
UNIX Network Programming

Overview of STREAMS

Douglas C. Schmidt

1

STREAMS Overview

� STREAMS is a
exible communication sub-
system framework

{ Originally developed by Dennis Ritchie for Research

UNIX

� STREAMS provides a uniform infrastruc-
ture for developing and con�guring character-
based I/O

{ e.g., networks, terminals, local IPC

� STREAMS supports the addition and re-
moval of processing components at installation-
time or run-time

{ Via user-level or kernel-level commands

2

STREAMS Overview (cont'd)

� The STREAMS paradigm is data-driven, not
demand-driven

{ i.e., asychronous in the kernel, yet synchronous at

the application

� Supports both immediate and deferred pro-

cessing

� Internally, data are transferred by passing
pointers to messages

{ Goal is to reduce memory-to-memory copying over-

head

3

STREAMS Bene�ts

� STREAMS provides an integrated environ-

ment for developing kernel-resident network-

ing services

� STREAMS promotes de�nition of standard
service interfaces

{ e.g., TPI and DLPI

� STREAMS supports dynamic \service sub-

stitution" controlled by user-level commands

4

STREAMS Bene�ts (cont'd)

� Message-based interfaces enable o�-board

protocol migration

� Permits layered and de-layered multiplexing

� More recent implementations take advan-

tage of parallelism in the operating system

and hardware

5

A Simple Stream

APPLICATION PROCESS

STREAM
DRIVER

WRITE

QUEUE

READ

QUEUE

READ-SIDE
(UPSTREAM)

WRITE-SIDE
(DOWNSTREAM)

USER

KERNEL

WRITE

QUEUE

READ

QUEUE

STREAM
HEAD

fd = open ("/dev/dev0");

"dev0"

6

A Module on a Stream

PROCESS

WRITE

QUEUE

READ

QUEUE

STREAM
HEAD

STREAM
DRIVER

WRITE

QUEUE

STREAM
MODULE

WRITE

QUEUE

USER

KERNEL

APPLICATION PROCESS

ioctl (fd, I_PUSH, "modx");

"modx"

"dev0" READ

QUEUE

READ

QUEUE

7

The Stream Head

� A \stream head" exports a uniform service
interface to other layers of the UNIX kernel

{ Including the application \layer" running in user-

space

� General stream head services include

1. Queueing

(a) Provides a synchronous interface to asychronous

devices

2. Datagram- and stream-oriented data transfer

3. Segmentation and reassembly of messages

4. Event propagation

{ i.e., signals

8

The Stream Head (cont'd)

stdata_t

sd_wrq

queue_t

sd_siglist

strrput()

sd_pollist

Intermediate
STREAM Modules

and STREAM
Driver

strwsrv()

queue_t

PROCESS

USER

KERNEL

q_next q_next

STREAM
Head

strevent

strevent

strevent

9

The Stream Head (cont'd)

� Stream head operations include

{ stropen()

. called from �le system layer to open a Stream

{ strclean()

. called from �le system layer to remove event

cells from Stream Head when a �le is closed

{ strclose()

. called from the �le system layer to dismantle a

Stream

{ strread()

. called from the �le system layer to retrieve data

messages coming upstream

10

� Stream Head operations (cont'd)

{ strwrite()

. called from the �le system layer to send data

messages downstream

{ strioctl()

. called from the �le system layer to perform con-

trol operations

{ strgetmsg()

. called from the system call layer to get a protocol

or data message coming upstream

{ strputmsg()

. called from the system call layer to send a pro-

tocol or data message downstream

{ strpoll()

. called from the �le system layer to check if pol-

lable events are satis�ed

11

Messages

� In STREAMS, all information is exchanged
via messages

{ i.e., both data and control messages of various

priorities

� Amulti-component message structure is used
to reduce the overhead of

1. Memory-to-memory copying

{ i.e., via \reference counting"

2. Encapsulation/de-encapsulation

{ i.e., via \composite messages"

