might want to admit a large number of clients and distribute all
available bandwidth and processing time equally among them.

Lack of QoS enforcement: Conventional ORBs do not pro-
vide end-to-end QoS enforcement,i.e., from application-to-
application across a network. For instance, most ORBs trans-
mit, schedule, and dispatch client requests in FIFO order.
However, FIFO strategies can yield unbounded priority in-
versions [13, 14], which occur when a lower priority request
blocks the execution of a higher priority request for an indefi-
nite period. Likewise, conventional ORBs do not allow appli-
cations to specify the priority of threads that process requests.

Standard ORBs also do not provide fine-grained control of
servant execution. For instance, they do not terminate servants
that consume excess resources. Moreover, most ORBs usead
hocresource allocation. Consequently, a single client can con-
sume all available network bandwidth and a misbehaving ser-
vant can monopolize a server’s CPU.

Lack of real-time programming features: The CORBA
2.x specification does not define key features that are nec-
essary to support real-time programming. For instance, the
CORBA General Inter-ORB Protocol (GIOP) supports asyn-
chronous messaging. However, no standard programming lan-
guage mapping exists in CORBA 2.x to transmit client re-
quests asynchronously, though the Messaging specification in
CORBA 3.0 will define this mapping. Likewise, the CORBA
specification does not require an ORB to notify clients when
transport layer flow control occurs, nor does it support timed
operations [15]. As a result, it is hard to develop portable and
efficient real-time applications that behave deterministically
when ORB endsystem or network resources are unavailable
temporarily.

Lack of performance optimizations: Conventional ORB
endsystems incur significant throughput [11] and latency [16]
overhead, as well as exhibiting many priority inversions and
sources of non-determinism [17], as shown in Figure 2. These
overheads stem from (1) non-optimized presentation layers
that copy and touch data excessively [6] and overflow proces-
sor caches [18]; (2) internal buffering strategies that produce
non-uniform behavior for different message sizes [19]; (3) in-
efficient demultiplexing and dispatching algorithms [20]; (4)
long chains of intra-ORB virtual method calls [21]; and (5)
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Figure 2: Sources of Latency and Priority Inversion in Con-
ventional ORBs

lack of integration with underlying real-time OS and network
QoS mechanisms [22, 23, 17].

1.3 Overcoming CORBA Limitations for High-
performance and Real-time Applications

Meeting the QoS needs of next-generation distributed appli-
cations requires much more than defining IDL interfaces or
adding preemptive real-time scheduling to an OS. Instead, it
requires a vertically and horizontally integratedORB endsys-
temthat can deliver end-to-end QoS guarantees at multiple lev-
els throughout a distributed system. The key components in an
ORB endsystem include the network interfaces, operating sys-
tem I/O subsystems, communication protocols, and common
middleware object services.

Implementing an effective framework for real-time CORBA
requires ORB endsystem developers to address two types of
issues:QoS specificationand QoS enforcement. First, real-
time applications must meet certain timing constraints to en-
sure the usefulness of the applications. For instance, a video-
conferencing application may require an upper bound on the
propagation delay of video packets from the source to the des-
tination. Such constraints are defined by theQoS specifica-
tion of the system. Thus, providing effective OO middleware
requires a real-time ORB endsystem that supports the mech-
anisms and semantics for applications to specify their QoS
requirements. Second, the architecture of the ORB endsys-
tem must be designed carefully toenforcethe QoS parameters
specified by applications.

Section 2 describes how we are developing such an inte-

grated middleware framework calledThe ACE ORB(TAO)
[22]. TAO is a high-performance, real-time CORBA-
compliant ORB endsystem developed using the ACE frame-
work [24], which is a highly portable OO middleware commu-
nication framework. ACE contains a rich set of C++ compo-
nents that implement strategic design patterns [25] for high-
performance and real-time communication systems. Since
TAO is based on ACE it runs on a wide range of OS platforms
including general-purpose operating systems, such as Solaris
and Windows NT, as well as real-time operating systems such
as VxWorks, Chorus, and LynxOS.

1.3.1 Synopsis of TAO

The TAO project focuses on the following topics related to
real-time CORBA and ORB endsystems:

� Identifying enhancements to standard ORB specifica-
tions, particularly OMG CORBA, that will enable appli-
cations to specify their QoS requirements concisely and
precisely to ORB endsystems [26].

� Empirically determining the features required to build
real-time ORB endsystems that can enforce determin-
istic and statistical end-to-end application QoS guaran-
tees [23].

� Integrating the strategies for I/O subsystem architectures
and optimizations [17] with ORB middleware to provide
end-to-end bandwidth, latency, and reliability guarantees
to distributed applications.

� Capturing and documenting the key design patterns [25]
necessary to develop, maintain, configure, and extend
real-time ORB endsystems.

In addition to providing a real-time ORB, TAO is an inte-
grated ORB endsystem that consists of a high-performance
I/O subsystem [27, 28] and an ATM Port Interconnect Con-
troller (APIC) [29]. Figure 4 illustrates the main components
in TAO’s ORB endsystem architecture.

1.3.2 Requirements for High-performance and Real-time
ORB Endsystems

The remainder of this section describes the requirements
and features of ORB endsystems necessary to meet high-
performance and real-time application QoS needs. It outlines
key performance optimizations and provides a roadmap for the
ORB features and optimizations presented in subsequent sec-
tions. Figure 3 summarizes the material covered below.

Policies and mechanisms for specifying end-to-end appli-
cation QoS requirements: ORB endsystems must allow ap-
plications to specify the QoS requirements of their IDL op-
erations using a small number of application-centric, rather
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Figure 3: Features and Optimizations for Real-time ORB End-
systems

than OS/network-centric parameters. Typical QoS parame-
ters include computation time, execution period, and band-
width/delay requirements. For instance, video-conferencing
groupware [30, 12] may require high throughput andstatisti-
cal real-time latency deadlines. In contrast, avionics mission
control platforms [10] may require rate-based periodic pro-
cessing withdeterministicreal-time deadlines.

QoS specification is not addressed by the CORBA 2.x spec-
ification, though there is an OMG special interest group (SIG)
devoted to this topic. Section 3.3 explains how TAO allows
applications to specify their QoS requirements using a combi-
nation of standard OMG IDL and QoS-aware ORB services.

QoS enforcement from real-time operating systems and
networks: Regardless of the ability tospecifyapplication
QoS requirements, an ORB endsystem cannot deliver end-to-
end guarantees to applications without network and OS sup-
port for QoSenforcement. Therefore, ORB endsystems must
be capable of scheduling resources such as CPUs, memory,
and network connection bandwidth and latency. For instance,
OS scheduling mechanisms must allow high-priority client re-
quests to run to completion and prevent unbounded priority
inversion.

Another OS requirement is preemptive dispatching. For ex-
ample, a thread may become runnable that has a higher priority
than one currently running a CORBA request on a CPU. In this
case, the low-priority thread must be preempted by removing
it from the CPU in favor of the high-priority thread.

Section 2.1 describes the OS I/O subsystem and network
interface we are integrating with TAO. This infrastructure is
designed to scale up to support performance-sensitive appli-
cations that require end-to-end gigabit data rates, predictable
scheduling of I/O within an ORB endsystem, and low latency
to CORBA applications.

Efficient and predictable real-time communication proto-
cols and protocol engines: The throughput, latency, and re-
liability requirements of multimedia applications like telecon-
ferencing are more stringent and diverse than those found in
traditional applications like remote login or file transfer. Like-
wise, the channel speed, bit-error rates, and services (such as
isochronous and bounded-latency delivery guarantees) of net-
works like ATM exceed those offered by traditional networks
like Ethernet. Therefore, ORB endsystems must provide a pro-
tocol engine that is efficient, predictable, and flexible enough
to be customized for different application QoS requirements
and network/endsystem environments.

Section 2.2.1 outlines TAO’s protocol engine, which pro-
vides real-time enhancements and high-performance opti-
mizations to the standard CORBA General Inter-ORB Proto-
col (GIOP) [1]. The GIOP implementation in TAO’s protocol
engine specifies (1) a connection and concurrency architecture
that minimizes priority inversion and (2) a transport protocol
that enables efficient, predictable, and interoperable process-
ing and communication among heterogeneous ORB endsys-
tems.

Efficient and predictable request demultiplexing and dis-
patching: ORB endsystems must demultiplex and dispatch
incoming client requests to the appropriate operation of the tar-
get servant. In conventional ORBs, demultiplexing occurs at
multiple layers, including the network interface, the protocol
stack, the user/kernel boundary, and several levels in an ORB’s
Object Adapter. Demultiplexing client requests through all
these layers is expensive, particularly when a large number of
operations appear in an IDL interface and/or a large number
of servants are managed by an ORB endsystem. To minimize
this overhead, and to ensure predictable dispatching behav-
ior, TAO applies the perfect hashing and active demultiplex-
ing optimizations [20] described in Section 2.3 to demultiplex
requests inO(1) time.

Efficient and predictable presentation layer: ORB pre-
sentation layer conversions transform application-level data
into a portable format that masks byte order, alignment, and
word length differences. Many performance optimizations
have been designed to reduce the cost of presentation layer
conversions. For instance, [31] describes the tradeoffs be-
tween using compiled vs. interpreted code for presentation
layer conversions. Compiled marshaling code is efficient, but
requires excessive amounts of memory. This can be problem-
atic in many embedded real-time environments. In contrast,
interpreted marshaling code is slower, but more compact and
can often utilize processor caches more effectively.

Section 2.4 outlines how TAO supports predictable perfor-
mance guarantees for both interpreted and compiled marshal-
ing operations via its GIOP protocol engine. This protocol
engine applies a number of innovative compiler techniques [6]
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and optimization principles [18]. These principles include op-
timizing for the common case; eliminating gratuitous waste;
replacing general purpose operations with specialized, effi-
cient ones; precomputing values, if possible; storing redundant
state to speed up expensive operations; passing information
between layers; and optimizing for the cache.

Efficient and predictable memory management: On mod-
ern high-speed hardware platforms, data copying consumes a
significant amount of CPU, memory, and I/O bus resources
[32]. Likewise, dynamic memory management incurs a signif-
icant performance penalty due to locking overhead and non-
determinism due to heap fragmentation. Minimizing data
copying and dynamic memory allocation requires the collab-
oration of multiple layers in an ORB endsystem,i.e., the net-
work interfaces, I/O subsystem protocol stacks, ORB Core and
Object Adapter, presentation layer, and application-specific
servants.

Section 2.5 outlines TAO’s vertically integrated memory
management scheme that minimizes data copying and lock
contention throughout its ORB endsystem.

1.3.3 Real-time vs. High-performance Tradeoffs

There is a common misconception [33] that applications with
“real-time” requirements are equivalent to application with
“high-performance” requirements. This is not necessarily the
case. For instance, an Internet audio-conferencingsystem may
not require high bandwidth, but it does require predictably low
latency to provide adequate QoS to users in real-time.

Other multimedia applications, such as teleconferencing,
have both real-time and high-performance requirements. Ap-
plications in other domains, such as avionics and process con-
trol, have stringent periodic processing deadline requirements
in the worst-case. In these domains, achieving predictability in
the worst-case is often more important than high performance
in the average-case.

It is important to recognize that high-performance require-
ments may conflict with real-time requirements. For instance,
real-time scheduling policies often rely on the predictability of
endsystem operations like thread scheduling, demultiplexing,
and message buffering. However, certain optimizations can
improve performance at the expense of predictability. For in-
stance, using a self-organizing search structure to demultiplex
client requests in an ORB’s Object Adapter can increase the
average-case performance of operations, which decreases the
predictability of any given operation in the worst-case.

To allow applications to select the appropriate tradeoffs be-
tween average-case and worst-case performance, TAO is de-
signed with an extensible software architecture based on key
communication patterns [25]. When appropriate, TAO em-
ploys algorithms and data structures that can optimize for both

performance and predictability. For instance, the de-layered
active demultiplexing scheme described in Section 2.3 can in-
crease ORB performanceandpredictability by eliminating ex-
cessive searching and avoiding priority inversions across de-
multiplexing layers [20].

The remainder of this article is organized as follows: Sec-
tion 2 describes the feature enhancements and optimizations
we are developing for TAO; Section 3 discusses the design
and implementation of TAO’s real-time Scheduling Service
in detail; Section 4 presents performance measurements that
demonstrate TAO’s ability to support real-time QoS require-
ments; Section?? compares our work with related research
projects; and Section 5 presents concluding remarks.

2 Architectural Components and Fea-
tures for High-performance, Real-
time ORB Endsystems

TAO’s ORB endsystem contains the network interface, I/O
subsystem, communication protocol, and CORBA middleware
components shown in Figure 4. These components include the
following.

1. I/O subsystem: which send/receives requests to/from
clients in real-time across a network (such as ATM) or back-
plane (such as VME or compactPCI).

2. Run-time scheduler: which determines the priority at
which requests are processed by clients and servers in an ORB
endsystem.

3. ORB Core: which provides a highly flexible, portable,
efficient, and predictable CORBA inter-ORB protocol engine
that delivers client requests to the Object Adapter and returns
responses (if any) to clients.

4. Object Adapter: which demultiplexes and dispatches
client requests optimally to servants using perfect hashing and
active demultiplexing.

5. Stubs and skeletons: which optimize key sources of mar-
shaling and demarshaling overhead in the code generated au-
tomatically by TAO’s IDL compiler.

6. Memory manager: which minimizes sources of dynamic
memory allocation and data copying throughout the ORB end-
system.

7. QoS API: which allows applications and higher-level
CORBA services to specify their QoS parameters using an OO
programming model.

TAO’s I/O subsystem and portions of its run-time scheduler
and memory manager run in the kernel. Conversely, TAO’s
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ORB Core, Object Adapter, stubs/skeletons, and portions of
its run-time scheduler and memory manager run in user-space.

The remainder of this section describes components 1, 3,
4, 5, and 6 and explains how they are implemented in TAO
to meet the requirements of high-performance, real-time ORB
endsystems described in Section 1.3. Section 3 focuses on
components 2 and 7, which allow applications to specify QoS
requirements for real-time servant operations. This paper dis-
cusses both high-performance and real-time features in TAO
since it is designed to support applications with a wide range
of QoS requirements.
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Figure 5: Components in TAO’s High-performance, Real-time
I/O Subsystem

2.1 High-performance, Real-time I/O Subsys-
tem

An I/O subsystem is responsible for mediating ORB and ap-
plication access to low-level network and OS resources such
as device drivers, protocol stacks, and CPU(s). The key chal-
lenges in building a high-performance, real-time I/O subsys-
tem are to (1) make it convenient for applications to specify
their QoS requirements, (2) enforce QoS specifications and
minimize priority inversion and non-determinism, and (3) en-
able ORB middleware to leverage QoS features provided by
the underlying network and OS resources.

To meet these challenges, we have developed a high-
performance, real-time network I/O subsystem that is cus-
tomized for TAO [17]. The components in this subsystem are
shown in Figure 5. They include (1) a high-speed ATM net-
work interface, (2) a high-performance, real-time I/O subsys-
tem, (3) a real-time Scheduling Service and Run-Time Sched-
uler, and (4) an admission controller, as described below.
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High-speed network interface: At the bottom of TAO’s I/O
subsystem is a “daisy-chained” interconnect containing one
or more ATM Port Interconnect Controller (APIC) chips [29].
APIC can be used both as an endsystem/network interface and
as an I/O interface chip. It sustains an aggregate bi-directional
data rate of 2.4 Gbps.

Although TAO is optimized for the APIC I/O subsystem, it
is designed using a layered architecture that can run on con-
ventional OS platforms, as well. For instance, TAO has been
ported to real-time interconnects, such as VME and compact-
PCI backplanes [17] and multi-processor shared memory en-
vironments, and QoS-enabled networks, such as IPv6 with
RSVP [34].

Real-time I/O Subsystem: Some general-purpose operat-
ing systems like Solaris and Windows NT now support real-
time scheduling. For example, Solaris 2.x provides a real-time
scheduling class [14] that attempts to bound the time required
to dispatch threads in this thread class. However, general-
purpose operating systems do not provide real-time I/O sub-
systems. For instance, the Solaris STREAMS [35] implemen-
tation does not support QoS guarantees since STREAMS pro-
cessing is performed at system thread priority, which is lower
than all real-time threads [17]. Therefore, the Solaris I/O sub-
system is prone to priority inversion since low-priority real-
time threads can preempt the I/O operations of high-priority
threads. Unbounded priority inversion is highly undesirable in
many real-time environments.

TAO enhances the STREAMS model provided by Solaris
and real-time operating systems like VxWorks and LynxOS.
TAO’s real-time I/O (RIO) subsystem minimizes priority in-
version and hidden scheduling2 that arise during protocol pro-
cessing. TAO minimizes priority inversion by pre-allocating a
pool of kernel threads dedicated to protocol processing. These
kernel threads are co-scheduled with a pool of application
threads. The kernel threads run at the same priority as the
application threads, which prevents the real-time scheduling
hazards outlined above.

To ensure predictable performance, the kernel threads be-
long to a real-time I/O scheduling class. This scheduling
class uses rate monotonic scheduling (RMS) [36, 37] to sup-
port real-time applications with periodic processing behavior.
Once a real-time I/O thread is admitted by the OS kernel,
TAO’s RIO subsystem is responsible for (1) computing its pri-
ority relative to other threads in the class and (2) dispatching
the thread periodically so that its deadlines are met.

2Hidden scheduling occurs when the kernel performs work asyn-
chronously without regard to its priority. STREAMS processing in Solaris is
an example of hidden scheduling since the computation time is not accounted
for by the application or OS scheduler. To avoid hidden scheduling, the kernel
should perform its work at the priority of the thread that requested the work.

Real-time Scheduling Service and Run-Time Scheduler:
The scheduling abstractions defined by real-time operating
systems like VxWorks, LynxOS, and POSIX 1003.1c [38] im-
plementations are relatively low-level. For instance, they re-
quire developers to map their high-level application QoS re-
quirements into lower-level OS mechanisms, such as thread
priorities and virtual circuit bandwidth/latency parameters.
This manual mapping step is non-intuitive for many applica-
tion developers, who prefer to design in terms of objects and
operations on objects.

To allow applications to specify their scheduling require-
ments in a higher-level, more intuitive manner, TAO provides
a Real-time Scheduling Service. This service is a CORBA ob-
ject that is responsible for allocating system resources to meet
the QoS needs of the applications that share the ORB endsys-
tem.

Applications can use TAO’s Real-time Scheduling Service
to specify the processing requirements of their operations in
terms of various parameters, such as computation timeC, pe-
riod P, or deadlineD. If all operations can be scheduled, the
Scheduling Service assigns a priority to each request. At run-
time, these priority assignments are then used by TAO’s Run-
time Scheduler. The Run-time Scheduler maps client requests
for particular servant operations into priorities that are under-
stood by the local endsystem’s OS thread dispatcher. The
dispatcher then grants priorities to real-time I/O threads and
performs preemption so that schedulability is enforced at run-
time. Section 3.2 describe the Run-Time Scheduler and Real-
time Scheduling Service in detail.

