The ADAPTIVE Communication Environment
An Object-Oriented Network Programming Toolkit
for Developing Communication Software

Douglas C. Schmidt
schmidt@cs.wustl.edu
http://www.cs.wustl.eduéschmidt/
Department of Computer Science
Washington University
St. Louis, MO 63130, (314) 935-7538

Earlier versions of this paper appeared in t1é" and ity and portability through modularity; extensibility through
12t Sun User Group conferences in San Jose, California, dynamic configuration and reconfiguration; and cost effec-
Dec. 7-9, 1993 and San Francisco, California, June 14-17 tiveness through resource sharing and open systems.

1993. Although distributed computing offers many potentially
benefits, developing communication software is expensive
Abstract and error-prone. Object-oriented (OO) programming lan-
guages, components, and frameworks are widely touted tech-
The ADAPTIVE Communication Environment (ACE) is an nologies for reducing software cost and improving software
object-oriented (OO0) toolkit that implements fundamental quality. When stripped of the hype, the primary benefits of
design patterns for communication software. ACE is tar- OO stem from the emphasis on modularity and extensibil-
geted for developers of high-performance communication ity, which encapsulate volatile implementation details behind
services and applications on UNIX and Win32 platforms. stable interfaces and enhance software reuse.
ACE simplifies the development of OO network applications pevelopers in certain well-traveled domains have success-
and services that utilize interprocess communication, eventfylly applied OO techniques and tools for years. For in-
demultiplexing, explicit dynamic linking, and concurrency. stance, the Microsoft MFC GUI framework and OCX com-
ACE automates system configuration and reconfiguration by ponents arele factoindustry standards for creating graphical
dynamically linking services into applications at run-time pysiness applications on PC platforms. Although these tools
and executing these services in one or more processes Ohaye their limitations, they demonstrate the productivity ben-
threads. efits of reusing common frameworks and components.

This paper describes the structure and functionality of ggftware developers in more complex domains like
ACE and illustrates core ACE features using examples from g|ecommunications, medical imaging, avionics, and online
domains like telecommunications, enterprise medical imag- yransaction processing have traditionally lacked standard off-
ing, and WWW services. ACE is freely available and is being the_shelf middleware components. As a result, developers
used for many commercial projects (such as Ericsson, Bell- |5rgely puild, validate, and maintain software systems from
core, Siemens, Motorola, Kodak, and McDonnell Douglas), scratch. In an era of deregulation and stiff global compe-
as well as many academic an_d industrial research.proje_cts. tition, this in-house development process is becoming pro-
ACE has been ported to a variety of OS platforms including pipitively costly and time consuming. Across the industry,
Win32 and most UNIX/POSIX implementations. In addition, thjs situation has produced a “distributed software crisis,”
both C++ and Java versions of ACE are available. where computing hardware and networks get smaller, faster,
and cheaper; yet distributed software gets larger, slower, and
more expensive to develop and maintain.

The challenges of building distributed software stem from
1.1 Problem: the Distributed Software Crisis in_herentandaccidentabomplexities [1]_ qssociated with dis-

tributed systems. Inherent complexities stem from funda-
The demand for robust and high-performance distributed mental challenges of developing distributed software. Chief
computing systems is steadily increasing. Examples of theseamong these is detecting and recovering from network
types of systems include global personal communication and host failures, minimizing the impact of communica-
systems, network management platforms, enterprise medication latency, and determining an optimal partitioning of ser-
imaging systems, online financial analysis systems, and real-vice components and workload onto processing elements
time avionics systems. Distributed computing is a promising throughout a network.
technology for improving collaboration through connectiv- Accidental complexities stem from limitations with tools
ity and interworking; performance through parallel process- and techniques used to develop telecom software. For in-
ing; reliability and availability through replication; scalabil- stance, many standard networking mechanisms (such as

1 Introduction

()

DISTRIBUTED 3
SERVICES AND TOKEN LOGGING TIME
COMPONENTS SERVER SERVER SERVER |

FRAMEWORKS
AND CLASS
CATEGORIES

CONNECTO SERVICE CORBA
HANDLER HANDLER

ADAPTIVE SERVICE EXECUTIVE (ASX)
| < .

SERVICE
CONFIG-
URATOR

C THREAD DYNAMIC MEMORY SYSTEM
APIs LIBRARY LINKING |}/ MAPPING V IPC
PROCESS/THREAD COMMUNICATION VIRTUAL MEMORY
SUBSYSTEM SUBSYSTEM SUBSYSTEM
GENERAL POSIX AND WIN32 SERVICES
_ J

Figure 1: Components in the ADAPTIVE Communication Environment

sockets [2] and TLI [3]) and reusable component libraries 1.2 Solution: Object-oriented Design Patterns
(such as X windows and Sun RPC) lack type-safe, portable, and Frameworks

re-entrant, and extensiblgpplication programming inter-

faces(APIs). Likewise, common network programming in- Object-oriented design patterns and frameworks are well-
terfaces like sockets and TLI use weakly-typed integer han- regarded for their ability to help alleviate costly rediscov-
dles that can lead to subtle run-time errors [4]. ery and reinvention of core distributed software concepts and
abstractions. Patterns provide a way to encapsulate design
knowledge that offers solutions to standard distributed soft-
ware development problems [9]. For instance, patterns are
useful for describing recurringnicro-architecturegsuch as
Reactor [10] and Active Object [11]), which are abstractions
of common object-structures that have proven useful to build
distributed communication software. However, abstractions
documented as patterns do not directly yield reusable code.
Therefore, it is essential to augment the study of patterns
with the creation and use éfameworks

Frameworks provide reusable software components for
applications by integrating sets of abstract classes and defin-
ing standard ways that instances of these classes collabo-
rate [12]. Frameworks instantiate families of design pat-
terns to help developers avoid costly reinvention of com-

The lack of extensibility and reuse in-the-large is particu- mon distributed software components. The results are “semi-
larly problematic for complex distributed software. Extensi- complete” application skeletons that can be customized by
bility is essential to ensure timely modification and enhance- inheriting and instantiating from reuseable building blocks
ment of services and features. Reuse is essential to levercomponentsin the frameworks. Since frameworks are tightly
age the domain knowledge of expert developers to avoid re-integrated with key distributed programming tasks (such as
developing and re-validating common solutions to recurring service initialization, error handling, flow control, event de-
requirements and software challenges. multiplexing, concurrency control), the scope of reuse can

Another source of complexity arises from the widespread
use of algorithmic decomposition [5], which results in non-
extensible and non-reusable software systems [6]. Although
graphical user-interfaces (GUIs) are commonly built using
object-oriented (OO) techniques, distributed software is typ-
ically developed using algorithmic decomposition. This
problem is exacerbated by the fact that examples in pop-
ular network programming textbooks [7, 8, 3] are based
on algorithmically-oriented design and implementation tech-
nigues.

be significantly larger than by using traditional function li-

braries, or even conventional OO class libraries. (
This paper is organized as follows: Section 2 presents| AppLIcATION-
an overview of the structure and functionality of the ACE SPECIFIC Al PPLICATIONS

toolkit; Section 3 describes the ACE C++ wrapper compo-
nents and higher-level ACE framework components and pat-

terns in detail; Section 4 examines the implementation of Network
several networking applications built using ACE; and Sec- Services Stream
tion 5 presents concluding remarks. APPLICATION- Framework
INDEPENDENT
. Service
2 Overview of the ADAPTIVE Com- Inifialization
munication Environment (ACE) Interprocess
Communicatio Service
To illustrate how OO patterns and frameworks are being suc- Configurator
cessfully applied to distributed software, this paper exam-
ines the ADAPTIVE Communication Environment (ACE) Reactor /
Concurrency

[6]. ACE is a freely available OO toolkit containing a rich set
of reusable wrappers, class categories, and frameworks tha\
perform common network programming tasks across a wide
range of OS platforms. The tasks provided by ACE include: Figure 2: The Class Categories in ACE

global

e Event demultiplexing and event handler dispatching _ _ . _
[13, 14, 10, 15]; indicate inheritance relationships between classes; and an

i) L undirected edge with a small circle at one end indicates either
e Connection establishmentand service initializa{i8, a composition or uses relation between two classes. The ‘A’
17, 18]; inscribed within a triangle identifies a class asadstract
e Interprocess communicati¢h9, 4] andshared memory class[25]. An abstract class cannot be instantiated directly,
management but must be subclassed. Subclasses of an abstract class must
« Dynamic configuration of distributed communication provide definitions for all it.s abstr_act methods before any ob-
serviced20, 21]; jects of the class may be instantiated.

e Concurrency/parallelism and synchronizatif@?, 23,
11, 24]; 2.1 The ACE OS Adaptation Layer

» Components for higher-level distributed servi¢esch The ACE source tree contains over 85,000 lines of C++. Ap-
as a Name service, Event service, Logging service, hroximately 9,000 lines of codé.¢., about 10% of the total
Time service, and Token service). toolkit) are devoted to th®S Adaptation LayerThis layer

shields the higher layers of ACE from platform-specific de-

The ACE toolkit is designed using a layered architecture. pendencies associated with the following OS mechanisms:

Figure 1 illustrates the vertical and horizonal relationship be-
tween ACE components. The lower layers of ACE @@ ¢ Multi-threading and synchronization
wrappersthat encapsulate existing OS network program-
ming mechanisms. The higher layers of ACE extend the
wrappers to provid®©O frameworks and componeritsat
cover a broader range of application-oriented networking
tasks and services. The remainder of this section presents an
overview of the structure and functionality of the class cat- ¢ Memory-mapped files and shared memory
egories in ACE (shown in Figure 2). Section 3 provides in-

depth coverage of the ACE network programming features
and components. 2.2 The ACE OO Wrappers

Throughout the paper, the ACE components are illustrated opgye the OS Adaptation Layer are OO wrappers that en-
via Booch notation [5]. Solid rectangles indicate class cat- capsulate and enhance the concurrency, interprocess commu-
egories, which combine a number of related classes into apjcation (IPC), and virtual memory mechanisms (illustrated
common name space. Solid clouds indicate objects; nest-at the hottom of Figure 1) available on modern operating sys-

ing indicates composition relationships between objects; andiems like Win32 and UNIX. Applications can combine and
undirected edges indicate some type of link exists between

two objects. Dashed clouds indicate classes; directed edges !Abstract methods C++ are commonly calfate virtual functions

Interprocess communication

Event demultiplexing

e Explicit dynamic linking

compose these components by selectively inheriting, aggre- _

gating, and/or instantiating the following ACE wrapper class
categories:

e IPC SAP — which encapsulates local and/or remote
IPC Service Access PoinfC SAP mechanisms such
as sockets, TLI, UNIX FIFOs and STREAM pipes, and

Win32 Named Pipes, [19, 4];

Service Initialization — ACE provides a set of Connec-
tor and Acceptor components [18] that decouple the ac-
tive and passive initialization roles, respectively, from
the tasks a communication service performs once ini-
tialization is complete;

Concurrency mechanisms— ACE abstracts lower-
level OS multi-threading and multi-processing mecha-

nisms (such as mutexes and semaphores [22]) to create

higher-level OO concurrency abstractions (such as Ac-
tive Objects [11]);

Memory management mechanisms- the ACE mem-
ory management components provide a flexible and ex-
tensible abstraction for managing dynamic allocation
and deallocation of shared memory and local memory;

CORBA integration — ACE can be integrated with
CORBA implementations [26] (such as single-threaded
and multi-threaded Orbix).

The use of OO wrappers improves application robustness

by encapsulating OS communication, concurrency, and vir-

tual memory mechanisms with type-secure OO interfaces.

This alleviates the need for applications to directly access
the underlying OS libraries, which are written using weakly-

typed C interfaces. Therefore, compilers for OO languages

like C++ and Java can detect type system violations at
compile-time, rather than at run-time. The C++ version
of ACE uses inlining extensively to eliminate performance
penalties that would otherwise be incurred from the addi-
tional type-security and abstraction provided by the wrapper
layer.

