UNIX Network Programming

Overview of STREAMS

Douglas C. Schmidt

STREAMS Overview

e STREAMS is a flexible communication sub-
system framework

— Originally developed by Dennis Ritchie for Research
UNIX

e STREAMS provides a uniform infrastruc-
ture for developing and configuring character-
based I/O

— e.g., networks, terminals, local IPC

e STREAMS supports the addition and re-
moval of processing components at installation-
time or run-time

— Via user-level or kernel-level commands

STREAMS Overview (cont’d)

e The STREAMS paradigm is data-driven, not
demand-driven

— i.e., asychronous in the kernel, yet synchronous at
the application

e Supports both immediate and deferred pro-
cessing

e Internally, data are transferred by passing
pointers to messages

— Goal is to reduce memory-to-memory copying over-
head

STREAMS Benefits

e STREAMS provides an integrated environ-
ment for developing kernel-resident network-
ing services

e STREAMS promotes definition of standard
service interfaces

— e.g., TPI and DLPI

e STREAMS supports dynamic ‘“service sub-
stitution” controlled by user-level commands

A Simple Stream

STREAMS Benefits (cont’d) @
fd = open ("/dev/dev0");

e Message-based interfaces enable off-board
protocol migration

STREAM
HEAD

e Permits layered and de-layered multiplexing

e More recent implementations take advan-
tage of parallelism in the operating system
and hardware

STREAM

Udevoﬂ
DRIVER

A Module on a Stream
The Stream Head

e A “stream head” exports a uniform service

interface to other layers of the UNIX kernel
APPLICATION PROCESS
ioctl (fd, I PUSH, "modx"); . . . X .
— Including the application “layer” running in user-

space

e General stream head services include

1. Queueing

(a) Provides a synchronous interface to asychronous
devices

2. Datagram- and stream-oriented data transfer

3. Segmentation and reassembly of messages

STREAM 4. Event propagation

— i.e., signals

The Stream Head (cont’d) The Stream Head (cont’d)

e Stream head operations include

stropen()

> called from file system layer to open a Stream

strclean()

> called from file system layer to remove event
cells from Stream Head when a file is closed

strclose()

[E————

> called from the file system layer to dismantle a
Stream

Intermediate
STREAM Modules strread()
and STREAM
> called from the file system layer to retrieve data
messages coming upstream

e Stream Head operations (cont'd) Messadqges
g

strwrite()

e In STREAMS, all information is exchanged

> called from the file system layer to send data via messages

messages downstream

— j.e., both data and control messages of various
strioctl() priorities

> called from the file system layer to perform con-
trol operations . .
b e A multi-component message structure is used

to reduce the overhead of
strgetmsg()
1. Memory-to-memory copying
> called from the system call layer to get a protocol
or data message coming upstream — i.e., via “reference counting”

strputmsg() 2. Encapsulation/de-encapsulation

> called from the system call layer to send a pro- — l.e., via “composite messages”
tocol or data message downstream

strpoll() e Messages may be queued at STREAM mod-

> called from the file system layer to check if pol- ules
lable events are satisfied

Message Structure Composite Message

DATA DATA
BUFFER BUFFER

Message Buffer Sharing

STREAMS Message Types

M_DATA user data
M_PROTO protocol information
M_PASSFP pass file pointer
M_IOCTL user ioctl() request
| M_BREAK request line break

\ M_SIG signal process group

dblk_t M _DELAY request transmit delay

M_CTL module-specific control message

M_SETOPTS | set Stream head options
M_RSE reserved for RSE use

e Normal priority messages

— M_DATA, M_PROTO, M_PASSFP, and M_IOCTL
may be generated from user-level

— Typically subject to flow control

DATA
BUFFER

STREAMS Message Types
(cont’d) Queue Structure

M_PCPROTO | protocol information
M_FLUSH flush queues

M_IOCACK acknowledge ioctl() request
M_IOCNAK fail ioctl() request :
M_COPYIN request to copyin ioctl() data ;‘ﬁjho'x:f gﬁj;‘fs‘t module stat I
M_COPYOUT | request to copyout ioctl() data gb_count gb_next -
M_IOCDATA reply to M_COPYIN and M_COPYOUT
M_PCSIG signal process group

M_READ read notification

M_HANGUP line disconnect

M_ERROR fatal error | open()
M_STOP stop output immediately STREAM
M_START restart output i DRIVER
M_STOPI stop input immediately
M_STARTI restart input ik s
M_PCRSE reserved for RSE use | g:ﬂag %mmgsz

q_hiwat
q_lowat
q_count

e High priority messages

* Typically not flow controlled
* M_PCPROTO may be generated from user-level
* Others passed between STREAM components