� Messages may be queued at STREAM mod-

ules

12

Message Structure

b_cont

mblk_t

dblk_t

DYNAMICALLY

ALLOCATED

DATA

BUFFER

b_datap

b_rptr

b_wptr

db_lim

db_base

b_prev

b_next

b_band

q
u

eu
e_

t

db_type

db_ref

13

Composite Message

mblk_t

b_datap

db_base

DATA

BUFFER

dblk_t

mblk_t

b_datap

db_base

DATA

BUFFER

dblk_t

b_cont

14

Message Bu�er Sharing

mblk_t

db_base

DATA

BUFFER

dblk_t

mblk_t

b_rptr

b_wptr

b_datap

db_ref = 2

b_datap

b_rptr

b_wptr

15

STREAMS Message Types

M DATA user data

M PROTO protocol information

M PASSFP pass �le pointer

M IOCTL user ioctl() request

M BREAK request line break

M SIG signal process group

M DELAY request transmit delay

M CTL module-speci�c control message

M SETOPTS set Stream head options

M RSE reserved for RSE use

� Normal priority messages

{ M DATA, M PROTO, M PASSFP, and M IOCTL

may be generated from user-level

{ Typically subject to
ow control

16

STREAMS Message Types

(cont'd)

M PCPROTO protocol information

M FLUSH
ush queues

M IOCACK acknowledge ioctl() request

M IOCNAK fail ioctl() request

M COPYIN request to copyin ioctl() data

M COPYOUT request to copyout ioctl() data

M IOCDATA reply to M COPYIN and M COPYOUT

M PCSIG signal process group

M READ read noti�cation

M HANGUP line disconnect

M ERROR fatal error

M STOP stop output immediately

M START restart output

M STOPI stop input immediately

M STARTI restart input

M PCRSE reserved for RSE use

� High priority messages

* Typically not
ow controlled

* M PCPROTO may be generated from user-level

* Others passed between STREAM components

17

Queue Structure

module_info

qinit

q_qinfo
q_qinfo

WRITE

QUEUE

queue_t

READ

QUEUE

queue_t

STREAM
HEAD

WRITE

QUEUE

queue_t

READ

QUEUE

queue_t

STREAM
DRIVER

qbandqband

q_qinfo
q_qinfo

module_stat

qband

qband

open()
close()
put()
service()

q_next q_next

q_hiwat

q_count
q_lowat

q_link
q_flag

q_ptr

q_maxpsz
q_minpsz

q_first

q_last

qb_hiwat

qb_count
qb_lowat qb_first

qb_last

qb_next

18

Queue Structure (cont'd)

� queue t

{ Primary data structure

. Each module contains a write queue and a read

queue

{ Stores information on
ow control, scheduling, max/min

interface sizes, linked messages, private data

� qinit

{ Contains put(), service(), open(), close()
subroutines

� qband

{ Contains information on each additional message

band > 0 and < 256

� module info

{ Stores default
ow control information

19

Queue and Message Linkage

q_band

q_first

q_last

queue_t

qb_next

qb_first

qb_last

BAND 1

qb_next

qb_first

qb_last

BAND 2

qband

NORMAL

(BAND 0)
MESSAGES

PRIORITY

(BAND 1)
MESSAGES

PRIORITY

(BAND 2)
MESSAGES

HIGH

PRIORITY

MESSAGES

b_next
b_prev

b_next
b_prev

b_next
b_prev

q_nband

20

Queue Subroutines

� Four standard subroutines are associated with
queues in a module or driver, e.g.,

{ open(queue t *q, dev t *devp, int o
ag, int s
ag,

cred t *cred p);

. Called when Stream is �rst opened and on any

subsequent opens

. Passed a pointer to the new read queue

. Also called any time a module is \pushed" onto

the Stream

{ close(dev t dev, int
ag, int otyp, cred t *cred p);

. Called when last reference to a Stream is closed

. Also called when a module is \popped" o� the

Stream

21

Queue Subroutines (cont'd)

� Standard subroutines (cont'd)

{ put(queue t *q, mblk t *mp)

. Performs immediate processing

. Supports synchronous communciation services

� i.e., further queue processing is blocked until

put() returns

{ service(queue t *q)

. Performs deferred processing

. Supports asynchronous communication services

� Uses the message queue available in a queue

. Runs as a \weightless" process: : :