Admission Controller: To ensure that application QoS re-
quirements can be met, TAO performs admission control for
its real-time I/O scheduling class. Admission control allows
the OS to either guarantee the specified computation time or
to refuse to admit the thread. Admission control is useful for
real-time systems with deterministic and/or statistical QoS re-
quirements.

This paper focuses primarily on admission control for ORB
endsystems. Admission control is also important at higher-
levels in a distributed system, as well. For instance, admis-
sion control can be used for global resource managers [39, 40]
that map applications onto computational, storage, and net-
work resources in a large-scale distributed system, such as a
ship-board computing environment.

2.2 Efficient and Predictable ORB Cores

The ORB Core is the component in the CORBA architecture
that manages transport connections, delivers client requests to
an Object Adapter, and returns responses (if any) to clients.
The ORB Core typically implements the ORB’s transport end-
point demultiplexing and concurrency model, as well.
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The key challenges to developing a real-time ORB Core
are (1) implementing an efficient protocol engine for CORBA
inter-ORB protocols like GIOP and IIOP, (2) determining a
suitable connection and concurrency model that can share the
aggregate processing capacity of ORB endsystem components
predictably among operations in one or more threads of con-
trol, and (3) designing an ORB Core that can be adapted easily
to new endsystem/network environments and application QoS
requirements. The following describes how TAO’s ORB Core
is designed to meet these challenges.

2.2.1 TAO’s Inter-ORB Protocol Engine

TAO’s protocol engine is a highly optimized, real-time version
of the SunSoft IIOP reference implementation [18] that is in-
tegrated with the high-performance I/O subsystem described
in Section 2.1. Thus, TAO’s ORB Core on the client, server,
and any intermediate nodes can collaborate to process requests
in accordance with their QoS attributes. This design allows
clients to indicate the relative priorities of their requests and
allows TAO to enforce client QoS requirements end-to-end.

To increase portability across OS/network platforms, TAO’s
protocol engine is designed as a separate layer in TAO’s ORB
Core. Therefore, it can either be tightly integrated with the
high-performance, real-time I/O subsystem described in Sec-
tion 2.1 or run on conventional embedded platforms linked to-
gether via interconnects like VME or shared memory.

Below, we outline the existing CORBA interoperability pro-
tocols and describe how TAO implements these protocols in an
efficient and predictable manner.

Overview of GIOP and IIOP: CORBA is designed to run
over multiple transport protocols. The standard ORB interop-
erability protocol is known as the General Inter-ORB Protocol
(GIOP) [1]. GIOP provides a standard end-to-end interop-
erability protocol between potentially heterogeneous ORBs.
GIOP specifies an abstract interface that can be mapped
onto transport protocols that meet certain requirements,i.e.,
connection-oriented, reliable message delivery, and untyped
bytestream. An ORB supports GIOP if applications can use
the ORB to send and receive standard GIOP messages.

The GIOP specification consists of the following elements:

�Common Data Representation (CDR) definition: The
GIOP specification defines a common data representation
(CDR). CDR is a transfer syntax that maps OMG IDL types
from the native endsystem format to a bi-canonical format,
which supports both little-endian and big-endian binary data
formats. Data is transferred over the network in CDR encod-
ings.

� GIOP Message Formats: The GIOP specification de-
fines messages for sending requests, receiving replies, locating

objects, and managing communication channels.

� GIOP Transport Assumptions: The GIOP specifica-
tion describes what types of transport protocols can carry
GIOP messages. In addition, the GIOP specification describes
how connections are managed and defines constraints on mes-
sage ordering.

The CORBA Inter-ORB Protocol (IIOP) is a mapping of GIOP
onto the TCP/IP protocols. ORBs that use IIOP are able to
communicate with other ORBs that publish their locations in
an interoperable object reference(IOR) format.

Implementing GIOP/IIOP efficiently and predictably: In
Corba 2.x, neither GIOP nor IIOP provide support for speci-
fying or enforcing the end-to-end QoS requirements of appli-
cations.3 This makes GIOP/IIOP unsuitable for real-time ap-
plications that cannot tolerate the latency overhead and jitter
of TCP/IP transport protocols. For instance, TCP functional-
ity like adaptive retransmissions, deferred transmissions, and
delayed acknowledgments can cause excessive overhead and
latency for real-time applications. Likewise, routing proto-
cols like IPv4 lack functionality like packet admission policies
and rate control, which can lead to excessive congestion and
missed deadlines in networks and endsystems.

To address these shortcomings, TAO’s ORB Core supports
a priority-based concurrency architecture, a priority-based
connection architecture, and a real-time inter-ORB protocol
(RIOP), as described below.

� TAO’s priority-based concurrency architecture:
TAO’s ORB Core can be configured to allocate a real-time
thread4 for each application-designated priority level. Ev-
ery thread in TAO’s ORB Core can be associated with a
Reactor , which implements the Reactor pattern [43] to pro-
vide flexible and efficient endpoint demultiplexing and event
handler dispatching.

When playing the role of a server, TAO’sReactor (s) de-
multiplex incoming client requests to connection handlers that
perform GIOP processing. These handlers collaborate with
TAO’s Object Adapter to dispatch requests to application-level
servant operations. Operations can either execute with one of
the following two models [44]:

� Client propagation model– The operation is run at the
priority of the client that invoked the operation.

� Server sets model– The operation is run at the priority
of the thread in the server’s ORB Core that received the
operation.

3The forthcoming real-time CORBA specification [41] will support this
capability.

4In addition, TAO’s ORB Core can be configured to support other concur-
rency architectures, including thread pool, thread-per-connection, and single-
threaded reactive dispatching [42].
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The server sets priority model is well-suited for determinis-
tic real-time applications since it minimizes priority inversion
and non-determinism in TAO’s ORB Core [45]. In addition, it
reduces context switching and synchronization overhead since
servant state must be locked only if servants interact across
different thread priorities.

TAO’s priority-based concurrency architecture is optimized
for statically configured, fixed priority real-time applications.
In addition, it is well suited for scheduling and analysis tech-
niques that associate priority withrate, such as rate monotonic
scheduling (RMS) and rate monotonic analysis (RMA) [36,
37]. For instance, avionics mission computing systems com-
monly execute their tasks inrates groups. A rate group assem-
bles all periodic processing operations that occur at particular
rates,e.g., 20 Hz, 10 Hz, 5 Hz, and 1 Hz, and assigns them to
a pool of threads using fixed-priority scheduling.

� TAO’s priority-based connection architecture: Fig-
ure 6 illustrates how TAO can be configured with a priority-
based connection architecture. In this model, each client
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Figure 6: TAO’s Priority-based Connection and Concurrency
Architectures

thread maintains aConnector [46] in thread-specific stor-
age. EachConnector manages a map of pre-established
connections to servers. A separate connection is maintained
for each thread priority in the server ORB. This design en-
ables clients to preserve end-to-end priorities as requests tra-
verse through ORB endsystems and communication links [45].

Figure 6 also shows how theReactor that is associated
with each thread priority in a server ORB can be configured to
use anAcceptor [46]. TheAcceptor is a socket endpoint
factory that listens on a specific port number for clients to con-
nect to the ORB instance running at a particular thread priority.
TAO can be configured so that each priority level has its own
Acceptor port. For instance, in statically scheduled, rate-
based avionics mission computing systems [47], ports 10020,
10010, 10005, 10001 could be mapped to the 20 Hz, 10 Hz,
5 Hz, and 1 Hz rate groups, respectively. Requests arriving

at these socket ports can then be processed by the appropriate
fixed-priority real-time threads.

Once a client connects, theAcceptor in the server ORB
creates a new socket queue and a GIOP connection handler to
service that queue. TAO’s I/O subsystem uses the port number
contained in arriving requests as a demultiplexing key to asso-
ciate requests with the appropriate socket queue. This design
minimizes priority inversion through the ORB endsystem via
early demultiplexing[27, 28, 29], which associates requests
arriving on network interfaces with the appropriate real-time
thread that services the target servant. As described in Sec-
tion ??, early demultiplexing is used in TAO to vertically in-
tegrate the ORB endsystem’s QoS support from the network
interface up to the application servants.

� TAO’s Real-time inter-ORB protocol (RIOP): TAO’s
connection-per-priority scheme described above is optimized
for fixed-priority applications that transfer their requests at
particular rates through statically allocated connections ser-
viced at the priority of real-time server threads. Applications
that possess dynamic QoS characteristics, or that propagate the
priority of a client to the server, require a more flexible proto-
col, however. Therefore, TAO supports a real-time Inter-ORB
Protocol (RIOP).

RIOP is an implementation of GIOP that allows ORB end-
systems to transfer their QoS attributes end-to-end from clients
to servants. For instance, TAO’s RIOP mapping can transfer
the importanceof an operation end-to-end with each GIOP
message. The receiving ORB endsystem uses this QoS at-
tribute to set the priority of a thread that processes an operation
in the server.

To maintain compatibility with existing IIOP-based ORBs,
TAO’s RIOP protocol implementation transfers QoS in-
formation in the service context member of the
GIOP::requestHeader . ORBs that do not sup-
port TAO’s RIOP extensions can transparently ignore the
service context member. Incidentally, the RIOP feature
will be standardized as a QoS property in the asynchronous
messaging portion of the CORBA 3.0 specification.

The TAO RIOP service context passed with each
client invocation contains attributes that describe the opera-
tion’s QoS parameters. Attributes supported by TAO’s RIOP
extensions include priority, execution period, and communica-
tion class. Communication classes supported by TAO include
ISOCHRONOUSfor continuous media,BURST for bulk data,
MESSAGE for small messages with low delay requirements,
and MESSAGE STREAM for message sequences that must be
processed at a certain rate [28].

In addition to transporting client QoS attributes, TAO’s
RIOP is designed to map CORBA GIOP on a variety of net-
works including high-speed networks like ATM LANs and
ATM/IP WANs [48]. RIOP also can be customized for specific
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application requirements. To support applications that do not
require complete reliability, TAO’s RIOP mapping can selec-
tively omit transport layer functionality and run directly atop
ATM virtual circuits. For instance, teleconferencing or certain
types of imaging may not require retransmissions or bit-level
error detection.

2.2.2 Enhancing the Extensibility and Portability of
TAO’s ORB Core

Although most conventional ORBs interoperate via IIOP over
TCP/IP, an ORB is not limited to running over these transports.
For instance, while TCP can transfer GIOP requests reliably,
its flow control and congestion control algorithms may pre-
clude its use as a real-time protocol. Likewise, shared memory
may be a more effective transport mechanism when clients and
servants are collocated on the same endsystem. Therefore, a
key design challenge is to make an ORB Core extensible and
portable to multiple transport mechanisms and OS platforms.

To increase extensibility and portability, TAO’s ORB Core
is based on patterns in the ACE framework [24]. Section??
describes the patterns used in TAO in detail. The following
outlines the patterns that are used in TAO’s ORB Core.

TAO’s ORB Core uses theStrategyand Abstract Factory
patterns [49] to allow the configuration of multiple scheduling
algorithms, such as earliest deadline first or maximum urgency
first [50]. Likewise, theBridge pattern [49] shields TAO’s
ORB Core from the choice of scheduling algorithm. TAO uses
ACE components based on theService Configuratorpattern
[51] to allow new algorithms for scheduling, demultiplexing,
concurrency, and dispatching to be configured dynamically,
i.e., at runtime. On platforms with C++ compilers that opti-
mize virtual function calls, the overhead of this extensibility is
negligible [10].

Other patterns are used in TAO’s ORB Core to simplify
its connection and concurrency architectures. For instance,
theAcceptor-Connectorpattern [46] defines ACE components
used in TAO to decouple the task of connection establishment
from the GIOP processing tasks performed after connection
establishment. TAO uses theReactorpattern [43], which de-
fines an ACE component that simplifies the event-driven por-
tions of the ORB core by integrating socket demultiplexing
and the dispatching of the corresponding GIOP connection
handlers. Likewise, theActive Objectpattern [52] defines an
ACE component used in TAO to configure multiple concur-
rency architectures by decoupling operation invocation from
operation execution.

TAO ports easily to many OS platforms since it is built using
ACE components based on the patterns described above. Cur-
rently, ACE and TAO have been ported to a wide range of OS
platforms including Win32 (i.e., WinNT 3.5.x/4.x, Win95, and
WinCE), most versions of UNIX (e.g., SunOS 4.x and 5.x, SGI

IRIX 5.x and 6.x, HP-UX 9.x, 10.x, and 11.x, DEC UNIX 4.x,
AIX 4.x, Linux, SCO, UnixWare, NetBSD, and FreeBSD),
real-time operating systems (e.g., VxWorks, Chorus, LynxOS,
and pSoS), and MVS OpenEdition.

Figure 7 illustrates the components in the client-side
and server-side of TAO’s ORB Core. The client-
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Figure 7: Components in the TAO’s ORB Core

side uses aStrategy Connector to create and cache
Connection Handler s that are bound to each server.
These connections can be pre-allocated during ORB initial-
ization. Pre-allocation minimizes the latency between client
invocation and servant operation execution since connections
can be establisheda priori using TAO’s explicit binding oper-
ation.

On the server-side, theReactor detects new incoming
connections and notifies theStrategy Acceptor . The
Strategy Acceptor accepts the new connection and as-
sociates it with aConnection Handler that executes in
a thread with an appropriate real-time priority. The client’s
Connection Handler can pass GIOP requests (described
in Section 2.2.1) to the server’sConnection Handler .
This handler upcalls TAO’s Object Adapter, which dispatches
the requests to the appropriate servant operation.
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2.2.3 Real-time Scheduling and Dispatching of Client Re-
quests

TAO’s ORB Core can be configured to implement cus-
tom mechanisms that process client requests according to
application-specific real-time scheduling policies. To pro-
vide a guaranteed share of the CPU among application opera-
tions [28, 10], TAO’s ORB Core uses the real-time Scheduling
Service described in Section 3. One of the strategies provided
by TAO’s ORB Core is variant of periodic rate monotonic
scheduling implemented with real-time threads and real-time
upcalls (RTUs) [28].

TAO’s ORB Core contains an object reference to its Run-
Time Scheduler shown in Figure 4. This scheduler dispatches
client requests in accordance with a real-time scheduling pol-
icy configured into the ORB endsystem. The Run-Time
Scheduler maps client requests to real-time thread priorities
and connectors.

TAO’s initial implementation supports deterministic real-
time applications [17]. In this case, TAO’s Run-Time Sched-
uler consults a table of request priorities generated off-line. At
run-time, TAO’s ORB Core dispatches threads to the CPU(s)
according to its dispatching mechanism. We are have extended
TAO to support dynamically scheduling and applications with
statistical QoS requirements [47].

2.3 Efficient and Predictable Object Adapters

The Object Adapter is the component in the CORBA archi-
tecture that associates a servant with an ORB, demultiplexes
incoming client requests to the servant, and dispatches the ap-
propriate operation of that servant. The key challenges asso-
ciated with designing an Object Adapter for real-time ORBs
are determining how to demultiplex client requests efficiently,
scalably, and predictably.

TAO is the first CORBA ORB whose Object Adapter imple-
ments the OMG POA (Portable Object Adapter) specification
[1]. The POA specification defines a wide range of features,
including: user- or system-supplied Object Ids, persistent and
transient objects, explicit and on-demand activation, multiple
servant! CORBA object mappings, total application control
over object behavior and existence, and static and DSI ser-
vants [53, 54].

The demultiplexing and dispatching policies in TAO’s Ob-
ject Adapter are instrumental to ensuring its predictability
and efficiency. This subsection describes how TAO’s Ob-
ject Adapter can be configured to use perfect hashing or ac-
tive demultiplexing to map client requests directly to ser-
vant/operation tuples inO(1) time.

2.3.1 Conventional ORB Demultiplexing Strategies

A standard GIOP-compliant client request contains the iden-
tity of its object and operation. An object is identified by an
object key which is anoctet sequence . An operation is
represented as astring . As shown in Figure 8, the ORB
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Figure 8: CORBA 2.2 Logical Server Architecture

endsystem must perform the following demultiplexing tasks:

Steps 1 and 2: The OS protocol stack demultiplexes the in-
coming client request multiple times,e.g., from the network
interface card, through the data link, network, and transport
layers up to the user/kernel boundary (e.g., the socket) and
then dispatches the data to the ORB Core.

Steps 3, and 4: The ORB Core uses the addressing informa-
tion in the client’s object key to locate the appropriate POA
and servant. POAs can be organized hierarchically. Therefore,
locating the POA that contains the servant can involve multiple
demultiplexing steps through the POA hierarchy.

Step 5 and 6: The POA uses the operation name to find the
appropriate IDL skeleton, which demarshals the request buffer
into operation parameters and performs the upcall to code sup-
plied by servant developers.

The conventional layered ORB endsystem demultiplexing
implementation shown in Figure 8 is generally inappropriate
for high-performance and real-time applications for the fol-
lowing reasons [55]:
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Decreased efficiency: Layered demultiplexing reduces per-
formance by increasing the number of internal tables that
must be searched as incoming client requests ascend through
the processing layers in an ORB endsystem. Demultiplexing
client requests through all these layers is expensive, particu-
larly when a large number of operations appear in an IDL in-
terface and/or a large number of servants are managed by an
Object Adapter.

Increased priority inversion and non-determinism: Lay-
ered demultiplexing can cause priority inversions because
servant-level quality of service (QoS) information is inacces-
sible to the lowest-level device drivers and protocol stacks in
the I/O subsystem of an ORB endsystem. Therefore, an Ob-
ject Adapter may demultiplex packets according to their FIFO
order of arrival. FIFO demultiplexing can cause higher prior-
ity packets to wait for an indeterminate period of time while
lower priority packets are demultiplexed and dispatched [17].

Conventional implementations of CORBA incur significant
demultiplexing overhead. For instance, [21, 16] show that con-
ventional ORBs spend�17% of the total server time process-
ing demultiplexing requests. Unless this overhead is reduced
and demultiplexing is performed predictably, ORBs cannot
provide uniform, scalable QoS guarantees to real-time appli-
cations.

2.3.2 TAO’s Optimized ORB Demultiplexing Strategies

To address the limitations with conventional ORBs, TAO pro-
vides the demultiplexing strategies shown in Figure 9. TAO’s
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gies

optimized demultiplexing strategies include the following:

Perfect hashing: The perfect hashing strategy shown in Fig-
ure 9(A) is a two-step layered demultiplexing strategy. This
strategy uses an automatically-generated perfect hashing func-
tion to locate the servant. A second perfect hashing function

is then used to locate the operation. The primary benefit of
this strategy is that servant and operation lookups requireO(1)

time in the worst-case.
TAO uses the GNUgperf [56] tool to generate perfect

hash functions for object keys and operation names. This per-
fect hashing scheme is applicable when the keys to be hashed
are knowna priori. In many deterministic real-time systems,
such as avionics mission control systems [10, 47], the servants
and operations can be configured statically. For these appli-
cations, it is possible to use perfect hashing to locate servants
and operations.

