
Scheduling Time-bounded Dynamic Software Adaptation

Serena Fritsch, Aline Senart Douglas C. Schmidt Siobhán Clarke
Distributed Systems Group Institute for Software Integrated Systems (ISIS) Distributed Systems Group

Trinity College Dublin Vanderbilt University Trinity College Dublin
Dublin, Ireland Terrace Place, USA Dublin, Ireland

fritschs, senarta@cs.tcd.ie d.schmidt@vanderbilt.edu sclarke@cs.tcd.ie

ABSTRACT

Dynamic adaptation of component-based software is play-
ing an increasing role for applications in domains such as
automotive, avionics or robotic systems. It includes the in-
tegration of new, previously unanticipated features and the
update of existing features without requiring any system
downtime. Due to the mobile nature of many of the tar-
get applications, adaptations must be executed within time
bounds. Inconsistent or inaccurate behaviour may result
from an adaptation that does not complete within specified
time constraints. A service provider must therefore take
time constraints into account when scheduling adaptation
actions. In this paper, we propose an algorithm for the
time-bounded scheduling of adaptation actions. We include
evaluation results of this scheduling approach and present a
success metric that helps in comparing our approach with
other scheduling algorithms.

1. INTRODUCTION
Next-generation embedded systems in domains such as

automotive, avionics or robotics, need to adapt swiftly to
changing environmental conditions to better reflect their
current situation [12]. We have previously shown, that these
systems require varying levels of support for dynamic adap-
tation: from a very limited support for fault tolerance in
safety-critical systems, to dynamic adaptation of resource
allocation in avionic systems, to content adaptation in multi-
media based systems, and to the actual runtime adaptation
of software itself in component-based driver information sys-
tems [10].

The adaptation of software is often referred to as compo-
sitional adaptation and allows the dynamic integration and
exchange of features and resulting application behaviour at
runtime [15]. Previously unanticipated or updated features
can be integrated into running systems in response to exter-
nal triggers, making these systems more flexible and main-
tainable [16].

Key research challenges. Due to the mobile nature

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE 2008 Leipzig, Germany
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

of many of these systems, software adaptations must often
be time-bounded. For example, a plugin to the driver in-
formation system can only be downloaded when the vehicle
is in the neighbourhood of a server providing this plugin.
However, because the vehicle is moving, this download and
integration needs to be executed before the vehicle is out
of communication range from the server. Likewise, adapta-
tions should minimise software update time to ensure that
software applications and data are fully integrated into ve-
hicles before they are used [10]. An adaptation that is out
of its time bound may result in inconsistent or inaccurate
behaviour. For example, the installation of an ice warning
module needs to be performed while the weather conditions
still is valid for this module.

Software adaptations can only be triggered when a server
that provides features is in close range. As a server may
potentially handle thousands of requests concurrently and
has the knowledge of all the characteristics of the features
it provides, it can decide which adaptation actions to ex-
ecute based on the current configuration of the requester.
Example adaptation actions are the installation or upgrade
of a feature. This decision process may be affected by time
constraints because the limited available time may lead to
execution of only a few selected adaptations.

Additionally, adaptations can be constrained by other fac-
tors, like the available memory space of a consumer. For ex-
ample, it might not be possible to download and integrate all
necessary plugins because of a client’s memory limitations.

Summary of research contributions. This paper pro-
poses an approach for the constraint-based scheduling of
adaptation actions that could be executed by the service
provider. The algorithm takes time constraints into account,
by maximising the amount of features that can be adapted
within a given time on a software platform. Additionally,
the algorithm considers constraints such as limited memory
and importance of features.

The algorithm assumes features to be ordered after some
criteria in an ordered list. The ordered list of features is
obtained by applying weighted functions on the features’
properties, e.g., priority and size. This ordering is not stati-
cally defined but can be adapted to better reflect the current
requester’s constraints.

We provide empirical results that validate the algorithm
by means of a representative case study. Additionally, we
propose a success metric function that helps in comparing
our algorithm with existing approaches.

Paper organisation. The remainder of this paper is or-
ganised as follows: Section 2 motivates our work with an

example taken from the automotive domain; Section 3 de-
scribes the algorithm in more detail and also introduces our
system model; Section 4 discusses some of the design chal-
lenges and their solutions; Section 5 shows some (prelim-
inary) evaluation results of our approach; Section 6 sum-
marises related work on scheduling and code distribution;
Section 7 concludes this paper.