22

Queue Flow Control

WRITE

QUEUE

STREAM
HEAD

WRITE

QUEUE

STREAM
MODULE

q_next

STREAM
DRIVER

q_next

KERNEL

USER

APPLICATION

PROCESS

WRITE() SLEEPS UNTIL STREAM IS

"BACK-ENABLED"

WRITE

QUEUE

q_flag == QFULL

TYPICALLY NO QUEUEING ON

STREAM HEAD

WRITE QUEUE

B
A
C
K
-P
R
E
SS
U
R
E

� put() and service() work together to support ad-

visory
ow control

23

Flow Control and the service()

Procedure

� Typical non-multiplexed example

int service (queue t *q)

f

mblk t *mp;

while ((mp = getq (q)) != 0)

if (queclass (mp) == QPCTL jj

canputnext (q)) f

/* Process message */

putnext (q, mp);

g

else f

putbq (q, mp);

return 0;

g

g

� Flow control is more complex with multi-

plexers and concurrency

24

Flow Control and the canput()

Procedure

� canputnext() is used by put() and service()

routines to test advisory
ow control condi-

tions

� e.g.,

int canputnext (queue t *q)

f

�nd closest queue with a service() procedure

if (queue is full) f

set
ag for \back-enabling"

return 0;

g

return 1;

g

� Note that non-MP systems may use canput(): : :

25

Flow Control and the put()

Procedure

� Typical put() example

int put (queue t *q, mblk t *mp)

f

if (queclass (mp) == QPCTL jj

canputnext (q)) f

/* Process message */

putnext (q, mp);

else

putq (q, mp);

/* Enables service routine */

return 0;

g

26

putq()

� The int putq(queue t *, mblk t *) function
enqueues a message on a queue

{ It is typically called by a queue's put() procedure

when it can no longer proceed: : :

� putq() automatically handles

1. priority-band allocation

2. priority-band message insertion

3.
ow control

� Enqueueing a high priority message auto-
matically schedules the queue's service()
procedure to run at some point

{ Di�ers on MP vs. non-MP system

27

getq()

� The mblk t *getq(queue t *) function dequeues
a message from a queue

{ It is typically called by a queue's service() pro-

cedure

� Messages are dequeued in priority order

{ i.e., higher priority messages are stored �rst in the

queue!

� getq() handles

1. Flow control

2. Back-enabling

� getq() returns 0 when there are no available

messages

28

Multiplexing

� STREAMS provides rudimentary support for
multiplexing via multiplexor drivers

{ Unlike modules, multiplexors occupy a �le-system

node that can be \opened"

. Rather than \pushed"

� Multiplexors may contain one or more upper
and/or lower connections to other STREAM
modules and/or multiplexors

{ Enables support for layered network protocol suites

. e.g., "/dev/tcp"

� Note there is no automated support for prop-

agating
ow control across multiplexors

29

Multiplexor Links (before)

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE
STREAM

MULTIPLEXOR

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE
STREAM

DRIVER

STREAM

HEAD

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

USER

KERNEL

APPLICATION

STREAM

HEAD

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

fd1 = open ("/dev/ip");

fd2 = open ("/dev/eth");

"/dev/ip" "/dev/eth"

30

Multiplexor Links (after)

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

STREAM

MULTIPLEXOR

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

STREAM

DRIVER

STREAM

HEAD

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

USER

KERNEL

APPLICATION

STREAM

HEAD

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE
DISABLED

"BORROWED" QUEUES FROM

THE STREAM HEAD

UPPER

MULTIPLEXER

LOWER

MULTIPLEXOR

ioctl (fd1, I_LINK, fd_2);

"/dev/ip"

"/dev/eth"