2.3 The ACE Framework

ACE contains a higher layer network programming frame-

-~
A\
/

/ } f(_:_,sff 4‘(\\

SPIPE_SAP

L
/
/ NAMED PIPE

S~

SOCK_SAP

| l /i TRANSPORT)
7

/
/ SOCKET LAYER 4 / STREAM PIPE
API

/ /
API) CINTERFACE APL)\ API) \)

Figure 3:IPC SAP Class Category Relationships

TLI_SAP FIFO_SAP

-

’
\

Vs

e Streams— The ACE Streams components [6] simplify
the development of concurrent communication software
applications composed of one or more hierarchically-
related services (such as protocol stacks);

2.4 ACE Network Service Components

In addition to the wrappers and frameworks, ACE provides a
standard library of network service components. These com-
ponents play two roles in ACE:

1. They illustrate how to utilize the ACE IPC wrappers,
Reactor, Service Configurator, Service Initialization,
Concurrency, Memory Management, and Streams com-
ponents;

2. They provide reusable components for common dis-
tributed system tasks such as logging [13, 13], naming,
locking, and time synchronization [21];

When combined with OO language features (such as
clases, inheritance, dynamic binding, and parameterized
types) and design patterns (such as Abstract Factory, Builder,
and Service Configurator), the reusable ACE components fa-
cilitate the development of communication services and ap-
plications that may be updated and extended without modify-
ing, recompiling, relinking, or even restarting running soft-
ware [20].

work that integrates and enhances the lower layer OS wrap-

pers. This framework supports the dynamic configuration of

concurrent network daemons composed of application ser-

vices. The framework portion of ACE contains the following
class categories:

e Reactor— The ACE Reactor [10] provides extensible,
object-oriented demultiplexer that dispatches handlers
in response to various types of everagy(,|/O-based,

3 Detailed Coverage of ACE Compo-
nents

IPC_SAP: Local and Remote IPC Mecha-
nisms

3.1

ACE provides a forest of class categories rooted atR@

timer-based, signal-based, and synchronization-basedsap (“InterProcess Communication Service Access Point”)

events);
Service Configurator— The ACE Service Configura-

base classlPC SAP encapsulates the standard 1/0 handle-
based OS local and remote IPC mechanisms that offer

tor [21] supports the construction of applications whose connection-oriented and connectionless protocols. As shown
services may be configured dynamically at installation- in Figure 3, this forest of class categories inclu@&3CK
time and/or run-time; SAP(which encapsulates the socket AHI)I SAP (which

encapsulates the TLI APISPIPE SAP (which encapsu-
lates the UNIX SunOS 5.x STREAM pipe API), artiFO
SAP(which encapsulates the UNIX named pipe API).

Using OO wrappers to encapsulate the socket interface
helps to (1) detect many subtle application type system vio-
lations at compile-time, (2) facilitate a platform-independent

Each class category is organized as an inheritance hierartransport-level interface that improves application portabil-
chy. Every subclass provides a well-defined interface to a ity, and (3) greatly reduce the amount of application code and
subset of local or remote communication mechanisms. To-development effort expended upon lower-level network pro-
gether, the subclasses within a hierarchy comprise the overgramming details. To illustrate the latter point, the follow-
all functionality of a particular communication abstraction ing example program implements a simple client application
(such as the Internet-domain or UNIX-domain protocol fam- that uses thACESOCKDgram_Bcast class to broadcasta
ilies). The use of classes (as opposed to stand-alone funcmessage to all servers listening on a designated port number

tions) helps to simplify network programming as follows:

e Shield applications from error-prone detailsFor ex-
ample, theACEAddr class hierarchy shown in Fig-
ure 3 supports several diverse network addressing for-
mats via a type-secure OO interface, rather than us-
ing the awkward and error-prone C-bassiluct
sockaddr data structures directly.

Combine several operations to form a single operation
— For example, th&€ OCK Acceptor constructor per-
forms the various socket system calls (suchasket |,
bind , andlisten) required to create a passive-mode
server endpoint.

Parameterize IPC mechanisms into applicatiors
Classes form the basis for parameterizing an application
by the type of IPC mechanism it requires. This helps to
improve portability as discussed in Section 3.1.2.

Enhance code sharing Inheritance-based hierarchical

decomposition increases the amount of common code
that is shared amongst the various IPC mechanisms

(such as the OO interface to the lower-level OS device
control system calls likécntl andioctl).

in a LAN subnet::

int
main (int argc, char *argvl[])
{
ACE_SOCK_Dgram_Bcast b_sap (sap_any);

char *msg;
unsigned short b_port;

msg = argc > 1 ? argv[l] : "hello world\n";
b_port = argc > 2 ? atoi (argv[2]) : 12345;

if (b_sap.send (msg, strlen (msg),
b_port) == -1)
perror (“can't send broadcast”), exit (1);
exit (0);

It is instructive to compare this concise example with the
dozens of lines of C source code required to implement
broadcasting using the socket interface directly.

3.1.2 TLI SAP

The TLI SAP class category provides an OO interface to
the System V Transport Layer Interface (TLI). Thél
SAPinheritance hierarchy for TLI is almost identical to the
SOCK SAPRwrappers for sockets. The primary difference
is that TLI andTLI SAP do not define an interface to the

The following sections discuss each of the class categoriesUNIX-domain protocol family. In addition, TLI is not cur-

in IPC SAP.

3.1.1 SOCK SAP

The SOCK SAP4] class category provides applications
with an object-oriented interface to the Internet-domain
and UNIX-domain protocol families [8]. Applications
may access the functionality of the underlying Internet-
domain or UNIX-domain socket types by inheriting or in-
stantiating the appropriat8 OCK SAPsubclasses shown
in Figure 4. TheACESOCK?* subclasses encapsulate
Internet-domain functionality and thACELSOCK* sub-
classes encapsulate UNIX-domain functionality. As shown

rently ported to Win32 platforms.

By combining C++ features (such as default parame-
ter values and templates) together with tirdwr (the
read/write compatibility STREAMS module), it be-
comes relatively straight-forward to develop applications
that may be parameterized at compile-time to operate cor-
rectly over either a socket-based or TLI-based transport in-
terface. For instance, the following code illustrates how
C++ templates may be applied to parameterize the IPC
mechanisms used by an application. This code was ex-
tracted from the distributed logging facility described in
Section 4.1. In the code below, a subclass derived from
ACEEvent _Handler is parameterized by a particular

in Figure 4, the subclasses may be further decomposedype of transport interface and its corresponding protocol ad-

into (1) the *Dgram components (which provide unre-
liable, connectionless, message-oriented functionality) vs.
the *ACE_Stream components (which provide reliable,
connection-oriented, bytestream functionality) and (2) the
ACE* _Acceptor components (which provide connection
establishment functionality typically used by servers) vs.
the *Stream components (which provide bi-directional
bytestream data transfer functionality used by both clients
and servers).

dress class:

/* Logging_Handler header file */
template <class PEER_STREAM, class ADDR>
class Logging_Handler : public ACE_Event_Handler

public:
Logging_Handler (void);
virtual “"Logging_Handler (void);

virtual int handle_input (ACE_HANDLE);
virtual ACE_HANDLE get_handle (void) const
{

ACE ACE

ZPC SOCK
S4P K w\

I
ACE ACE ACE ACE ACE ACE
so0ck SOCK SOCK Sock SocK sock
Dgram Dgram copgram Stream Connector| | Acceptor
Bcast % % % % ZF
e ACE ACE ACE ACE ACE
e LSOCK LSOCK | Lsock LSOCK LSOCK
Mg iyt Dpgram (—| |coDbgram| | | Stream Connector| | Acceptor
|
Ty P

GROUP DATAGRAM ACE STREAM CONNECTION

COMM COMM LSO0CK| COMM ESTABLISHMENT

Figure 4: TheSOCK SARClass Categories

return this->peer_stream_.get_handle (); 3.1.3 SPIPE SAP
protected: The SPIPE SAP class category provides a OO wrapper
~ PEER_STREAM peer_stream_; interface for high-performance local IPC. On Win32 plat-
i forms, theSPIPE SAP class category is implemented atop

Named Pipes. The Win32 Named Pipes mechanism is pri-

Depending on certain properties of the underlying OS plat- 5l used to transfer data efficiently among processes on
form (such as whether it is BSD-based SunOS 4.x or SysteMy, o same machine. It is typically more efficient than sockets
V-based SunOS 5.x), the logging application may instantiate for local IPC [27].

EPS ngg‘ Hangler b fla?S to use etheBOCK SARr On UNIX platforms, theSPIPE SAP class category is
» @S shown below. implemented with mounted STREAM pipes aodnnlid

/* Logging application */ [28]. SunOS 5.x provides thfattach system call that

classLogging_Handler mounts a pipe handle at a designated location in the UNIX

’f'fpJ‘lfl{'cneLdog(gfrTg—_S,f;]%Tes;SEgE_ngcK_Stream’ ACE_INET Addr> file system. A server application is created by pushing the

#else _ connld STREAM module onto the mounted end of the

, ublic Logging Handier<ACE _TLI_Stream, ACE_INET_Addr> pipe. When a client application running on the same host
. B - machine as the server subsequently opens the filename asso-

Y e ciated with the mounted pipe, the client and server each re-

ceive an I/0 handle that identifies a unique, non-multiplexed,

The increased flexibility offered by this template-based Pi-directional channel of communication.
approach is extremely useful when developing an application The SPIPE SAP inheritance hierarchy mirrors the one
that must run portability across multiple OS platforms. In used for SOCK SAPand TLI SAP. It offers function-
particular, the ability to parameterize applications according ality that is similar to the SOCK SAP ACESOCK*
to transport interface is necessary across variants of Sunoslasses (which themselves encapsulate UNIX-domain sock-

platforms since the socket implementation in SunOS 5.2 is €ts). However, on SunOS 5.x platforrPIPE SAP is
not thread-safe and the TLI implementation in SunOS 4.x More flexible than the\CELSOCK* interface since it en-

contains a number of serious defects. ables STREAM modules to be “pushed” and “popped” to
TLI SAP also shields applications from many peculiari- @nd from SPIPE SAP endpoints, respectively. SPIPE

ties of the TLI interface. For example, the subtle application- SAPalso supports bi-directional delivery of byte-stream and

level code required to properly handle the non-intuitive, Prioritized mes'sage-'or'lented data between processes and/or

error-prone behavior df listen andt _accept in acon- threads executing within the same host machine [29].

current server with glen > 1 [3] is encapsulated within

the accept method in theTLI Acceptor class. This 31.4 FIFO SAP

method accepts incoming connection requests from clients.

Through the use of C++ default parameter values, the stan-The FIFO SAP class category encapsulates the UNIX
dard method for calling thaccept method is syntactically = named pipe mechanism (also called FIFOs). Unlike
equivalent for botiTLI SAP -based an6OCK SAmased STREAM pipes, named pipes offer only a uni-directional
applications. data channel from one or more senders to a single receiver.

Moreover, messages from different senders are all placed

into the same communication channel. Therefore, some
type of demultiplexing identifier must be included explicitly

in each message to enable the receiver to determine which

sender transmitted the message.
The STREAMS-based implementation of named pipes in

SunOS 5.x provides both message-oriented and bytestream-

oriented data delivery semantics. In contrast, some plat-
forms, (such as SunOS 4.x) only provides bytestream-

oriented named pipes. Therefore, unless fixed length mes-
sages are always used, each message sent via a named pipe in

SunOS 4.x must be distinguished by some form of byte count
or special termination symbol that allows a receiver to ex-

char *file_p;
Mem_Map mmap (filename);

if (mmap (file_p) != -1)
size_t size = mmap.size () - 1;

if (file_p[size] == "\0)
file_p[size] = \n’;

while (--size >= 0)
if (file_p[size] == "\n")
putline (file_p + size + 1);

putline (file_p);
return O;

else
return 1;

tract messages from the communication channel bytestream.
To alleviate this limitation, the ACIEIFO SAP implemen-
tation contains logic that emulates the message-oriented se
mantics available in SunOS 5.x.

It is instructive to compare the use of this OO wrapper in-

terface with the much more verbose C interface necessary to
use I/O systems calls likeead directly.

e System V IPC Mechanisms: SunOS UNIX provides
a suite of shared memory, synchronization, and message

In additicr)]n to encapshulating Eandle;jb_?i?i\g% clommun!ga- passing mechanisms known colloquially as “System V IPC”
tion mechanisms such as sockets an ' also provi es[29]. Most of the functionality offered by these mechanisms

OO wrappers for memory-mapped files and System V UNIX has been subsumed by more recent SunOS UNIX facilities

IPC mechanisms: (such asmmap thread synchronization [31], and STREAM

e Memory-Mapped Files: The ACEMemMap class pro- pipes primitives, respectively). However, certain types of
vides an OO interface to other memory-mapped file mech- applications (such as database engines) may benefit from
anisms available on Win32 and UNIX (such as thenap characteristics of System V IPC mechanisms (such as the
family of system calls). These calls utilize the underlying peer-to-peer nature of Message Queues, the efficient multi-
OS virtual memory facilities [30] to map files into the ad- operation atomicity semantics of Semaphores, and the wide-
dress space of a process. The contents of mapped files magpread availability of System V IPC across a range of UNIX
be accessed directly via pointers. A pointer interface is often OS platforms). However, it is somewhat challenging to un-
more convenient and efficient than accessing blocks of dataderstand and use System V IPC mechanisms (particularly
indirectly via the standardead /write 1/0O system calls. semaphores) correctly since their interfaces are quite general
In addition, contents of memory-mapped files may be sharedand their behavior has traditionally been documented rather
conveniently between two or more processes. sparsely until recently [8, 29].