2. MOTIVATING SCENARIO
Our motivating scenario for the need of time-bounded

scheduling of adaptation actions is taken from next-generation
intelligent lane reservation systems, so-called managed high-
ways and is illustrated in Figure 1. Managed highways aim
at a reduction of traffic congestion and a control of traffic
flow, e.g., allowing emergency vehicles to arrive safely and
faster at accidents [17]. One way to schedule and enforce
vehicle QoS on a managed highway is to allow drivers to
reserve lanes “slots”.

Figure 1: Managed Highway Scenario

To ensure proper admission control, vehicles wait in a
queueing lane for their reserved slot to become available be-
fore entering the highway. A highway entrance assistance
system (e.g., a tollgate) uses short-range communication and
relays between queued vehicles to ensure the vehicles have
proper software versions and necessary hardware before al-
lowing them to enter the highway. Example software in-
cludes warning applications, secure payment and communi-
cation algorithms, as well as infotainment applications, such
as hotel and restaurant finder or car-to-car gaming applica-
tions.

The scenario motivates the need for various software adap-
tations. Adaptations comprise the integration of software,
previously not installed at the vehicle, as well as the up-
grade of software that is available with a newer version on
the tollgate. The downgrade of a software or the complete
deinstallation due to memory limitations of the vehicle soft-
ware platform or expirations of licences are other examples
of possible software adaptations [6].

A decision process located at the tollgate determines the
actual adaptations and affected software based on a vehi-
cle’s current software configuration. After the download of
the relevant software to the vehicle, the actual adaptation
then takes place by executing the adaptations on the vehi-
cle’s software platform. The overall adaption process itself
is time-bounded since the decision which adaptations to ex-

ecute and the download and adaptation of the software itself
must be executed before the vehicle can enter the highway.
Additionally, the decision process can be influenced by (1)
the available memory on a vehicle platform, (2) software
interdependencies and (3) versioning of a software.

3. CONSTRAINT-BASED ADAPTIVESCHEDUL-

ING
The purpose of this section is two-fold. The first part

introduces our system model and describes common termi-
nology. Additionally, different time bounds are explained
in more detail. The second part explains in more depth
our constraint-based algorithm that schedules adaptation
actions within a bounded time. Our algorithm supports ad-
ditional constraints that are input parameters at the start
of the overall adaptation process.

3.1 Software Adaptation
Software adaptation is traditionally performed on systems

composed out of binary software components with speci-
fied interfaces and explicit dependencies called modules [18].
Dynamic adaptation actions include (1) integration of code
modules, (2) deintegration of code modules and (3) exchange
with existing code modules for up- or downgrades.

In our approach, we assume the presence of a common
underlying software platform on which code modules and
their dynamic adaptations can be executed [8]. Code mod-
ules have additional non-functional properties, like priority,
version number, dependencies on other modules and timeli-
ness properties, that are provided by a module’s developer
in form of meta-data.

We distinguish two entities in our system model: (1) a
service provider, e.g., a tollgate, that stores code modules
and provides them for download. (2) a service consumer,
e.g., a vehicle, receives code modules and associated adapta-
tion actions from the service provider. An adaptation may
occur when a consumer gets in communication range of a
service provider. The service provider then determines the
adaptation actions and the order of these actions to exe-
cute based on the consumer’s current configuration, i.e., the
code modules already integrated on the consumer’s software
platform. After the scheduling order of adaptation actions
is decided, all scheduled code modules and associated adap-
tation actions are downloaded by the consumer, and the
actual adaptation actions are executed on its local software
platform.

Time bounds are imposed on the overall adaptation due
to the highly mobile environment in which consumers are
located. An adaptation action that is executed too late may
result in inconsistent or inaccurate behaviour. Figure 2 illus-
trates the three different phases that subsume to the overall
time bound on the adaptation time (at). The scheduling
time (st) is defined as the amount of time needed to deter-
mine which adaptation actions to execute in terms of code
modules to install or replace. It’s triggering is denoted by
the arrival time (arrt), for example when a vehicle is in
communication range of the tollgate. The download time
(dt) defines the actual time needed to download all code
modules. The integration time (it) then is defined as the ac-
tual execution time of the adaptation actions. The waiting
time (wt) is the duration between a completed adaptation
process and the adaptation deadline, e.g., a departure time

(Dept) for the vehicle entering the motorway.

Figure 2: Time Constraints of Software Adaptation

3.2 Time-bounded Basic Scheduling Algorithm
The scheduling algorithm is located on the service provider

side and maximises the amount of code modules that can be
downloaded and adapted within the specified time bounds
for a specific consumer’s configuration. The algorithm uses
a greedy-approach [7] by iterating through an ordered list of
all available code modules and scheduling each module that
fits within the time bounds.