31

Internetworking Multiplexor

WRITE

QUEUE

READ

QUEUE

APPLICATION

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

STREAM

MULTIPLEXOR

USER

KERNEL

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

APPLICATION

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

NETWORK

INTERFACES

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

STREAM

DRIVER

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

STREAM

HEADS

APPLICATION

UPPER

MULTIPLEXOR

LOWER

MULTIPLEXOR

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

STREAM

MULTIPLEXOR

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

UPPER

MULTIPLEXOR

LOWER

MULTIPLEXOR

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

32

Driver Data Structure Linkage

strdata
(Stream head)

module_info

qinit

cb_ops

module_info

qinit

streamtab

sd_strtab d_str

st_wrinit st_rdinit

qi
_m

in
fo

qi
_m

in
fo

q_qinfoq_qinfo

STREAM
DRIVER

queue_t queue_t

Other kernel layers

33

Module Data Structure Linkage

qi
_m

in
fo

module_info

qinit

fmodsw

module_info

qinit

streamtab

f_str

st_wrinit st_rdinit

qi
_m

in
fo

q_qinfoq_qinfo

STREAM
MODULE

queue_t queue_t

34

Pipes and FIFOs

� In SVR4 and Solaris, the traditional local

IPC mechanisms such as pipes and FIFOs

have been reimplemented using STREAMS

� This has broaded the semantics of pipes and
FIFOs in the following ways:

1. Pipes are now bidirectional (STREAM pipes)

2. Pipes and FIFOs now support both bytestream-

oriented and message-oriented communication

{ ioctl()s exist to modify the behavior of STREAM

descriptors to enable or disable many of the new

features

3. Pipes can be explicitly named and exported into

the �le system

4. Pipes and FIFOs can be extended by having mod-

ules pushed onto them

35

Pipes and FIFOs (cont'd)

WRITE

QUEUE

READ

QUEUE

APPLICATION

WRITE

QUEUE

READ

QUEUE

APPLICATION

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

USER

KERNEL

S
T

R
E

A
M

H
E

A
D

S

APPLICATIONAPPLICATION

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

USER

KERNEL

STREAM

HEAD

STREAM PIPE

FIFO

mkfifo ("/tmp/fifo");

open ("/tmp/fifo", 1);

int fds[2];

pipe (fds);

fork ();

open ("/tmp/fifo", 0);

36

Mounted Streams and CONNLD

� In earlier generations of UNIX, pipes were
restricted to allowing multiplexed commu-
nication

{ This is overly complex for many client/server-style

applications

� SVR4 UNIX and Solaris provide a mech-
anism known as \Mounted Streams" that
permits non-multiplexed communication

{ This provides semantics similar to UNIX domain

sockets

{ However, Mounted Streams are more
exible since

they incorporate other features of STREAMS

37

Mounted Streams and CONNLD

(cont'd)

connld

WRITE

QUEUE

READ

QUEUE

CLIENT

WRITE

QUEUE

READ

QUEUE

SERVER

WRITE

QUEUE

READ

QUEUE

MOUNTED STREAM

("/tmp/server_x")

USER

KERNEL

USER

KERNEL

STREAM
HEADS

connld

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

CLIENTSERVER

STREAM
HEADS

MOUNTED STREAM

("/tmp/server_x")

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

open ("/tmp/server_x", O_RDWR);

int fds[2];

pipe (fds);

fattach (fds[1], "/tmp/server_x");

ioctl (fds[1], I_PUSH, "connld");

ioctl (fds[0], I_RECVFD, &recv_fd);

read()/write()

38

Layered Multiplexing

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

APPLICATION

STREAM

DRIVER

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

STREAM

MULTIPLEXOR

APPLICATION

NETWORK INTERFACE

STREAM

HEADS

USER

KERNEL

APPLICATION

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

UPPER

MULTIPLEXOR

LOWER

MULTIPLEXOR

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

39

Layered Multiplexing (cont'd)

� Advantages

{ Share resources such as control blocks

{ Supports standard OSI and Internet layering mod-

els

� Disadvantages

{ More processing involved to demultiplex in deep

protocol stacks

{ May be more di�cult to parallelize due to locks

and shared resource contention

{ Hard to propagate
ow control and QOS info across

muxer

40

De-layered Multiplexing

STREAM

MULTIPLEXOR

DRIVER

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

APPLICATIONAPPLICATION

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

NETWORK INTERFACE

STREAM

HEADS

STREAM

MODULES

USER

KERNEL

APPLICATION

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

WRITE

QUEUE

READ

QUEUE

41

De-layered Multiplexing (cont'd)