Existing Win32 and UNIX interfaces for memory-mapped ~ The ACE System V IPC wrapper interfaces shield devel-
files are somewhat barogque. For instance, developers musbpers from a myriad of unnecessary details. For example,
perform many bookkeeping details manually (such as ex- the ACE OO wrapper version of System V IPC semaphores
plicitly opening a file, determining its length, performing is more intuitive and simpler to use for applications that uti-
multiple mappings, etc.). In contrast, tA&CEMemMap lize standardvait andsignal semaphore operations, as
OO wrapper offers an interface that employs default values shown in the following code fragment from a typical pro-
and multiple constructors with several type signature vari- ducer/consumer example:
ants €.9g., “map from an open file handle,” “map from a file-
name,” etc.) to simplify typical memory-mapped file usage tsyg
patterns.

For example, the
following program uses thACEMemMap OO wrapper to
map a file specified via the command-line and print its lines

3.1.5 Other Communication Mechanisms

edef ACE_SV_Semaphore_Simple SEMA;
MA prod (1, SEMA::CREATE, 1);

SEMA cons (2, SEMA::CREATE, 0);

void producer (void)

for (;7) {

. prod.wait ();

In reverse: /I produce resource...
cons.signal ();

static void

}
}

void consumer (void)

putline (const char *s)

while (putchar (*s++) = '\n’)
continue;
for (;;) {
cons.wait ();
/I consume resource...
prod.signal ();

int
main (int argc, char *argv[])

char *filename = argv[l];

REGISTERED

REGISTERED 2: sh = new Logging Handler
OBJECTS 3: accept (sh->peer())
4: sh->open()

2: sh = new Logging_Handler
OBJECTS 3: accept (sh->peer())
4: sh->open()

: Logging|

&, Logging
Handler

: Logging

Handler : Logging

Acceptor

: Logging
Acceptor

5: handle_input()
6: recv(msg)
7:process(msg)

5: handle_input()
6: recv(msg)
7:process(msg)

APPLICATION
LEVEL
APPLICATION
LEVEL

: Event
Handler

1: handle_input()

FRAMEWORK
LEVEL

FRAMEWORK
LEVEL

KERNEL
LEVEL

KERNEL
LEVEL

Figure 5: Software Architecture of the WWW Server Figure 6: TheACEReactor Class Category Components

Itis instructive to compare this concise OO wrapper interface ACEReactor encapsulates the mutual exclusion mecha-
with the much more verbose C interface necessary to usenisms necessary to perform callback-style dispatching cor-
System V semaphores directly. rectly and efficiently in a multi-threaded event processing
environment.

The structure of objects in thaCEReactor is illus-
trated in Figure 6. These objects are responsible for (1) de-
multiplexing of events (such aesmporal eventgenerated by

Communication software demultiplexes and processes many? timer-driven callout queu#0© eventseceived on commu-
different types of events (such as timer-based, 1/0-based,nication ports, andignal eventsand (2) dispatching the ap-

signal-based, and synchronization-based events). For examPropriate methods of pre-registered event handler(s) to pro-
ple, a WWW server is commonly structured internally using C€SS these events. As shown in Figure 6, all the event han-
an event loop that monitors a well-known Internet port (typ- dler objects derive from theCEEvent _Handler abstract
ically port 80). This port is associated with an application- base class. This class specifies an interface that is used by
specific handler that listens for clients to connect on port 80. the ACEReactor to dispatch certain application-specific
When clients connect, the WWW server accepts the connec-Methods in response to the arrival of certain events.

tion and creates an event handler to service the HTTP re- The ACEReactor uses the virtual methods de-

3.2 Reactor: Event Demultiplexing and Event
Handler Dispatching

guest. For instance, if a Netscape browser sen@gare- clared in the Event Handler interface to integrate
quest the WWW server will return the requested content to the demultiplexing of /O handle-based, timer-based, and
the browser. signal-based events. /O handle-based events are dis-

To consolidate and automate event-driven processing ac-Patched via thénandle _input , handle _output , and
tivities, ACE provides an event demultiplexing and event handle _exceptions methods; timer-based events are
handler dispatching framework called t#e&CEReactor dispatched via theandle _timeout method; and Signal-
[10]. TheReactor encapsulates the functionality of UNIX based events are dispatched via thandle _signal
and Windows NT event demultiplexing mechanisms (such method.
asselect andpoll) within a portable and extensible OO Subclasses ofACEEvent _Handler (such as the
wrapper [10]. These OS event demultiplexing system calls Logging _Handler described in Section 4.1) may aug-
detect the occurrence of different types of input and output ment the base class interface by defining additional meth-
events on one or more I/O handles simultaneously. ods and data members. In addition, virtual methods in

To facilitate application portability, thé CEReactor the ACEEvent Handler interface may be selectively
provides the same interface regardless of what eventoverridden by subclasses to implement application-specific
demultiplexing mechanism is uséd. In addition, the functionality. For example, application-specific subclasses
in the PBX monitoring server presented in Section 4.2
_ 2An extended version of t_h/ézCF_ReacIto; ,caIIedA(t:EReactr?rEx ’| " define Event Handler objects that communicate with
ItﬁeWaitjlgc?;jMuItiplc:(ljbject\évm32 eveﬁta(tigrrnnl]jtiplexin% caII.eSicna::peSltJh?; clients by inheriting and/or mStan.tlatmg objects of the
functionality is not portable across OS platforms, it is not covered in this SOCK SAPor TLI SAP transport interface classes de-
document. scribed in Section 3.1. After the virtual methods in the

ACEEvent _Handler base class have been defined by a

subclass, an application may instantiate the resulting even{” main callback : reactor
handler object. program Ping_Pong - Reactor
. . . I
The following example implements a simple program | ,utiaLize : Reactor::Reactor ()
that continuously exchanges messages back and forth be) Iregister_handler(callback)|
REGISTER HANDLER t — —-|

tween two processes using a bi-directional communica-
tion channel. This example illustrates how services in- | sTART EVENT LooP

F——

| handle_events() .
I select()
|

herit from the ACEEvent _Handler . It _also deplct§ FOREACH EVENT DO : povw
how the ACEReactor is used to demultiplex and dis- | handle_input()
patch 1/O-based, signal-based, and timer-based events. Th DATA ARRIVES | |j‘ - B
Ping _Pong class shown below inherits the interface from OK TO SEND | [€ output()
ACEEvint _Han(jl!er ?n”d implements its application- SGNAL ARRIVES | DJ: handle_signal()
specific functionality as follows: | rer s i |]= handle_timeout() |
class Ping_Pong : public ACE_Event_Handler s
public: Figure 7: ACEReactor Interaction Diagram
Ping_Pong (char *b)
: len (min (strlen (b) + 1, BUFSIZ)) {
strncpy (this->buf, b, BUFSIZ);
virtual int handle_input (ACE_HANDLE handle) { init_handles (handles);

return read (handle, this->buf, BUFSIZ);
} pid_t pid = fork ();
virtual int handle_output (ACE_HANDLE handle) {

return write (handle, this->buf, this->len); Ping_Pong callback (argv[1]);
virtual int handle 5|gnal (int signum) { /I Register 1/O-based event handler
this->finished = reactor.register_handler (
} handles[pid == 0],
virtual int handle_timeout (const Time_Value &, &callback,
const void *) { ACE Event Handler::READ_MASK
this->finished = 1, | ACE_Event_Handler::WRITE_MASK);
}
bool done (void) { /I Register signal-based event handler
return this->finished == 1, reactor.register_handler (SIGINT, &callback);
/I Register timer-based event handler
private: reactor.schedule_timer (&callback, 0, 10);
sig_atomic_t finished,;
char buf[BUFSIZ]; /* Main event loop (run in each process) */
size_t len; while (callback.done () == false)
h reactor.handle_events ();
return O;

The bi-directional communication channel is created us- }
ing SVR4 UNIX STREAM pipes:

The callback event handler for the timer-based and

static int
init_handles (ACE_HANDLE handles[]) signal-based events is stored with the appropriate tables in-
{ if (pipe (handles) == -1) side theACEReactor . Likewise, the ACEReactor
LM_ERROR ((LOG ERROR, "%p\n%a”, "pipe”, 1)); stores the appropriate handle in an internal table when
/I Enable message-oriented mode instead of the register _handler method is invoked to register
/I bytestream mode. the 1/0O-based event handler. When the application sub-
int arg = RMSGN; . . .
sequently performs its main event loop by calling the
if (ioctl (handles[0], |_SRDOPT, arg) == -1 . i i
(i Il()ctI (han[d}es[l] ! SRDOPTE{) arg) == -1) ACEReactor::handle _events mgthod,thls handle'ls
return -1; passed as an argument to the underlying OS 1/0O demultiplex-

ing system call€.g.,select orpoll).

As input, output, signal, and timer events associated
with the pre-registered event handéadlback object oc-
cur at run-time, theACEReactor automatically detects
these events and dispatches the appropriate method(s) of
the event handler object. The dispatched method of the
callback objectis responsible for performing application-
specific functionality (such as writing a message to the com-
munication channel, reading a message from the channel, or

The main program begins by opening the appropriate
communication channel. Following this, the program forks
a child process, instantiate®&g _Pong event handler ob-
ject namectallback in each of the two processes, regis-
ters thecallback object for I/O-based, signal-based, and
timer-based events with an instance of h€EReactor
and then enters an event loop, as follows:

int main (int arge, char *argv]) setting a flag that triggers termination of the program). The
{ ACE_HANDLE handles[2]: coI_Iabqratlon petwc—‘j-en these compon_ents is depicted via the
ACE_Reactor reactor; object interaction diagram shown in Figure 7.

3.3 Concurrency: Multi-threading and Syn- template <class MUTEX>

chronization Mechanisms class ACE_Guard
public:
The ACE Concurrency class category contains OO wrappers ACE_Guard (MUTEX &m): lock (m) {

(e.g.,ACEMutex , ACECondition , ACESemaphore, this->lock_.acquire. ();

and ACERWMutex) that encapsulate the corresponding A?hl?s‘fllf)ﬂ(d ggg)se{ 0

Solaris [31] and POSIX Pthreads [32] multi-threading and 3 - ’

synchronization mechanisms. These wrappers automate th@rivate: ,

2 o . i MUTEX &lock_;

initialization of synchronization objects that appear as fields }

in classes and also simplify typical usage patterns for the

threading and synchronization mechanisms. For instance An object of theACEGuard class defines a block of code
the following code illustrates the use of the ACE wrap- over which aACEMutex is acquired and then released au-
pers for the SunOgutex _t andcond t synchronization tomatically when the block is exited.

mechanisms for a typical shared resource management class: Note that theACEGuard class is defined as a template

class Resource_Manager that is parameterized by mutual exclusion mechanism. There
é ublic: are several different types of mutex semantics [33]. Each
Resource_Manager (u_int initial_resources) type of mutual exclusion shares a common interfdae, (
+ resource_add__(this->lock), acquire /release), but possesses different serialization
resources_ (initial_resources) {} . .
_ _ _ and performance properties. Two types of mutual exclusion
|{nt acquire_resources (u_int amount_wanted) supported by ACE areon-recursiveandrecursivelocks.
this->lock_.acquire (); o Non-recursive locks: A non-recursive lock provides an
Wht”rﬁs(g\]/\'; I:;esoirces < amount_wanted) { efficient form of mutual exclusion that definecatical sec-
/I Block ung{” resources are released. tion, where only a single thread may execute at a time.
this->resource_add_.wait (); They are non-recursive in the sense that the thread currently
%his.>resources_ -= amount_wanted; owning a lock may not reacquire the lock without releas-
) this->lock_.release (); ing it first. Otherwise, deadlock will occur immediately.
_ _ SunOS 5.x provides support for non-recursive locks via its
o release_resources (u_int amount_released) mutex _t , rwlock _t , andsema.t types (POSIX Pthreads
this->lock_.acquire (); doesn'’t provide the latter two synchronization mechanisms).
}P'ft';rseisv‘g%ﬁsg Jf: al')“c;“”t released,; The ASX framework provides th&lutex , RWMutex , and
this->waiting_ Semaphore wrappers to encapsulate these semantics, re-
this->resource_ add .signal () spectively.
elsternslf>(tvpalusur>1glvfmn% DA e Recursive lock: A recursive lock, on the other hand, al-
) this->resource_add_.broadcast (); lows acquire method invocations to nest as long as the
this->lock_.release (); thread that owns the lock is the one trying to re-acquire it.
}/ Recursive locks are particularly useful for callback-driven
private: event dispatching frameworks (such as fReactor de-
QSE:"C"S;%(')?&"K&E_MuteX> resource_add_: scribed in Section 3.2), where the framework event-loop per-
u_int resources_; forms callbacks to pre-registered user-defined objects. Since
ji-nt waiting_; the user-defined objects may subsequently re-enter the dis-
h patching framework via its method entry points, recursive

locks are necessary to prevent deadlock from occurring on
locks held within the framework during callbacks.