The time bounds are determined for each consumer ser-
vice configuration respectively. For example in the man-
aged highway scenario, an entering vehicle sends alongside
its current configuration the adaptation deadline when the
complete adaptation process needs to be completed. Addi-
tionally, a worst-case estimated download time is calculated
based on parameters, like distance and number of waiting
vehicles. The remaining scheduling time is then calculated
as the difference of the download time from the adapta-
tion time. All code modules that are scheduled within this
time are ensured to be downloaded and integrated before
the deadline.

The scheduling of code modules involves the determina-
tion of which adaptation actions to take, dependent on the
consumer’s current configuration. If a code module is not
present on the consumer’s platform, the action results in
an integration of this code module on the consumer’s soft-
ware platform. Other actions include (1) the update, i.e.,
exchange of a code module if there is a newer version avail-
able, (2) the downgrade of a code module or the (3) deletion
of a code module.

Code modules are ordered according to an evaluation func-
tion based on the multi-attribute utility theory (MAUT)
[19]. MAUT is a technique for the evaluation of objects
based on multiple dimensions. For example, code modules
are evaluated based on dimensions such as priorities, num-
ber of dependencies, size and integration time. The theory
defines an overall evaluation function v(x) that is defined as
the sum of all weighted additions of all the dimensions that
are relevant to an evaluation.

The basic algorithm orders code modules after their im-
portance, i.e., high-priority modules should always be sched-
uled or at least tried to be scheduled as they might be safety-
critical. Therefore, we consider the two dimensions priority
and number of dependencies and have defined two weighted
functions for these dimensions, FP and FD. Priorities can
have the value range from 1 to 10, where 1 denotes the high-
est priority. The number of direct dependencies is assigned
like the priorities by the code module developer. However,
this number increases due to indirect dependencies that are

obtained by a transitive dependency relation. For example,
if code module “A” is dependent from code module “B” and
“B“ itself is dependent from code module ”C“, the number
of dependencies of A is two.

The overall score of a code module then is determined by
the subtraction of FD from FP . The score denotes the rel-
ative importance of a specific code modules, i.e., the higher
the score, the more important a module is and the earlier it
will be scheduled. Table 1 gives an overview of the functions
used and their according value range. The priority of a code
module m is denoted with m.p, the amount of dependencies
is denoted with m.d. Example score values are illustrated in
Table 2

Dimension Weighted Function Value Range

Priority Fp(m) = 100 - 10 * (m.p -1) Fpǫ [10, 100]
Dependency FD(m) = m mod 10 FDǫ [0, 9]
Score Value S = Fp- FD Sǫ [100, 1]

Table 1: Weighted Functions

Dimension Module 1 Module 2 Module 3

Priority 1 1 2
Dependencies 0 1 0

Score 100 99 90

Table 2: Example Score Values

3.3 Scheduling Examples
In the following, we discuss two example schedules for

the consumer and service provider configuration illustrated
below. In this example we consider an estimated download
time (dt) of 1 ms.

Scenario 1 has an overall worst-case adaptation time (at)
of 1500 ms, scenario 2 an overall worst-case adaptation time
(at) of 900 ms, i.e., after 1500 and 900 ms respectively the
vehicle will enter the motorway and all adaptations neces-
sary must have been executed until then. The code modules
are ordered according to their score value, i.e., code mod-
ule “A” will be scheduled before code module “B” and code
module “C”. Table 3 summarises the time constraints for

Figure 3: Configuration Example

Time Constraints Scenario 1 Scenario 2

adaptation time 1500 900
download time 1 1
integration time 1200 1200

Table 3: Time Constraints for Scenarios

each scenario. All values are given in ms.
The following equation must hold true to schedule a set

of code modules 1 . . . j within the given time constraints:
Pn−1

i=0
st(i) +

Pj

i=0
dt(i) +

Pj

i=0
it(i) < at

This equation states that the sum of the integration times
of all modules scheduled plus the overall scheduling and
download time for each module must be smaller than the
available adaptation time.

In Scenario 1, this equation is fulfilled as the the sum of the
integration times of all modules and the given download time
does not exceed the overall adaptation time. Hence, all code
modules can be scheduled and integrated at the consumer’s
side. As the vehicle does not contain any code modules, the
adaptation actions would result in an integration of all three
modules.