Active demultiplexing: TAO also provides a more dynamic
demultiplexing strategy calledactive demultiplexing, shown
in Figure 9(B). In this strategy, the client passes an object key
that directly identifies the servant and operation inO(1) time
in the worst-case. The client obtains this object key when it
obtains a servant’s object reference,e.g., via a Naming service
or Trading service. Once the request arrives at the server ORB,
the Object Adapter uses the object key the CORBA request
header to locate the servant and its associated operation in a
single step.

Unlike perfect hashing, TAO’s active demultiplexing strat-
egy does not require that all Object Ids be knowna priori.
This makes it more suitable for applications that incarnate and
etherealize CORBA objects dynamically.

Both perfect hashing and active demultiplexing can demul-
tiplex client requests efficiently and predictably. Moreover,
these strategies perform optimally regardless of the number of
active connections, application-level servant implementations,
and operations defined in IDL interfaces. [20] presents a de-
tailed study of these and other request demultiplexing strate-
gies for a range of target objects and operations.

TAO’s Object Adapter uses the Service Configurator pattern
[51] to select perfect hashing or active demultiplexing dynam-
ically during ORB installation [25]. Both strategies improve
request demultiplexing performance and predictabilityabove
the ORB Core.

To improve efficiency and predictabilitybelow the ORB
Core, TAO uses the ATM Port Interconnect Controller (APIC)
described in Section 2.1 to directly dispatch client requests as-
sociated with ATM virtual circuits [17]. This vertically in-
tegrated, optimized ORB endsystem architecture reduces de-
multiplexing latency and supports end-to-end QoS on either a
per-request or per-connection basis.

2.4 Efficient and Predictable Stubs and Skele-
tons

Stubs and skeletons are the components in the CORBA archi-
tecture responsible for transforming typed operation param-
eters from higher-level representations to lower-level repre-
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sentations (marshaling) and vice versa (demarshaling). Mar-
shaling and demarshaling are major bottlenecks in high-
performance communication subsystems [57] due to the sig-
nificant amount of CPU, memory, and I/O bus resources they
consume while accessing and copying data. Therefore, key
challenges for a high-performance, real-time ORB are to de-
sign an efficient presentation layer that performs marshaling
and demarshaling predictably, while minimizing the use of
costly operations like dynamic memory allocation and data
copying.

In TAO, presentation layer processing is performed by
client-side stubs and server-side skeletons that are generated
automatically by a highly-optimizing IDL compiler [6]. In
addition to reducing the potential for inconsistencies between
client stubs and server skeletons, TAO’s IDL compiler sup-
ports the following optimizations:

Reduced use of dynamic memory: TAO’s IDL compiler
analyzes the storage requirements for all the messages ex-
changed between the client and the server. This enables the
compiler to allocate sufficient storagea priori to avoid re-
peated run-time tests that determine if sufficient storage is
available. In addition, the IDL compiler uses the run-time
stack to allocate storage for unmarshaled parameters.

Reduced data copying: TAO’s IDL compiler analyzes
when it is possible to perform block copies for atomic data
types rather than copying them individually. This reduces ex-
cessive data access since it minimizes the number of load and
store instructions.

Reduced function call overhead: TAO’s IDL compiler can
selectively optimize small stubs viainlining, thereby reducing
the overhead of function calls that would otherwise be incurred
by invoking these small stubs.

TAO’s IDL compiler supports multiple strategies for mar-
shaling and demarshaling IDL types. For instance, TAO’s
IDL compiler can generate either compiled and/or interpreted
IDL stubs and skeletons. This design allows applications to
select between (1)interpretedstubs/skeletons, which can be
somewhat slower, but more compact in size and (2)compiled
stubs/skeletons, which can be faster, but larger in size [31].

Likewise, TAO can cache premarshaled application data
units (ADUs) that are used repeatedly. Caching improves per-
formance when ADUs are transferred sequentially in “request
chains” and each ADU varies only slightly from one transmis-
sion to the other. In such cases, it is not necessary to marshal
the entire request every time. This optimization requires that
the real-time ORB perform flow analysis [58, 59] of applica-
tion code to determine what request fields can be cached.

Although these techniques can significantly reduce marshal-
ing overhead for the common case, applications with strict
real-time service requirements often consider only worst-case

execution. As a result, the flow analysis optimizations de-
scribed above can only be employed under certain circum-
stances,e.g., for applications that can accept statistical real-
time service or when the worst-case scenarios are still suffi-
cient to meet deadlines.

2.5 Efficient and Predictable Memory Manage-
ment

Conventional ORB endsystems suffer from excessive dynamic
memory management and data copying overhead [21]. For in-
stance, many I/O subsystems and ORB Cores allocate a mem-
ory buffer for each incoming client request and the I/O sub-
system typically copies its buffer to the buffer allocated by the
ORB Core. In addition, standard GIOP/IIOP demarshaling
code allocates memory to hold the decoded request parame-
ters. Likewise, IDL skeletons dynamically allocate and delete
copies of client request parameters before and after upcalls,
respectively.

In general, dynamic memory management is problematic
for real-time systems. For instance, heap fragmentation can
yield non-uniform behavior for different message sizes and
different workloads. Likewise, in multi-threaded ORBs, the
locks required to protect the heap from race conditions in-
crease the potential for priority inversion [45]. In general, ex-
cessive data copying throughout an ORB endsystem can sig-
nificantly lower throughput and increase latency and jitter.

TAO is designed to minimize and eliminate data copying at
multiple layers in its ORB endsystem. For instance, TAO’s
buffer management system uses the APIC network interface
to enhance conventional operating systems with azero-copy
buffer management system [29]. At the device level, the APIC
interacts directly with the main system bus and other I/O de-
vices. Therefore, it can transfer client requests between end-
system buffer pools and ATM virtual circuits with no addi-
tional data copying.

The APIC buffer pools for I/O devices described in Sec-
tion 2.1 can be configured to supportearly demultiplexing
of periodic and aperiodic client requests into memory shared
among user- and kernel-resident threads. These APIs allow
client requests to be sent/received to/from the network with-
out incurring any data copying overhead. Moreover, these
buffers can be preallocated and passed between various pro-
cessing stages in the ORB, thereby minimizing costly dynamic
memory management.

In addition, TAO uses the Thread-Specific Storage pattern
[60] to minimize lock contention resulting from memory al-
location. TAO can be configured to allocate its memory from
thread-specific storage. In this case, when the ORB requires
memory it is retrieved from a thread-specific heap. Thus, no
locks are required for the ORB to dynamically allocate this
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memory.

3 Supporting Real-time Scheduling in
CORBA

Section 2 described the architectural components used in TAO
to provide a high-performance ORB endsystem for real-time
CORBA. TAO’s architecture has been realized with minimal
changes to CORBA. However, the CORBA 2.x specification
does not yet address issues related to real-time scheduling.
Therefore, this section provides in-depth coverage of the com-
ponents TAO uses to implement a Real-time Scheduling Ser-
vice, based on standard CORBA features.

3.1 Synopsis of Application Quality of Service
Requirements

The TAO ORB endsystem [23] is designed to support vari-
ous classes of quality of service (QoS) requirements, includ-
ing applications with deterministic and statistical real-time
requirements. Deterministic real-time applications, such as
avionics mission computing systems [10], must meet periodic
deadlines. These types of applications commonly use static
scheduling and analysis techniques, such as rate monotonic
analysis (RMA) and rate monotonic scheduling (RMS).

Statistical real-time applications, such as teleconferenc-
ing and video-on-demand, can tolerate minor fluctuations in
scheduling and reliability guarantees, but nonetheless require
QoS guarantees. These types of applications commonly use
dynamic scheduling techniques [47], such as earliest deadline
first (EDF), minimum laxity first (MLF), or maximum urgency
first (MUF).

Deterministic real-time systems have traditionally been
more amenable to well-understood scheduling analysis tech-
niques. Consequently, our research efforts were initially di-
rected toward static scheduling of deterministic real-time sys-
tems. However, the architectural features and optimizations
that we studied and developed are applicable to real-time sys-
tems with statistical QoS requirements, such as constrained
latency multimedia systems or telecom call processing. This
paper describes the static scheduling service we initially devel-
oped for TAO. It then follows the progression of our schedul-
ing research towards dynamic scheduling, for both determin-
istic and statistical real-time systems.

3.2 Responsibilities of a Real-time Scheduling
Service

This subsection examines the analysis capabilities and
scheduling policies provided by TAO’s Real-time Scheduling

Service. This service is responsible for allocating CPU re-
sources to meet the QoS needs of the applications that share
the ORB endsystem. For real-time applications with deter-
ministic QoS requirements, the Scheduling Service guarantees
that all processing requirements will be met. For real-time ap-
plications with statistical QoS requirements, the Scheduling
Service tries to meet system processing requirements within
the desired tolerance, while also trying to maximize CPU uti-
lization.

The initial design and implementation of TAO’s real-time
Scheduling Service [23] targeted deterministic real-time appli-
cations that require off-line, static scheduling on a single CPU.
However, the Scheduling Service is also useful for dynamic
and distributed real-time scheduling, as well [47]. Therefore,
the Scheduling Service is defined as a CORBA object,i.e.,
as an implementation of an IDL interface. This design en-
ables the Scheduling Service to be accessed either locally or
remotely without having to reimplement clients that use it.

TAO’s Real-time Scheduling Service has the following off-
line and on-line responsibilities:

Off-line scheduling feasibility analysis: TAO’s Scheduling
Service performs off-line feasibility analysis of all IDL opera-
tions that register with it. This analysis results in a determina-
tion of whether there are sufficient CPU resources to perform
all critical operations, as discussed in Section 3.5.

Request priority assignment: Request priorityis the rela-
tive priority of a request5 to any other. It is used by TAO to
dispatch requests in order of their priority.Thread priority
is the priority that corresponds to that of the thread that will
invoke the request. During off-line analysis, the Scheduling
Service 1) assigns a request priority to each request and 2) as-
signs each request to one of the preconfigured thread priorities.
At run-time, the Scheduling Service provides an interface that
allows TAO’s real-time ORB endsystem to access these priori-
ties. Priorities are the mechanism for interfacing with the local
endsystem’s OS dispatcher, as discussed in Section 3.4.

A high-level depiction of the steps involved in the off-line
and on-line roles of TAO’s Scheduling Service is shown in
Figure 10. In step 1, the Scheduling Service constructs graphs
of dependent operations using the QoS information registered
with it by the application. This QoS information is stored in
RT Info structures described in Section 3.3.3. In step 2, it
identifies threads by looking at the terminal nodes of these de-
pendency graphs and populates anRT Info repository in step
3. In step 4 it assesses schedulability and assigns priorities,
generating the priority tables as compilable C++ code in step
5. These five steps occur off-line during the (static) schedule

5A requestis the run-time representation of an operation in an IDL inter-
face that is passed between client and server.
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configuration process. Finally, the priority tables generated in
step 5 are used at run-time in step 6 by TAO’s ORB endsystem.

TAO’s real-time Scheduling Service guarantees that all
RT Operations in the system are dispatched with suffi-
cient time to meet their deadlines. To accomplish this, the
Scheduling Service can be implemented to perform various
real-time scheduling policies. [23] describes the rate mono-
tonic scheduling implementation used by TAO’s Scheduling
Service.

Below, we outline the information that the service requires
to build and execute a feasible system-wide schedule. A feasi-
ble schedule is one that is schedulable on the available system
resources; in other words, it can be verified that none of the
operations in the critical set will miss their deadlines.

It is desirable to schedule operations that are not part of the
critical set if the dynamic behavior of the system results in
additional available CPU resources, but scheduling of a non-
critical operation shouldneverresult in an operation from the
critical set failing to execute before deadline.

To simplify the presentation, we focus on ORB scheduling
for a single CPU. The distributed scheduling problem is not
addressed in this presentation. [47] outlines the approaches
we are investigating with TAO.

3.3 Specifying QoS Requirements in TAO using
Real-time IDL Schemas

Invoking operations on objects is the primary collaboration
mechanism between components in an OO system [15]. How-
ever, QoS research at the network and OS layers has not
addressed key requirements and usage characteristics of OO
middleware. For instance, research on QoS for ATM networks
has focused largely on policies for allocating bandwidth on a

per-connection basis [29]. Likewise, research on real-time op-
erating systems has focused largely on avoiding priority inver-
sion and non-determinism in synchronization and scheduling
mechanisms for multi-threaded applications [13].

Determining how to map the insights and mechanisms pro-
duced by QoS work at the network and OS layers onto an OO
programming model is a key challenge when adding QoS sup-
port to ORB middleware [15, 40]. This subsection describes
the real-time OO programming model used by TAO. TAO sup-
ports the specification of QoS requirements on a per-operation
basis using TAO’s real-time IDL schemas.

3.3.1 Overview of QoS Specification in TAO

Several ORB endsystem resources are involved in satisfying
application QoS requirements, including CPU cycles, mem-
ory, network connections, and storage devices. To support
end-to-end scheduling and performance guarantees, real-time
ORBs must allow applications to specify their QoS require-
ments so that an ORB subsystem can guarantee resource avail-
ability. In non-distributed, deterministic real-time systems,
CPU capacity is typically the scarcest resource. Therefore,
the amount of computing time required to process client re-
quests must be determineda priori so that CPU capacity can
be allocated accordingly. To accomplish this, applications
must specify their CPU capacity requirements to TAO’s off-
line Scheduling Service.

In general, scheduling research on real-time systems that
consider resources other than CPU capacity relies upon on-
line scheduling [61]. Therefore, we focus on the specification
of CPU resource requirements. TAO’s QoS mechanism for ex-
pressing CPU resource requirements can be readily extended
to other shared resources, such as network and bus bandwidth,
once scheduling and analysis capabilities have matured.

The remainder of this subsection explains how TAO sup-
ports QoS specification for the purpose of CPU scheduling
for IDL operations that implement real-time operations. We
outline our Real-time IDL (RIDL) schemas:RT Operation
interface and itsRT Info struct . These schemas convey
QoS information,e.g., CPU requirements, to the ORB on a
per-operation basis. We believe that this is an intuitive QoS
specification model for developers since it maps directly onto
the OO programming paradigm.

3.3.2 The RTOperation Interface

TheRT Operation interface is the mechanism for convey-
ing CPU requirements from processing tasks performed by ap-
plication operations to TAO’s Scheduling Service, as shown in
the following CORBA IDL interface:6

6The remainder of theRT Scheduler module IDL description is shown
in Section 3.5.1.
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module RT_Scheduler
{

// Module TimeBase defines the OMG Time Service.
typedef TimeBase::TimeT Time; // 100 nanoseconds
typedef Time Quantum;

typedef long Period; // 100 nanoseconds

enum Importance
// Defines the importance of the operation,
// which can be used by the Scheduler as a
// "tie-breaker" when other scheduling
// parameters are equal.
{

VERY_LOW_IMPORTANCE,
LOW_IMPORTANCE,
MEDIUM_IMPORTANCE,
HIGH_IMPORTANCE,
VERY_HIGH_IMPORTANCE

};

typedef long handle_t;
// RT_Info’s are assigned per-application
// unique identifiers.

struct Dependency_Info
{

long number_of_calls;
handle_t rt_info;
// Notice the reference to the RT_Info we
// depend on.

};

typedef sequence<Dependency_Info> Dependency_Set;

typedef long OS_Priority;
typedef long Sub_Priority;
typedef long Preemption_Priority;

struct RT_Info
// = TITLE
// Describes the QoS for an "RT_Operation".
//
// = DESCRIPTION
// The CPU requirements and QoS for each
// "entity" implementing an application
// operation is described by the following
// information.

{
// Application-defined string that uniquely
// identifies the operation.
string entry_point_;

// The scheduler-defined unique identifier.
handle_t handle_;

// Execution times.
Time worstcase_execution_time_;
Time typical_execution_time_;

// To account for server data caching.
Time cached_execution_time_;

// For rate-base operations, this expresses
// the rate. 0 means "completely passive",
// i.e., this operation only executes when

// called.
Period period_;

// Operation importance, used to "break ties".
Importance importance_;

// For time-slicing (for BACKGROUND
// operations only).
Quantum quantum_;

// The number of internal threads contained
// by the operation.
long threads_;

// The following attributes are defined by
// the Scheduler once the off-line schedule
// is computed.

// The operations we depend upon.
Dependency_Set dependencies_;

// The OS por processing the events generated
// from this RT_Info.
OS_Priority priority_;

// For ordering RT_Info’s with equal priority.
Sub_Priority subpriority_;

// The queue number for this RT_Info.
Preemption_Priority preemption_priority_;

};
};

As shown above, theRT Operation interface contains type
definitions and its key feature, theRT Info struct , which
is described below.

3.3.3 The RTInfo Struct

Applications that use TAO must specify all their scheduled re-
source requirements. This QoS information is currently pro-
vided to TAO before program execution. In the case of CPU
scheduling, the QoS requirements are expressed using the fol-
lowing attributes of anRT Info IDL struct :

Worst-case execution time: The worst-case execution time,
C, is the maximum execution time that theRT Operation
requires. It is used in conservative scheduling analysis for ap-
plications with strict real-time requirements.

Typical execution time: The typical execution time is the
execution time that theRT Operation usually requires. The
typical execution time may be useful with some scheduling
policies, e.g., statistical real-time systems that can relax the
conservative worst-case execution time assumption. How-
ever, it is not currently used in TAO’s deterministic real-time
Scheduling Service.

Cached execution time: If an operation can provide a
cached result in response to service requests, then the cached
execution time is set to a non-zero value. During execution,
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for periodic functions, the worst-case execution cost is only
incurred once per period if caching is enabled,i.e., if this field
is non-zero. The scheduling analysis incorporates caching by
only including one term with the worst-case execution time
for the operation, per period, no matter how many times it is
called, and by using the cached execution time for all other
calls.

Period: The period is the minimum time between successive
iterations of the operation. If the operation executes as an ac-
tive object [51] with multiple threads of control, then at least
one of those threads must execute at least that often.

A period of 0 indicates that the operation is totallyreac-
tive, i.e., it does not specify a period. Reactive operations are
always called in response to requests by one or more clients.
Although the Run-Time Scheduler in TAO need not treat re-
active operations as occurring periodically, it must account for
their execution time.

Criticality: The operation criticality is an enu-
meration value ranging from lowest criticality,i.e.,
VERY LOW CRITICALITY , up to highest criticality, i.e.,
VERY HIGH CRITICALITY . Certain scheduling strategies
implemented in the Scheduling Service (notably maximum ur-
gency first [50]) consider criticality as the primary distinction
between operations when assigning priority.