The following C++ template class implements recursive
lock semantics for the synchronization mechanisms in So-
laris threads and POSIX Pthreads whose native behavior
does not provide recursive locking semantics:

Note how the constructor for th@RCECondition object
resource _add binds theACEMutex objectlock to-
gether with theCondition object. This simplifies the
ACECondition::wait calling interface, in comparison
with the underlying SunO8ond _t cond _wait interface.

Although theACEMutex wrappers provide a relatively
elegant method for synchronizing multiple threads of con- emplate <class MUTEX>
trol, they are potentially error-prone since it is possible to class ACE_Recursive_Thread_Mutex
forget to call therelease method (either due to program- pypiic:
mer negligence or d.ue to the occurrence of C++ exceptlorjs). A c//E_Igggﬂf;vg_ﬁcrggé\ﬁw&?:;e?\}oi o)
To improve application robustness, the ACE synchronization // Tmplicitly release a recursive mutex.
facilities leverage off the semantics of C++ class constructors "AGE Recursive_Thread_Mutex (void);

. cquire a recursive mutex.

and destructors. To ensure thH€CEMutex locks will be int acquire (void) const;
automatically acquired and released, ACE provides a helper . // Conditionally acquire a recursive mutex.

A - int tryacquire (void) const;
class calledACEGuard , which is defined as follows: /I Releases a recursive mutex.

10

int release (void) const;

private:
ACE_Mutex nesting_mutex_;
ACE_Condition<ACE_Mutex> mutex_available_;
thread_t owner_id_;
int nesting_level_;

Note that the interface for this class is consistent with the
other locking mechanisms available in ACE [22].

The following code illustrates how th&CEGuard and
ACERecursive _Thread _Mutex might be used within a
callback mechanism:
int
Callback::dispatch (const Event_Handler *eh,
¢ Event *event)

/I Constructor acquires the lock on entry.
ACE_Guard<ACE_Recursive_Thread_Mutex<ACE_Mutex> >
m (this->lock_);

eh->handle_event (event);
/I Destructor of Guard releases the lock on exit.

}

This code ensures that registeringirent _Handler ob-
ject executes as a critical section. This example also illus-

object files reduce primary and secondary storage uti-
lization since only one copy of shared object code ex-
ists in memory and on disk, regardless of the number of
processes that are executing this code. Moreover, cer-
tain address resolution and relocation operations may
be deferred until a dynamically linked function is first
referenced. This “lazy evaluation” scheme minimizes
link editing overhead during process start-up.

e Explicit dynamic linkingprovides interfaces that al-
low applications to obtain, utilize, and/or remove
the run-time address bindings of symbols defined
in shared object files [36]. Explicit dynamic link-
ing mechanisms significantly enhance the functional-
ity and flexibility of communication software since
services may be inserted and/or deleted at run-
time without terminating and/or restarting the en-
tire application. SunOS 5.x supports explicit dy-
namic linking via thedlopen/disym/diclose
routines and Win32 supports this feature via the
LoadLibrary/GetProcAddress routines.

ACE provides th&ervice Configurator class cat-

trates the use of a C++ idiom [34] where the constructor of egory to encapsulate the explicit dynamic linking mecha-

a classacquire s the lock on a synchronization object au-
tomatically when theACEGuard object is created. Like-

nisms of SunOS within a set of classes and inheritance hier-
archies. TheService Configurator

leverages upon

wise, the class destruction automatically unlocks the objectthe other ACE components to extend the functionality of
when themon object goes out of scope. Moreover, the de- conventional daemon configuration and control frameworks

structor formonwill be invoked automatically to release the
Mutex lock regardless of which arm of tligelse state-

[20] (such adisten
NT Service Control Manager

[3], inetd [2], and the Windows

[37]) that provide au-

ment returns from the method. In addition, the lock will also tomated support for (1) static and dynamic configuration of
be released automatically if a C++ exception is raised dur- concurrent, multi-service communication software, (2) mon-

ing processing within the body of tmegister _handler
method. ThACERecursive _Thread _Mutex is usedto
ensure that application-speciti@ndle _event callbacks
that are dispatched by tltispatch method do not cause
deadlock if they reenter theallback object.

ACE also provides ACEThread _Manager class that

itoring sets of communication ports for I/O activity, and (3)

dispatching incoming messages received on monitored ports
to the appropriate application-specified services. The re-
mainder of this section discusses the primary components in
theService Configurator

class category.

contains a set of mechanisms to manage groups of threads; 4 1 The ACE Service Object Inheritance Hierarchy

that collaborate to implement collective actions. For in-

stance, theACEThread _Manager class provides mech- The primary unit of configuration in theService
anisms (such asuspend _all andresume _all) that al- Configurator is the service A service may be sim-
low any number of participating threads to be suspended andple (such as returning the current time-of-day) or highly
resumed atomically. complex (such as a distributed, real-time router for PBX
event traffic [6, 38]). To provide a consistent environ-
ment for defining, configuring, and using communication
software, all application services are derived from the
ACEService _Object inheritance hierarchy (illustrated

Static linkingis a technique for composing a complete ex- in Figure 8 (1)).

ecutable program by binding together all its object files at ~The ACEService _Object class is the focal point
compile-time and/or static link-timeDynamic linking in of a multi-level hierarchy of types related by inheritance.
contrast, enables the addition and/or deletion of object files The standard interfaces provided by the abstract classes
into the address space of a process at initial program invocadn this type hierarchy may be selectively implemented
tion or at any point later during run-time. SunOS 4.x and 5.x by application-specific subclasses in order to access cer-

support bottimplicit andexplicit dynamic linking: tain application-independergervice Configurator
mechanisms. These mechanisms provide transparent dy-

¢ Implicit dynamic linkingis used to implement shared namic linking, event handler registration, event demultiplex-
object files, also known as shared libraries [35]. Shared ing, and service dispatching. By decoupling the application-

3.4 Service Configurator: Explicit Dynamic
Linking Mechanisms

11

APPLICATION-SPECIFIC
FUNCTIONALITY e _
—— _ ’ N AR
mmmmmmmmmmmmmmm mwmk&mm\wmmwmmwmmwmmwwmmmfw&i(mm&mmwmmwmmwwmmmmwwm&\mwmmwmm‘xwmmwx
) las !)]
APPLICATION- ,/ Task | e — ~_ 7) » Task !
/ . SO\ / \ /
INDEPENDENT N W J ¢ Service 3 Y e pm e N \Y/)
AN 7/ \ . / SN’ 7 N7
FUNCTIONALITY S \ RePOSItOFY/, /~ Service |
- I
i Config
.
/‘-’—-\ - T /_“‘\
I /Service '@ ! 7
} Serv1ce /
‘ Object | - Object >
I
\ §§7
\\\ // n
~ 1 \ So 1
TN \ Service ! 1 ~“Service ,’
“Event \ ! Shared |) Dervice \ 7 AN tRep0s1t0ry >
{ N N ObJect \ / Repository \, / , -~
y Handler '\ ! Tterator / i\ REACTOR X
J) \W v ~___ SN ,‘\D Event i}
/ 5 _7 n ’Handler
l__/’——/ -
1) Service Object 2) The Service Repositor 3) The Service Confi
_ _ Yy _
Inheritance Hierarchy Class Class

. J
Figure 8: Component Relationships for tBervice Configurator Class Category

specific portions of a handler object from the underly- multiplexing, but might not require dynamic linking. By sep-
ing application-independerervice Configurator arating these interfaces into two base classes, applications
mechanisms, the effort necessary to insert and remove serare able to select a subset®érvice Configurator

vices from a running application is significantly reduced. mechanisms without incurring unnecessary storage costs.

. TheACEService -Object inheritance hierarchy con- e The ACE_Service Object Abstract Derived Class: In
sists of the ACEEvent _Handler . : o L

. general, installing and administering complex distributed
and ACEShared _Object abstract base classes, as wel systems requires support for dynamic linking, event demul-
as theACEService _Object abstract derived class. The Y q bp Y 9.

tiplexing, and service dispatching in order to automate the

ACEEvent Handler class was described above in Sec- dynamic configuration and reconfiguration of application

tion 3.2. The behavior of the other classes is outlined below.

services. Therefore, thgervice Configurator de-
e The ACE_Shared Object Abstract Base Class: This fines theACEService _Object class, which combines
base class specifies an interface for dynamically link- the interfaces from both th®CEEvent _Handler and the

ing service handler objects into the address space of anACEShared _Object abstract base classes. The resulting
application. TheACEShared _Object abstract base abstract derived class supplies an interface that developers
class exports three abstract methodsnit , fini use as the basis for implementing and configuring a service
and info These methods impose a contract between into theService Configurator

the application-independent reusable components provided During development, the application-specific subclasses
by the Service Configurator and the application- of ACEService _Object must implement the ab-
specific functionality that utilizes these components. By us- stract suspend and resume methods specified by the
ing abstract methods, th&ervice Configurator en- ACEService _Object classinterface. These methods are
sures that a service handler implementation honors its obli- invoked automatically by th&ervice Configurator

gation to provide certain configuration-related information. inresponse to external events. An application developer may

This information is subsequently used by tBervice
Configurator to automatically link, initialize, identify,
and unlink a service at run-time.

The ACEShared _Object base class is defined inde-

control the actions the object undertakes in order to suspend
a service without removing and unlinking it completely, as
well as to resume a previously suspended service.

In addition, application-specific subclasses must also im-

pendently from théACEEvent _Handler class to clearly plement the four abstract methodgif{ , fini , info ,
separate their two orthogonal sets of concerns. For exampleand get _handle) that are inherited (but not defined) by
certain applications (such as a compiler or text editor) might the ACEService _Object subclass. Thénit method
benefit from dynamic linking, though they might not require serves as the entry-point to a service handler during run-
communication port event demultiplexing. Conversely, other time initialization. This method is responsible for perform-
applications (such as dtp server) may require event de- ing application-specific initialization when an instance of a

12

ACEService _Object is dynamically linked. Likewise, _ o
<svc—conf|g—entr|es> =

thefini method is called automatically by tt&ervice svc-config-entries sve-config-entry
; i i i . | NULL
Qonﬁgurator when aACEService _Object Isun- e configentrys = <dynamic> | <static>
linked and removed from an application at run-time. This | <suspend> | <resume> | <remove>
; ; ; ; _ | <stream> | <remote>
method typlc_ally performs termination operations that re <dynamic> = DYNAMIC <svc-location>
lease dynamically allocated resources (such as memory, 1/0 [<parameters-opt>]

; ; <static> ::= STATIC <svc-name>
handles, or synchronization locks). Thido method for- [<parameters-opt> |

mats a humanly-readable string that concisely reports service<suspend> ::= SUSPEND <svc-name>
addressing information and documents service functionality. Sesume> ::= RESUME <svc-name>
Clients may query an application to retrieve this information <stream> ::= STREAM <stream_ops>
and use it to contact a particular service running in the ap- <siream opss == <dyramies’] <datic>
plication. Finally, theget _handle method is used by the :Lﬁmjtgnsig ?IR!m%d;{I'e_fig\t/f-i%lggjggy> Y
Reactor to extract the underlying I/O handle from a ser- - | NULL
vice handler object. This I/O handle identifies a transport <module> ::= l“fg&zg‘éﬁj)l |<5<t?eﬂscu>me> | <remove>
endpoint that may be used to accept connections or receivesyc-location> ::= <svc-name> <type>
data from clients. <iype> = SERVICE_ OBIECT = | MODULE >
¢ Application-Specific Concrete Derived Subclasses: <svc-initia|izer>S T::FiEéc')\gject-lna'\rl#el}L
Service Object s an abstract class since its interface _ypiecnames = b ATHN ANUnCtion-name>
contains the abstract methods inherited from Ehent <function-name> ::= PATHNAME "’ IDENT '()’
Handler and Shared Object abstract base classes. Shaametors-ons rc STRING. | NULL
Therefore, developers must supply concrete subclasses that . .]
(1) define the six abstract methods described above and (2) ~ Figure 9: EBNF Format for a Service Config Entry
implement the necessary application-specific functionality.
To accomplish the latter task subclasses typically define cer-
tain virtual methods exported by tBervice Object in- |
terface. For example, tHeandle _input method is often
implemented to accept connections or data that are received
from clients.

The ACEAcceptor class depicted in Figure 8 (1) is an
example of an application-independent subclass that accepts

connection requests as part of a distributed logging facility.