Scenario 2 cannot fulfil the above equation as the the sum
of all integration times exceeds the worst-case adaptation
time (1200 ms > 900 ms). Hence, it is not possible to sched-
ule all code modules for adaptation. The scheduler in this
case would linearly schedule code modules until the time
bounds are exceeded. In this case, the first two modules
would be scheduled. Their overall integration time plus the
download time is still smaller than the available adaptation
time. Likewise to scenario 1, the two code modules would
be scheduled for integration.

3.4 Adaptive Scheduling Algorithm
Our algorithm can be seen as a static scheduling approaches

because the ordering of the code modules is determined stat-
ically based on the module’s importance, e.g., at deployment
time of a repository [13]. However, some scenarios might re-
quire a different ordering of the code modules based on (dy-
namic) conditions of the environment. For example, code
modules may need to be scheduled according to their size
when dealing with consumers with very limited memory ca-
pabilities. Other scenarios may require the ordering of code
modules after integration times, e.g., a code module with a
very high or low integration time needs to be scheduled first.

One solution is to adapt the actual scheduling mecha-
nisms to better reflect the current conditions by adjust-
ing the weights on its evaluation function. [11]. Different
weighted functions are provided that emphasise various as-
pects of the system. For example, a weighted function for
memory space, would favour smaller code modules, whereas
a weighted function for integration times would favour mod-
ules with higher integration times. The overall evaluation
function is then chosen depending on the current situation
of the consumer.

4. PROTOTYPEOF THE TIME-BOUNDED

SCHEDULING APPROACH IN FUNAM-

BOL
This section illustrates the prototype implementation of

our time-bounded scheduling approach. We have imple-
mented our approach on top of the open-source mobile appli-
cation server Funambol [2]. Funambol provides data and bi-
nary synchronisation leveraging the standard protocol SyncML
[5]. In the following, we briefly discuss the three main de-
sign challenges (1) Determination of necessary adaptation
actions (2) Representation of code modules and (3) Realisa-
tion of constraint-based scheduling algorithm

4.1 Determination of Necessary Adaptation Ac-
tions

Problem. The adaptation actions to execute are de-
pendent on a consumer’s current configuration. We need a
mechanism that can send a description of a consumer’s cur-
rently contained code modules. Based on this description, a
decision can be made which adaptations to execute.

Solution approach → Leverage Funambol’s built-

in synchronisation strategies. The Funambol platform
supports two synchronisation modes, namely partial and full
synchronisation. With partial synchronisation, only mod-
ules that have been changed since the last timestamp are
compared against the service provider, whereas in a full syn-
chronisation, a complete comparison of a consumer’s and a
service provider’s code modules is made. The actual decision
which adaptation actions to execute is built into the syn-
chronisation strategy of Funambol and depends on the time
stamps of code modules. If the code module is not contained
on the consumer’s side, the resulting adaptation action is an
integration of this code module. Otherwise, if the service
provider contains a newer version of the code module, the
resulting adaptation action is an update of the code module
on the consumer’s side. We have extended these synchroni-
sation algorithms to support our time-bounded scheduling
algorithm, taking also into account the priority and number
of dependencies between code modules.

4.2 Representation of Code Modules
Problem. Code modules are the entities that are adapted.

We need a representation format that allows to add addi-
tional non-functional properties, like priorities, memory size
and amount of dependencies. These properties are meant to
be set by the code module developer.

Solution approach → Use SyncItems with addi-

tional properties in form of meta-data. SyncItems rep-
resent the smallest binary or textual information that can be
synchronised in the Funambol platform. Code modules are
realised in our approach as SyncItems with priorities, mem-
ory size, amount of dependencies and integration times as
non-functional properties. We have extended the basic class
of SyncItems to include these additional properties and also
have defined initialisation methods, e.g., a distribution func-
tion for the priority.

4.3 Realisation of Constraint-based Schedul-
ing Algorithm

Problem. The constraint-based scheduling algorithm tries
to maximise the amount of adaptation actions and thus code
modules within a bounded time. We need to order the code
modules after some criteria, that should be adaptable to a
consumer’s current limitations.

Solution approach → Use Weighted Functions for

the ordering of the code modules. In our approach,
code modules are ordered according to the weighted func-

tions, described in Section 3.2. The default ordering is with
regards to the priority and amount of dependencies of a code
module, however due to a consumer’s limitations, the order-
ing can be recalculated on a different criteria, for example,
an ordering of code modules according to their memory size.

