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Mission Computing Design Requirements and Forces

� Integrate real-time scheduling/dispatching in ORB and I/O subsystem
for Boeing military aircraft product families

– i.e., Harrier (AV/8b), F-15, and F/A-18

� Provide all applications with real-time capabilities

– Both method-oriented and event-oriented applications

� Meet deterministic and statistical QoS requirements

– i.e., minimize latency, context switching, priority inversion, and
non-determinism
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Motivation for CORBA for Mission Computing
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� Benefits

– Simplify distribution
by automating

� Object location
and activation

� Parameter
marshaling

� Demultiplexing

� Error handling
– Provide foundation

for higher-level
services
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The ACE ORB (TAO)
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� TAO Overview

– A real-time,
high-performance
ORB

– Leverages ACE

� Runs on POSIX,
Win32, RTOSs

� Related work

– U. RI, Mitre
– QuO at BBN
– ARMADA at U.

Mich.
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The ADAPTIVE Communication Environment (ACE)
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� ACE Overview
– Concurrent OO

networking
framework

– Ported to C++
and Java

– Runs on RTOSs,
POSIX, and
Win32

� Related work
– x-Kernel
– SysV STREAMS
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ACE Statistics

� ACE contain > 135,000 lines of C++

– Over 15 person-years of effort

� Ported to UNIX, Win32, MVS, and
embedded platforms

– e.g., VxWorks, LynxOS, pSoS

� Large user community

– www.cs.wustl.edu/�schmidt/ACE-
users.html

� Currently used by
dozens of companies

– Bellcore, Boeing,
Ericsson, Kodak,
Lockheed, Lucent,
Motorola, SAIC,
Siemens, StorTek,
etc.

� Supported commercially

– www.riverace.com
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Applying TAO to Avionics Mission Computing
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� Domain Challenges

– Periodic deterministic
(and some statistical)
real-time deadlines

– COTS infrastructure
– Open systems

� Related work

– Deng, Liu, and J. Sun ’96
– Gopalakrishnan and

Parulkar ’96
– Wolfe et al. ’96
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TAO’s Real-time ORB Endsystem Architecture
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� Solution Approach

– Integrate RT dispatcher into
ORB endsystem

– Support multiple request
scheduling strategies

� e.g., RMS, EDF, and MUF
– Requests ordered across

thread priorities by OS
dispatcher

– Requests ordered within
priorities based on data
dependencies and
importance
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Server Request Reception Use-case
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� Synopsis

– I/O subsystem
uses port
numbers to
demux
requests to
queues and
RT threads
per rate group

– A Reactor
demuxes/dispatches
requests for
each rate
group
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Event Channel Reception Use-case
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� Synopsis

– Event Channel
threads handle
event importance
and dependencies

– I/O subsystem
and ORB Core
handle priorities
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ORB Latency and Priority Inversion Experiments
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� Vary ORBs, hold OS
constant

� Methodology

– 1 high-priority client
– 1..n low-priority clients
– Server uses

thread-per-priority

� Highest real-time
priority for
high-priority client

� Lowest real-time
priority for
low-priority clients
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ORB Latency and Priority Inversion Results
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� Synopsis of results

– TAO’s latency is lowest
– TAO avoids priority

inversion

� i.e., high-priority client
always has lowest
latency

– Overhead stems from
concurrency and
connection architecture

� e.g., synchronization
and context switching
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ORB Jitter Results
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� Definition

– Variance from
average latency

� Synopsis of
results

– TAO’s jitter is
lowest and
most consistent

– CORBAplus’
jitter is highest
and most
variable
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User-level and Kernel-level Locking Overhead
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TAO is carefully designed to minimize memory allocation and locking
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Real-time OS/ORB Performance Experiments
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� Vary OS, hold ORBs
constant

� Methodology

– 1 high-priority client
– 1..n low-priority clients
– Server uses

thread-per-priority

� Highest real-time
priority for
high-priority client

� Lowest real-time
priority for
low-priority clients
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Real-time OS/ORB Performance Results
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� Synopsis of results

– RTOS’s provide
lowest latency

– RTOS’s minimize
priority inversion

– ORB (TAO) provides
low latency and avoids
priority inversion

� i.e., high priority
client always has
lowest latency
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Real-time OS/ORB Jitter Results
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� Definition

– Standard
deviation from
average latency

� Synopsis of
results

– Some RTOS’s
provide low
jitter

– ORB (TAO)
doesn’t
introduce jitter
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Real-time OS/ORB CPU Utilization Experiments
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� Vary ORBs, hold OS
constant

� Methodology

– 1 client thread
– 2 server threads

� 1 thread services
client

� 1 thread factors
prime numbers
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Real-time OS/ORB CPU Utilization Results
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IDLE Time � Synopsis of results

– RTOS’s provide
highest effective
utilization

– ORB (TAO)
processing uses

�20% of the CPU
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Concluding Remarks

� TAO is currently used at Boeing for avionics mission computing

– Initial flight dates are mid-summer 1998

� Extensive benchmarks demonsrate it is possible to meet stringent
performance goals with real-time CORBA

– e.g., for Boeing, target latency for CORBA oneway operations is
150 �secs for 100 Mhz PowerPC running over MVME 177 boards

� Technology transfer to commercial vendors via OMG RT SIG and
DARPA Quorom program
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