17

Queue Structure (cont’'d) Queue and Message Linkage

® queue_t

— Primary data structure

> Each module contains a write queue and a read
queue

— Stores information on flow control, scheduling, max/min
interface sizes, linked messages, private data

e ginit

— Contains put(), service(), open(), close()
subroutines

e gband

— Contains information on each additional message
band > 0 and < 256

e module_info

— Stores default flow control information

Queue Subroutines

e Four standard subroutines are associated with
queues in a module or driver, e.g.,

— open(queue_t *q, dev_t *devp, int oflag, int sflag,
cred_t *cred_p);

> Called when Stream is first opened and on any
subsequent opens

> Passed a pointer to the new read queue

> Also called any time a module is “pushed” onto
the Stream

— close(dev_t dev, int flag, int otyp, cred_t *cred_p);

> Called when last reference to a Stream is closed

> Also called when a module is “popped” off the
Stream

Queue Subroutines (cont’d)

e Standard subroutines (cont'd)

— put(queue_ t *q, mblk t *mp)
> Performs immediate processing

> Supports synchronous communciation services

- i.e., further queue processing is blocked until
put) returns

— service(queue t *q)

> Performs deferred processing

> Supports asynchronous communication services

- Uses the message queue available in a queue

> Runs as a “weightless” process...

Queue Flow Control

WRITE() SLEEPS UNTIL STREAMIS APPLICATION
"BACK-ENABLED"" PROCESS

TYPICALLYNO QUEUENG ON
STREAM Hen
WRIEQUEUE

USER

KERNEL
STREAM

—— ¥ .
-
U]]
| QUELE MobuLE
T D

q_flag=QFULL

STREAM
DRIVER

e put() and service () work together to support ad-
visory flow control

Flow Control and the service()

Procedure

e Typical non-multiplexed example

int service (queue_t *q)

{

mblk_t *mp;

while ((mp = getq (q)) !=0)

if (queclass (mp) == QPCTL ||
canputnext (q)) {
/* Process message */
putnext (q, mp);

}

else {
putbqg (g, mp);
return O;

e Flow control is more complex with multi-
plexers and concurrency

Flow Control and the canput()
Procedure

e canputnext() iS used by put() and service()
routines to test advisory flow control condi-
tions

e .Jg.,

int canputnext (queue_t *q)

{

find closest queue with a service() procedure
if (queue is full) {

set flag for “back-enabling”

return O;

}

return 1;

e Note that non-MP systems may use canput()...

Flow Control and the put()
Procedure

e Typical put() example

int put (queue_t *q, mblk_t *mp)
{
if (queclass (mp) == QPCTL ||
canputnext (q)) {
/* Process message */
putnext (g, mp);
else
puta (4, mp);
/* Enables service routine */
return O;

putq()

e The int putq(queue t *, mblk t *) function
enqueues a message on a queue

— It is typically called by a queue’s put() procedure
when it can no longer proceed...

e putq() automatically handles

1. priority-band allocation

2. priority-band message insertion

3. flow control

e Enqueueing a high priority message auto-

matically schedules the queue's service()
procedure to run at some point

— Differs on MP vs. non-MP system

getq()

e Themblk t *getq(queue t *) function dequeues
a message from a queue

— It is typically called by a queue’s service () pro-
cedure

e Messages are dequeued in priority order

— i.e., higher priority messages are stored first in the
queue!

e getq() handles

1. Flow control

2. Back-enabling

e getq() returns O when there are no available
messages

Multiplexing

e STREAMS provides rudimentary support for

multiplexing via multiplexor drivers Multiplexor Links (before)

— Unlike modules, multiplexors occupy a file-system
node that can be “opened”
fd1 = open ("/dev/ip");

fd2 = open ("/dev/eth"); /

STREAM
HEeap

> Rather than “pushed”

KERNEL

STREAM
HEeap

QUEUE

e Multiplexors may contain one or more upper
and/or lower connections to other STREAM ¢ ¢

modules and/or multiplexors

WRITE READ
QUEUE | QUEUE QUEUE

STREAM
DRIVER
"/dev/eth"

STREAM
M ULTIPLEXOR
"/dev/ip"

— Enables support for layered network protocol suites

> e.g., " /dev/tcp”

e Note thereis no automated support for prop-
agating flow control across multiplexors

Multiplexor Links (after)
Internetworking Multiplexor

ioctl (fd1, I_LINK, fd_2);

APPLICATION

STREAM
HEap

UPPER
MULTIPLEXER

LOWER
MULTIPLEXOR

WRITE
QUEUE

READ
QUEUE

!