Symbol | Description |

dynamic | Dynamically link and enable a service
static Enable a statically linked service
remove | Completely remove a service
suspend | Suspend service without removing it
resume | Resume a previously suspended service
stream | Configure a Stream into a daemon ||

This class is described further in the example presented in Table 1: Service Config Directives
Section 4.1.
from an application statically or dynamically. For dy-
3.4.2 The ACEServiceRepository Class namically linked ACEService _Objects , the reposi-
]] tory also maintains a handle to the underlying shared ob-
The Service Configurator class category supports ject file. This handle is used to unlink and unload a
the ACEService _Object from a running application when

configuration of both single-service and multi-service com- he service it offers is no longer required.
munication software. Therefore, to simplify run-time admin- A jterator class is also supplied in conjunction with the
istration, it is often necessary to individually and/or collec- AcE Sservice _Repository . This class is used to visit

tively control and coordinate theCE Service _Object s everyACEService _Object inthe repository withoutun-
that comprise an application’s currently activel services. duly compromising data encapsulation.
The ACEService _Repository is an object manager

that coordinates local and remote queries involving the Se2 43 The ACE Service Config Class

vices offered by &ervice Configurator -based ap-

plication. A search structure within the object manager The ACEService _Config class is the unifying com-

binds service names (represented as ASCII strings) with in-ponent in the Service Configurator framework.

stances oACEService _Object s (represented as object As illustrated in Figure 8 (3), this class integrates

code). A service name uniquely identifies an instance of athe otherService Configurator framework compo-

ACEService _Object stored in the repository. nents (such as thACEService _Repository and the
Each entry in theACEService _Repository con- ACEReactor) to automate the static and/or dynamic con-

tains a pointer to th&CEService _Object portion of figuration of concurrent, multi-service communication soft-
an application-specific derived class (shown in Figure 8 (2)). ware.

This enables th&ervice Configurator to load, en- The ACEService _Config class uses a configuration
able, suspend, resume, or unlgsdEService _Object s file (known assvc.conf) to guide its configuration and re-

13

CONFIGURE/
Service_Config::process_directives()

INITIALIZED
START EVENT LOOP/

Service _Config::run_event_loop()

AWAITING
EVENTS

RECONFIGURE/
Service_Config::process _directives()

SHUTDOWN/

Service_Config::clos() NETWORK EVENT/

Reactor::dispatch()

PERFORM
CALLBACK

CALL HANDLER/
Event_Handler::handle_input()

- J

Figure 10: State Transition Diagram for Service Configura-
tion, Execution, and Reconfiguration

configuration activities. Each application may be associated
with a distinctsvc.conf configuration file. Likewise, a
set of applications may be described by a sirsyie conf

file. Figure 9 describes the primary syntactical elements
in a svc.conf file using extended-Backus/Naur Format
(EBNF). Eachservice config entrin the file begins with a
service config directivehat specifies the configuration activ-
ity to perform. Table 1 summarizes the valid service config
directives.

Each service config entry contains attributes that indicate
the location of the shared obiject file for each dynamically
linked service, as well as the parameters required to initialize
the service at run-time. By consolidating service attributes
and initialization parameters into a single configuration file,
the installation and administration of the services in an appli-
cation is significantly simplified. Thevc.conf file helps
to decouple the structure of an application from the behavior
of its services. This decoupling also permits the “lazy” con-
figuration and reconfiguration of mechanisms provided by
the framework, based on the application-specific attributes
and parameters specified in thec.conf file.

Figure 10 depicts a state transition diagram illustrat-
ing the methods in th&ervice Configurator class
category that are invoked in response to events occurring
during service configuration, execution, and reconfigura-
tion. For example, when theONFIGURE and RECONFIG
URE events occur, thprocess _directives method of
the ACEService _Config class is called to consult the
svc.conf file. This file is first consulted when a new in-
stance of a application is initially configured. The file is
consulted again whenever application reconfiguration is trig-
gered upon receipt of a pre-designated external event (suc
as the UNIX SIGHUP signal or a notification arriving from
a socket).

14

3.5 Stream: Layered Serivce Integration

The Stream class category is the primary focal point of the
ADAPTIVE Communication Environment. This class cat-
egory contains the ADAPTIVE Service eXecutivASX
framework [6] ASX) framework, which integrates the lower-
level OO wrapper components (likBEC SAP) and higher-
level class categories (like thReactor and theService
Configurator). The ASXframework helps to simplify
the development of hierarchically-integrated communica-
tion software, particularly user-level communication proto-
col stacks and network servers. TA8Xframework is de-
signed to improve the modularity, extensibility, reusability,
and portability of both the application-specific services and
the underlying OS concurrency, IPC, explicit dynamic link-
ing, and demultiplexing mechanisms upon which these ser-
vices are built.

The ASX framework provides the following two benefits
to developers of communication software:

1. It embodies, encapsulates, and implements key de-
sign patternghat are commonly used to develop com-
munication software. Design patterns help to en-
hance software quality by addressing fundamental chal-
lenges in large-scale system development. These chal-
lenges include communication of architectural knowl-
edge among developers; accommodating new de-
sign paradigms or architectural styles; resolving non-
functional forces such as reusability, portability, and ex-
tensibility; and avoiding development traps and pitfalls
that are usually learned only by experience.

. It strictly separates key development concern&CE
separates communication software development into
two distinct categories: (1application-independent
concerns which are common to most or all com-
munication software (such as port monitoring; mes-
sage buffering, queueing, and demultiplexing; service
dispatching; local/remote interprocess communication;
concurrency control; and application configuration, in-
stallation, and run-time service management) and (2)
application-specific concernsvhich depend on an in-
dividual application. By reusing the OO wrappers and
frameworks provided by ACE, developers are freed
from spending their time reinventing solutions to com-
monly recurring tasks. In turn, this enables them to con-
centrate on the key higher-level functional requirements
and design concerns that constitute particular applica-
tions.

3.5.1 Primary ASXFeatures

The ASX framework increases the flexibility of communi-
cation software by decoupling application-specific process-
ing policies from the following configuration-related devel-

ippment activities and mechanisms:

e The type and number of services associated with each
application process: The ASXframework permits appli-

cations to consolidate one or more services into a single ad-objects may be joined together in essentially arbitrary con-
ministrative unit. This multi-service approach to configuring figurations to satisfy application requirements and enhance
communication software helps to (1) simplify development component reuse.

and reuse code by performing common service initialization))
activities automatically, (2) reduce the consumption of 0S ® The /O handle-based and timer-based event demulti-
resources (such as process table slots) by spawning servicB€Xing mechanisms: These mechanisms are used to dis-
handlers “on-demand,” (3) allow application services to be Patch incoming connection requests and data onto a pre-
updated without modifying existing source code or terminat- egistered application-specific handler. T@Xframework
ing an executing dispatcher process (such agntel su- uses theReactor class category to integrate the demulti-
perserver), and (4) consolidate the administration of network PIexing of I/O handle-based, timer-based, and signal-based
services via a uniform set of configuration management op- events via an extensible and type-safe object-oriented inter-

erations. face.

e The point of time at which a service is configured e The underlying IPC mechanisms: Application services
into an application: TheASXframework leverages offthe ~ May use théPC SAP mechanisms described in Section 3.1
Service Configurator framework (described in Sec- 10 exchange data with participating communication entities
tion 3.4.1) to provide an extensible object-oriented interface ONn local or remote end-systems. Unlike the weakly-typed,
that automates the use of OS mechanisms for explicit dy- ‘handle-based” socket and TLI interfaces, #HRC SAP
namic linking. Dynamic linking enhances the extensibility Wrappers enable applications to access the underlying OS
of communication software by permitting internal services |PC mechanisms via a type-safe, portable interface.

to be configured when an application first begins executing

or while it is running. This feature enables an application’s The ASX framework incorporates concepts from several
services to be dynamic reconfiguredthout requiring the modular communication frameworks including System V
modification, recompilation, relinking, or restarting of active STREAMS [39], thex-kernel [40], and the Conduit frame-
services. In théSXframework, the choice between static or work [41] from the Choices object-oriented operating system
dynamic configuration may selected on a per-service basis.(a survey of these and other communication frameworks ap-
Furthermore, this choice may be deferred until an application pears in [42]). These frameworks all contain features that
begins execution. support the flexible configuration of communication subsys-
tems by inter-connecting “building-block” protocol and ser-
vice components. In general, these frameworks encourage
the development of standard communication-related com-
gponents (such as message managers, timer-based event dis-
patchers, demultiplexors [40], and assorted protocol func-
o : . : : tions [43]) by decoupling processing functionality from the
plication concurrency configuration alternatives available to surrounding framework infrastructure. As described below,
developers. the ASXframework contains additional features that further

An efficient apphcaﬁon concurrency configuration often decouple processing functionality from the underlying pro-
depends upon certain service requirements and platformCeSS architecture

charf;cterlstlcs. .F;)r fexgmplle, a plrocv?ss-bgsedt.conﬂguratlon Unlike STREAMS, application services configured into
may be appropriate forimplementing long-auration SeIVICeS y, o Agx framework execute in user-space rather than in

(Sth as the Internétp andtelnet)th_at base. their se- kernel-space. There are several advantages to develop-
curity mechanisms on process ownership. In this case, eacq

service (or each active instance of a service) may be mappe ng general-purpose communication software in user-space,
. y PPEG . ther than within the OS kernel:
onto a separate process and executed in parallel on a multi-

processor platform. Different configurations may be more ¢ Access to general OS features: Applications developed
suitable in other circumstances, however. For instance, it iSto run in user-space have access to the full range of OS mech-
often simpler and more efficient to implement cooperating anisms (such as dynamic linking, memory-mapped files,
services (such as those found in end-systems of distributedmylti-threading, large virtual address spaces, interprocess
database engines) in separate threads since they frequentiyommunication mechanisms, file systems, and databases). In
reference common data structures. In this approach, eacteontrast, kernel-resident components are often restricted to a
service may be executed on a separate thread within thelimited set of kernel-specific mechanisms. Although there
same process to reduce the overhead of scheduling, contexjre idioms that overcome some of these limitatioasy(
switching, and synchronization [6]. maintaining a user-level daemon that performs file 1/0 on

. . . . , behalf of a kernel-resident component), these workarounds
e The order in which hierarchically-related services are :
tend to be somewhat inelegant and non-portable.

combined into an application: Complex services may be 2 : .

. . . . A process architecture represents a binding between one or more CPUs
Cpmpos_ed using an 'ntercqnneCted Senes of independent sefkygether with the application tasks and messages that implement services in
vice objects that communicate by passing messages. These communication system [6].

e The type of execution agents: In the ASX framework,
services may be performed at run-time via several different
types of process and thread execution agents. By decouplin
service functionality from the execution agent used to invoke
the service, thSX framework increases the range of ap-

15

e Enhanced development environment: Higher-level
programming tools (such as symbolic debuggers) may be
used to develop applications in user-space. Conversely, de-
veloping network services within a OS kernel is a complex
and challenging task, due to the primitive debugging tools
and subtle timing interactions in a kernel programming envi-

ronment [44]. It is risky to expect application developers to
program effectively in such a constrained environment.

e Increased system robustness: Exceptional conditions
(such as dereferencing NULL pointers, dividing by 0, etc.)
generated in a user-level process or thread should only affect
the offending process or thread. However, exceptional con-
ditions within a OS kernel may cause the entire operating
system to panic and crash. Moreover, rebooting the OS after
every crash quickly becomes tedious.

DOWNSTREAM
WVHILSd]

e Portability: Porting kernel-level drivers between differ-
ent OS platforms (and even different variants of the same
OS platform) typically entails many more complications NETWORK INTERFACH
than porting user-level application components between plat- OR PSEUDO-DEVICES
forms. The SunOS 5.x DDI/DKI API is intended to alle-
viate some of the portability problems on UNIX platforms, @ @ %
but that does not solve the portability problem for applica- MESSAGE P WTE READ
tions running on other platforms such as 0S/2, Windows NT, TASK TASK
VMS, and Novell Netware.