Importance: The operation importance is an enu-
meration value ranging from lowest importance,i.e.,
VERY LOW IMPORTANCE, up to highest importance,i.e.,
VERY HIGH IMPORTANCE. The Scheduling Service uses
importance as a “tie-breaker” to order the execution of
RT Operations when data dependencies or other factors
such as criticality do not impose an ordering.

Quantum: Operations within a given priority may be time-
sliced,i.e., preempted at any time by the ORB endsystem dis-
patcher resumed at a later time. If a time quantum is specified
for an operation, then that is the maximum time that it will
be allowed to run before preemption, if there are any other
runnable operations at that priority. This time-sliced schedul-
ing is intended to provide fair access to the CPU for low-
est priority operations. Quantum is not currently used in the
Scheduling Service.

Dependency Info: This is an array of handles to other
RT Info instances, one for eachRT Operation that this
one directly depends on. The dependencies are used during
scheduling analysis to identify threads in the system: each
separate dependency graph indicates a thread. In addition, the
number of times that the dependent operation is called is spec-
ified, for accurate execution time calculation.

The RIDL schemas outlined above can be used to spec-
ify the run-time execution characteristics of object opera-
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Figure 11: TAO Run-time Scheduling Participants

tions to TAO’s Scheduling Service. This information is used
by TAO to (1) validate the feasibility of a schedule and (2)
allocate ORB endsystem and network resources to process
RT Operations . A single RT Info instance is required
for eachRT Operation .

3.4 Overview of TAO’s Scheduling Model

TAO’s on-line scheduling model includes the following partic-
ipants, as shown in Figure 11:

Work Operation: A Work Operation is a unit of work
that encapsulates application-level processing or communi-
cation activity. For example, utility functions that read
input, print output, or convert physical units can be
Work Operations . In some real-time environments, a
Work Operation is called amoduleor process, but we
avoid these terms because of their overloaded usage in OO
and OS contexts.

RT Operation: An RT Operation is a type of
Work Operation that has timing constraints. Each
RT Operation is considered to be an operation defined on
a CORBA IDL interface, that has its own QoS information
specified in terms of the attributes in its run-time information
(RT Info ) descriptor. Thus, an application-level object with
multiple operations may require multipleRT Operation
instances, one for each distinct class of QoS specifications.

Thread: Threads are units of concurrent execution. A
thread can be implemented with various threading APIs,
e.g., a Solaris or POSIX thread, an Ada task, a VxWorks
task, or a Windows NT thread. All threads are contained
within RT Operation s. An RT Operation containing
one or more threads is anactive object[52]. In contrast, an
RT Operation that contains zero threads is apassive ob-
ject. Passive objects only execute in the context of another
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RT Operation , i.e., they “borrow” the calling operation’s
thread of control to run.

OS dispatcher: The OS dispatcher uses request priorities to
select the next runnable thread that it will assign to a CPU. It
removes a thread from a CPU when the thread blocks, and
therefore is no longer runnable, or when the thread ispre-
emptedby a higher priority thread. Withpreemptive dispatch-
ing, any runnable thread with a priority higher than any run-
ning thread will preempt a lower priority thread. Then, the
higher priority, runnable thread can be dispatched onto the
available CPU.

Our analysis assumesfixed priority, i.e., the OS does not
unilaterally change the priority of a thread. TAO currently
runs on a variety of platforms, including real-time operating
systems, such as VxWorks and LynxOS, as well as general-
purpose operating systems with real-time extensions, such as
Solaris 2.x [14] and Windows NT. All these platforms provide
fixed priority real-time scheduling. Thus, from the point of
view of an OS dispatcher, the priority of each thread is con-
stant. The fixed priority contrasts with the operation of time-
shared OS schedulers, which typicallyagelong-running pro-
cesses by decreasing their priority over time [62].

RT Info: As described in Section 3.3, anRT Info struc-
ture specifies anRT Operation ’s scheduling characteristics
such as computation time and execution period.

Run-Time Scheduler: At run-time, the primary visible ves-
tige of the Scheduling Service is the Run-Time Scheduler. The
Run-Time Scheduler maps client requests for particular ser-
vant operations into priorities that are understood by the local
OS dispatcher. Currently, these priorities are assigned stati-
cally prior to run-time and are accessed by TAO’s ORB end-
system via anO(1) time table lookup.

3.5 Overview of TAO’s Off-line Scheduling
Service

To meet the demands of statically scheduled, deterministic
real-time systems, TAO’s Scheduling Service usesoff-line
scheduling, which has the following two high-level goals:

1. Schedulability analysis: If the operations cannot be
scheduled because one or more deadlines could be missed,
then the off-line Scheduling Service reports that prior to run-
time.

2. Request priority assignment: If the operations can be
scheduled, the Scheduling Service assigns a priority to each
request. This is the mechanism that the Scheduling Service
uses to convey execution order requirements and constraints
to TAO’s ORB endsystem dispatcher.

3.5.1 Off-line Scheduling Service Interface

The key types and operations of the IDL interface for TAO’s
off-line Scheduling Service are defined below7:

module RT_Scheduler
{

exception DUPLICATE_NAME {};
// The application is trying to
// register the same task again.

exception UNKNOWN_TASK {};
// The RT_Info handle was not valid.

exception NOT_SCHEDULED {};
// The application is trying to obtain
// scheduling information, but none
// is available.

exception UTILIZATION_BOUND_EXCEEDED {};
exception

INSUFFICIENT_PRIORITY_LEVELS {};
exception TASK_COUNT_MISMATCH {};
// Problems while computing off-line
// scheduling.

typedef sequence<RT_Info> RT_Info_Set;

interface Scheduler
// = DESCRIPTION
// This class holds all the RT_Info’s
// for a single application.

{
handle_t create (in string entry_point)

raises (DUPLICATE_NAME);
// Creates a new RT_Info entry for the
// function identifier "entry_point",
// it can be any string, but the fully
// qualified name function name is suggested.
// Returns a handle to the RT_Info.

handle_t lookup (in string entry_point);
// Lookups a handle for entry_point.

RT_Info get (in handle_t handle)
raises (UNKNOWN_TASK);

// Retrieve information about an RT_Info.

void set (in handle_t handle,
in Time time,
in Time typical_time,
in Time cached_time,
in Period period,
in Importance importance,
in Quantum quantum,
in long threads)

raises (UNKNOWN_TASK);
// Set the attributes of an RT_Info.
// Notice that some values may not
// be modified (like priority).

void add_dependency
(in handle_t handle,

7The remainder of theRT Scheduler module IDL description is shown
in Section 3.3.2.
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in handle_t dependency,
in long number_of_calls)

raises (UNKNOWN_TASK);
// Adds <dependency> to <handle>

void priority
(in handle_t handle,

out OS_Priority priority,
out Sub_Priority subpriority,
out Preemption_Priority p_priority)

raises (UNKNOWN_TASK, NOT_SCHEDULED);
void entry_point_priority

(in string entry_point,
out OS_Priority priority,
out Sub_Priority subpriority,
out Preemption_Priority p_priority)

raises (UNKNOWN_TASK, NOT_SCHEDULED);
// Obtain the run time priorities.

void compute_scheduling
(in long minimum_priority,

in long maximum_priority,
out RT_Info_Set infos)

raises (UTILIZATION_BOUND_EXCEEDED,
INSUFFICIENT_PRIORITY_LEVELS,
TASK_COUNT_MISMATCH);

// Computes the scheduling priorities,
// returns the RT_Info’s with their
// priorities properly filled. This info
// can be cached by a Run_Time_Scheduler
// service or dumped into a C++ file for
// compilation and even faster (static)
// lookup.

};
};

Not shown are accessors to system configuration data that
the scheduler contains, such as the number of operations and
threads in the system. There is also adestroy operation
that the application calls when a program exits. This opera-
tion allows the scheduler to release its dynamically allocated
resources.

In general, the Scheduling Service interface need not be
viewed by application programmers; the only interface they
need to use is theRT Info interface, described in Sec-
tion 3.3.3. This division of the Scheduling Service interface
into application and privileged sections is shown in Figure 12.

The privileged interface is only used by common TAO ser-
vices, such as:

� The Event Channel in TAO’s Real-time Event Service
[10], which registers itsRT Operations with the off-
line Scheduling Service;

� Application-level schedulable operations that do not use
the Event Channel;

� TAO’s real-time ORB endsystem, which accesses these
interfaces to determine client request dispatch priorities.

The remainder of this subsection clarifies the operation of
TAO’s Scheduling Service, focusing on how it assigns request
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Figure 12: TAO’s Two Scheduling Service Interfaces

priorities, when it is invoked, and what is stored in its internal
database.

3.5.2 RT Operation Priority Assignments

The off-line Scheduling Service assigns priorities to each
RT Operation . Because the current implementation of the
Scheduling Service utilizes a rate monotonic scheduling pol-
icy, priorities are assigned based on an operation’s rate. For
eachRT Operation in the repository, a priority is assigned
based on the following rules:

Rule 1: If the RT Info::period of an operation is non-
zero, TAO’s off-line Scheduling Service uses this informa-
tion to map the period to a thread priority. For instance, 100
msec periods may map to priority 0 (the highest), 200 msec
periods may map to priority 1, and so on. With rate mono-
tonic scheduling, for example, higher priorities are assigned to
shorter periods.

Rule 2: If the operation does not have a rate requirement,
i.e., its RT Info::period is 0, then its rate requirement
must be implied from theoperation dependencies
field stored in theRT Info struct . The RT Info
struct with the smallest period, ie, with the fastest rate,
in the RT Info::operation dependencies list will
be treated as the operation’s implied rate requirement, which
is then mapped to a priority. The priority values com-
puted by the off-line Scheduling Service are stored in the
RT Info::priority field, which the Run-Time Sched-
uler can query at run-time via thepriority operation.

The final responsibility of TAO’s off-line Scheduling Ser-
vice is to verify the schedulability of a system configuration.
This validation process provides a definitive answer to the

20



question “given the current system resources, what is the low-
est priority level whose operations all meet their deadlines?”
The off-line Scheduling Service uses a repository ofRT Info
structures shown in Figure 14 to determine the utilization re-
quired by each operation in the system. By comparing the
total required utilization for each priority level with the known
resources, an assessment of schedulability can be calculated.

TAO’s off-line Scheduling Service currently uses the
RT Info attributes of applicationRT Operations to build
the static schedule and assign priorities according to the fol-
lowing steps:

1. Extract RT Infos: Extract allRT Info instances for all
theRT Operations in the system.

2. Identify real-time threads: Determine all the real-
time threads by building and traversing operation dependency
graphs.

3. Determine schedulability and priorities: Traverse the
dependency graph for each thread to calculate its execution
time and periods. Then, assess schedulability based on the
thread properties and assign request priorities.

4. Generate request priority table: Generate a table of
request priority assignments. This table is subsequently in-
tegrated into TAO’s run-time system and used to schedule
application-level requests.

These steps are described further in the remainder of this sec-
tion.

3.5.3 Extract RT Infos

The Scheduling Service is a CORBA object that can be ac-
cessed by applications duringconfiguration runs. To use the
Scheduling Service, users must instantiate oneRT Info in-
stantiation for eachRT Operation in the system. A config-
uration run is an execution of the application, TAO, and TAO
services which is used to provide the services with any infor-
mation needed for static configuration. The interactions be-
tween the and Scheduling Service during a configuration run
are shown in Figure 13.

The RT Info instantiations, Step 1, are compiled and
linked into the main program, Step 2. The application is then
executed, Step 3. It registers eachRT Operation with ei-
ther TAO (currently, via TAO’s Real-time Event Service), Step
3A, or directly with the Scheduling Service, Step 3B, for oper-
ations that do not use TAO. The application notifies TAO, Step
3C, which in turn notifies the Scheduling Service, when all
registrations have finished. TAO invokes the off-line schedul-
ing process, Step 4A. Finally, the application exits, Step 4B.

With off-line scheduling, theRT Info s are not needed at
run-time. Therefore, one space-saving optimization would be
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Figure 13: Scheduling Steps During a Configuration Run

to conditionally compileRT Info s only during configuration
runs.

The application should use thedestroy operation to no-
tify the Scheduling Service when the program is about to exit
so that it can release any resources it holds. It is necessary to
release memory during configuration runs in order to permit
repeated runs on OS platforms, such as VxWorks, that do not
release heap-allocated storage when a program terminates.

For consistency in application code, the Scheduling Ser-
vice configuration and run-time interfaces are identical. The
schedule operation is essentially ano-op in the run-time
version; it merely performs a few checks to ensure that all op-
erations are registered and that the number of priority values
are reasonable.

3.5.4 Identify Real-time Threads

After collecting all of theRT Info instances, the Schedul-
ing Service identifies threads and performs its schedulabil-
ity analysis. Athread is defined by a directed acyclic graph
of RT Operations . An RT Info instance is associated
with each RT Operation by the application developer;
RT Info creation has been automated using the informa-
tion available to TAO’s Real-time Event Service.RT Info s
contain dependency relationships and other information,e.g.,
importance, which determines possible run-time ordering of
RT Operation invocations. Thus, agraphof dependencies
from eachRT Operation can be generated mechanically,
using the following algorithm:

1. Build a repository of RT Info instances: This task con-
sists of the following two steps:

� Visit eachRT Info instance; if not already visited, add
to repository, and
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� Visit the RT Info of each dependent operation, depth
first, and add a link to the dependent operation’s internal
(to the Scheduling Service)Dependency Info array.

2. Find terminal nodes of dependent operation graphs:
As noted in Section 3.5.2, identification of real-time threads
involves building and traversing operation dependency graphs.
The terminal nodes of separate dependent operation graphs in-
dicate, and are used to identify, threads. The operation de-
pendency graphs capture data dependency,e.g., if operation
A calls operation B, then operation A needs some data that
operation B produces, and therefore operation A depends on
operation B. If the two operations execute in the context of a
single thread, then operation B must execute before operation
A. Therefore, the terminal nodes of the dependency graphs de-
lineate threads.

3. Traverse dependent operation graphs: After identi-
fying the terminal nodes of dependent operation graphs, the
graphs are traversed to identify the operations that compose
each thread. Each traversal starts from a dependent operation
graph terminal node, and continues towards the dependent op-
eration’s roots until termination. An operation may be part of
more than one thread, indicating that each of the threads may
call that operation.

The algorithm described above applies several restrictions
on the arrangement of operation dependencies. First, a thread
may be identified by only one operation; this corresponds
directly to a thread having a single entry point. Many OS
thread implementations support only a single entry point,i.e.,
a unique function which is called when the thread is started.
This restriction imposes no additional constraints on those
platforms.

The second restriction is that cycles are prohibited in de-
pendency relationships. Again, this has a reasonable interpre-
tation. If there was a cycle in a dependency graph, there would
be no bound, known to the scheduler, on the number of times
the cycle could repeat. To alleviate this restriction, the applica-
tion can absorb dependency graph cycles into an operation that
encapsulates them. ItsRT Info would reflect the (bounded)
number of internal dependency graph cycles in its worst-case
execution time.

TheRT Info repository that the Scheduling Service builds
is depicted in Figure 14.

The Scheduling Service’sRT Info repository includes the
RT Info reference and an array of theRT Operations
that it depends upon. TheseRT Operation dependencies
are depicted by blocks with arrows to the dependent opera-
tions. TheDependency Info arrays are initialized while
first traversing theRT Info instances, to identify threads.
Terminal nodes of the dependent operation graphs are iden-
tified; these form the starting point for thread identification.
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Figure 14: TheRT Info Repository

PassiveRT Operations , i.e., those without any internal
threads of their own, do not appear as terminal nodes of de-
pendent operation graphs. They may appear further down a
dependent operation graph, in which case their worst-case and
typical execution times are added to the corresponding execu-
tion times of the calling thread. However, cached execution
times may be added instead, for periodic functions, depending
on whether result caching is enabled and whether the operation
has been visited already in the current period.

The algorithm for identifying real-time threads may appear
to complicate the determination of operation execution times.
For instance, instead of specifying a thread’s execution time,
an operation’s execution time must be specified. However, this
design is instrumental in supporting an OO programming ab-
straction that provides QoS specification and enforcement on
a per-operation basis. The additional information is valuable
to accurately analyze the impact of object-level caching and to
provide finer granularity for reusingRT Info s. In addition,
this approach makes it convenient to measure the execution
times of operations; profiling tools typically provide that in-
formation directly.

3.5.5 Determine Schedulability and Priorities

Starting from terminal nodes that identify threads, the
RT Info dependency graphs are traversed to determine
thread properties, as follows:

Traverse each graph: summing the worst case and typical
execution times along the traversal. To determine the period at
which the thread must run, save the minimum period of all of
the non-zero periods of all of theRT Info s visited during the
traversal.

Assign priorities: depending on the scheduling strategy
used, higher priority is assigned to higher criticality, higher
rate,etc..
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Based on the thread properties, and the scheduling strat-
egy used, schedule feasibility is assessed. For example, with
RMA, EDF, or MLF, if the total CPU utilization is below the
utilization bound, then the schedule for the set of threads is
feasible. With MUF, if utilization by all operations in the
critical set is below the utilization bound, then the schedule
is feasible, even though schedulability of operations outside
the critical set may or may not be guaranteed. If the sched-
ule is feasible, request priorities are assigned according to the
scheduling strategy,i.e., for RMS requests with higher rates
are assigned higher priorities, for MUF requests with higher
criticality levels are assigned higher priorities,etc..

3.5.6 Generate Request Priority Table

The Scheduling Service generates a table of request priority
assignments. Every thread is assigned a unique integer identi-
fier. This identifier is used at run-time by TAO’s ORB endsys-
tem to index into the request priority assignment table. These
priorities can be accessed inO(1) time because all scheduling
analysis is performed off-line.

Output from the Scheduling Service is produced in the form
of an initialized static table that can be compiled and linked
into the executable for run-time,i.e., other than configuration,
runs. The Scheduling Service provides an interface for the
TAO’s ORB endsystem to access the request priorities con-
tained in the table.

The initial configuration run may contain, at worst, initial
estimates ofRT Operation execution times. Likewise, it
may include some execution times based on code simulation
or manual instruction counts. Successive iterations should in-
clude actual measured execution times. The more accurate the
input, the more reliable the schedulability assessment.

Off-line configuration runs can be used to fill in the
Dependency Info arrays and calibrate the execution times
of theRT Info instances for each of theRT Operations .
The initial implementation of the Scheduling Service requires
that this input be gathered manually. TAO’s Real-time Event
Service [10] fills in theDependency Info arrays for its
suppliers. Therefore, applications that manage all of their real-
time activity through TAO’s Event Service do not require man-
ual collection of dependency information.