1

WRITE
QUEUE

READ
QUEUE

KERNEL

STREAM
HEap

o |

STREAM
M ULTIPLEXOR
"/dev/ip"

WRITE
QUEUE

READ
QUEUE

"BORROWED" QUEUES FROM
< THE STREAM HEeap

STREAM
DRIVER

"/dev/eth"

(__ArpuicaTioN)

(_ APPLICATION)

\ KERNEL

STREAM | WRITE | READ
Heaps QUEUE | QUEUE

wRITE | READ WRITE
QUEUE | QUEUE QUEUE

READ
QUEUE

WRITE | READ
QUEUE | QUEUE

A

| -

1

et

MULTIPLEXOR QUEUE | QU

UPPER write | READ
EUE

write | READ WRITE
oueue | oueue QUEUE

QUEUE

READ wRITE | READ
ouevE | QUEUE

STREAM

LOWER
MULTIPLEXOR

M ULTIPLEXOR

UPPER
MULTIPLEXOR

LOWER
MULTIPLEXOR

WRITE
QUEUE

WRITE | READ
QUEUE | QUEUE

READ
QUEUE

wriTE | READ

oueve | oueu

STREAM
M ULTIPLEXOR

E

STREAM | WriTE
Drver | QUEVE

NETWORK
INTERFACES

~

WRITE
QUEUE

Driver Data Structure Linkage Module Data Structure Linkage

trdat
(Strzarma}?ead) Other kernel layers _ fmodsw

f str

streamtab streamtab

st_wrinit st_rdinit st wrinit st rdinit

\ q qinfo q_ginfo \ q_ginfo q_ginfo

queue_t queue_t) ' queue_t queue_t

4 4 / A

module_info STREAM module_info | module_info STREAM module_info

Pipes and FIFOs Pipes and FIFOs (cont’d)

e In SVR4 and Solaris, the traditional local STREAM PIpE

IPC mechanisms such as pipes and FIFOs :_:
. . (_APPLICATION) APPLICATION

have been reimplemented using STREAMS N

in s[2]; y

pipe (fds);
fork Qs _ _ _ _

e This has broaded the semantics of pipes and Y K ERNEL
FIFOs in the following ways: WRITE WRITE

QUEUE QUEUE
1. Pipes are now bidirectional (STREAM pipes) t

2. Pipes and FIFOs now support both bytestream-
oriented and message-oriented communication

FIFO

— ioctl()s exist to modify the behavior of STREAM
descriptors to enable or disable many of the new

features mkfifo ("/tmp/fifo"); open ("/tmp/fifo", 0);
open ("/tmp/fifo", 1);

. Pipes can be explicitly named and exported into - K ERNEL
the file system STREAM

QUEUE
HEeaD

. Pipes and FIFOs can be extended by having mod-
ules pushed onto them

Mounted Streams and CONNLD

e In earlier generations of UNIX, pipes were
restricted to allowing multiplexed commu-
nication

— This is overly complex for many client/server-style
applications

e SVR4 UNIX and Solaris provide a mech-
anism known as “Mounted Streams” that
permits non-multiplexed communication

— This provides semantics similar to UNIX domain
sockets

— However, Mounted Streams are more flexible since
they incorporate other features of STREAMS

Mounted Streams and CONNLD
(cont’d)

int fds[2];
fattach (fds[1], "tmplserver x"); R4
ioctl (fds[1],1_PUSH, "connld"); / A 27 open(lmpherver ", 0_RDWR):
joctl (fds[0], | RECVFD, &recv_fd);
— — -

STREAM [-
HEADS ome | oamre |~

KERNEL

MOUNTED STREAM
("/tmp/server_x")

KERNEL

STREAM WRIE e I wrie | RED wrie | ren I

HEADS QUELE OQUELE OQUBLE QUELE OQUELE QUELE OUBLE OQUELE

A

T MOUNTED STREAM
("/tmp/server_x")

Layered Multiplexing

KERNEL

(APPLICATION) APPLICATION (APPLICATION)

STREAM WRITE WRITE | READ WRITE | READ WRITE | READ
QUEUE oueve | ouevE QUEUE | QUEUE ousve | ouEvE

| A i A 7
|

HEADS QUEUE

~\ Y |

UPPER WRITE READ WRITE | READ WRITE READ WRITE | READ
MULTIPLEXOR QUEUE | QUEUE QUEUE | QUEUE QUEUE | QUEUE QUEUE | QUEUE

LOWER WRITE READ
MULTIPLEXOR ou v

QUEUE
STREAM | wrie | rean
DRIVER oueve | oueue

f—
i

NETWORK INTERFACE %NGEEEE

STREAM
MULTIPLEXOR

Layered Multiplexing (cont’d)

e Advantages

— Share resources such as control blocks

— Supports standard OSI and Internet layering mod-
els

e Disadvantages

— More processing involved to demultiplex in deep
protocol stacks

— May be more difficult to parallelize due to locks
and shared resource contention

— Hard to propagate flow control and QOS info across
muxer

De-layered Multiplexing

APPLICATION

3

APPLICATION (APPLICATION)

Y KERNEL

STREAM WRITE | READ WRITE | READ WRITE | READ WRITE
HEADS oueve | oueue ouEvE | ouEUE QUEUE | QUEUE ouev | oueue

| A e A P!

