
UNIX Network Programming

Overview of STREAMS

Douglas C. Schmidt

1

STREAMS Overview

� STREAMS is a 
exible communication sub-
system framework

{ Originally developed by Dennis Ritchie for Research

UNIX

� STREAMS provides a uniform infrastruc-
ture for developing and con�guring character-
based I/O

{ e.g., networks, terminals, local IPC

� STREAMS supports the addition and re-
moval of processing components at installation-
time or run-time

{ Via user-level or kernel-level commands
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STREAMS Overview (cont'd)

� The STREAMS paradigm is data-driven, not
demand-driven

{ i.e., asychronous in the kernel, yet synchronous at

the application

� Supports both immediate and deferred pro-

cessing

� Internally, data are transferred by passing
pointers to messages

{ Goal is to reduce memory-to-memory copying over-

head

3

STREAMS Bene�ts

� STREAMS provides an integrated environ-

ment for developing kernel-resident network-

ing services

� STREAMS promotes de�nition of standard
service interfaces

{ e.g., TPI and DLPI

� STREAMS supports dynamic \service sub-

stitution" controlled by user-level commands
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STREAMS Bene�ts (cont'd)

� Message-based interfaces enable o�-board

protocol migration

� Permits layered and de-layered multiplexing

� More recent implementations take advan-

tage of parallelism in the operating system

and hardware
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A Module on a Stream
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The Stream Head

� A \stream head" exports a uniform service
interface to other layers of the UNIX kernel

{ Including the application \layer" running in user-

space

� General stream head services include

1. Queueing

(a) Provides a synchronous interface to asychronous

devices

2. Datagram- and stream-oriented data transfer

3. Segmentation and reassembly of messages

4. Event propagation

{ i.e., signals
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The Stream Head (cont'd)
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The Stream Head (cont'd)

� Stream head operations include

{ stropen()

. called from �le system layer to open a Stream

{ strclean()

. called from �le system layer to remove event

cells from Stream Head when a �le is closed

{ strclose()

. called from the �le system layer to dismantle a

Stream

{ strread()

. called from the �le system layer to retrieve data

messages coming upstream
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� Stream Head operations (cont'd)

{ strwrite()

. called from the �le system layer to send data

messages downstream

{ strioctl()

. called from the �le system layer to perform con-

trol operations

{ strgetmsg()

. called from the system call layer to get a protocol

or data message coming upstream

{ strputmsg()

. called from the system call layer to send a pro-

tocol or data message downstream

{ strpoll()

. called from the �le system layer to check if pol-

lable events are satis�ed
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Messages

� In STREAMS, all information is exchanged
via messages

{ i.e., both data and control messages of various

priorities

� Amulti-component message structure is used
to reduce the overhead of

1. Memory-to-memory copying

{ i.e., via \reference counting"

2. Encapsulation/de-encapsulation

{ i.e., via \composite messages"

� Messages may be queued at STREAM mod-

ules
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Message Structure
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Composite Message
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Message Bu�er Sharing
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STREAMS Message Types

M DATA user data

M PROTO protocol information

M PASSFP pass �le pointer

M IOCTL user ioctl() request

M BREAK request line break

M SIG signal process group

M DELAY request transmit delay

M CTL module-speci�c control message

M SETOPTS set Stream head options

M RSE reserved for RSE use

� Normal priority messages

{ M DATA, M PROTO, M PASSFP, and M IOCTL

may be generated from user-level

{ Typically subject to 
ow control
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STREAMS Message Types

(cont'd)

M PCPROTO protocol information

M FLUSH 
ush queues

M IOCACK acknowledge ioctl() request

M IOCNAK fail ioctl() request

M COPYIN request to copyin ioctl() data

M COPYOUT request to copyout ioctl() data

M IOCDATA reply to M COPYIN and M COPYOUT

M PCSIG signal process group

M READ read noti�cation

M HANGUP line disconnect

M ERROR fatal error

M STOP stop output immediately

M START restart output

M STOPI stop input immediately

M STARTI restart input

M PCRSE reserved for RSE use

� High priority messages

* Typically not 
ow controlled

* M PCPROTO may be generated from user-level

* Others passed between STREAM components
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Queue Structure
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Queue Structure (cont'd)