One user of the Scheduling Service has written a thin layer
interface for calibrating theRT Info execution times on Vx-
Works, which provides a system call for timing the execution
of a function. During a configuration run, conditionally com-
piled code issues that system call for eachRT Operation
and stores the result in theRT Info structure.

4 Performance Experiments

Our past experience pinpointing performance bottlenecks in
middleware like Web servers [63], and CORBA ORBs [21]
demonstrates the efficacy of a measurement-driven research
methodology. This section describes the results of an experi-
ment that illustrates why conventional ORBs are unsuited for
applications with real-time requirements. Future work will in-
vestigate the real-time performance of TAO in detail.
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Figure 15: Testbed for ORB analysis

4.1 Measuring ORB Priority Inversion

This experiment measures thedegree of priority inversionin
an ORB. Priority inversion is the condition that occurs when
the execution of a high priority thread is blocked by a lower
priority thread. Priority inversion often occurs when threads
running at different priorities share common I/O channels. It is
hard to eliminate priority inversion completely; if it cannot be
avoided,bounded priority inversionis desirable. This means
that the amount of time a higher priority task is waiting due to
a lower priority task must have a tight upper bound.

[14] describes one approach to control priority inversion,
usingpriority inheritance. Priority inheritance temporarily in-
creases the priority of a lower priority task when the system
detects that a higher priority task cannot proceed due to de-
pendencies on a lower priority task. However, this basic pri-
ority inheritance protocol can run into problems as well, such
as formation of deadlock, and of chained blocking [64]. To
address these problems,priority ceiling protocols can be em-
ployed. These protocols involve assigning aceilingpriority to
the shared resource [64].

23



4.1.1 Experimental Setup

The experimental testbed is depicted in Figure 15. The exper-
iments was conducted using a Bay Networks LattisCell 10114
ATM switch connected to two dual-processor UltraSPARC-2s
running SunOS 5.5.1. The LattisCell 10114 is a 16 Port, OC3
155 Mbs/port switch. Each UltraSPARC-2 contains 2 168
MHz CPUs with a 1 Megabyte cache per-CPU, 256 Mbytes of
RAM, and an ENI-155s-MF ATM adaptor card that supports
155 Megabits per-sec (Mbps) SONET multi-mode fiber. The
Maximum Transmission Unit (MTU) on the ENI ATM adap-
tor is 9,180 bytes. Each ENI card has 512 Kbytes of on-board
memory. A maximum of 32 Kbytes is allotted per ATM vir-
tual circuit connection for receiving and transmitting frames
(for a total of 64 K). This allows up to eight switched virtual
connections per card.

We selected two popular commercial multi-threaded
CORBA implementations for the priority inversion tests:
Iona’s MT-Orbix v2.2, and Visigenic’s Visibroker v2.0. The
test used one high priority clientC0 andn low priority clients,
C1 . . . Cn. The priority of the clients is determined as fol-
lows: each client makes time-constrained two-way CORBA
operation invocations,i.e., the client requires the operation in-
vocation to complete within a predefined amount of time, re-
ferred to as thedeadline. The high-priority client has an earlier
deadline than the low-priority clients. Therefore, its operation
invocations must complete earlier than the low-priority clients.

The server uses the thread-per-session concurrency model.
In this model, a new thread is created to handle each client
connection. The server supports the notion of the client pri-
ority using the Active Object pattern [52], as follows. Each
client requests the creation of a servant object using the
create servant method provided by a Server Factory.
The client indicates its priority as an argument to this method.
The Factory creates a newservantobject for each client. It
also creates a new thread, called theservant thread, to handle
all future requests from this client. The priority indicated by
the client when it calls thecreate servant method is used
by the Factory to select an appropriate priority for theservant
thread. For the high priority client, the server uses thehighest
real-time priorityavailable with the Solaris operating system.
For the low priority client, the server uses thelowest real-time
priority available on Solaris.

As the number of low-priority clients increases, the number
of low-priority requests on the server also increases. When
the load becomes high, these low-priority clients begin to con-
tend with high-priority requests made byC0. ORBs that avoid
priority inversion by implementing preemptive GIOP protocol
processing can satisfy the deadline of the high priority client
even in the presence of heavy low priority load. As shown
in the results below, however, conventional ORBs allow an
unlimited number of low priority clients to make CORBA re-

quests since they do not performadmission control, as dis-
cussed in Section 1.2.

4.1.2 Results for MT-Orbix and VisiBroker

Figure 16 and Figure 17 plot the response times experienced
by the high-priority clientC0, and the average response time
experienced by the low-priority clientsC1 . . .Cn, as we in-
crease the value ofn. These figures indicate that both Orbix
and Visibroker exhibit extensive priority inversion. In particu-
lar, as the number of low priority clients increases, the latency
observed by the high priority client increases rapidly. Since
the server uses a higher real-time priority thread to handle high
priority client requests, the latency seen by the higher priority
clients shouldnotbe affected by the presence of lower priority
requests.

The increase in the latency observed by the high priority
client is due to priority inversion in various layers of the ORB
endsystems, as described below:

� OS I/O Subsystem: The Solaris I/O subsystem does not
performpreemptible prioritized protocol processing, i.e., the
protocol processing of lower priority packets isnot deferred
due to the arrival of a higher priority packet. Thus, incom-
ing packets are processed according to theirorder of arrival
rather than theirpriority. For instance, if a low priority re-
quest arrives before a high priority request, the I/O subsystem
will process the lower priority packetbeforethe higher priority
packet. The amount of time spent in the low-priority servant
represents the priority inversion. TAO addresses these prob-
lems using the Gigabit Real-time I/O Subsystem discussed in
Section 2.1.

� ORB Core: The ORB Core implements the GIOP proto-
col. It thus sends/receives GIOP packets to/from the I/O sub-
system and is responsible for processing these packets. Cur-
rent GIOP mappings (such as IIOP) do not communicate re-
quest priority with each request. Therefore, the ORB Core is
unaware of the priority of the request. Hence, the ORB Core
for MT-Orbix and VisiBroker process GIOP packets in their
order of arrival, which leads to priority inversion. TAO imple-
ments the RIOP protocol discussed in Section 2.2.1, which can
include QoS information with each request. This information
can be used to perform prioritized protocol processing, thus
alleviating priority inversion in TAO’s ORB Core.

� Object Adapter: The Object Adapter for MT-Orbix and
VisiBroker do not perform prioritized demultiplexing of re-
quests. In addition, these ORB implementations performlay-
ered demultiplexing, which causes priority inversion and other
performance penalties [20]. Section 2.3 describes the design
of TAO’s real-time Object Adapter and how it eliminates pri-
ority inversion.
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These results illustrate the non-deterministic performance
seen by applications running atop conventional ORBs that lack
real-time features. In addition, the results show that priority in-
version is a significant problem in these ORBs, and thus they
are unsuitable for applications with deterministic real-time re-
quirements.
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Figure 16: Priority Inversion in Orbix

4.1.3 Results for TAO’s Real-time Event Channel

To illustrate how TAO addresses the priority inversion prob-
lems discussed above, we performed an experiment similar
to the above with the TAO Real-time Event Channel [10].
As discussed in Section 3, the Event Channel currently im-
plements several key features of TAO’s Real-time Object
Adapter (ROA), such as real-time dispatching of requests
(events), and real-time scheduling of clients/servants (suppli-
ers/consumers).

Similar to the experiments performed with Orbix and Vis-
ibroker, we created a high priority client andn low priority
clients. Each client had its own servant object. Thus the
CORBA clients used in the tests with Orbix and Visibroker
were modeled as Event suppliers and CORBA servants were
modeled as Event consumers. The Event Channel Scheduler
assigns appropriate real-time priorities to the servants, similar
to the Server Factory in the experiments performed with Orbix
and Visibroker.

Our experiment measured thelatencyobserved by the chan-
nel clients,i.e., the time taken for the Event Channel to demul-
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Figure 17: Priority Inversion in Visibroker

tiplex events, dispatch them to the servant, and for the servant
to handle these requests. Figure 18 depicts this latency ob-
served by the high priority client as the number of low priority
clients increase. These results illustrate that the latency ob-
served by the high priority client is not significantly adversely
affected as the number of low priority clients increases. There-
fore, the Event Channel correctly handles the priorities of the
clients and does not suffer from priority inversion. These re-
sults serve as aproof of conceptof the prioritized request pro-
cessing capabilities in TAO’s real-time Object Adapter.

Real-time middleware is an emerging field of study. An in-
creasing number of research efforts are focusing on integrating
QoS and real-time scheduling into middleware like CORBA.
This section compares our work on TAO with related QoS
middleware integration research.

CORBA-related QoS research: Krupp, et al., [65] at
MITRE Corporation were among the first to elucidate the re-
quirements of real-time CORBA systems. A system consist-
ing of a commercial off-the-shelf RTOS, a CORBA-compliant
ORB, and a real-time object-oriented database management
system is under development [66]. Similar to the initial ap-
proach provided by TAO, their initial static scheduling ap-
proach uses RMS, though a strategy for dynamic deadline
monotonic scheduling support has been designed [67].

Wolfe, et al., are developing a real-time CORBA system at
the US Navy Research and Development Laboratories (NRaD)
and the University of Rhode Island (URI) [68]. The sys-
tem supports expression and enforcement of dynamic end-
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to-end timing constraints through timed distributed operation
invocations (TDMIs) [15]. A TDMI corresponds to TAO’s
RT Operation [23]. Likewise, anRT Environment
structure contains QoS parameters similar to those in TAO’s
RT Info .

One difference between TAO and the URI approaches is that
TDMIs express required timing constraints,e.g., deadlines rel-
ative to the current time, whereasRT Operation s publish
their resource,e.g., CPU time, requirements. The difference in
approaches may reflect the different time scales, seconds ver-
sus milliseconds, respectively, and scheduling requirements,
dynamic versus static, of the initial application targets. How-
ever, the approaches should be equivalent with respect to sys-
tem schedulability and analysis.

In addition, NRaD/URI supply a new CORBA Global Prior-
ity Service (analogous to TAO’s Scheduling Service), and aug-
ment the CORBA Concurrency and Event Services. The initial
implementation usesEDF within importance leveldynamic,
on-line scheduling, supported by global priorities. A global
priority is associated with eachTDMI, and all processing asso-
ciated with the TDMI inherits that priority. In contrast, TAO’s
initial Scheduling Service was static and off-line; it uses im-
portance as a “tie-breaker” following the analysis of other re-
quirements such as data dependencies. Both NRaD/URI and
TAO readily support changing the scheduling policy by en-
capsulating it in their CORBA Global Priority and Scheduling
Services, respectively.

The QuO project at BBN [40] has defined a model for com-

municating changes in QoS characteristics between applica-
tions, middleware, and the underlying endsystems and net-
work. The QuO model uses the concept of aconnectionbe-
tween a client and an object to define QoS characteristics.
These characteristics are treated as first-class objects. Objects
can be aggregated to enable characteristics to be defined at var-
ious levels of granularity,e.g., for a single method invocation,
for all method invocations on a group of objects, and similar
combinations. The QuO model also uses several QoS defini-
tion languages (QDLs) that describe the QoS characteristics
of various objects, such as expected usage patterns, structural
details of objects, and resource availability.

The QuO architecture differs from our work on real-time
QoS provisioning in TAO since QuO does not provide hard
real-time guarantees of ORB endsystem CPU scheduling. Fur-
thermore, the QuO programming model involves the use of
several QDL specifications, in addition to OMG IDL, based
on the separation of concerns advocated by Aspect-Oriented
Programming (AoP) [69]. We believe that although the
AOP paradigm is powerful, the proliferation of definition lan-
guages may be overly complex for common application use-
cases. Therefore, the TAO programming model focuses on
theRT Operation andRT Info QoS specifiers, which can
be expressed in standard OMG IDL and integrated seamlessly
with the existing CORBA programming model.

The Realize project at UCSB [39] supports soft real-time
resource management of CORBA distributed systems. Real-
ize aims to reduce the difficulty of developing real-time sys-
tems and to permit distributed real-time programs to be pro-
grammed, tested, and debugged as easily as single sequential
programs. The key innovations in Realize are its integration of
distributed real-time scheduling with fault-tolerance, of fault-
tolerance with totally-ordered multicasting, and of totally-
ordered multicasting with distributed real-time scheduling,
within the context of object-oriented programming and exist-
ing standard operating systems. Realize can be hosted on top
of TAO [39].

The Epiq project [70] defines an open real-time CORBA
scheme that provides QoS guarantees and run-time scheduling
flexibility. Epiq explicitly extends TAO’s off-line scheduling
model to provide on-line scheduling. In addition, Epiq allows
clients to be added and removed dynamically via an admis-
sion test at run-time. The Epiq project is work-in-progress and
empirical results are not yet available.

Non-CORBA-related QoS research: The ARMADA
project [71, 72] defines a set of communication and mid-
dleware services that support fault-tolerant and end-to-end
guarantees for real-time distributed applications. ARMADA
provides real-time communication services based on the
X-kernel and the Open Group’s MK microkernel. This infras-
tructure provides a foundation for constructing higher-level
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real-time middleware services.
TAO differs from ARMADA in that most of the real-time in-

frastructure features in TAO are integrated into its ORB Core.
In addition, TAO implements the OMG’s CORBA standard,
while also providing the hooks that are necessary to integrate
with an underlying real-time I/O subsystem and OS. Thus,
the real-time services provided by ARMADA’s communica-
tion system can be utilized by TAO’s ORB Core to support a
vertically and horizontally integrated real-time system.

Rajkumar,et al., [73] at the Carnegie Mellon University
Software Engineering Institute, developed a real-time Pub-
lisher/Subscriber model. It is functionally similar to the TAO’s
Real-time Event Service [10]. For instance, it uses real-time
threads to prevent priority inversion within the communication
framework.

The CMU model does not utilize any QoS specifications
from publishers (event suppliers) or subscribers (event con-
sumers). Therefore, scheduling is based on the assignment of
request priorities, which is not addressed by the CMU model.
In contrast, TAO’s Scheduling Service and real-time Event
Service utilize QoS parameters from suppliers and consumers
to assure resource access via priorities. One interesting aspect
of the CMU Publisher/Subscriber model is the separation of
priorities for subscription and data transfer. By handling these
activities with different threads, with possibly different priori-
ties, the impact of on-line scheduling on real-time processing
can be minimized.

5 Concluding Remarks

Advances in distributed object computing technology are oc-
curring at a time when deregulation and global competition are
motivating the need for increased software productivity and
quality. Distributed object computing is a promising paradigm
to control costs through open systems and client/server com-
puting. Likewise, OO design and programming are widely
touted as an effective means to reduce software cost and im-
prove software quality through reuse, extensibility, and modu-
larity.

Meeting the QoS requirements of high-performance and
real-time applications requires more than OO design and pro-
gramming techniques, however. It requires an integrated ar-
chitecture that delivers end-to-end QoS guarantees at multi-
ple levels of a distributed system. The TAO ORB endsystem
described in this paper addresses this need with policies and
mechanisms that span network adapters, operating systems,
communication protocols, and ORB middleware.

We believe the future of real-time ORBs is very promis-
ing. Real-time system development strategies will migrate to-
wards those used for “mainstream” systems to achieve lower
development cost and faster time to market. We have ob-

served real-time embedded software development projects that
have lagged in terms of design and development methodolo-
gies (and languages) bydecades. These projects are extremely
costly to evolve and maintain. Moreover, they are so special-
ized that they cannot be adapted to meet new market opportu-
nities.

The flexibility and adaptability offered by CORBA make
it very attractive for use in real-time systems. If the real-
time challenges can be overcome, and the progress reported
in this paper indicates that they can, then the use of Real-time
CORBA is compelling. Moreover, the solutions to these chal-
lenges will sufficiently complex, yet general, that it will be
well worth re-applying them to other projects in domains with
stringent QoS requirements.

The C++ source code for TAO and ACE is freely available at
www.cs.wustl.edu/ �schmidt/TAO.html . This re-
lease also contains the real-time ORB benchmarking test suite
described in Section??.

TAO is currently being deployed at Boeing in St.
Louis, MO, where it is being used to develop oper-
ation flight programs for next-generation avionics sys-
tems. Source code for the TAO ORB is available at
www.cs.wustl.edu/ �schmidt/TAO.html .
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A Adapting Scheduling Strategies to
Support TAO

TAO’s real-time Scheduling Service uses a strategized sched-
uler, which can implement any of several scheduling strategies
includingRate Monotonic Scheduling(RMS) [36, 37],Earli-
est Deadline First(EDF) [36], Minimum Laxity First(MLF),
andMaximum Urgency First(MUF) [50]. Each of these strate-
gies carries certain benefits and limitations, which the body of
this section addresses.

A.1 Rate Monotonic Analysis and Scheduling

In RMS, higher priorities are assigned statically to threads
with faster rates. These priorities are fixed (i.e., they are not
modified by the operating system) and static (i.e., they are
not changed by the application). The operating system must
support preemption, such that the highest priority, runnable
thread(s) are always running on available processor(s).

Rate monotonic analysis (RMA), is used to validate RMS
schedules. A great deal of research on RMA has been done
at the Software Engineering Institute of Carnegie Mellon Uni-
versity. RMA consists of analytical methods and algorithms
for evaluating timing behavior. Note that systems need not be
scheduled with RMS to be analyzed using RMA; therefore, by
selecting RMA TAO is not limited to RMS.

RMA provides a test of whetherschedulabilitycan or can-
not be guaranteed for a system. In the context of deterministic
real-time systems, schedulability is the ability of all operations
in the system to meet their deadlines. We selected RMS as the
first policy for TAO’s Scheduling Service because it provides
an optimum schedule, is straightforward to apply, and is rela-
tively simple to analyze.

The TAO instantiation of RMA starts with the most strict
rules and progressively relaxes restrictions until it reaches a
form that can be used. The following restrictions allow the
application of RMA [36, 37]:

� All operations are independent;
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� All operations are periodic;

� There are no interrupts;

� Context switching time is negligible;

� There is a single operation priority level;

� There is a single CPU;

� Operation periods are related harmonically; and

� All operation deadlines are at the ends of periods.

Given the above restrictions, and knowledge of the com-
putation time,Ct, and period,Pt, of each operationt, then
the schedulability testis simply a comparison of the sum of
the utilizations,

Pn
t=1

Ct

Pt

, over each of then operations in the
program with 1. If the sum of the utilizations is less than or
equal to 1, the operation set is schedulable; otherwise, it is not.

Many of these restrictions can be relaxed for TAO in deter-
ministic real-time environments, as follows:

Interdependent operations: When operations are not inde-
pendent, scheduling analysis must (conservatively) consider
the time that a thread may be blocked by one of lower priority
due to synchronization. With sufficient analysis of system par-
ticipants and their behaviors, this blocking can be eliminated
by explicit specification of dependencies and resultant execu-
tion ordering. In practice, however, such explicit dependency
specification only may be feasible for deterministic real-time
systems that can be analyzed statically. In such systems, thread
activity can effectively be determined prior to run-time. Our
RT Info IDL struct supports this type of off-line analysis.