STREAM | "RITE WRITE | READ wRITE | READ WRITE | READ
MODULES QUEUE | QUEUE QUEUE | QUEUE QUEUE | QUEUE QUEUE | QUEUE

N I 7

STREAM wRITE | READ WRITE | READ wriE | READ WRITE | READ
MULTIPLEXOR oueve | oueve || ouveve | ourue oueve | oueuE QUEUE | QUEUE
DRIVER

NETWORK INTERFACE

De-layered Multiplexing (cont’d)

e Advantages

— Less processing for deep protocol stacks

— Potentially increased parallelism due to less con-
tention and locking required

— Easier to propagate flow control and QOS info

e Disadvantages

— Violates layering (e.g., need a packet filter)

— Replicates resources such as control blocks

STREAM Concurrency

e Modern versions of STREAMS support multi-
processing

— Since modern UNIX systems have multi-threaded
kernels

e Different levels of concurrency support in-
clude

. Fine-grain

* Queue-level
* Queue-pair-level

Coarse-grain

* Module-level
* Module-class-level
* Stream-level

e Note, developers must use kernel locking
primitives to provide mutual exclusion and
synchronization

Concurrency Alternatives

APPLICATION

STREAM
Heads

LP_XDR: : svc (void.
{ T* outgoing */

LP:TCP: : put

TCP: : put
ssage_Bl ock *nb)
* outgoing */ }

LP_DLP: :svc (void
{ T* outgoing */

NETWORK DEVICES

OR PSEUDO-DEVICES EM

DLP: :sve (v

{ T* inconing

2 age_Bl ock *mb)
/* incomng */ }

%9

L) S8

RI EAl
MODULE UEUE UEUE
OBJECT JECT OBJECT

PROCESS
OR THREAD

e Layer Parallelism

Concurrency Alternatives (cont’d)

- A
APPLICATION APPLICATION
STREAM - D
CP_XDR: : put
Heads il\//Efsage Bl ock*;‘n‘o)
(P XDR - put N i ncom ng }
§NEssage Bl ock *mnb) e N
/* outgoing */ } CP_TCP: : put .
J ENEssage Bl ock *nb)
(CP_TCP: : put N [* incomng */ }
ENEssage Bl ock *mb) >
/* outgoing */ }) cPIP -
MEssage Bl ock *nb
(CcP 1P A (s o ng) })J

ENES ge Block *mb)
9 /* outgoing */ })

M odules

M odules

CP_DLP: : svc (v0|di
{ 7T* incomng */

CP_DLP: : svc (v0|dg
{ T* out90|ng */

NETWORK DEVICES
OR PSEUDO-DEVICES

~ J
| 1
I I
@ | i
WRITE READ ————————
MODULE UEUE UEUE PROCESS MESSAGE
OBJECT JECT BJECT OR THREAD OBJECT

e Connectional Parallelism

45

Concurrency Alternatives (cont’d)

APPLICATION APPLICATION

i I |
! I l
I AN I (MP_XDR: : put
i S : }I\/Ess_a eEB! ock *nb)
MP_XDR: : put | | \L /* incoming */ }
&NEssage_B!ock *mb)
/* outgoing */ } Modules
Modules MP_UDP: : put
Ehﬁssage_B!ock *mb)
VP UDP. - put /* incoming */ }
Message_Bl ock *mb)
E /* outgoing */ }

MP_DLP: : svc (voidg
{ 7* incoming */

MP_DLP: : svc (voidi
{ T* outgoing */

NETWORK DEVICES
OR PSEUDO-DEVICES

_ J
| p b |
COS @]
| |
WRITE READ “PROCESS
MODULE QUEUE QUEUE OR THREAD

e Message Parallelism

46

STREAMS Evaluation

e Advantages

— Portability, availability, stability

— Kernel-mode efficiency

e Disadvantages
— Stateless process architecture

> [.e., cannot block!

— Lack of certain support tools

> e.g., standard demultiplexing mechanisms

— Kernel-level development environment

> Limited debugging support...

— Lack of real-time scheduling for STREAMS processing...

> Timers may be used for “isochronous’” service

47

Summary

e STREAMS provides a flexible communica-
tion framework that supports dynamic con-
figuration and reconfiguration of protocol
functionality

e Module interfaces are well-defined and rea-
sonably well-documented

e Support for multi-processing exists in So-
laris 2.X

48