� Advantages

{ Less processing for deep protocol stacks

{ Potentially increased parallelism due to less con-

tention and locking required

{ Easier to propagate
ow control and QOS info

� Disadvantages

{ Violates layering (e.g., need a packet �lter)

{ Replicates resources such as control blocks

42

STREAM Concurrency

� Modern versions of STREAMS support multi-
processing

{ Since modern UNIX systems have multi-threaded

kernels

� Di�erent levels of concurrency support in-
clude

1. Fine-grain

* Queue-level

* Queue-pair-level

2. Coarse-grain

* Module-level

* Module-class-level

* Stream-level

� Note, developers must use kernel locking

primitives to provide mutual exclusion and

synchronization

43

Concurrency Alternatives

STREAM
Heads

STREAM
Tail

APPLICATION

Modules

C1 C2

NETWORK DEVICES
OR PSEUDO-DEVICES

APPLICATION

LP_XDR::svc (void)
{ /* incoming */ }

LP_TCP::put
(Message_Block *mb)
{ /* incoming */ }

LP_DLP::svc (void)
{ /* outgoing */ }

Modules

LP_TCP::put
(Message_Block *mb)
{ /* outgoing */ }

LP_XDR::svc (void)
{ /* outgoing */ }

LP_DLP::svc (void)
{ /* incoming */ }

PROCESS
OR THREAD

WRITE
QUEUE
OBJECT

READ
QUEUE
OBJECT

MODULE
OBJECT

MESSAGE
OBJECT

� Layer Parallelism

44

Concurrency Alternatives (cont'd)

STREAM
Heads

STREAM
Tail

APPLICATION

Modules

APPLICATION

Modules

C1 C2

CP_TCP::put
(Message_Block *mb)
{ /* outgoing */ }

CP_IP::put
(Message_Block *mb)
{ /* outgoing */ }

CP_XDR::put
(Message_Block *mb)
{ /* outgoing */ }

CP_XDR::put
(Message_Block *mb)
{ /* incoming */ }

CP_TCP::put
(Message_Block *mb)
{ /* incoming */ }

CP_IP::put
(Message_Block *mb)
{ /* incoming */ }

CP_DLP::svc (void)
{ /* incoming */ }

CP_DLP::svc (void)
{ /* outgoing */ }

NETWORK DEVICES
OR PSEUDO-DEVICES

PROCESS
OR THREAD

WRITE
QUEUE
OBJECT

READ
QUEUE
OBJECT

MODULE
OBJECT

MESSAGE
OBJECT

� Connectional Parallelism

45

Concurrency Alternatives (cont'd)

STREAM
Heads

STREAM
Tail

APPLICATION

Modules

APPLICATION

NETWORK DEVICES
OR PSEUDO-DEVICES

MP_DLP::svc (void)
{ /* outgoing */ }

MP_DLP::svc (void)
{ /* incoming */ }

MP_UDP::put
(Message_Block *mb)
{ /* incoming */ }

MP_XDR::put
(Message_Block *mb)
{ /* incoming */ }

MP_UDP::put
(Message_Block *mb)
{ /* outgoing */ }

MP_XDR::put
(Message_Block *mb)
{ /* outgoing */ }

Modules

PROCESS
OR THREAD

WRITE
QUEUE

READ
QUEUEMODULE

� Message Parallelism

46

STREAMS Evaluation

� Advantages

{ Portability, availability, stability

{ Kernel-mode e�ciency

� Disadvantages

{ Stateless process architecture

. i.e., cannot block!

{ Lack of certain support tools

. e.g., standard demultiplexing mechanisms

{ Kernel-level development environment

. Limited debugging support: : :

{ Lack of real-time scheduling for STREAMS processing: : :

. Timers may be used for \isochronous" service

47

Summary

� STREAMS provides a
exible communica-

tion framework that supports dynamic con-

�guration and recon�guration of protocol

functionality

� Module interfaces are well-de�ned and rea-

sonably well-documented

� Support for multi-processing exists in So-

laris 2.x

48