An outline of the implementation of the constraint-based
scheduling algorithm is illustrated in Listing 1.

double adaptationTime = Consumer . getAdaptationTime
() ;

double downloadTime= Consumer . getDownloadTime () ;
double schedul ingTime = adaptationTime −

downloadTime ;
double integrationTimeModule ;
double currentTime = 0 ;
f o r (i n t i = 0 ; i < moduleList . l enght ; i++) {

integrationTimeModule = m(i) . ge t Integrat ionTime
() ;

i f (m(i) . hasDependencies ()){
dependentList = m(i) . getDependencies () ;
f o r (j =0; j < dependentList . l ength ; j++){

integrationTimeModule +=dependentLi st (j) .
ge t Integrat ionTime () ;

}

i f ((integrationTimeModule + currentTime) <

schedul ingTime)
currentTime= integrationTimeModule ;
schedu le (m(i)) ;
schedu le (dependentList) ;

}

}

Listing 1: Implemented Mechanism

The download time and adaptation time are given by the
consumer at startup of the scheduling process. A remain-
ing scheduling time is then calculated. The ordered list of
code modules is traversed linearly and for each code module
it is determined whether the remaining scheduling time is
smaller than the integration time of the code module itself
and its dependent modules. The overall runtime complexity
of this mechanism is O(n) with n denoting the amount of
code modules in the scheduling list.

5. EXPERIMENTAL EVALUATION
To assess our scheduling algorithm, we conducted three

experiments that explored the following three hypotheses:

1. Hypothesis 1: Effectiveness of the Time-constr-

ained algorithm: The time-constrained scheduling
algorithm works correctly according to the specifica-
tions described in Section 3. The algorithm schedules
higher priority modules first and takes dependencies
between modules into account (basic scheduling algo-
rithm). All scheduling is done within the given time
bounds.

2. Hypothesis 2: Efficiency of the Time-Constrained

Basic Scheduling Algorithm: Our time-bounded
basic scheduling algorithm performs better compared
to other approaches under the same environmental con-
ditions and configurations.

3. Hypothesis 3: Efficiency of the Time-Constrained

Adaptive Scheduling Algorithm: This hypothesis

deals with variable weighted functions that can sched-
ule modules according to their memory size, integra-
tion times, priorities and dependencies. The variabil-
ity points of our algorithm can improve its behaviour
under particular environmental conditions and config-
urations.

5.1 Experiment 1: Measuring the Effective-
ness of the Time-Constrained Algorithm

For this subsection, we demonstrate the effectiveness of
our algorithm, i.e., that the scheduling algorithm works cor-
rectly. Firstly, the algorithm always needs to schedule more
important modules first. Secondly, the algorithm needs to
handle dependencies in a correct way, i.e., if a code module
that is currently scheduled depends on other code modules,
these code modules need to be scheduled beforehand.

Handling of priorities. First, we want to evaluate how
priorities are handled. For this we define a scenario in which
all code modules have the same configuration (c.f., Table
4) except for their priority. We distinguish three different
simulation runs: (1) Run1: All modules are of high-priority,
i.e., priority 1 (2) Run2: Priorities are equally distributed
between the modules (3) Run3: Service provider contains
only two high-priority code modules, the remaining code
modules are of lower-priority.

Constraint Value

Dependencies 0
Module Size 100kB

Integration Time 1ms
Download time 1 ms

Table 4: Evaluation Configuration

Figure 4 shows the percentage of high-priority modules
(i.e., modules with priority 1) received by the consumer for
an increasing adaptation time. The resulting sample values
are calculated as an average over 10 simulation runs. Run
1 and Run 2 show similar increasing behaviour, however
the percentage of high-priority modules is smaller in Run
1 and increases slower as it contains the most high-priority
modules. Hence the algorithm tries to schedule all of them
within the time bounds. Due to the fact that Run 3 has to
schedule only two high-priority modules, the point in time
when both modules can be scheduled within the time bounds
is reached much faster than in the other two runs.

Handling of dependencies. Secondly, we want to eval-
uate the handling of dependencies in our algorithm. For this,
we have slightly changed the configuration of code modules.
All code modules have the same high priority (priority 1).
We distinguish three different scenarios: (1) No Dependen-
cies: All code modules are independent from each other (2)
Flat Dependencies: Code modules contain a maximum de-
pendency degree of one (3) Deep Dependencies: Code mod-
ules can contain a maximum dependency degree of more
than one.