In statistical real-time systems that have dynamically chang-
ing resource requirements, operation interdependencies are
harder to analyze. For instance, there is a potential forpriority
inversionif threads of different priorities can synchronize. To
achieve optimum resource utilization, it is best to prevent these
situations. However, if they can occur, the analysis must (con-
servatively) consider the time that a thread may be blocked by
a lower priority due to synchronization.

Aperiodic operations: Aperiodic operations can be mod-
eled as periodic operations, assuming the worst (fastest) pos-
sible rate that the operations can execute.

Interrupts: Interrupts can be handled in the analysis given
their execution times and maximum possible rate. The usual
drawback, however, is that the analysis is conservative. It as-
sumes that the interrupts will occur at that maximum possible
rate; while necessary, this assumed rate is usually not realized
in practice. The result is reduced effective CPU utilization be-
cause the CPU must be “reserved” for interrupts that may not
always occur.

Context switching: Context switching time can be ac-
counted by charging each switch to the execution time of the
thread that is swapped out.

Multiple operation priority levels: TAO’s real-time
Scheduling Service generates operation priorities as its
output. It assigns an OS-specific priority to each thread in the
application,e.g., using RMS. Each operation in the thread is
then assigned the priority of that thread. For operations in
more than one thread, the highest priority is assigned. RMA
can be applied when there are multiple priority levels if there
is preemption, which is supported by TAO’s Object Adapter.
If preemption is not immediate, then it must be accounted for
in the analysis; an example is the analysis of RTUs [28].

Multiple CPUs: Currently, our RMA analysis assumes
TAO’s Object Adapter dispatches client requests on a single
CPU. Therefore, all work can be scheduled on that CPU in
isolation. The first step towards scheduling on multiple CPUs
will be to allocate threads manually to the separate CPUs and
to schedule each CPU separately, considering interprocessor
communication as interrupts. Further refinement of the anal-
ysis will take the actual priority of interprocessor events into
account.

Operation periods are related harmonically: If operation
periods are not related harmonically, then theutilization bound
(i.e., the maximum utilization below which the operation set is
guaranteed to be schedulable) isn � (21=n � 1), wheren is
the number of operations in the set. This function approaches
0.693 asn grows large. However, if all of the operation peri-
ods are related harmonically (e.g., 30 Hz, 15 Hz, 5 Hz, etc.),
the utilization bound is 1. Intuitively, this is because the oper-
ation periods “fit” into the largest operation period. For appli-
cations that can have harmonically related operation periods,
it is clearly advantageous to use these harmonic relations to
maximize CPU utilization.

All operation deadlines are at the ends of periods: Prepe-
riod operation deadlines can be modeled by adjusting the uti-
lization bound.

A.1.1 Purely Dynamic Scheduling Strategies

This section reviews two well known purely dynamic schedul-
ing strategies, Earliest Deadline First (EDF) [36, 37], and Min-
imum Laxity First (MLF) [50]. These strategies are illustrated
in Figure 19 and discussed below. In addition, Figure 19
depicts the hybrid static/dynamic Maximum Urgency First
(MUF) [50] scheduling strategy discussed in Section A.1.2.

Earliest Deadline First (EDF): EDF [36, 37] is a dynamic
scheduling strategy that orders dispatches8 of operations based
on time-to-deadline, as shown in Figure 19. Operation execu-
tions with closer deadlines are dispatched before those with

8A dispatchis a particular execution of anoperation.
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Figure 19: Dynamic Scheduling Strategies

more distant deadlines. The EDF scheduling strategy is in-
voked whenever a dispatch of an operation is requested. The
new dispatch may or may not preempt the currently executing
operation, depending on the mapping of priority components
into thread priorities discussed in Section B.5.5.

A key limitation of EDF is that an operation with the ear-
liest deadline is dispatched whether or not there is sufficient
time remaining to complete its execution prior to the deadline.
Therefore, the fact that an operation cannot meet its deadline
will not be detected untilafter the deadline has passed.

If the operation is dispatched even though it cannot com-
plete its execution prior to the deadline, the operation con-
sumes CPU time that could otherwise be allocated to other op-
erations. If the result of the operation is only useful to the ap-
plication prior to the deadline, then the entire time consumed
by the operation is essentially wasted.

Minimum Laxity First (MLF): MLF [50] refines the EDF
strategy by taking into account operation execution time. It
dispatches the operation whoselaxity is least, as shown in Fig-
ure 19. Laxity is defined as the time-to-deadline minus the
remaining execution time.

Using MLF, it is possible to detect that an operation will not
meet its deadlineprior to the deadline itself. If this occurs,
a scheduler can reevaluate the operation before allocating the
CPU for the remaining computation time. For example, one
strategy is to simply drop the operation whose laxity is not
sufficient to meet its deadline. This strategy may decrease the
chance that subsequent operations will miss their deadlines,
especially if the system is overloaded transiently.

Evaluation of EDF and MLF:

� Advantages: From a scheduling perspective, the main
advantage of EDF and MLF is that they overcome the utiliza-
tion limitations of RMS. In particular, the utilization phasing
penalty described in Section?? that can occur in RMS is not a
factor since EDF and MLF prioritize operations according to
their dynamic run-time characteristics.

EDF and MLF also handle harmonic and non-harmonic
periods comparably. Moreover, they respond flexibly to
invocation-to-invocation variations in resource requirements,
allowing CPU time unused by one operation to be reallo-
cated to other operations. Thus, they can produce schedules
that are optimal in terms of CPU utilization [36]. In addi-
tion, both EDF and MLF can dispatch operations within a sin-
gle static priority level and need not prioritize operations by
rate [36, 50].

� Disadvantages: From a performance perspective, one
disadvantage to purely dynamic scheduling approaches like
MLF and EDF is that their scheduling strategies require higher
overhead to evaluate at run-time. In addition, these purely dy-
namic scheduling strategies offer no control overwhich op-
erations will miss their deadlines if the schedulable bound is
exceeded. As operations are added to the schedule to achieve
higher utilization, the margin of safety forall operations de-
creases. Therefore, the risk of missing a deadline increases for
every operation as the system become overloaded.

A.1.2 Maximum Urgency First

The Maximum Urgency First (MUF) [50] scheduling strat-
egy supports both the deterministic rigor of the static RMS
scheduling approach and the flexibility of dynamic scheduling
approaches such as EDF and MLF. MUF is the default sched-
uler for the Chimera real-time operating system (RTOS) [74].
TAO supports a variant of MUF in its strategized CORBA
scheduling service framework, which is discussed in Sec-
tion B.

MUF can assign both staticand dynamic priority compo-
nents. In contrast, RMS assigns all priority components stat-
ically and EDF/MLF assign all priority components dynami-
cally. The hybrid priority assignment in MUF overcomes the
drawbacks of the individual scheduling strategies by combin-
ing techniques from each, as described below:

Criticality: In MUF, operations with highercriticality are
assigned to higher static priority levels. Assigning static prior-
ities according to criticality prevents operations critical to the
application from being preempted by non-critical operations.

Ordering operations by application-defined criticality re-
flects a subtle and fundamental shift in the notion of prior-
ity assignment. In particular, RMS, EDF, and MLF exhibit
a rigid mapping from empirical operation characteristics to a
single priority value. Moreover, they offer little or no control
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over which operations will miss their deadlines under overload
conditions.

In contrast, MUF gives applications the ability to distin-
guish operations arbitrarily. MUF allows control overwhich
operations will miss their deadlines. Therefore, it can protect
a criticalsubsetof the entire set of operations. This fundamen-
tal shift in the notion of priority assignment leads to the gen-
eralization of scheduling and analysis techniques discussed in
Section B and Appendix??.

Dynamic Subpriority: An operation’s dynamic subpriority
is evaluated whenever it must be compared to another oper-
ation’s dynamic subpriority. For example, an operation’s dy-
namic subpriority is evaluated whenever it is enqueued in or
dequeued from a dynamically ordered dispatching queue. At
the instant of evaluation, dynamic subpriority in MUF is a
function of the the laxity of an operation.

An example of such a simple dynamic subpriority function
is the inverse of the operation’s laxity.9 Operations with the
smallest positive laxities have the highest dynamic subpriori-
ties, followed by operations with higher positive laxities, fol-
lowed by operations with the most negative laxities, followed
by operations with negative laxities closer to zero. Assigning
dynamic subpriority in this way provides a consistent order-
ing of operations as they move through thependingand late
dispatching queues, as described below.

By assigning dynamic subpriorities according to laxity,
MUF offers higher utilization of the CPU than the statically
scheduled strategies. MUF also allows deadline failures to
be detectedbefore they actually occur, except when an op-
eration that would otherwise meet its deadline is preempted
by a higher criticality operation. Moreover, MUF can apply
various types of error handling policies when deadlines are
missed [50]. For example, if an operation has negative lax-
ity prior to being dispatched, it can be demoted in the priority
queue, allowing operations that can still meet their deadlines
to be dispatched instead.

Static Subpriority: In MUF, static subpriorityis a static,
application-specific, optional priority. It is used to order the
dispatches of operations that have the same criticality and the
same dynamic subpriority. Thus, static subpriority has lower
precedence than either criticality or dynamic subpriority.

Assigning a unique static subpriority to operation that have
the same criticality ensures a total dispatching ordering of op-
erations at run-time, for any operation laxity values having the
same criticality. A total dispatching ordering ensures that for
a given arrival pattern of operation requests, the dispatching

9To avoid division-by-zero errors, any operation whose laxity is in the
range�� can be assigned (negative) dynamic subpriority�1=� where� is
the smallest positive floating point number that is distinguishable from zero.
Thus, when the laxity of an operation reaches�, it is considered to have missed
its deadline.

order will always be the same. This, in turn, helps improve the
reliability and testability of the system.

The variant of MUF used in TAO’s strategized scheduling
service enforces a complete dispatching ordering by providing
an importance field in the TAORT Info CORBA opera-
tion QoS descriptor [23], which is shown in Section??. TAO’s
scheduling service usesimportance , as well as a topologi-
cal ordering of operations, to assign a unique static subpriority
for each operation within a given criticality level.

Incidentally, the original definition of MUF in [50] uses
the termsdynamic priorityanduser priority, whereas we use
the termdynamic subpriorityandstatic subpriorityfor TAO’s
scheduling service. We selected different terminology to indi-
cate the subordination to static priority. These terms are inter-
changeable when referring to MUF, however.

It is not strictly necessary to know all operations in advance
in order to schedule them using the canonical definitions of
EDF or MLF. However, the real-time applications we have
worked with do exhibit this useful property. If all operations
are known in advance, off-line analysis of schedule feasibility
is possible for RMS, EDF, MLF, and MUF.

The output of each of the scheduling strategies in TAO is
a schedule. This schedule defines a set of operation dispatch-
ing priorities, dispatching subpriorities, and a minimum criti-
cal dispatching priority. Our goal in this appendix is to present
a feasibility analysis technique for these schedules, that is in-
dependent of the specific strategy used to produce a particular
schedule. Such an analysis technique must establish invari-
ants that hold across all urgency and dispatching priority map-
pings. By doing this, the off-line schedule feasibility analysis
(1) decouples the application from the details of a particular
scheduling strategy, and (2) allows alternative strategies to be
compared for a given application .

The remainder of this appendix is organized as follows.
Section A.2 discusses the notion of a schedule’sframe size.
Section A.3 describes how we measure a schedule’s CPU uti-
lization. Finally, Section A.4 describes the generalized sched-
ule feasibility analysis technique, which is based on a sched-
ule’s utilization, frame size, and the respective priorities of the
operations.

A.2 Frame Size

The frame size for a schedule is the minimum time that can
contain all possible phasing relationships between all opera-
tions. The frame size provides an invariant for the largest time
within which all operation executions will fit. This assumes,
of course, that the scheduling parameters, such as rates and
worst-case execution times, specified by applications are not
exceeded by operations at run-time.
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When the periods of all operations are integral multiples of
one another,e.g., 20 Hz, 10 Hz, 5 Hz, and 1 Hz, the operations
are said to beharmonically related. Harmonically related op-
erations have completely nested phasing relationships. Thus,
the arrival pattern of each subsequently shorter period fits ex-
actly within the next longer period. For harmonically related
operations, the frame size is simply the longest operation pe-
riod.

Operations that are not harmonically related come into and
out of phase with one another. Therefore, they do not exhibit
the nesting property. Instead, the pattern of arrivals only re-
peats after all periods come back into the same phasing rela-
tionships they had at the beginning.

This observation leads to the invariant that covers both the
harmonic and non-harmonic cases. The frame size in both
cases is the product of all non-duplicated factors of all opera-
tion periods. For non-harmonic cases, we calculate this value
by starting with a frame size of one time unit and iterating
through the set of unique operation periods. For each unique
period, we (possibly) expand the frame size by multiplying
the previous frame size by the greatest common divisor of the
previous frame size and the operation period. For harmonic
cases, all operation periods are factors of the longest operation
period. Therefore, the longest operation period is the frame
size.

Figure 20 depicts the relationships between operation peri-
ods and frame size for both the harmonic and non-harmonic
cases. For harmonically related operation rates, all of the
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Frame size = 7000 ms

Non-harmonically
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500 ms
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1000 ms

Figure 20: Frame Size Examples for Harmonic and Non-
Harmonic Cases

smaller periods fit evenly into the largest period. There-
fore, the largest operation periodis the frame size. For non-
harmonically related rates, the frame size is larger than the
largest operation period, because it is a multiple of all of the
operation periods.

A.3 Utilization

Total CPU utilization is the sum of the actual execution times
used by all operation dispatches over the schedule frame size,

divided by the frame size itself. TAO’s strategized scheduling
service calculates the maximum total utilization for a given
schedule by summing, over all operations, the fraction of each
operation’s period that is consumed by its worst-case execu-
tion time, according to the following formula:

U =
P
8k

Ck=Tk

where, for each operationk, Ck is its worst case execution
time, andTk is its period.

In addition to total utilization, TAO’s scheduling service
calculates the CPU utilization by the set of critical opera-
tions. This indicates the percentage of time the CPU is al-
located to operations whose completion prior to deadline is to
be enforced. Operations whose assigned dispatching priority
is greater than or equal to the minimum critical priority bound
are considered to be in the critical set. In the RMS, EDF, and
MLF scheduling strategies, the entire schedule is considered
critical, so the critical set utilization is the same as total uti-
lization.

If the total utilization exceeds theschedulable bound, TAO’s
scheduling service also stores the priority level previous to the
one that exceeded the schedulable bound. This previous prior-
ity level is called theminimum guaranteed priority level. Op-
erations having dispatching priority greater than or equal to
the minimum guaranteed priority level are assured of meet-
ing their deadlines. In contrast, operations having dispatching
priority immediately below the minimum guaranteed priority
level may execute prior to their deadlines, but are not assured
of doing so. If the total utilization does not exceed the schedu-
lable bound, the lowest priority level in the system is the min-
imum guaranteed priority level, and all operations are assured
of meeting their deadlines.

A.4 Schedule Feasibility

It may or may not be possible to achieve afeasibleschedule
that utilizes 100% of the CPU. Achieving 100% utilization de-
pends on the phasing relationships between operations in the
schedule, and the scheduling strategy itself. The maximum
percentage of the CPU that can be utilized is called theschedu-
lable bound.

The schedulable bound is a function of the scheduling strat-
egy and in some cases of the schedule itself. A schedule is
feasibleif and only if all operations in the critical set are as-
sured of meeting their deadlines. The critical set is identified
by the minimum critical priority. All operations having dis-
patching priority greater than or equal to the minimum critical
priority are in the critical set.

The schedulability of each operation in the critical set de-
pends on the worst-case operation arrival pattern, which is
called thecritical instant. The critical instant for an operation
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occurs when the delay between its arrival and its completion
is maximal [36]. For the preemptive-by-urgency dispatching
model described in Section B.5.6, the critical instant for an
operation occurs when it arrives simultaneously with all other
operations.

For other dispatching models, the critical instant for a given
operation differs slightly. It occurs only when the operation ar-
rives immediately after another operation that will cause it the
greatestadditionalpreemption delay was dispatched. Further,
it only occurs when the operation arrives simultaneously with
all operations other than the one causing it additional preemp-
tion delay. If an operation is schedulable at its critical instant,
it is assured of schedulability under any other arrival pattern
of the same operations.

A key research challenge in assessing schedule feasibility
is determining whether each operation has sufficient time to
complete its execution prior to deadline. The deadline for an
operation at its critical instant falls exactly at the critical in-
stant plus its period. Not only must a given operation be able
to complete execution in that period, it must do so in the time
that is not used by preferentially dispatched operations. All
operations that have higher dispatching priority than the cur-
rent operation will be dispatched preferentially. All operations
that have the same dispatching priority, but have deadlines at
or prior to the deadline of the current operation, must also be
considered to be dispatched preferentially.

The goal of assessing schedule feasibility off-line in a way
that (1) is independent of a particular strategy, and (2) cor-
rectly determines whether each operation will meet its dead-
line, motivates the following analysis. TAO’s strategized
scheduling service performs this analysis for each operation
off-line. We call the operation upon which the analysis is
being performed thecurrent operation. The number of ar-
rivals, during the period of the current operation, of an op-
eration having higher dispatching priority than the current op-
eration is given bydTc=The, whereTc andTh are the respec-
tive periods of the current operation and the higher priority
operation. The time consumed by the higher priority oper-
ation during the period of the current operation is given by
bTc=ThcCh + min (Tc � bTc=ThcTh; Ch), where themin

function returns the minimum of the values, andCh is the
computation time used for each dispatch of the higher prior-
ity operation.

Similarly, the number of deadlines of another operation hav-
ing the same dispatching priority as the current operation is
given bybTc=Tsc, whereTs is the period of the other opera-
tion having the same dispatching priority as the current opera-
tion. The time consumed by the other same priority operation
over the period of the current operation is given bybTc=TscCs,
whereCs is the computation time used by the other same pri-
ority operation [36]. Figure 21 illustrates the various possible
relationships between the periods of operations in two priority

levels.