)) .) o Figure 11: Components in tie&SXFramework
The primary rationale for implementing distributed ser-

vices in a OS kernel is to improve performance. For ex-

ample, a kernel-residentimplementation of a communication ers to incorporate application-specific functionality into a
protocol stack often helps reduce scheduling, context switch- Stream without modifying the application-independ&sx

ing, and protection-domain boundary crossing overhead andframework components. For example, adding a service
may exhibit more predictable response time due to the uselayer into a Stream involves (1) inheriting from the default
of “wired” (rather than paged) memory. However, for many ACETask interface and selectively overriding several vir-
communication software applications, the increased flexibil- tual methods in the subclass to provide application-specific
ity, simplicity, robustness, and portability offered by user- functionality, (2) allocating a nevACEModule that con-
space development are key requirements that offset potentiatains two instances (one for the read-side and one for the

performance degradations. write-side) of the application-specif®CETask subclass,
and (3) inserting thCEModule into a Stream. Services
3.5.2 Stream Class Category Components in adjacent inter-connectefiCETask s collaborate by ex-

changing typed messages via a message passing interface.
Components in th&tream class category are responsible To avoid reinventing familiar terminology, many class
for coordinating the configuration and run-time execution of ,5mes in the Stream class category correspond to similar
one or moreACE Streamobjects. AnACEStream is an componentry available in the System V STREAMS frame-
object that user gpp!ications _c_ollabo_rate yvith to configure \,qrk [39]. However, the techniques used to support exten-
and execute application-specific services inA®Xframe- gjpjjity and concurrency in the two frameworks are signif-
work. As illustrated in Figure 3.5, ahCEStream contains jcantly different. For example, adding application-specific
a series of inter-connectedCEModule objects that may fnctionality to the ASX Stream classes is performed by
be linked together by (1) developers at installation-time or jnneriting several well-defined interfaces and implementa-
(2) applications at run-imeACEModule s are objects used {ions from existing framework components. Using inheri-
to decompose the architecture of an application into a seriesizce to add new functionality provides greater type-safety
of inter-connected, functionally distinct layers. Each layer inan the pointer-to-function techniques used in System V
typically implements a cluster of related service functional- sTREAMS. TheASX Stream classes also employ a differ-
ity (such as an end-to-end transport service or a presentation,; concurrency control scheme to reduce the likelyhood
layer formatting service). EverpCEModule contains a of deadlock and to simplify flow control betwedrask s
pair of ACETask objects that partition a layer into its con- i, 5 Stream. The\SX Stream classes completely redesign

stituent read-side and write-side processing functionality. 5ng reimplement the co-routine-based, “weightlésgtvice
OO language features (such as classes, inheritance, dy-

namic binding, and parameterized types) enable develop- *A weightless process executes on a run-time stack that is also used by

16

processing mechanisms used in System V STREAMS [45]. e Can execute user-defined services.

TheseASXchanges are intended to utilize multiple PEs on a

shared memory mu|ti-pr0cessor p|atf0rm more effecti\/e|y_ The ACETask abstract class defines an interface that
The remainder of this section discusses the primary com-is inherited and implemented by derived classes in order

ponents of the Stream class Categww(’ ACEStream to provide application-specific functionality. It is an ab-
class, theACEModule class, theACETask class in de- stract class since its interface defines the abstract methods

tail: (open, close , put , andsvc) described below. Defin-
) ing ACETask as an abstract class enhances reuse by de-
]:inThethACE_itre;\ﬂ Elta?:’ Tth € AS?FSELG%ESESS rﬂe' coupling the application-independent components provided
€s the applicatio ertacelo a stream. >lrea by the ACEStream class category from the application-
object contains a stack of one or more hierarchically-related

services that provide applications with a bi-directional specific subclasses that inherit from and use these compo-
VI provi pplicatic wi ol-directi nents. Likewise, the use of abstract methods allows the com-
get /put -style interface for sending and receiving data and

. iler to ensure that a subclassTddsk honors its obligation
control messages through the inter-connettedules that b g

comprise a particular Stream. TW&EStream class also
implements gush /pop -style interface that allows applica-

to provide the following functionality:

e |nitialization and Termination Methods Subclasses

tions to configure a Stream at run-time by inserting and re-
moving objects of thCEModule class described below.

e The ACE_Module Class: The ACEModule class de-
fines a distinct layer of application-specific functional-
ity. A Stream is formed by inter-connecting a series
of ACEModule objects. ACEModule objects in a
Stream are loosely coupled, and collaborate with adjacent
ACEModule objects by passing typed messages. Each
ACEModule object contains a pair of pointers to objects
that are application-specific subclasses of A@E Task
class described shortly below.

As shown in Figure 3.5, two defaukCEModule ob-
jects ACEStream _Head and ACEStream _Tail) are
installed automatically when a Stream is opened. These two
ACEModule s interpret pre-definedSX framework con-
trol messages and data messages that circulate through a
Stream at run-time. ThHRCE Stream _Head class provides
a message buffering interface between an application and a
Stream. ThACEStream _Tail class typically transforms
incoming messages from a network or from a pseudo-device
into a canonical internal message format that may be pro-
cessed by higher-level components in a Stream. Likewise,
for outgoing messages it transforms messages from their in-
ternal format into network messages.

e The ACE_Task Abstract Class: The ACETask class

is the central mechanism in ACE for creating user-defined
active objectg§11] andpassive objectthat process applica-
tion messages. An ACHask can perform the following
activities:

e Can be dynamically linked,;

e Can serve as a demultiplexing endpoint for I/O opera-
tions;

e Can be associated with multiple threads of control (1.e.,
become a so-called “active object”);

e Can store messages in a queue for subsequent process-
ing;
other processes, which complicates programming and increases the poten-

tial for deadlock. For example, a weightless process may not suspend exe-
cution to wait for resources to become available or events to occur.

17

derived fromACETask must implemenbpen and
close methods that perform application-specific
ACETask initialization and termination activities.
These activities typically allocate and free resources
such as connection control blocks, I/0 handles, and syn-
chronization locks.

ACETasks can be defined and used either to-
gether withACEModule s or separately. When used
with ACEModules they are stored in pairs: one
ACETask subclass handles read-side processing for
messages sent upstream toASEModule layer and

the other handles write-side processing messages send
downstream to itsModule layer. Theopen and
close methods of avlodule 's write-side and read-
side ACETask subclasses are invoked automatically
by the ASX framework when thACEModule is in-
serted or removed from a Stream, respectively.

o Application-Specific Processing Methodsn addition

to open andclose , subclasses cACETask must
also define theout andsvc methods. These meth-
ods perform application-specific processing functional-
ity on messages. For example, when messages arrive
at the head or the tail of a Stream, they are escorted
through a series of inter-connect&CETasks as a
result of invoking theput and/orsvc method of each
ACETask in the Stream.

A put method is invoked when ACETask at one
layer in a Stream passes a message to an adjacent
ACETask in another layer. Theut method runs
synchronouslyvith respect to its caller,e., it borrows

the thread of control from th€ask that originally in-
voked itsput method. This thread of control typi-
cally originate either “upstream” from an application
process, “downstream” from a pool of threads that han-
dle 1/O device interrupts [40], or internal to the Stream
from an event dispatching mechanism (such as a timer-
driven callout queue used to trigger retransmissionsin a
connection-oriented transport protoé&dCEModule).

If an ACETask executes as sassive objecfi.e.,
it always borrows the thread of control from the

~—1N MSG
svea »% A\ 4:svcQ)
3:putQ
g
SVC B _»% G \>Z:SVCO
A 1L:utQ
svc ¢ % .
_>

(1) TASK-BASED
CONCURRENCY ARCHITECTURE

SVC A

|

1

1

1

1

]

I

]

SVC B 1
1

1

I

1

1

svc e :
]

A12:putQ

L:utQ

—» > > —

(2) MESSAGE-BASED

CONCURRENCY ARCHITECTURE

Figure 12: Alternative Methods for Invokingut andsvc Methods

caller), then theACETask::put method is the en-
try point into theACETask and serves as the con-
text in which ACETask executes its behavior. In
contrast, if an ACEACETask executes as aactive
objectthe ACETask::svc method is used to per-
form application-specific processingsynchronously
with respect to otheACETask s. Unlike put , the
svc method is not directly invoked from an adja-
centACETask. Instead, it is invoked by a separate
thread associated with ilSCETask . This thread pro-
vides an execution context and thread of control for the
ACETask's svc method. This method runs an event
loop that continuously waits for messages to arrive on
theACETask 's ACEMessage _Queue (see next bul-
let).

Within the implementation of aut or svc method, a
message may be forwarded to an adjadeDE Task

in the Stream via theut _next ACE _Task utility
method. Put _next calls theput method of the next
ACETask residing in an adjacent layer. This invo-
cation ofput may borrow the thread of control from
the caller and handle the message immediatiedy, (
the synchronous processing approach illustrated in Fig-
ure 12 (1)). Conversely, theut method may enqueue
the message and defer handling tosie method that

is executing in a separate thread of contiat.(the
asynchronous processing approach illustrated in Fig-
ure 12 (2)). As discussed in [6], the particular process-
ing approach that is selected has a significant impact on
performance and ease of programming.

Message Queueing Mechanismdn addition to the
open, close , put , andsvc abstract method inter-
faces, each
ACETask also contains aCEMessage _Queue.

An ACEMessage Queue is a standard compo-

ACETasks . Moreover, when aACETask exe-
cutes as an active object, &CEMessage _Queue is

used to buffer a sequence of data messages and con-
trol messages for subsequent processing inshe
method. As messages arrive, fve method dequeues
the messages and performs th€ ETask subclass’s
application-specific processing tasks.

Two types

of messages may appear o0AGEMessage -Queue:
simple and composite. A simple message contains a
single ACEMessage _Block and a composite mes-
sage contains multiplaCEMessage _Block s linked
together. Composite messages generally consist of a
control block followed by one or mordatablocks. A
control block contains bookkeeping information (such
as destination addresses and length fields), whereas data
blocks contain the actual contents of a message. The
overhead of passingCEMessage Block s between
Task s is minimized by passing pointers to messages
rather than copying data.

ACEMessage _Queues contain a pair of high and low
water mark variables that are used to implement layer-
to-layer flow control between adjaceA€EModules

in a Stream. The high water mark indicates the amount
of bytes of messages th&CEMessage Queue is
willing to buffer before it becomes flow controlled. The
low water mark indicates the level at which a previously
flow controlledACETask is no longer considered to
be full.

4 ACE Examples

The ACE components are currently being used in several re-
search [46] and commercial environments [6, 38, 47] to en-

nent in ACE that is used pass information between hance the configuration flexibility and software component

18

() 1 n ~ —{Logging_Handle ~,~——1SOCK_Stream
z [-7 —
Oct 29 14:48:13 1992@crimee. cs.uci edu@38491@7@client: unable to fork in function spawn Su Z 7 1 |SOCK Acceptor ¢ p [NullSynch
Oct 29 14:50:28 1992@zola.ics.uci.edu@18352@2@drwho::sending request to server bastille '[:' = % \] /) 7
< = Ve 2 / 1~ i /
g9¢g (Loseing \ Logging /
STORAGE DEVICE - B E \ ACCC tor \ /
- RS \\ p // ACTIVATES \\ Handler /
] R N e
\ T \
\ \
\
. NG \
£aE8 "TTNISVC HANDLER | -7 ~TPEER_STREAM!
SERVER LOGGING =R=r \ I ~ | f I = I
DAEMON zE % \ IPEER_ACCEPTOR |) ISYNCH_STRAT
Oz s T T A
ge e q [Sve y
Vi
z & = \ \ \ /
5832 . Acceptor \ , Handler
o O N . \ 4
TTTosl 7 <
p% - -
int spawn (void) { W’w
if (fork () == -1) ISERVER m v -t
Log_Msg::log (LOG_ERROR, g A . 7 Y
"unable to fork in functi "); «) PEER
unable to fork in function spawn") = o% Q?*\$ \\/:C(_EPTOR// \\ A /]
I 7 = S~_~
& E =
o§ =} 5 Stream
NETWORK o B2z
) Omo
L “ZE
Z3
= O Service
if (Options::debugging) Conﬁgurator
Log_Msg:log (LOG_DEBUG,
"::Rgn% (r};q)ga to server %¢', Concurrency Reactor
Comm_Manager-:send (request, len);
N J Figure 14: Class Componentsin the Server Logging Daemon

Figure 13: The Distributed Logging Facility
4.1.1 Server Logging Daemon Components

The server logging daemon is a concurrent, multi-service
daemon that processes logging records received from one
or more client hosts simultaneously. The object-oriented
design of the server logging daemon is decomposed into
several modular components (shown in Figure 14) that per-
form well-defined tasks. The application-specific compo-
nents [ogging -Acceptor and Logging Handler)
are responsible for processing logging records received from
clients. The connection-oriented application components
(Acceptor andClient _Handler) are responsible for
4.1 Distributed Logging Example accepting connection requests and data from clients. Fi-
nally, the application-independent ASX framework compo-
Debugging distributed communication software is frequently nents (theACEReactor , Service Configurator ,
challenging since diagnostic output appears in differentwin- andIPC SAP class categories) are responsible for perform-
dows and/or on different remote host systems. Therefore,ing IPC, explicit dynamic linking, event demultiplexing, ser-
ACE provides a distributed Iogglng faC|I|ty that S|mpI|f|es vice dispatching, and concurrency control.
debugging and run-time tracing. This faC|I|ty is currently The Loggmg _Handler subclass is a parameterized
used in a commercial on-line transaction processing systemtype that is responsible for processing logging records sent
[14] to provide logging services for a cluster of worksta- to the server logging daemon from participating client hosts.
tions and multi-processor database servers in a high-speedts communication mechanisms may be instantiated with ei-
network environment. ther theSOCK SARI TLI SAP wrappers, as follows:
As ShO\{VI’l in Figure 1.3’ the diStriPUtEd !ogging facility al- class Logging_Handler . public Client_Handler <
lows applications running on multiple client hosts to send #if defined (MT_SAFE_SOCKETS)
logging records to a server logging daemon running on a ACE_SOCK_Stream,

reuse of communication software that operate efficiently and
portably across multiple hardware and software platforms.
To illustrate how theASXframework is used in practice, this
section examines the architecture of two commercial appli-
cations currently being developed using ACE components: a
distributed logging facility and a distributed monitoring sys-
tem for telecommunication switch devices.

