The Performance of
Object-Oriented Components for
High-speed Network Programming

Douglas C. Schmidt
schmidt@cs.wustl.edu

Washington University, St. Louis

Introduction

e Distributed object computing (DOC) frame-
works are well-suited for certain communi-
cation requirements and certain network en-
vironments

— e.g., request/response or oneway messaging over
low-speed Ethernet or Token Ring

e However, current DOC implementations ex-
hibit high overhead for other types of re-
quirements and environments

— e.g., bandwidth-intensive and delay-sensitive stream-
ing applications over high-speed ATM or FDDI

Outline

e Outline communication requirements of dis-
tributed medical imaging domain

Compare performance of several network pro-
gramming mechanisms:

— Sockets
— ACE CH+ wrappers
— CORBA (Orbix)

— Blob Streaming

e OQOutline Blob Streaming Architecture and
Related Patterns

e Evaluation and Recommendations

Distributed Medical Imaging in

Project Spectrum

DIAGNOSTIC
STATIONS

CLUSTER
BLOB
STORE

X

MODALITIES

(€T, MR, CR) CENTRAL
BLOB STORE

Distributed Objects in Medical

Imaging Systems

e Blob Servers have the following responsibil-
ities and requirements:

* Efficiently store/retrieve large medical images (Blobs)
* Respond to queries from Blob Locators
* Manage short-term and long-term blob persistence

DOC View of Project Spectrum

\.

MODALITIES
(cT, MR, CR)

P

MODALITIES
(cT, MR, CR)

DIAGNOSTIC
STATIONS

BLOB
[LOCATOR

CLUSTER
BLOB

CENTRAL STORE

BLOB STORE

Motivation for Distributed Object
Computing

e Simplify application development and inter-
working, e.g.,

— CORBA provides higher level integration than tra-
ditional “untyped TCP bytestreams”

— ACE encapsulates lower-level networking and con-
currency systems programming interfaces

e Provide a foundation for higher-level appli-
cation collaboration

— e.g., Windows OLE and the OMG Common Ob-
ject Service Specification (COSS)

e Benefits for distributed programming simi-
lar to OO languages for non-distributed pro-
gramming

— e.g., encapsulation, interface inheritance, and object-
based exception handling

CORBA Architecture

CL

op(args) OBJECT

IENT IMPL

A

IDL
SKELETON
\ \

DYNAMIC
INVOCATION

p
IDL
STUBS
_INTERRFACE

ORB OBJECT
INTERFACE ADAPTER

s

OBJECT
REQUEST BROKER

A
LIFECYCLE
SERVICE

EVENT NAMING
SERVICE SERVICE

SECURITY TRADER
SERVICE SERVICE

CORBA Components ACE Architecture

e The CORBA specification is comprised of

DISTRIBUTED G LO

several parts: SERVICES SERVER SERVER SERVER

1. An Object Request Broker (ORB) F— - T

AND CLASS ’ 7| HANDLER Jp
CATEGORIES

ADAPTIVE SERVICE EXECUTIVE

. An Interface Definition Language (IDL)

LOG SERVICE
MANAGE \ISG CONFIG-
i i REACTOR URATOR
. A Static Invocation Interface (SII) g
SAP 'lLl “SAP SAP ;2' 4

STREAM :ocur'rs/ NAMED smu:cr/ DYNAMIC MEMORY

. A Dynamic Invocation Interface (DII) BR ry L oees i TL L L LINKING [{ ware
\\\
PR()(‘E\\/THREAD COMMUNICATION VIRTUAL MEMORY
SUBSYSTEM SUBSYSTEM SUBSYSTEM

. A Dynamic Skeleton Interface (DSI) GENERAL UNIX AND WIN32 SERVICES

e Other documents from OMG describe com-
mon object services built upon CORBA

e A set of C4++4 wrappers, class categories,

— e.g., CORBAServices — Event services, Name ser- .

and frameworks based on design patterns

vices, Lifecycle services

Motivation for CORBA and ACE

on Project Spectrum Key Research Question

e Two crucial issues for overall communica-
tion infrastructure flexibility and performance Can CORBA and ACE be used to

transfer medical images efficiently

T e e e CsHEes over high-speed networks?
to transport many formats of data
— e.g., HL7, DICOM, Blobs, domain objects, etc. e Our goal was to determine this empirically
before adopting distributed object comput-
ing wholesale
e Performance requires we transport this data
as quickly as the current technology allows

Performance Experiments Network/Host Environment

e Enhanced version of TTCP

— TTCP measures end-to-end bulk data transfer with
ackknowledgements

— Enhanced version tests C, ACE C++4 wrappers,
and CORBA, and Blob Streaming

BAY NETWORKS
LATTISCELL

— 100 Mbytes of data transferred in various chunk : ATM SWITCH
sizes (16 PORT, 0C3

Socket 8k (default) and 64k (maxi = 155MBPS/PORT,
— SO0CKe ueues were erau an maxXi-
’ 9,180 mTU)

mum) SPARCSTATION

20 MmoDEL 712s
(ENI ATM
ADAPTORS

AND ETHERNET)

e Parameters varied

— Network was 155 Mbps ATM

e Compiler was SunC+-+ 4.0.1 using highest
optimization level

TTCP Configuration for C and
ACE C++ Wrappers

TTCP Configuration for CORBA

Implementation

buf) 3: read(buf)