T1= 2

T2 = 15

T3 = 7

T4 = 9

Higher Priority Operations

T5 = 10

Lower Priority Operations

Figure 21: Schedulability of the Current Operation

Choosing the fourth operation, with periodT4, as the cur-
rent operation, the number of arrivals of each of the higher pri-
ority operations is as expected:dT4=T1e = d9=2e = d4:5e =

5 anddT4=T2e = d9=15e = d0:6e = 1. The number of dead-
lines of operations having the same priority level is also as
expected:bT4=T3c = b9=7c

:
= b1:3c = 1 andbT4=T4c =

b9=9c = b1:0c = 1 andbT4=T5c = b9=10c = b0:9c = 0.
Having established the time consumed by an operation hav-

ing higher dispatching priority than the current operation as
bTc=ThcCh + min (Tc � bTc=ThcTh; Ch), and the time con-
sumed by an operation having the same dispatching priority as
the current operation asbTc=TscCs, it is now possible to state
the invariant that must hold for all operations having dispatch-
ing priority � to be schedulable:

8 f j; k 2 S j (p(j) = �) ^ (p(k) >= �)g
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p(k)>=�

bTj=TkcCk +
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min (Tj � bTj=TkcTk ; Ck)

3
7775 <= Tj
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CCCA

S is the set of all operations in the schedule. The func-
tion p(j) simply returns the priority assigned to operationj.
Cwcpd(j) is the worst-case preemption delay for operationj.
Operationj suffers a preemption delay if and only if it arrives
while an operation in the same dispatching priority level that
does not have a deadline within operationj’s period is exe-
cuting. Operations that have deadlines within operationj’s
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period must be counted anyway, and thus do not impose any
additionaldelay, should operationj arrive while they are ex-
ecuting. The worst-case preemption delay for operationj is
the longest execution time of any operation that has a longer
period: if there are no such operations,Cwcpd(j) is zero.

For each current operation having dispatching priority� to
be schedulable, the following must hold. All deadlines of op-
erations having the same dispatching priority or higher, includ-
ing the deadline of the current operation itself, plusCwcpd(j),
plus any time scheduled for higher priority operations that ar-
rive within but do not have a deadline within the period of
the current operations, must be schedulable within the period
of the current operation. This invariant is evaluated for each
decreasing dispatching priority level of a schedule, from the
highest to the lowest. The lowest dispatching priority level for
which the invariant holds is thus identified as the minimum
priority for which schedulability of all operations can be guar-
anteed, known as theminimum guaranteed priority.

In summary, the schedule feasibility analysis technique
presented in this appendix establishes and uses invariants
that hold across all urgency and dispatching priority map-
pings. This gives applications the ability to examine differ-
ent scheduling strategies off-line, and discard those that do not
produce feasible schedules for their particular operation char-
acteristics. Further, it decouples applications from the details
of any particular scheduling strategy, so that changes in strate-
gies to not require changes in their operation characteristics.

B The Design of TAO’s Strategized
Scheduling Service

TAO’s scheduling service provides real-time CORBA applica-
tions with the flexibility to specify and use different schedul-
ing strategies, according to their specific QoS requirements
and available OS features. This flexibility allows CORBA ap-
plications to extend the set of available scheduling strategies
withoutimpacting strategies used by other applications. More-
over, it shields application developers from unnecessary de-
tails of their scheduling strategies. In addition, TAO’s schedul-
ing service provides a common framework to compare existing
scheduling strategies and to empirically evaluate new strate-
gies.

This section outlines the design goals and architecture of
TAO’s strategized scheduling service framework. After briefly
describing TAO in Section B.1, Section B.2 discusses the
design goals of TAO’s strategized scheduling service. Sec-
tion B.3 offers an overview of its architecture and operation.
Section B.4 describes the design forces that motivate TAO’s
flexible Scheduling Service architecture. Finally, Section B.5
discusses the resulting architecture in detail.

B.1 Overview of TAO

TAO is a high-performance, real-time ORB endsystem tar-
geted for applications with deterministic and statistical QoS
requirements, as well as “best-effort” requirements. The TAO
ORB endsystem contains the network interface, OS, commu-
nication protocol, and CORBA-compliant middleware com-
ponents and features shown in Figure 22. TAO supports the
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Figure 22: Components in the TAO Real-time ORB Endsys-
tem

standard OMG CORBA reference model [1], with the follow-
ing enhancements designed to overcome the shortcomings of
conventional ORBs [45] for high-performance and real-time
applications:

Real-time IDL Stubs and Skeletons: TAO’s IDL stubs and
skeletons efficiently marshal and demarshal operation param-
eters, respectively [75]. In addition, TAO’s Real-time IDL
(RIDL) stubs and skeletons extend the OMG IDL specifica-
tions to ensure that application timing requirements are speci-
fied and enforced end-to-end [68].

Real-time Object Adapter: An Object Adapter associates
servants with the ORB and demultiplexes incoming requests
to servants. TAO’s real-time Object Adapter [76] uses perfect
hashing [56] and active demultiplexing [20] optimizations to
dispatch servant operations in constantO(1) time, regardless
of the number of active connections, servants, and operations
defined in IDL interfaces.

ORB Run-time Scheduler: A real-time scheduler [44]
maps application QoS requirements, such as include bounding
end-to-end latency and meeting periodic scheduling deadlines,
to ORB endsystem/network resources, such as ORB endsys-
tem/network resources include CPU, memory, network con-
nections, and storage devices. TAO’s run-time scheduler sup-
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ports both static [23] and dynamic [77] real-time scheduling
strategies.

Real-time ORB Core: An ORB Core delivers client re-
quests to the Object Adapter and returns responses (if any) to
clients. TAO’s real-time ORB Core [45] uses a multi-threaded,
preemptive, priority-based connection and concurrency archi-
tecture [75] to provide an efficient and predictable CORBA
IIOP protocol engine.

Real-time I/O subsystem: TAO’s real-time I/O subsystem
[17] extends support for CORBA into the OS. TAO’s I/O sub-
system assigns priorities to real-time I/O threads so that the
schedulability of application components and ORB endsystem
resources can be enforced. TAO also runs efficiently and rel-
atively predictably on conventional I/O subsystems that lack
advanced QoS features.

High-speed network interface: At the core of TAO’s I/O
subsystem is a “daisy-chained” network interface consisting
of one or more ATM Port Interconnect Controller (APIC)
chips [29]. APIC is designed to sustain an aggregate bi-
directional data rate of 2.4 Gbps. In addition, TAO runs
on conventional real-time interconnects, such as VME back-
planes, multi-processor shared memory environments, as well
as Internet protocols like TCP/IP.

TAO is developed atop lower-level middleware called
ACE [78], which implements core concurrency and distribu-
tion patterns [49] for communication software. ACE pro-
vides reusable C++ wrapper facades and framework compo-
nents that support the QoS requirements of high-performance,
real-time applications. ACE runs on a wide range of OS plat-
forms, including Win32, most versions of UNIX, and real-time
operating systems like Sun/Chorus ClassiX, LynxOS, and Vx-
Works.

B.2 Design Goals of TAO’s Scheduling Service

To alleviate the limitations with existing scheduling strategies
described in Section??, our research on CORBA real-time
scheduling focuses on enabling applications to (1)maximize
total utilization, (2) preserve scheduling guarantees for criti-
cal operations(when the set of critical operations can be iden-
tified), and (3)adapt flexibly to different application and plat-
form characteristics. These three goals are illustrated in Fig-
ure 23 and summarized below:

Goal 1. Higher utilization: The upper pair of timelines in
Figure 23 demonstrates our first research goal:higher utiliza-
tion. This timeline shows a case where a critical operation
execution did not, in fact, use its worst-case execution time.
With dynamic scheduling, an additional non-critical operation
could be dispatched, thereby achieving higher resource utiliza-
tion.

HIGH UTILIZATION

ISOLATE MISSED DEADLINES

vs

vs

CRITICAL

NON-
CRITICAL

DEADLINE

TIME AXIS

NOT

SCHEDULED

ADAPTATION TO

APPLICATION CHARACTERISTICS

A B

C D E

A B

C D E

FIRST APPLICATION SECOND APPLICATION

Figure 23: Design Goals of TAO’s Dynamic Scheduling Ser-
vice

Goal 2. Preserving scheduling guarantees: The lower pair
of timelines in Figure 23 demonstrates our second research
goal: preserving scheduling guarantees for critical opera-
tions. This timeline depicts a statically scheduled timeline, in
which the worst-case execution time of the critical operation
must be scheduled. In the lower timeline, priority is based on
traditional scheduling parameters, such as rate and laxity. In
the upper timeline, criticality is also included. Both timelines
depict schedule overrun. When criticality is considered, only
non-critical operations miss their deadlines.

Goal 3. Adaptive scheduling: The sets of operation blocks
at the bottom of Figure 23 demonstrate our third research goal:
providing applications with the flexibility to adapt to varying
application requirements and platform features. In this exam-
ple, the first and second applications use the same five oper-
ations. However, the first application considers operations A
and E critical, whereas the second application considers op-
erations B and D critical. By allowing applications to select
which operations are critical, it should be possible to provide
scheduling behavior that is appropriate to each application’s
individual requirements.

These goals motivate the design of TAO’s strategized
scheduling service framework, described in Section B.3. For
the real-time systems [10, 23, 17, 45] that TAO has been ap-
plied to, it has been possible to identify a core set of oper-
ations whose execution before deadlines iscritical to the in-
tegrity of the system. Therefore, the TAO’s scheduling ser-
vice is designed to ensure that critical CORBA operations will
meet their deadlines, even when the total utilization exceeds
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the schedulable bound.
If it is possible to ensure deadlines will be met, then adding

operations to the schedule to increase total CPU utilization
will not increase the risk of missing deadlines. The risk will
only increase for those operations whose execution prior to
deadline isnot critical to the integrity of the system. In this
way, the risk to the whole system is minimized when it is
loaded for higher utilization.

B.3 TAO’s Strategized Scheduling Service
Framework

TAO’s scheduling service framework is designed to support a
variety of scheduling strategies, including RMS, EDF, MLF,
and MUF. This flexibility is achieved in TAO via theStrat-
egydesign pattern [49]. This pattern encapsulates a family of
scheduling algorithms within a fixed interface. Within TAO’s
strategized scheduling service, the scheduling strategies them-
selves are interchangeable and can be varied independently.

The architecture and behavior of TAO’s strategized schedul-
ing service is illustrated in Figure 24. This architecture
evolved from our earlier work on a CORBA scheduling ser-
vice [23] that supported purely static rate monotonic schedul-
ing. The steps involved in configuring and processing requests
are described below. Steps 1-6 typically occur off-line during
the schedule configuration process, whereas steps 7-10 occur
on-line, underscoring the hybrid nature of TAO’s scheduling
architecture.

Step 1: A CORBA application specifies QoS information
and passes it to TAO’s scheduling service, which is imple-
mented as a CORBA object,i.e., it implements an IDL inter-
face. The application specifies a set of values (RT Info s)
for the characteristics of each of its schedulable operations
(RT Operation s). In addition, the application specifies in-
vocation dependencies between these operations.

Step 2: At configuration time, which can occur either off-
line or on-line, the application passes this QoS information
into TAO’s scheduling service via itsinput interface. TAO’s
scheduling service stores the QoS information in its repository
of RT Info descriptors. TAO’s scheduling service’s input in-
terface is described further in Section B.5.1.

TAO’s scheduling service constructs operation dependency
graphs based on information registered with it by the appli-
cation. The scheduling service then identifies threads of exe-
cution by examining the terminal nodes of these dependency
graphs. Nodes that have outgoing edges but no incoming
edges in the dependency graph are calledconsumers. Con-
sumers are dispatched after the nodes on which they depend.
Nodes that have incoming edges but no outgoing edges are
calledsuppliers. Suppliers correspond to distinct threads of

execution in the system. Nodes with incomingandoutgoing
edges can fulfill both roles.

Step 3: In this step, TAO’s scheduling service assesses
schedulability. A set of operations is consideredschedulable
if all operations in the critical set are guaranteed to meet their
deadlines. Schedulability is assessed according to whether
CPU utilization by operations in and above the minimum crit-
ical priority is less than or equal to the schedulable bound.

Step 4: Next, TAO’s scheduling service assigns static pri-
orities and subpriorities to operations. These values are as-
signed according to the specific strategy used to configure the
scheduling service. For example, when the TAO scheduling
service is configured with the MUF strategy, static priority
is assigned according to operation criticality. Likewise, static
subpriority is assigned according to operation importance and
dependencies.

Step 5: Based on the specific strategy used to configure it,
TAO’s scheduling service divides the dispatching priority and
dispatching subpriority components into statically and dynam-
ically assigned portions. The static priority and static subpri-
ority values are used to assign the static portions of the dis-
patching priority and dispatching subpriority of the operations.
These dispatching priorities and subpriorities reside in TAO’s
RT Info repository.

Step 6: Based on the assigned dispatching priorities, and
in accordance with the specific strategy used to configure the
off-line scheduling service, the number and types of dispatch-
ing queues needed to dispatch the generated schedule are as-
signed. For example, when the scheduling service is config-
ured with the MLF strategy, there is a single queue, which
uses laxity-based prioritization. As before, this configuration
information resides in theRT Info repository.

Step 7: At run-time start up, the configuration information
in theRT Info repository is used by the scheduling service’s
run-time scheduler component, which is collocated within an
ORB endsystem. The ORB uses the run-time scheduler to re-
trieve (1) the thread priority at which each queue dispatches
operations and (2) the type of dispatching prioritization used
by each queue. The scheduling service’s run-time component
provides this information to the ORB via itsoutput interface,
as described in Section B.5.2.

Step 8: In this step, the ORB configures itsdispatching mod-
ules, i.e., the I/O subsystem, the ORB Core, and/or the Event
Service. The information from the scheduling service’s out-
put interface is used to create the correct number and types
of queues, and associate them with the correct thread priori-
ties that service the queues. This configuration process is de-
scribed further in Section B.5.3.
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Figure 24: Processing Steps in TAO’s Dynamic Scheduling Service Architecture

Step 9: When an operation request arrives from a client at
run-time, the appropriate dispatching module must identify the
dispatching queue to which the request belongs and initialize
the request’s dispatching subpriority. To accomplish this, the
dispatching module queries TAO’s scheduling service’s output
interface, as described in Section B.5.2. The run-time sched-
uler component of TAO’s scheduling service first retrieves the
static portions of the dispatching priority and dispatching sub-
priority from theRT Info repository. It then supplies the dis-
patching priority and dispatching subpriority to the dispatch-
ing module.

Step 10: If the dispatching queue where the operation re-
quest is placed was configured as adynamic queuein step 8,
the dynamic portions of the request’s dispatching subpriority
(and possibly its dispatching priority) are assigned. This queue
first does this when it enqueues the request. This queue then
updates these dynamic portions as necessary when other oper-
ations are enqueued or dequeued.

The remainder of this section describes TAO’s strategized
scheduling service framework in detail. Section B.4 motivates
why TAO allows applications to vary their scheduling strategy
and Section B.5 shows how TAO’s framework design achieves
this flexibility.

B.4 Motivation for TAO’s Strategized Schedul-
ing Architecture

The flexibility of the architecture for TAO’s strategized
scheduling service is motivated by the following two goals:

1. Shield application developers from unnecessary imple-
mentation details of alternative scheduling strategies–

This improves the system’s reliability and maintainabil-
ity, as described below.

2. Decouple the strategy for priority assignment from the
dispatching model so the two can be varied independently
– This increases the system’s flexibility to adapt to vary-
ing application requirements and platform features.

TAO’s scheduling strategy framework is designed to mini-
mize unnecessary constraints on the values application devel-
opers specify to the input interface described in Section B.5.1.
For instance, one (non-recommended) way to implement the
RMS, EDF, and MLF strategies in TAO’s scheduling service
framework would be to implement them as variants of the
MUF strategy. This can be done by manipulating the values
of the operation characteristics [50]. However, this approach
would tightly couple applications to the MUF scheduling strat-
egy and the strategy being emulated.

There is a significant drawback to tightly coupling the be-
havior of a scheduling service to the characteristics of appli-
cation operations. In particular, if the value of one opera-
tion characteristic used by the application changes, developers
must remember to manually modify other operation character-
istics specified to the scheduling service in order to preserve
the same mapping. In general, we prefer to shield application
developers from such unnecessary details.

To achieve this encapsulation, TAO’s scheduling service al-
lows applications to specify the entire set of possible opera-
tion characteristics using its input interface. In the schedul-
ing strategies implemented in TAO, mappings between the in-
put and output interfaces are entirely encapsulated within the
strategies. Therefore, they need not require any unnecessary
manipulation of input values. This decouples them from oper-
ation characteristics they need not consider.
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Additional decoupling within the scheduling strategies
themselves is also beneficial. Thus, each scheduling strategy
in TAO specifies the following two distinct levels in its map-
ping from input interface to output interface:

1. Urgency assignment: The first level assignsurgency
components,i.e., static priority, dynamic subpriority, and
static subpriority, based on (1) the operation characteristics
specified to the input interface and (2) the selected schedul-
ing strategy,e.g., MUF, MLF, EDF, or RMS.

2. Dispatching (sub)priority assignment: The second
level assigns dispatching priority and dispatching subpriority
in the output interface based on the urgency components as-
signed in the first level.

By decoupling (1) the strategy for urgency assignment from
(2) the assignment of urgency to dispatching priority and dis-
patching subpriority, TAO allows the scheduling strategy and
the underlying dispatching model to vary independently. This
decoupling allows a given scheduling strategy to be used on an
OS that supports either preemptive or non-preemptive thread-
ing models, with only minor modification to the scheduling
strategy. In addition, it facilitates comparison of schedul-
ing strategies over a range of dispatching models, from fully
preemptive-by-urgency, through preemptive-by-priority-band,
to entirely non-preemptive. These models are discussed fur-
ther in Section B.5.6.

B.5 Enhancing TAO’s Scheduling Strategy
Flexibility

The QoS requirements of applications and the hard-
ware/software features of platforms and networks on which
they are hosted often vary significantly. For instance, a
scheduling strategy that is ideal for telecommunication call
processing may be poorly suited for avionics mission comput-
ing [10]. Therefore, TAO’s scheduling service framework is
designed to allow applications to vary their scheduling strate-
gies. TAO supports this flexibility by decoupling thefixedpor-
tion of its scheduling framework from thevariableportion, as
follows:

Fixed interfaces: The fixed portion of TAO’s strategized
scheduling service framework is defined by the following two
interfaces:

� Input Interface: As discussed in Section B.5.1, the in-
put interface consists of the three operations shown in Fig-
ure 25. Application can use these operations to manipulate
QoS characteristics expressed with TAO’sRT Info descrip-
tors [23] (steps 1 and 2 of Figure 24).

� Output Interface: As discussed in Section B.5.2, the
output interface consists of the two operations shown in Fig-
ure 26. One operation returns the dispatching module config-
uration information (step 7 of Figure 24). The other returns
the dispatching priority and dispatching subpriority compo-
nents assigned to an operation (step 9 of Figure 24). Sec-
tion B.5.3 describes how TAO’s dispatching modules use in-
formation from TAO’s scheduling service’s output interface to
configure and manage dispatching queues, as well as dispatch
operations according to the generated schedule.

Variable mappings: The variable portion of TAO’s schedul-
ing service framework is implemented by the following two
distinct mappings:

� Input Mapping: The input mapping assigns urgen-
cies to operations according to the desired scheduling strat-
egy. Section B.5.4 describes how each of the strategies im-
plemented in TAO maps from the input interface to urgency
values.