? . . #else
designated server host. This section focuses on the ar- ACE_TLI_Stream,
chitecture and configuration of the server daemon portion #endif /* MT_SAFE_SOCKETS 7~
of the logging facility, which is based on thgervice { -

Configurator andACEReactor class categories pro- . o

vided by theASXframework. The complete design and im-
plementation of the distributed logging facility is described The Logging _Handler class inherits fromEvent
in [10]. Handler (indirectly via Client _Handler) rather than

19

Service Object since it is not dynamic linked into the
server logging daemon.

When Ioggmg reco'rds arrive from the client hpst s~ | | oGCING
sociated with a particulalogging _Handler object, DAEMON

Service
Config

the ACEReactor automatically dispatches the object's

handle _input method. This method formats and dis- St
plays the records on one or more output devices (such as thg - { et o
printer, persistent storage, and/or console devices illustrateq

in Figure 13).

TheLogging _Acceptor subclass is also a parameter-
ized type that is responsible for accepting connections from
client hosts participating in the logging service:

—

Logging
Handler

I

\

class Logging_Acceptor :

public Client_Acceptor<Logging_Handler, LOGGIN
#if defined (MT_SAFE_SOCKETS) CONNECTION || SERVER REMOTE
ACE_SOCK_Acceptor, REQUEST CONTROL
Helse OPERATIONS

ACE_TLI_Acceptor,
#endif /* MT_SAFE_SOCKETS *
ACE_INET_Addr>

o ¥ f—

Since the Logging _Acceptor
class inherits fronACEService _Object (indirectly via
its ACEAcceptor base class), it may be dynamically
linked into the server logging daemon and manipulated Figure 15: ACE Components in the Distributed Logging Fa-
at run-time via the server logging daemorsgc.conf cility

configuration file. Likewise, sinceogging _Acceptor
indirectly inherits from theACEEvent _Handler inter-
face, its handle _input method will be invoked au-
tomatically by the ACEReactor when connection re- »
quests arrive from clients. When a connection request The <svc-name > token Logger specifies the ser-
arrives, thelogging _Acceptor subclass allocates a Viceé name that is usgd at _mstallatlon and run-time to
Logging _Handler object and registers this object with identify the correspondingervice Object within the
the ACEReactor . ACEService _Repository . Service Object *

The modularity, reusability, and configurability of the dis- 1S the return type of thealloc method that is lo-
tributed logging facility is significantly enhanced by de- cated in the shared object file indicated by the pathname

coupling the functionality of connection establishment and /L09ger.so . TheService Configurator frame-
logging record reception into the two distinct class hi- yvork Iocates_and dynamically links this shared objeqt file
erarchies shown in Figure 14. This decoupling allows Nto the logging daemon’s address space. The service lo-

the ACEAcceptor class to be reused for other types of cat'ion alsq specifies thg name of the applicaFion—specific
connection-oriented services. In particular, to provide com- OPject derived fromService Object _In this case,
pletely different processing functionality, only the behavior the -alloc function is used to dynamically allocate a
oftheACEClient _Handler portion of the servicewould ~ NewLogging _Acceptor object. The remaining contents
need to be reimplemented. Furthermore, the use of parame®n the line (-p 7001") represent a application-specific

terized types decouples the reliance on a particular type IPcSe€t Of configuration parameters. These parameters are
mechanism. passed to thait method of the service awgc/argv -

style command-line arguments. Thet method for the

Logging _Acceptor class interprets-p 7001" as the
4.1.2 Server Logging Daemon Configuration port number where the server logging daemon listens for
client connection requests.

Statically configured services are always available to
a daemon when it first begins execution. For exam-
ple, the Service Manager is a standardService
Configurator framework component that clients use to
obtain a listing of active daemon services. The following en-
try in thesvc.conf file is used to statically configure the
Service Manager service into the server logging dae-

dynamic Logger Service_Object *
JLogger.so:_alloc() "-p 7001"

The ASXframework uses th8ervice Configurator

to enable the dynamic and static configuration of logging ser-
vices into the server logging daemon. Dynamically config-
ured services may be inserted, modified, or removed at run-
time, thereby improving service flexibility and extensibility.
The following svc.conf file entry is used to to dynami-
cally configure the logging service into the server logging
daemon:

20

open()

Logger A
Daemon Logging Acceptor

Logging_Handler Config

N

L: : Service : Service

: Reactor .
Repository

CONFIGURE
FOREACH SVC ENTRY DO

LOAD SERVICE

|
I
|
|
|
|
REGISTER SERVICE :
|

run_event_loop()

-
=

| process_directives()

1

load service() .

START EVENT LOOP |
FOREACH EVENT DO

|

|

|
CONNECTION EVENT |
|

REGISTER NEW HANDLER :
FOR CLIENT I/O |

|

|

DATA EVENT |
|

|

|

|

PROCESS LOGGING
RECORD

.
=

handle_events()
——=

|
|
|
|
:
register_handler(A) |
|
|
|
|
.

handle_input()

L =new Logging Handler

L.open (A);
register_handler(L)

_ handle_input()

write()

Figure 16: Interaction Diagram for the Server Logging Daemon

mon during initialization:
static ACE_Svc_Manager "-p 911"

In order for thestatic directive to work, the object
code that implements th®CE Svc _Manager service must
be statically linked together with the main daemon driver
executable program. In addition, theCE Svc _Manager
object must be inserted into ti&ervice Repository

before dynamic configuration occurs (this is done automati-

cally by theACEService _Config constructor). Due to

these constraints, a statically configured service may not becontmuously calls théCEReactor::handle

reconfigured at run-time without being removed from the

Service Repository first.

The main driver program for the server logger daemon is

implemented by the following code:

int
main (int argc, char *argv[])

ACE_Service_Config loggerd,;

/I Configure server logging daemon.
if (loggerd.open (argc, argv) == -1)
return -1,

/I Perform logging service.
loggerd.run_reactor_event_loop ();
return 0O;

}

Figure 16 depicts the run-time interaction between the vari-
ous framework and application-specific objects that collabo-
rate to provide the logging service. Daemon configuration is

performedinthCEService _Config::open

This method consults the followingyc.conf

method.
file, which

specifies the services to configure into the daemon:

static ACE_Svc_Manager -p 911
dynamic Logger Service_Object *
JLogger.so:_alloc() "-p 7001"

Each of the service config entries in thec.conf file is

pro-

cessed by inserting the designafe@E Service

_Object

21

into the ACEService _Repository and registering the
ACEEvent _Handler portion of the service object handler
with the ACEReactor .

When all the configuration activities have been com-
pleted, the main driver program shown above in-
vokes therun _reactor _event _loop method of the
ACEService _Config . This method enters an event loop
that
_events
service dispatch method. As shown in Figure 10, this dis-
patch function blocks awaiting the occurrence of events
(such as connection requests or I/O from clients). As these
events occur, th\CEReactor automatically dispatches
previously-registered event handlers to perform the desig-
nated application-specific services.

The ASXframework also responds to external events that
trigger daemon reconfiguration at run-time. The dynamic
configuration steps outlined above are performed whenever
an executingASXbased daemon receives a pre-designated
external event (such as the UNIX SIGHUP signal). Depend-
ing on the updated contents of teec.conf file, services
may be added, suspended, resumed or removed from the dae-
mon.

The ASX framework’s dynamic reconfiguration mecha-
nisms enable developers to modify server logging daemon
functionality or fine-tune performance without extensive re-
development and reinstallation effort. For example, debug-
ging a faulty implementation of the logging service simply
requires the dynamic reinstallation of a functionally equiva-
lent service that contains additional instrumentation to help
isolate the source of erroneous behavior. Note that this re-
installation process may be performed without modifying,
recompiling, relinking, or restarting the currently executing
server logging daemon.

4.2 Distributed PBX Monitoring System

Figure 17 illustrates the client/server architecture of a private
branch exchange (PBX) telecommunication switch monitor-
ing system implemented usigSXframework components

[20]. In this distributed communication system, the server
receives and processes status information generated by on
or more PBXs attached to the server via a high-speed com-
munication link. The server transforms and forwards this sta-
tus information across a network to client end-systems that

|suPER-|
VISOR

SUPER-
LVISOR

SUPER-||
VISOR |
[T\

: Session

graphically display the information to end-users. End-users Router .
are typically supervisors who use the PBX status informa- :Event § \\ // i .
tion to monitor the performance of personnel and forecast e g E\:II‘/) : fonbg
the allocation of rgsources to meet customer demands. 1;3;;; H E\\\\\ 7/% S P
The PBX devices attached to the server are con- i S Repository
trolled by the Device _Adapter ACE _Module . This Adapter E\I‘/-)

ACEModule shields the rest of the server from PBX-

specific communication characteristics. The read-side of the

Device _Adapter ACE _Module maintains a collection of

Device _Handler objects (one per-PBX) that are respon-

sible for parsing and transforming incoming device events

into a canonical PBX-independent message object built atop

a flexible message management class described in [6].
After being initialized, incoming canonical message ob-

jects are passed to the read-side of EBvent _Analyzer

ACEModule . This Module implements the application-

specific functionality for the server. An internal addressing Figure 17:ASXComponents for the PBX Application

table maintained within th&vent Analyzer is used to

determine which client(s) should receive each message ob-

ject. After theEvent _Analyzer determines the proper to dispatch incoming client messages to the appropri-

destination(s), the message object is forwarded to the readate Client _Handler or Device _Handler event han-

side of theMulticast _Router ACE _Module . dler. Control messages arriving from clients are sent
The Multicast _Router ACE _Module is a reusable down the write-side of the Stream, starting with the

component that shields the rest of the application-specific Multicast _Router and continuing through the inter-

server code from knowledge of the client/server interactions connected write-side of the StreaACEModule s to the

and from the particular choice of communication protocols. Device _Adapter , which sends them to the appropriate

Clients subscribe to receive events published by the server byPBX device. Likewise, theReactor detects incoming

establishing a connection with thdulticast _Router events from PBX devices and dispatches them up the Stream

ACEModule . The write-side of thdulticast _Router starting at théDevice _Adapter ACE _Module .

ACEModule accepts connection requests from clients and

creates a separaiglient _Handler object to manage . .

each client connection. Th@lient _Handler objecthan- 4.3 Server Configuration

dles all subsequent data transfer and control operations beThe ACEModule s that comprise the PBX server may be

thween the ieg’er’tmﬂ its assoqlgtedq clt|entt.h Otnce af g:;;tconflgured into the server at any time. TABXframework
as connected wi e server, It indicates the type o provides this degree of flexibility via the use of explicit dy-

event(s) it is interested in monitoring. From that point, when namic linking driven by thevc.conf configuration script.

the read-side of th#ulticast ~_Router receives a mes- The following configuration script indicates which services

sage object from th&vent Analyzer , it automatically are to be dynamically linked into the address space of the
multicasts the message to all clients that have subscribed tg

ASX RUN-TIME

: : Switch
Handle Handler

TELECOM " 2
SWITCHES SERVER

%erver:
receive the particular type of event encapsulated in the mes-
sage object. stream Server_Stream dynamic

The ACEService _Config object is used by the STREAM * /svcs/Server_Stream.so : _alloc()
server to control the initialization and termination of dynamic Device_Adapter
StreamACEModule components that are configured stat- Module * /svcs/iDA.so:_alloc() "-p 2001
. dynamic Event_Analyzer
ically at installation-time or dynamically during run-time. Module * /svcs/EA.so:_alloc()

; ; i i i dynamic Multicast_Router
The ACEService _Config object c;ontams an mstance Module * /svesMR.so:_alloc() ™-p 2010"
of the ACEReactor event demultiplexor that is used }

22

This configuration script indicates the order in which the
hierarchically-related services are dynamically linked and (
pushed onto th8erver Stream . During application ini-
tialization, theService Config class parses this config-
uration script and carries out the directives that describe each
entry.