We first illustrate the handling of dependencies by means
of an example code module set, that contains 10 code mod-
ules. Table 5 shows the scheduling results, i.e., the order in
which the code modules arrive at a consumer’s side for the
different scenarios under the assumption that the adaptation
time is large enough. In the ”No Dependency“ scenario, all
code modules have the same overall score value (c.f., Section

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

R
e
c
e
iv

e
d
 h

ig
h
-p

ri
o
ri
ty

 m
o
d
u
le

s
 [
%

]

Adaptation Time [ms]

Run 1
Run 2
Run 3

Figure 4: Priority Runs

3.2) and will be scheduled linearly. In the ”Flat Dependency“
scenario, all code modules that do not have any dependen-
cies are scheduled first, as their score value is higher than
the score value of code modules with dependencies. In the
”Deep Dependency“ scenario, module A is scheduled last, as
it has the highest amount of dependencies and hence the
least score value.

Scenario Scheduling Order

No Dependencies A B C D E F G H I J
Flat Dependencies B D F H J A C E G I
Deep Dependencies J I H G F E D C B A

Table 5: Scheduling Order

Figure 5 illustrates the duration of the scheduling time re-
sults for the handling of dependencies in the three scenarios
for an increasing number of code modules.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10

S
c
h
e
d
u
lin

g
 T

im
e
 [
m

s
]

Amount of modules

No Dependencies
Flat Dependencies

Deep Dependencies

Figure 5: Dependency Runs

In the ”No Dependency“ scenario, code modules are sched-
uled the fastest, as they do not contain any dependencies.
The ”Flat Dependencies“ scenario schedules code modules
faster than than the ”Deep Dependencies“ scenario, because
the maximum dependency degree of a code module, i.e., the
amount of code modules to check, is less. In the worst case,
the ”Deep Dependencies“ scenario has to check each code
module whether it is already scheduled. To summarise, both
figures show that the algorithm works correctly and hence

proves our first hypothesis.

5.2 Experiment 2: Measuring the Efficiency
of the Time-Constrained Basic Scheduling
Algorithm

In this section, we want to show that our scheduling al-
gorithm (TB) performs better than other scheduling ap-
proaches under the same environmental conditions and con-
figurations. We hereby consider three existing approaches
that differ in the ordering of the code modules: (1) Order-
ing of code modules in first-in first-out (FIFO) manner. (2)
Ordering of code modules according to priorities (P) (3) Or-
dering of code modules according to dependencies (D).

For this evaluation, we propose the usage of a success met-
ric. This metric indicates the amount of successful deadlines
of code modules reached for each approach for an increasing
adaptation time. For each sample run, i.e., a given approach
and a given adaptation time, a success rate function F (x) is
calculated as defined below with x denoting the scheduling
approach:

F(x) = amount of high-priority modules scheduled

We apply this success rate function on an example code
module set configuration for each of the four approaches.
We expect our scheduling approach to perform better than
the existing FIFO strategy as our approach orders the mod-
ules after importance and hence schedules higher-priority
modules first. In particular, when the available adaptation
time is small, a high percentage of code modules cannot be
scheduled within time and hence the ordering of code mod-
ules becomes important. That implies that the amount of
missed high-priority modules not being scheduled, should be
less in our mechanism than using the FIFO strategy. The
mechanism should show a similar behaviour when compared
to the scheduling approaches that schedule code modules af-
ter priority and dependencies. However, our approach would
outperform both approaches when specific code module con-
figurations are valid, e.g., when low-priority modules have
lesser dependencies than high-priority modules.

Table 6 illustrates the code module set configuration. For
this example configuration, we assume an integration time
of 1 ms for each code module and an available adaptation
time of 3 ms. Table 7 illustrates the ordering of the example
module set for each of the approaches and Table 8 shows the
code modules that can be scheduled before the deadline and
and the score values of F(x).

Module ID A B C D E F

Priority 3 3 2 1 1 1
Dependencies 0 2 0 1 1 0

Table 6: Example Module Set Configuration

Approach Module Set

FIFO A B C D E F
P D E F C A B
D A C F D E B
TB F D E C A B

Table 7: Code Module Set Ordering

Approach Module Set F Score Value

FIFO A 0
PA D, E 0
DA A, C 0
TB F, D 2

Table 8: Scheduled Code Modules

The FIFO approach would schedule only module A as
module B cannot be integrated due to unresolved dependen-
cies. The resulting order for modules ordered after priority is
D and E, however, both these modules are low-priority mod-
ules and the value of F would be 0. Likewise, the resulting
code module set for modules ordered according to depen-
dencies, is A and C. Both code modules also low-priority
modules. Our approach would result in the scheduling of
adaptation actions for code modules F and D, both high-
priority modules, assigning the value 2 to the success metric.