� Output Mapping: The output mapping assigns dis-
patching priority and dispatching subpriority according to the
underlying dispatching model. Section B.5.5 describes how
the output mapping translates the assigned urgency values into
the appropriate dispatching priority and dispatching subprior-
ity values for the output interface. Section B.5.6 describes al-
ternatives to the output mapping used in TAO and discusses
key design issues related to these alternatives.

The remainder of this section describes how TAO’s schedul-
ing service implements these fixed interfaces and variable
mappings.

B.5.1 TAO’s Scheduling Service Input Interface

As illustrated in steps 1 and 2 of Figure 24, applications use
TAO’s scheduling service input interface to convey QoS infor-
mation that prioritizes operations. TAO’s scheduling service
input interface consists of the CORBA IDL interface opera-
tions shown in Figure 25 and outlined below.

create(): This operation takes a string with the operation
name as an input parameter. It creates a newRT Info de-
scriptor for that operation name and returns a handle for that
descriptor to the caller. If anRT Info descriptor for that
operation name already exists,create raises theDUPLI-
CATE NAME exception.

add dependency(): This operation takes twoRT Info de-
scriptor handles as input parameters. It places a dependency
on the second handle’s operation in the first handle’sRT Info
descriptor. This dependency informs the scheduler that a flow
of control passes from the second operation to the first. If ei-
ther of the handles refers to an invalidRT Info descriptor,
add dependency raises theUNKNOWN TASK exception.
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Figure 25: TAO Scheduling Service Input IDL Interface

set(): This operation takes anRT Info descriptor handle
and values for several operation characteristics as input param-
eters. Theset operation assigns the values of operation char-
acteristics in the handle’sRT Info descriptor to the passed
input values. If the passed handle refers to an invalidRT Info
descriptor,set raises theUNKNOWN TASK exception.

B.5.2 TAO’s Scheduling Service Output Interface

The output interface for TAO’s scheduling service consists of
the CORBA IDL interface operations shown in Figure 26.

The first operation,dispatch configuration , pro-
vides configuration information for queues in the dispatching
modules used by the ORB endsystem (step 7 of Figure 24). It
takes a dispatching priority value as an input parameter. It re-
turns the OS thread priority and dispatching type correspond-
ing to that dispatching priority level. The run-time scheduler
component of TAO’s scheduling service retrieves these val-
ues from theRT Info repository, where they were stored by
TAO’s off-line scheduling component (step 6 of Figure 24).

The UNKNOWN DISPATCH PRIORITY exception will be
raised if the dispatch configuration operation is
passed a dispatching priority that is not in the sched-
ule. Likewise, if a schedule has not been gener-
ated, thedispatch configuration operation raises the
NOT SCHEDULEDexception.

The second operation,priority , provides dispatching
priority and dispatching subpriority information for an oper-
ation request (step 9 of Figure 24). It takes anRT Info de-
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Figure 26: TAO Scheduling Service Output IDL Interface

scriptor handle as an input parameter and returns the assigned
dispatching subpriority and dispatching priority as output pa-
rameters.

The run-time component of TAO’s scheduling service re-
trieves the dispatching priority and dispatching subpriority
values stored in theRT Info repository by its off-line com-
ponent (step 5 of Figure 24). If the passed handle does not
refer to a validRT Info descriptor,priority raises the
UNKNOWN TASK exception. If a schedule has not been gen-
erated,priority raises theNOT SCHEDULEDexception.

B.5.3 Integrating the TAO’s Scheduling Service with Its
Dispatching Modules

As noted in Section??, a key research challenge is to imple-
ment dispatching modules that can enforce end-to-end QoS re-
quirements. This section (1) shows these dispatching modules
fit within TAO’s overall architecture, (2) describes the internal
queueing mechanism of TAO’s dispatching modules, and (3)
discusses the issue of run-time control over dispatching prior-
ity within these dispatching modules.

Architectural placement: The output interface of TAO’s
scheduling service is designed to work with dispatching mod-
ules in any layer of the TAO architecture. For example, TAO’s
real-time extensions to the CORBA Event Service [10] uses
the scheduler output interface, as does its I/O subsystem [17].
Figure 27(A) illustrates dispatching in TAO’s real-time Event
Service [10]. The client application pushes an event to TAO’s
Event Service. The Event Service’s dispatching module en-
queues events and dispatches them according to dispatching
priority and then dispatching subpriority. Each dispatched
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Figure 27: Alternative Placement of Dispatching Modules

event results in a flow of control down through the ORB lay-
ers on the client and back up through the ORB layers on the
server, where the operation is dispatched.

Figure 27(B) illustrates dispatching in TAO’s I/O subsys-
tem [17]. The client application makes direct operation calls
to the ORB, which passes requests down through the ORB
layers on the client and back up to the I/O subsystem layer
on the server. The I/O subsystem’s dispatching module en-
queues operation requests and dispatches them according to
their dispatching priority and dispatching subpriority, respec-
tively. Each dispatched operation request results in a flow of
control up through the higher ORB layers on the server, where
the operation is dispatched.

Internal architecture: Figure 28 illustrates the general
queueing mechanism used by the dispatching modules in
TAO’s ORB endsystem. In addition, this figure shows how
the output information provided by TAO’s scheduling service
is used to configure and operate a dispatching module.

During system initialization, each dispatching module ob-
tains the thread priority and dispatching type for each of its
queues from the scheduling service’s output interface, as de-
scribed in Section B.5.2. Next, each queue is assigned a
unique dispatching priority number, a unique thread priority,
and an enumerated dispatching type. Finally, each dispatch-
ing module has an ordered queue of pending dispatches per
dispatching priority.

To preserve QoS guarantees, operations are inserted into the
appropriate dispatching queue according to their assigned dis-
patching priority. Operations within a dispatching queue are
ordered by their assigned dispatching subpriority. To mini-
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Figure 28: Example Queueing Mechanism in a TAO Dispatch-
ing Module

mize priority inversions, operations are dispatched from the
queue with the highest thread priority, preempting any oper-
ation executing in a lower priority thread [10]. To minimize
preemption overhead, there is no preemption within a given
priority queue.

The following three values are defined for the dispatching
type:

STATIC DISPATCHING: This type specifies a queue that
only considers the static portion of an operation’s dispatching
subpriority.

DEADLINE DISPATCHING: This type specifies a queue
that considers the dynamic and static portions of an operation’s
dispatching subpriority, and updates the dynamic portion ac-
cording to the time remaining until the operation’s deadline.

LAXITY DISPATCHING: This type specifies a queue that
considers the dynamic and static portions of an operation’s dis-
patching subpriority, and updates the dynamic portion accord-
ing to the operation’s laxity.

The deadline- and laxity-based queues update operation dis-
patching subpriorities whenever an operation is enqueued or
dequeued.

Run-time dispatching priority: Run-time control over dis-
patching priority can be used to achieve the preemptive-by-
urgency dispatching model discussed in Section B.5.6. How-
ever, this model incurs greater complexity in the dispatching
module implementation, which increases run-time overhead.
Therefore, once an operation is enqueued in TAO’s dispatch-
ing modules, none of the queues specified by the above dis-
patching types exerts control over an operation’s dispatching
priority at run-time.

As noted in Section B.5.5, all the strategies implemented
in TAO map static priority directly into dispatching priority.
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Compared with strategies that modify an operation’s dispatch-
ing priority dynamically, this mapping simplifies the dispatch-
ing module implementation since queues need not maintain
references to one another or perform locking to move mes-
sages between queues. In addition, TAO’s strategy imple-
mentations also minimize run-time overhead since none of the
queues specified by its dispatching types update any dynamic
portion of an operation’s dispatching priority. These charac-
teristics meet the requirements of real-time avionics systems
to which TAO has been applied [47, 10, 23, 45].

It is possible, however, for an application to define strate-
gies thatdo modify an operation’s dispatching priority dy-
namically. A potential implementation of this is to add a new
constant to the enumerated dispatching types. In addition, an
appropriate kind of queue must be implemented and used to
configure the dispatching module according to the new dis-
patching type. Supporting this extension is simplified by the
flexible design of TAO’s scheduling service framework.

B.5.4 Input Mappings Implemented in TAO’s Scheduling
Service

In each of TAO’s scheduling strategies, an input mapping as-
signs urgency to an operation according to a specific schedul-
ing strategy. Input mappings for MUF, MLF, EDF, and RMS
have been implemented in TAO’s strategized scheduling ser-
vice. Below, we outline each mapping.

In each mapping, static subpriority is assigned first using
importance and second using a topological ordering based on
dependencies. The canonical definitions of MLF, EDF, and
RMS do not include a minimal static ordering. Adding it to
TAO’s strategy implementations for these strategies has no ad-
verse effect, however. This is because MLF, EDF, and RMS
require thatall operations are guaranteed to meet their dead-
lines for the schedule to be feasible, underanyordering of op-
erations with otherwise identical priorities. Moreover, static
ordering has the benefit of ensuring determinism for each pos-
sible assignment of urgency values.

MUF mapping: The mapping from operation characteris-
tics onto urgency for MUF is shown in Figure 29. Static prior-
ity is assigned according to criticality in this mapping. There
are only two static priorities since we use only two criticality
levels in TAO’s MUF implementation. The critical set in this
version of MUF is the set of operations that were assigned the
highcriticality value.

When MUF is implemented with only two criticality levels,
the minimum critical priority is the static priority correspond-
ing to the high criticality value. In the more general version of
MUF [50], in which multiple criticality levels are possible, the
critical set may span multiple criticality levels.

Dynamic subpriority is assigned in the MUF input mapping
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Figure 29: MUF Input Mapping

according tolaxity. Laxity is a function of the operation’s pe-
riod, execution time, arrival time, and the time of evaluation.

MLF mapping: The MLF mapping shown in Figure 30 as-
signs a constant (zero) value to the static priority of each op-
eration. This results in a single static priority. The minimum
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Figure 30: MLF Input Mapping

critical priority is this lone static priority. The MLF strategy
assigns the dynamic subpriority of each operation according
to its laxity.

EDF mapping: The EDF mapping shown in Figure 31 also
assigns a constant (zero) value to the static priority of each
operation. Moreover, the EDF strategy assigns the dynamic
subpriority of each operation according to itstime-to-deadline,
which is a function of its period, its arrival time, and the time
of evaluation.

RMS mapping: The RMS mapping shown in Figure 32 as-
signs the static priority of each operation according to itspe-
riod, with higher static priority for each shorter period. The
period for aperiodic execution must be assumed to be the worst
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Figure 31: EDF Input Mapping

SSTTAATTIICC

PPRRIIOORRIITTYY
SSTTAATTIICC

SSUUBBPPRRIIOORRIITTYY

DDYYNNAAMMIICC

SSUUBBPPRRIIOORRIITTYY

CCRRIITTIICCAALLIITTYY      DDEEPPEENNDDEENNCCIIEESS      IIMMPPOORRTTAANNCCEE

EEXXEECCUUTTIIOONN  TTIIMMEE                      PPEERRIIOODD

CCOONNSSTTAANNTT

Figure 32: RMS Input Mapping

case. In RMS, all operations are critical, so the minimum crit-
ical priority is the minimum static priority in the system. The
RMS strategy assigns a constant (zero) value to the dynamic
subpriority of each operation.

This section explored the well known RMS, EDF, MLF, and
MUF priority mappings. These mappings reflect opposing de-
sign forces of commonality and difference. TAO’s strategized
scheduling service leverages the commonality among these
mappings to make its implementation more uniform. The dif-
ferences between these mappings provide hot spots for adap-
tation to the requirements of specific applications.

B.5.5 Output Mapping Implemented in TAO’s Schedul-
ing Service

The need to correctly specify enforcable end-to-end QoS re-
quirements for different operations motivates both the input
and output mappings in TAO’s strategized scheduling service.
The input mappings described in Section B.5.4 specify pri-
orities and subpriorities for operations. However, there is
no mechanism to enforce these priorities, independent of the
specific OS platform dispatching models. In each of TAO’s
scheduling strategies, an output mapping transforms these pri-
ority and subpriority values into dispatching priority and sub-
priority requirements that can be enforced by the specific dis-
patching models in real systems.

As described in Section B.5.3, operations are distributed
to priority dispatching queues in the ORB according to their
assigned dispatching priority. Operations are ordered within
priority dispatching queues according to their designated dis-
patching subpriority. The scheduling strategy’s output map-
ping assigns dispatching priority and dispatching subpriority
to operations as a function of the urgency values specified by
the scheduling strategy’s input mapping.

Figure 33 illustrates the output mapping used by the
scheduling strategies implemented in TAO. Each mapping is

SSTTAATTIICC

PPRRIIOORRIITTYY

SSTTAATTIICC

SSUUBBPPRRIIOORRIITTYY

DDYYNNAAMMIICC

SSUUBBPPRRIIOORRIITTYY

DDIISSPPAATTCCHHIINNGG

PPRRIIOORRIITTYY

DDIISSPPAATTCCHHIINNGG

SSUUBBPPRRIIOORRIITTYY

Figure 33: Output Mapping Implemented in TAO

described below.

Dispatching Priority: In this mapping, static priority maps
directly to dispatching priority. This mapping corresponds
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to the priority band dispatching model described in Sec-
tion B.5.2. Each unique static priority assigned by the input
mapping results in a distinct thread priority in TAO’s ORB re-
quest dispatching module.

Dispatching Subpriority: Dynamic subpriority and static
subpriority map to dispatching subpriority. TAO’s strategized
scheduling service performs this mapping efficiently at run-
time by transforming both dynamic and static subpriorities
into a flat binary representation. A binary integer format of
lengthk bits is used to store the dispatching subpriority value.

Because the range of dynamic subpriority values and the
number of static subpriorities are known prior to run-time, a
fixed number of bits can be reserved for each. Dynamic sub-
priority is stored in them highest order bits, wherem =

dlg(ds)e, andds is the number of possible dynamic subpri-
orities. Static subpriority is stored in the nextn lower order
bits, wheren = dlg(ss)e, andss is the number of static sub-
priorities.

TAO’s preemption subpriority mapping scheme preserves
the ordering of operation dispatches according to their as-
signed urgency values. Static subpriorities correspond to
thread priorities. Thus, an operation with higher static priority
will always preempt one with lower static subpriority. Opera-
tions with the same static priority are ordered first by dynamic
subpriority and second by static subpriority.

B.5.6 Alternative Output Mappings

It is useful to consider the consequences of the specific output
mapping described in Section B.5.5 and to evaluate the uses
and implications of alternative output mappings. The schedul-
ing strategies implemented in TAO strike a balance between
preemption granularity and run-time overhead. This design
is appropriate for the hard real-time avionics applications we
have developed.

However, TAO’s strategized scheduling architecture is de-
signed to adapt to the needs of a range of applications, not just
hard real-time avionics systems. Different types of applica-
tions and platforms may require different resolutions of key
design forces.

For example, an application may run on a platform thatdoes
not support preemptive multi-threading. Likewise, other plat-
forms do not support thread preemption and multiple thread
priority levels. In such cases, TAO’s scheduling service frame-
work assigns all operations the same constant dispatching pri-
ority and maps the entire urgency tuple directly into the dis-
patching subpriority [50]. This mapping correctly assigns dis-
patching priorities and dispatching subpriorities for a non-
preemptive dispatching model. On a platform without pre-
emptive multi-threading, the application could thus dispatch
all operations in a single thread of execution, from a single
priority queue.

Another application might run on a platform thatdoessup-
port preemptive multi-threading and a large number of distinct
thread priorities. Where thread preemption and a very large
number of thread priorities are supported, one alternative is a
dispatching model that is preemptive byurgency. This design
may incur higher run-time overhead, but can allow finer pre-
emption granularity. The application in this second example
might accept the additional time and space overhead needed
to preemptively dispatch operations by urgency, in exchange
for reducing the amount of priority inversion incurred by the
dispatching module.

Depending on (1) whether the OS supports thread preemp-
tion, (2) the number of distinct thread priorities supported, and
(3) the preemption granularity desired by the application, sev-
eral dispatching models can be supported by the output inter-
face of TAO’s scheduling service. Below, we examine three
canonical variations supported by TAO, which are illustrated
in Figure 34.
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Figure 34: Dispatching Models supported by TAO

Preemptive-by-urgency: One consequence of the input and
output mappings implemented in TAO is that the purely dy-
namic EDF and MLF strategies are non-preemptive. Thus, a
newly arrived operation will not be dispatched until the opera-
tion currently executing has run to completion, even if the new
operation has greater urgency. By assigning dispatching prior-
ity according to urgency, all scheduling strategies can be made
fully preemptive.

This dispatching model maintains the invariant that the
highest urgency operation that is able to execute is execut-
ing at any given instant, modulo the OS dispatch latency over-
head [14]. This model can be implemented only on platforms
that (1) support fully preemptive multitasking and (2) provide
at least as many distinct real-time thread priorities as the num-
ber of distinct operation urgencies possible in the application.

The preemptive-by-urgency dispatching model can achieve
very fine-grained control over priority inversions incurred by
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the dispatching modules. This design potentially reduces the
time bound of an inversion to that for a thread context switch
plus any switching overhead introduced by the dispatching
mechanism itself. Preemptive-by-urgency achieves its preci-
sion at the cost of increased time and space overhead, however.
Although this overhead can be reduced for applications whose
operations are known in advance, using techniques like perfect
hashing [56], overhead from additional context switches will
still be incurred.

Preemptive-by-priority-band: This model divides the
range of all possible urgencies into fixed priority bands. It
is similar to the non-preemptive dispatching model used by
message queues in the UNIX System V STREAMS I/O sub-
system [79, 17]. This dispatching model maintains a slightly
weaker invariant than the preemptive-by-urgency model. At
any given instant, an operation from the highest fixed-priority
band that has operations able to execute is executing.

This dispatching model requires thread preemption and
at least a small number of distinct thread priority levels.
These features are now present in many operating systems.
The preemptive-by-priority-band model is a reasonable choice
when it is desirable or necessary to restrain the number of dis-
tinct preemption levels.

For example, a dynamic scheduling strategy can produce a
large number of distinct urgency values. These values must
be constrained on operating systems, such as like Windows
NT [80], that support only a small range of distinct thread pri-
orities. Operations in the queue are ordered by a subpriority
function based on urgency. The strategies implemented TAO’s
strategized scheduling service use a form of this model, as de-
scribed in Section B.5.5.

Non-preemptive: This model uses a single priority queue
and is non-preemptive. It maintains a still weaker invariant:
the operation executing at any instant had the greatest urgency
at the time of last dispatch. As before, operations are ordered
according to their urgency within the single dispatching queue.
Unlike the previous models, however, this model can be used
on platforms that lack thread preemption or multi-threading.
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