The Server Stream is
composed of threACEModule s (theDevice _Adapter
the Event _Analyzer , and theMulticast _Router)
that are dynamically configured into the server. The indi-
cated shared object file is linked dynamically into the server
(as specified by thelynamic directive). An instance of

[SUPER]
VISOR

SUPER-
| VISOR

. Event :Event [N 7770 || <=
Filter @ @ .

|SUPER-
| VISOR

: Session

Module object is then extracted from the shared object li- Router
brary by calling the_alloc function. As described be- : Event k
low, theseModule s may be subsequently updated and re- Analyzer %
linked if necessaryg.g.,to install an updated version of a : Switch

Adapt
ACEModule) without completely terminating the execut- e

ing PBX server.

4.4 Server Reconfiguration

There are a number of drawbacks associated with statically]
gonﬂgurmg services into a communication software appllca- TELECOM : : EVENT

tion. For example, performance bottlenecks may result if too SWITCHES SERVER

many services are configured into the server-side an applical J
tion and too many active clients simultaneously access these

services. Conversely, configuring too many services into the Figure 18: Reconfiguration of PBX Monitoring System
client-side may also result in bottlenecks since clients often

execute on less powerful end-systems. In general, it is diffi-

cult to determine the appropriate partitioning of application remove Event Analyzer

servicesa priori since processing characteristics and work- remote "-h all -p 911"

loads may vary over time. Therefore, a primary objective of { stream Server_Stream

the ASX framework was to develop object-oriented service {
configuration mechanisms that allow developers to defer un-

til very late in the development cycle (i.e., installation-time _ }
or run-time) decisions regarding which services ran in the Eesume Server Stream

client-side and which ran in the server-side. -

To facilitate flexible reconfiguration, the run-time control This new script migrates processing functionality from
environment provided by thASX framework enables de- the server to the clients by dynamically unlinking
velopers to alter their application service configurations ei- ACEModule s from the server's Stream and dynamically
therstaticallyat installation-time odynamicallyduring run- linking them into each client’s Stream [20].
time. This is useful since different OS/hardware platforms The ASXframework replaced a previous architecture that
and different network characteristics often require different used ad hoc techniques (such as parameter passing and
service configurations. For example, in some configurations shared memory) to exchange messages between related ser-
the server performs most of the work, whereas in others thevices in the server. In contrast to the previous approach, the
clients do more of the work. Moreover, different end-system highly uniformACEModule inter-connection mechanisms
configurations may be appropriate under different circum- provided by theASXframework greatly simplify portability
stances (such as whether multi-processor server platforms oand configurability.
high-speed networks are available). Figure 18 illustrates how
the configuration shown in Figure 17 may be altered to oper-
ate efficiently in a distributed environment where the server 5 Concluding Remarks
processing constitutes the primary bottleneck.

This reconfiguration process is accomplished via the fol- The ADAPTIVE Communication Environment (ACE) is a

dynamic Event_Analyzer
Module * /svcs/EA.so : _alloc()

lowing script: toolkit containing OO components that help reduce dis-
tributed software complexity by reifying successful design
suspend_Server_Stream patterns and software architectures. ACE consolidates com-

stream Server_Stream . . L
mon communication-related activities (such as local and re-

23

mote IPC [4], event demultiplexing and service handler dis- [13] D. C. Schmidt, “The Reactor: An Object-Oriented Interface
patching [14], service initialization [16, 17] configuration

mechanisms for distributed applications containing mono-
lithic and layered services [20], distributed logging [13], and [14]
intra- and inter-service concurrency [46]) into reusable OO

components and frameworks.
ACE is freely available via the World Wide Web at URL

www.cs.wustl.edu/"schmidt/ACE.html
distribution contains the source code, documentation, and
example test drivers developed at Washington University, St.

This

Louis. ACE is currently being used in communication soft-

ware at many companies including Bellcore, Siemens, DEC, [16]

Motorola, Ericsson, Kodak, and McDonnell Douglas. ACE

has been ported to Win32 (i.e., WinNT and Win95), most

versions of UNIX (e.g., SunOS 4.x and 5.x, SGI IRIX, HP-

UX,
(such as VxWorks and MVS OpenEdition). There are both

OSF/1, AlX, Linux, and SCO), and POSIX systems

C++ [6] and Java [48] versions of ACE available.

References

(1]
(2]

(3]
(4]

(5]

(6]

(7]

(8]
(9]

[10]

[11]

[12]

F. P. Brooks, The Mythical Man-Month Reading, MA:
Addison-Wesley, 1975.

S. J. Leffler, M. McKusick, M. Karels, and J. Quarterma&hge
Design and Implementation of the 4.3BSD UNIX Operating
SystemAddison-Wesley, 1989.

S. Rago,UNIX System V Network Programmindreading,
MA: Addison-Wesley, 1993.

D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-

Oriented Components for High-speed Network Program-

ming,” in Proceedings of thel* Conference on Object-
Oriented Technologies and SystemgMonterey, CA),
USENIX, June 1995.

G. Booch, Object Oriented Analysis and Design with Ap-
plications @™ Edition). Redwood City, California: Ben-
jamin/Cummings, 1994.

D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” iRProceedings of the
6" USENIX C++ Technical Conferenc¢Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

D. E. Comer and D. L. Stevenkyternetworking with TCP/IP
Vol llI: Client — Server Programming and Applicatiangn-
glewood Cliffs, NJ: Prentice Hall, 1992.

W. R. StevensUNIX Network Programming, First Edition
Englewood Cliffs, NJ: Prentice Hall, 1990.

E. Gamma, R. Helm, R. Johnson, and J. Vlissidssign Pat-
terns: Elements of Reusable Object-Oriented SoftwRead-
ing, MA: Addison-Wesley, 1995.

D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Desigd. O.
Coplienand D. C. Schmidt, eds.), pp. 529-545, Reading, MA:
Addison-Wesley, 1995.

R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming, Pattern
Languages of Program Desigd. O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

(15]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

R. Johnson and B. Foote, “Designing Reusable Classes,” [28]

Journal of Object-Oriented Programmingol. 1, pp. 22-35,
June/July 1988.

24

for Event-Driven UNIX I/O Multiplexing (Part 1 of 2),C++
Report vol. 5, February 1993.

D. C. Schmidt, “The Object-Oriented Design and Implemen-
tation of the Reactor: A C++ Wrapper for UNIX I/O Multi-
plexing (Part 2 of 2),C++ Report vol. 5, September 1993.

I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Asynchronous
Completion Token: an Object Behavioral Pattern for Effi-
cient Asynchronous Event Handling,” The3™¢ Annual Con-
ference on the Pattern Languages of Programs (Washington
University technical report #WUCS-97-Q{Monticello, Illi-
nois), pp. 1-7, February 1997.

D. C. Schmidt, “Design Patterns for Initializing Network Ser-
vices: Introducing the Acceptor and Connector Patterns,”
C++ Report, vol. 7, November/December 1995.

D. C. Schmidt, “Connector: a Design Pattern for Actively
Initializing Network Services,’C++ Report, vol. 8, January
1996.

D. C. Schmidt, “Acceptor and Connector: Design Patterns for
Initializing Communication Services,” iithe 15 European
Pattern Languages of Programming Conference (Washington
University technical report #WUCS-97-00uly 1997.

D. C. Schmidt, “IPCSAP: An Object-Oriented Interface to
Interprocess Communication Service€¥+ Report, vol. 4,
November/December 1992.

D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-

nication SystemsJEE/BCS Distributed Systems Engineering

Journal (Special Issue on Configurable Distributed Systems)
vol. 2, pp. 280-293, December 1994.

P. Jain and D. C. Schmidt, “Service Configurator: A Pat-
tern for Dynamic Configuration and Reconfiguration of Com-
munication Services,” iThe3"¢ Pattern Languages of Pro-
gramming Conference (Washington University technical re-
port #WUCS-97-07)February 1997.

D. C. Schmidt, “An OO Encapsulation of Lightweight OS

Concurrency Mechanisms in the ACE Toolkit,” Tech. Rep.
WUCS-95-31, Washington University, St. Louis, September
1995.

D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-Async: an
Architectural Pattern for Efficient and Well-structured Con-
current 1/0,” inPattern Languages of Program Desigh O.
Coplien, J. Vlissides, and N. Kerth, eds.), Reading, MA:
Addison-Wesley, 1996.

D. C. Schmidt and T. Harrison, “Double-Checked Locking
— An Object Behavioral Pattern for Initializing and Access-
ing Thread-safe Objects Efficiently,” ifihe3"? Pattern Lan-
guages of Programming Conference (Washington University
technical report #WUCS-97-07frebruary 1997.

Bjarne Stroustrup and Margret Ellishe Annotated C++ Ref-
erence Manual Addison-Wesley, 1990.

I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical ImagingSENIX Comput-
ing Systemsvol. 9, November/December 1996.

R. Davis, Win32 Network Programming Reading, MA:
Addison-Wesley, 1996.

D. L. Presotto and D. M. Ritchie, “Interprocess Communica-
tion in the Ninth Edition UNIX System,UNIX Research Sys-
tem Papers, Tenth Editiorol. 2, no. 8, pp. 523-530, 1990.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

W. R. StevensAdvanced Programming in the UNIX Environ-
ment Reading, Massachusetts: Addison Wesley, 1992.

R. Gingell, J. Moran, and W. Shannon, “Virtual Memory Ar-
chitecture in SunOS,” irProceedings of the Summer 1987
USENIX Technical Conferenc@hoenix, Arizona), 1987.

J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedings of the Summer USENIX Confere(8an
Antonio, Texas), June 1992.

IEEE, Threads Extension for Portable Operating Systems
(Draft 10), February 1996.

D. C. Schmidt, “Transparently Parameterizing Synchroniza-
tion Mechanisms into a Concurrent Distributed Application,”
C++ Report, vol. 6, July/August 1994.

G. Booch and M. Vilot, “Simplifying the Booch Compo-
nents,”C++ Report, vol. 5, June 1993.

R. Gingell, M. Lee, X. Dang, and M. Weeks, “Shared
Libraries in SunOS,” inProceedings of the Summer 1987
USENIX Technical Conferencéhoenix, Arizona), 1987.

W. W. Ho and R. Olsson, “An Approach to Genuine Dy-
namic Linking,” Software: Practice and Experienceol. 21,
pp. 375-390, Apr. 1991.

H. Custer,Inside Windows NT Redmond, Washington: Mi-
crosoft Press, 1993.

D. C. Schmidt and P. Stephenson, “Experiences Using Design
Patterns to Evolve System Software Across Diverse OS Plat-
forms,” in Proceedings of th@'" European Conference on
Object-Oriented Programming(Aarhus, Denmark), ACM,
August 1995.

D. Ritchie, “A Stream Input—Output SystemAT&T Bell
Labs Technical Journalol. 63, pp. 311-324, Oct. 1984.

N. C. Hutchinson and L. L. Peterson, “Tlkekernel: An Ar-
chitecture for Implementing Network ProtocollFEE Trans-
actions on Software Engineeringol. 17, pp. 64-76, January
1991.

J. M. Zweig, “The Conduit: a Communication Abstraction in
C++,” in Proceedings of the"? USENIX C++ Conference
pp. 191-203, USENIX Association, April 1990.

D. C. Schmidt and T. Suda, “Transport System Architecture
Services for High-Performance Communications Systems,”
IEEE Journal on Selected Areas in Communicatieol. 11,

pp. 489-506, May 1993.

D. C. Schmidt, B. Stiller, T. Suda, A. Tantawy, and M. Zit-
terbart, “Language Support for Flexible, Application-Tailored
Protocol Configuration,” inProceedings of thé 8" Con-
ference on Local Computer Network@vinneapolis, Min-
nesota), pp. 369-378, IEEE, Sept. 1993.

A. McRae, “Hardware Profiling of Kernels,” iIdSENIX Win-
ter Conferencg(San Diego, CA), USENIX Association, Jan.
1993.

S. Saxena, J. K. Peacock, F. Yang, V. Verma, and M. Krish-
nan, “Pitfalls in Multithreading SVR4 STREAMS and other
Weightless Processes,” Rroceedings of the Winter USENIX
Conference(San Diego, CA), pp. 85-106, Jan. 1993.

D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dy-
namically Assembled Protocol Transformation, Integration,
and eValuation EnvironmentJournal of Concurrency: Prac-
tice and Experiencevol. 5, pp. 269-286, June 1993.

25

[47] D.C. Schmidt, “A Family of Design Patterns for Application-

level Gateways,The Theory and Practice of Object Systems
(Special Issue on Patterns and Pattern Languages). 2,
no. 1, 1996.

[48] P. Jain and D. Schmidt, “Experiences Converting a C++

Communication Software Framework to Java#+ Report,
vol. 9, January 1997.