5.3 Experiment 3: Measuring the Efficiency
of Time-Constrained Adaptive Scheduling
Algorithm

In this subsection, we want to show that the variability
points of the algorithm can improve its behaviour under cer-
tain environmental conditions and configurations. We con-
sider the following two approaches that differ in the weighted
function applied on code modules and hence their initial or-
dering: (1) Ordering of code modules according to priorities
and dependencies (PD) (2) Ordering of code modules ac-
cording to memory size (M) We suggest to use the same
success metric as defined in 5.2, that calculates the amount
of high-priority modules received at the consumer.

The success metric is applied on an example code mod-
ule set configuration for the two approaches. Table 9 illus-
trates the code module set configuration, with priorities and
amount of dependencies as well as the memory size given
in kilobytes. For this example, we assume an integration
time of 1ms for each code module and an adaptation time of
6ms. Additionally, the consumer has a memory limitation
of 15Kb.

Module ID A B C D

Priority 1 1 1 1
Dependencies 0 0 0 0
Memory Size 10 10 5 9

Table 9: Example Module Set Configuration

Table 10 shows the scheduling result of each approach.
When code modules are ordered after priority, only the first
code module ”A“ can be integrated on the consumer, as then
the memory of the consumer is full. In case of an ordering
after memory sizes, the code modules ”C“ and ”D’ could be
scheduled, leading to a better function score value for this
approach.

Approach Module Set F Score Value

PD A 1
M C, D 2

Table 10: Scheduled Code Modules

However, the performance of the adaptive approach de-
pends on the configuration of the code modules and spe-
cific environmental conditions. For example, when all high-
priority modules are relatively big in size, the outcome of
this approach is expected to be under the performance of
the standard approach, as high-priority modules cannot be
scheduled first and hence more deadlines are missed.

6. RELATED WORK
The related work is two-fold. In the first part, we investi-

gate scheduling approaches for data and binary features in
real-time and in grid computing systems as these systems
have similar requirements to our approach, e.g., timeliness
of scheduled data. In the second part, we briefly discuss
two approaches for the distribution of code: code package
managers and over-the-air programming.

Scheduling algorithms. Jobs in real-time systems have
points in times by which their execution is required to be
completed, the so-called deadlines. A scheduling algorithm
in a real-time system tries to allocate the resources and pro-
cessors of a system in a way that all jobs can be finished
before their deadline. A common approach for scheduling
jobs in real-time systems is a priority-driven algorithm, e.g.,
earliest-deadline first (EDF) or first-in-first-out (FIFO) [14].
Priority here refers to the deadline of jobs, for example the
earliest deadline first algorithm schedules first the jobs that
have the closest deadline. However, these approaches sched-
ule jobs and do not consider features per se. Also they
mainly use a single dimension, like the importance or weight
of the job. Our constraint-based scheduling algorithm differs
from these approaches, as it considers multiple dimensions
for the ordering of features, c.f., Section 3.2.

Scheduling is also an issue in data-intensive grid-based ap-
plications where data items must be efficiently allocated and
transferred over intermediate nodes to their destination to
meet the assigned deadline. For example, real-time tracking
of storm data for avionic control has stringent time con-
straints and non trivial data scheduling issues due to the
amount of flights a single avionic system controls [9].

The authors of [9] propose a scheduling algorithm that
schedules the requests for data items based on a path se-
lection heuristic. Multiple data items are transferred at the
same time to different destination. The approach tries to
maximise the amount of satisfied requests. However, their
approach only considers the scheduling of data items based
on the location. It does not address the scheduling of ac-
tions associated with the data items as our algorithm does,
c.f. Section 3.2.

Code distribution approaches. Code package man-
agers, like the Debian based advanced packaging tool (APT)
[1] or Redhats package manager (RPM) [4], allow the auto-
matic download and integration of software modules into a
running system. They provide integrated dependency de-
tection and resolution, i.e., software modules will be down-
loaded and installed together with all their dependent mod-
ules. These systems schedule the code modules as well as
their associated actions, like installation and upgrades. How-
ever, unlike our algorithm, they do not take any time con-
straints into account

Over-the air-programming (OTA) is a technique for dis-
tributing software updates to mobile phones [3]. The soft-
ware is delivered to a mobile phone’s hardware platform by
either explicit user action or performed automatically. How-

ever, often after a software update a mobile phone has to be
restarted to take over the changes. Hence, this approach
does not fall into the category of dynamic adaptation/re-
configuration.

