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Mission Computing Design Requirements and Forces

e Integrate real-time scheduling/dispatching in ORB and I/O subsystem
for Boeing military aircraft product families

— Ie., Harrier (AV/8b), F-15, and F/A-18
e Provide all applications with real-time capabilities

— Both method-oriented and event-oriented applications
e Meet deterministic and statistical QoS requirements

— [L.e., minimize latency, context switching, priority inversion, and
non-determinism
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Motivation for CORBA for Mission Computing
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www.cs.wustl.edu/~schmidt/corba.html

e Benefits

— Simplify distribution
by automating
x Object location
and activation
x Parameter
marshaling
x Demultiplexing
« Error handling
— Provide foundation
for higher-level
services
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The ACE ORB (TAO)
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The ADAPTIVE Communication Environment (ACE)
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e Related work
— X-Kernel
— SysV STREAMS

GENERAL POSIX AND WIN32 SERVICES

www.cs.wustl.edu/~schmidt/ACE.html
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ACE Statistics

e ACE contain > 135,000 lines of C++ e Currently used by

dozens of companies
— Over 15 person-years of effort £ pani

e Ported to UNIX, Win32, MVS, and
embedded platforms

— Bellcore, Boeing,
Ericsson, Kodak,
Lockheed, Lucent,

— e.g., VxWorks, LynxOS, pSoS Motorola, SAIC,

Siemens, StorTek,

e Large user community etc

— www.cs.wustl.edu/~schmidt/ACE-

e Supported commercially
users.htmi

— WWW.riverace.com
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Applying TAO to Avionics Mission Computing

e Domain Challenges

— Periodic deterministic
(and some statistical)
real-time deadlines

— COTS infrastructure

— Open systems
Sensor Sensor
proxy proxy e Related work
LEUAED ORI SR — Deng, Liu, and J. Sun '96
— Gopalakrishnan and

Parulkar '96
— Wolfe et al. '96

www.cs.wustl.edu/~schmidt/oopsla.ps.gz
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TAQO'’s Real-time ORB Endsystem Architecture
e Solution Approach
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Integrate RT dispatcher into
ORB endsystem

Support multiple request
scheduling strategies

x e.g., RMS, EDF, and MUF
Requests ordered across
thread priorities by OS
dispatcher

Requests ordered within
priorities based on data
dependencies and
Importance
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Server Request Reception Use-case

= N e Synopsis
R SERV/ spRvs
U SKEL SRENE SERVAN Tsj —@ 5: REQUEST DISPATCHED
N (__ skeLeToN T0 SERVANT — 1/O subsystem
T uses port
I [SERVANT DEMUXER) —o 4: ‘;f{QTU;z::;DEQ“"JIET‘IJIED num bFe) (s 10
M OBJECT ADAPTER SUITABLE OS
B PRIORITY demux
S ORB CORE @ 3:REQUEST QUEUED reqg uests to
. R o queues and
n PrORITYRATE RT threads
2: RUN-TIME SCHEDULER
D — —— ] 1 DETERMINES PRIORITY per rate grou p
U | OF REQUEST — A Reactor
= 1:1/0 supsysram demuxes/dispatches
RECEIVES INCOMING
(R /O SUBSYSTEM CLIENT REQUEST requests for
each rate
group

Washington University, St. Louis 8



Douglas C. Schmidt High-performance, Real-time ORBs
Event Channel Reception Use-case
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ORB Latency and Priority Inversion Experiments

e Vary ORBs, hold OS

]
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www.cs.wustl.edu/~schmidt/RT-perf.ps.gz
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e Methodology

— 1 high-priority client
— 1..n low-priority clients
— Server uses
thread-per-priority
x Highest real-time
priority for
high-priority client
x Lowest real-time
priority for
low-priority clients
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ORB Latency and Priority Inversion Results
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e Synopsis of results

— TAQO's latency Is lowest
— TAO avoids priority
Inversion
x I.e., high-priority client
always has lowest
latency
— Overhead stems from
concurrency and
connection architecture
x e.d., synchronization
and context switching

Washington University, St. Louis

11



Douglas C. Schmidt High-performance, Real-time ORBs
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\ e Definition

— Variance from
average latency

e Synopsis of
results

— TAO'’s jitter is
lowest and
most consistent
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User-level and Kernel-level Locking Overhead
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TAO is carefully designed to minimize memory allocation and locking

Washington University, St. Louis

13



Douglas C. Schmidt

High-performance, Real-time ORBs

Real-time OS/ORB Performance Experiments
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e Vary OS, hold ORBs
constant

e Methodology

— 1 high-priority client

— 1..n low-priority clients

Server uses

thread-per-priority

x Highest real-time
priority for
high-priority client

x Lowest real-time
priority for
low-priority clients
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Real-time OS/ORB Performance Results
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e Synopsis of results

— RTOS'’s provide
lowest latency
— RTOS’s minimize
priority inversion
— ORB (TAO) provides
low latency and avoids
priority inversion
x I.e., high priority
client always has
lowest latency
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Real-time OS/ORB Jitter Results

e Definition
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Real-time OS/ORB CPU Utilization Experiments
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Real-time OS/ORB CPU Utilization Results
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Concluding Remarks

e TAO is currently used at Boeing for avionics mission computing
— Initial flight dates are mid-summer 1998

e Extensive benchmarks demonsrate it is possible to meet stringent
performance goals with real-time CORBA

— e.g., for Boeing, target latency for CORBA oneway operations is
150 psecs for 100 Mhz PowerPC running over MVME 177 boards

e Technology transfer to commercial vendors via OMG RT SIG and
DARPA Quorom program
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