� queue t

{ Primary data structure

. Each module contains a write queue and a read

queue

{ Stores information on 
ow control, scheduling, max/min

interface sizes, linked messages, private data

� qinit

{ Contains put(), service(), open(), close()
subroutines

� qband

{ Contains information on each additional message

band > 0 and < 256

� module info

{ Stores default 
ow control information
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Queue and Message Linkage
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Queue Subroutines

� Four standard subroutines are associated with
queues in a module or driver, e.g.,

{ open(queue t *q, dev t *devp, int o
ag, int s
ag,

cred t *cred p);

. Called when Stream is �rst opened and on any

subsequent opens

. Passed a pointer to the new read queue

. Also called any time a module is \pushed" onto

the Stream

{ close(dev t dev, int 
ag, int otyp, cred t *cred p);

. Called when last reference to a Stream is closed

. Also called when a module is \popped" o� the

Stream
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Queue Subroutines (cont'd)

� Standard subroutines (cont'd)

{ put(queue t *q, mblk t *mp)

. Performs immediate processing

. Supports synchronous communciation services

� i.e., further queue processing is blocked until

put() returns

{ service(queue t *q)

. Performs deferred processing

. Supports asynchronous communication services

� Uses the message queue available in a queue

. Runs as a \weightless" process: : :
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Queue Flow Control
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� put() and service() work together to support ad-

visory 
ow control

23

Flow Control and the service()

Procedure

� Typical non-multiplexed example

int service (queue t *q)

f

mblk t *mp;

while ((mp = getq (q)) != 0)

if (queclass (mp) == QPCTL jj

canputnext (q)) f

/* Process message */

putnext (q, mp);

g

else f

putbq (q, mp);

return 0;

g

g

� Flow control is more complex with multi-

plexers and concurrency
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Flow Control and the canput()

Procedure

� canputnext() is used by put() and service()

routines to test advisory 
ow control condi-

tions

� e.g.,

int canputnext (queue t *q)

f

�nd closest queue with a service() procedure

if (queue is full) f

set 
ag for \back-enabling"

return 0;

g

return 1;

g

� Note that non-MP systems may use canput(): : :
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Flow Control and the put()

Procedure

� Typical put() example

int put (queue t *q, mblk t *mp)

f

if (queclass (mp) == QPCTL jj

canputnext (q)) f

/* Process message */

putnext (q, mp);

else

putq (q, mp);

/* Enables service routine */

return 0;

g
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putq()

� The int putq(queue t *, mblk t *) function
enqueues a message on a queue

{ It is typically called by a queue's put() procedure

when it can no longer proceed: : :

� putq() automatically handles

1. priority-band allocation

2. priority-band message insertion

3. 
ow control

� Enqueueing a high priority message auto-
matically schedules the queue's service()
procedure to run at some point

{ Di�ers on MP vs. non-MP system
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getq()

� The mblk t *getq(queue t *) function dequeues
a message from a queue

{ It is typically called by a queue's service() pro-

cedure

� Messages are dequeued in priority order

{ i.e., higher priority messages are stored �rst in the

queue!

� getq() handles

1. Flow control

2. Back-enabling

� getq() returns 0 when there are no available

messages

28



Multiplexing

� STREAMS provides rudimentary support for
multiplexing via multiplexor drivers

{ Unlike modules, multiplexors occupy a �le-system

node that can be \opened"

. Rather than \pushed"

� Multiplexors may contain one or more upper
and/or lower connections to other STREAM
modules and/or multiplexors

{ Enables support for layered network protocol suites

. e.g., "/dev/tcp"

� Note there is no automated support for prop-

agating 
ow control across multiplexors
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Multiplexor Links (before)
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Multiplexor Links (after)
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Internetworking Multiplexor
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Driver Data Structure Linkage
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Module Data Structure Linkage
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Pipes and FIFOs

� In SVR4 and Solaris, the traditional local

IPC mechanisms such as pipes and FIFOs

have been reimplemented using STREAMS

� This has broaded the semantics of pipes and
FIFOs in the following ways:

1. Pipes are now bidirectional (STREAM pipes)

2. Pipes and FIFOs now support both bytestream-

oriented and message-oriented communication

{ ioctl()s exist to modify the behavior of STREAM

descriptors to enable or disable many of the new

features

3. Pipes can be explicitly named and exported into

the �le system

4. Pipes and FIFOs can be extended by having mod-

ules pushed onto them
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Pipes and FIFOs (cont'd)

WRITE

QUEUE

READ

QUEUE

APPLICATION

WRITE

QUEUE

READ

QUEUE

APPLICATION

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

USER

KERNEL

S
T

R
E

A
M

H
E

A
D

S

APPLICATIONAPPLICATION

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

USER

KERNEL

STREAM

HEAD

STREAM  PIPE

FIFO

mkfifo ("/tmp/fifo");

open ("/tmp/fifo", 1);

int fds[2];

pipe (fds);

fork ();

open ("/tmp/fifo", 0);

36



Mounted Streams and CONNLD

� In earlier generations of UNIX, pipes were
restricted to allowing multiplexed commu-
nication

{ This is overly complex for many client/server-style

applications

� SVR4 UNIX and Solaris provide a mech-
anism known as \Mounted Streams" that
permits non-multiplexed communication

{ This provides semantics similar to UNIX domain

sockets

{ However, Mounted Streams are more 
exible since

they incorporate other features of STREAMS
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Mounted Streams and CONNLD

(cont'd)
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Layered Multiplexing
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Layered Multiplexing (cont'd)

� Advantages

{ Share resources such as control blocks

{ Supports standard OSI and Internet layering mod-

els

� Disadvantages

{ More processing involved to demultiplex in deep

protocol stacks

{ May be more di�cult to parallelize due to locks

and shared resource contention

{ Hard to propagate 
ow control and QOS info across

muxer
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De-layered Multiplexing
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De-layered Multiplexing (cont'd)

� Advantages

{ Less processing for deep protocol stacks

{ Potentially increased parallelism due to less con-

tention and locking required

{ Easier to propagate 
ow control and QOS info

� Disadvantages

{ Violates layering (e.g., need a packet �lter)

{ Replicates resources such as control blocks
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STREAM Concurrency

� Modern versions of STREAMS support multi-
processing

{ Since modern UNIX systems have multi-threaded

kernels

� Di�erent levels of concurrency support in-
clude

1. Fine-grain

* Queue-level

* Queue-pair-level

2. Coarse-grain

* Module-level

* Module-class-level

* Stream-level

� Note, developers must use kernel locking

primitives to provide mutual exclusion and

synchronization
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Concurrency Alternatives
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Concurrency Alternatives (cont'd)

STREAM
Heads

STREAM
Tail

APPLICATION

Modules

APPLICATION

Modules

C1 C2

CP_TCP::put
(Message_Block *mb)
{ /* outgoing */ }

CP_IP::put
(Message_Block *mb)
{ /* outgoing */ }

CP_XDR::put
(Message_Block *mb)
{ /* outgoing */ }

CP_XDR::put
(Message_Block *mb)
{ /* incoming */ }

CP_TCP::put
(Message_Block *mb)
{ /* incoming */ }

CP_IP::put
(Message_Block *mb)
{ /* incoming */ }

CP_DLP::svc (void)
{ /* incoming */ }

CP_DLP::svc (void)
{ /* outgoing */ }

NETWORK  DEVICES
OR  PSEUDO-DEVICES

PROCESS
OR  THREAD

WRITE
QUEUE
OBJECT

READ
QUEUE
OBJECT

MODULE
OBJECT

MESSAGE
OBJECT

� Connectional Parallelism

45



Concurrency Alternatives (cont'd)
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STREAMS Evaluation

� Advantages

{ Portability, availability, stability

{ Kernel-mode e�ciency

� Disadvantages

{ Stateless process architecture

. i.e., cannot block!

{ Lack of certain support tools

. e.g., standard demultiplexing mechanisms

{ Kernel-level development environment

. Limited debugging support: : :

{ Lack of real-time scheduling for STREAMS processing: : :

. Timers may be used for \isochronous" service
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Summary

� STREAMS provides a 
exible communica-

tion framework that supports dynamic con-

�guration and recon�guration of protocol

functionality

� Module interfaces are well-de�ned and rea-

sonably well-documented

� Support for multi-processing exists in So-

laris 2.x
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