7. CONCLUDING REMARKS
In a previous paper, we have identified the need for dy-

namic software adaptation in next-generation embedded sys-
tems, like automotive systems [10]. This paper presented a
constraint-based scheduling algorithm that maximises the
available adaptation actions that can be executed on fea-
tures within given time bounds. The algorithm schedules
features in a greedy manner from an ordered list. Weighted
functions are applied on properties of features, like their pri-
ority, to calculate the rank in the list.

The algorithm is illustrated by means of an example taken
from the domain of managed highways. Early evaluation re-
sults show that the algorithm works correctly and a success
metric was used to compare our algorithm with existing ap-
proaches.

The lessons we learned developing and designing our constraint-
based adaptive scheduling algorithm are:

• Current synchronisation frameworks can be leveraged
to provide the basic functionality of determining the
adaptation actions to execute based on a client’s cur-
rent configuration. Our algorithm is implemented on
top of a synchronisation framework and provides the
time-bounded scheduling of adaptation actions on code
modules that are ordered according to some ranking.

• The ranking of code modules can itself be adaptive
based on a client’s limitations. The default scheduling
algorithm assumes code modules to be ordered based
on importance, however some scenarios require a dif-
ferent ordering of the code modules, e.g., taking into
account memory size.

• The current implementation assumes a stable band-
width between the service provider and a client. How-
ever, in mobile environments, unstable and rapidly
changing network conditions are the norm rather than
the exception. Part of our future work is to determine
the time bounds, particularly the download time (dt)
for each client in a way that reflects the current reality.

• The algorithm is only concerned with the decision-
process relating to which adaptation actions to execute
and which code modules are affected. In our current
work, we are developing a platform that supports the
actual execution of the adaptations within time con-
straints.

8. REFERENCES

[1] Advanced packaging tool (apt).
http://www.debian.org/doc/manuals/apt-howto/.

[2] Funambol. http://www.funambol.com.

[3] Ota. http://www.openmobilealliance.com.

[4] Redhat package manager (rpm).
http://www.rpm.org/.

[5] Syncml protocol specification.
http://www.openmobilealliance.com.

[6] R. Anthony and C. Ekeling. Policy-driven
self-management for an automotive middleware. In
PBAC ’07: First International Workshop on
Policy-Based Autonomic Computing, 2007.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. McGrawHill,
2002.

[8] I. Crnkovic. Component-based approach for embedded
systems. In Ninth International Workshop on
Component-Oriented Programming (WCOP), 2004.

[9] M. Eltayeb, A. Dogan, and F. Ozguner. A data
scheduling algorithm for autonomous distributed
real-time applications in grid computing. In ICPP ’04:
Proceedings of the 2004 International Conference on
Parallel Processing (ICPP’04), 2004.

[10] S. Fritsch, A. Senart, D. C. Schmidt, and S. Clarke.
Time-bounded dynamic adaptation for automotive
system software. In Proceedings of the 30th
International Conference on Software Engineering
(ICSE), Experience Track on Automotive Systems,
2008.

[11] M.T. Gervasio, W. Iba, and P. Langley. Learning user
evaluation functions for adaptive scheduling
assistance. In Proceedings of the Sixteenth
International Conference on Machine Learning
(ICML), 1999.

[12] C. Gill, R. Cytron, and D.C. Schmidt. Middleware
scheduling optimization techniques for distributed
real-time and embedded systems. In WORDS ’02:
Proceedings of the The Seventh IEEE International
Workshop on Object-Oriented Real-Time Dependable
Systems (WORDS 2002), 2002.

[13] C. Gill, D. Schmidt, and R. Cytron. Multi-paradigm
scheduling for distributed real-time embedded
computing. In IEEE Proceedings Special Issue on
Modeling and Design of Embedded Software, 2002.

[14] J. W. S. Liu. Real-Time System. Prentice Hall, 2000.

[15] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and
B. H. C. Cheng. Composing adaptive software.
Computer, 37(7):56–64, 2004.

[16] P. Oreizy, M. M. Gorlick, R. N. Taylor,
D. Heimbigner, G. Johnson, N. Medvidovic,
A. Quilici, D. S. Rosenblum, and A. L. Wolf. An
architecture-based approach to self-adaptive software.
IEEE Intelligent Systems, 14(3):54–62, 1999.

[17] N. Ravi, S. Smaldone, L. Iftode, and M. Gerla. Lane
reservation for highways (position paper). In ITSC
’07: Proceedings of the 10th International IEEE
Conference on Intelligent Transportation Systems,
2007.

[18] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley, 2002.

[19] D. von Winterfeld and W. Edwards. Decision Analysis
and Behavioral Research. Cambridge University Press,
1986.