2: forward Rece /
> eceiver
-
4: ack

TTCP Configuration for Blob

Streaming
Performance over ATM

C, ACE C++, Blob Streaming, and Orbix over ATM
T T T

C/64k window -o—

ACE/64k window —+--

Blob Streaming/64k window -Et--
Orbix/64k window -

C/8k window -
ACE/8k window -

Blob Streaming/8k window -¢---

Blob_Xport T OrbixiBk window ~+-
Skel

Mbits/sec

15 20
Blob chunk size in megabytes

ATM
SWITCH

High-Cost Functions

Primary Sources of Overhead
e C and ACE C+H+ Tests

Data copying — Transferring 64 Mbytes with 1 Mbyte buffers

%Time #Calls

Demultiplexing ((7 socket):s
sender

C sockets
Memory allocation (receiver) 4. getmsg

ACE C++ wrapper 94. write
(sender) 3. read
Presentation layer formatting
ACE C++ wrapper 93. read

(receiver) 5. getmsg

High-Cost Functions (cont’d)

e Orbix String and Sequence High-Cost Functions (cont’d)

%Time #Calls
Orbix Sequence e Blob Stl’eaming
(sender)

memcpy YA #Calls

Orbix Sequence . read BlobStreaming

(receiver) . memcpy (sender)

memcpy

Orbix String . write

(sender) . read BlobStreaming . read
strlen (receiver) . memcpy
memcpy . write

Orbix String . read
(receiver) . strlen
memcpy

Blob Streaming System

Architecture
Overview of Blob Streaming

e Blob Streaming provides developers with a
uniform interface for operations on multiple
types of Binary Large OBjects (BLOBS)

e Two primary goals

1. Improved abstraction

— Shield developers from knowledge of blob loca-
tion (e.g., memory vs. “local” files vs. remote
network)

2. Maximize performance

— Transport blobs as efficiently as current technol-
ogy allows

CONTROL CHANNEL (E.G., CORBA orR NETWORK OLE)

DATA CHANNEL (E.G., TCP OR LIGHTWEIGHT ATM)

Blob Streaming Architecture

e Blob Streaming components allow transpar-
ent use of resources through uniform blob
interfaces

e Blob Streaming support the following:
— Blob location

> e.g., smart caches to decouple transfers from
location algorithms

— Blob routing

> e.g., context based routing

— Source and destination independent Blob trans-
port, e.g.,

> Store and retrieve from remote or local databases

> Abstract operations like reads/writes may use
local file reads/writes, or remote reads/writes
via sockets

Blob Streaming Architecture
Design Goals
e Goal: decouple application from OS plat-
form

— e.g., applications can be shielded from fact that
current version is implemented for UNIX

> Thus, can port Blob Streaming to Windows NT
or OS/2 without changing applications

— Platform specific operations hidden behind abstract
interfaces

> e.g., WIN32 WaitForMultipleObjects and UNIX
select

e Advantages

— Portability and extensibility

Blob Streaming Architecture
Design Goals (cont’d)
e Goal: application independence from trans-
port mechanism

— Switch transports at any stage in the development
without affecting application code

> Presently using CORBA and TCP/IP as trans-
port mechanisms

- However, none of these mechanisms are ex-
posed to programmers

- e.g., can use Network OLE

> As transport technology improves, Blob Stream-
ing can change without affecting applications

- e.g., “direct ATM"

e Advantages
— Portability, extensibility, and performance tuning

27

Design Patterns in Blob

Streaming

Stream

Active Object Router J Service

O 0

Half-Sync/ Service
Half-Async Conﬁgurator

u\

Reactor

[Thread Specific External
Storage Polymorphism

Strategy/

Method | | Bridge || Iterator || Adapter

e Blob Streaming is based upon a system of
design patterns

The Reactor Pattern

e Intent

— An object behavioral pattern that decouples event
demultiplexing and event handler dispatching from
the services performed in response to events

e This pattern resolves the following forces
for event-driven software:

— How to demultiplex multiple types of events from
multiple sources of events efficiently within a single
thread of control

How to extend application behavior without requir-
ing changes to the event dispatching framework

Structure of the Reactor Pattern

select (handles);
foreach h in handles {
if (h is output handler)
h->handle_output () ;
if (h is input handler)
h->handle_input ();
if (h is signal handler)
h->handle_signal ();
}

this->expire_timers ();

|

N
///*\ Reactor \

'\ handle_events() \

/' remove_handlerth)
/

1 n-
register_handler(h) Io—> Handles) \

S
£
-,
£

P Nl L -

/ \
(Event_Handler /

handle_input() |

handle_output()

handle_signal()

handle_timeout()
n! get_handle()

%,
\ n
! -~ :57 7
| S RNAAY 1
1 ~@1
VN~ i

L
g

\ — - \

——

| expire_timers() -
E

(//*/’ 1

~

1

Concrete

\’ \
Ty w \)
= / Event_Handler ,
N
o,

/
/Timer_Queue)

" schedule_timer(h) |

cancel_timer(h)
\ expire_timer(h)
N

- ~

/
~7~ -7
— \//

e Participants in the Reactor pattern

Collaboration in the Reactor

Pattern

Using the Reactor for Blob

Streaming

callback :
main Concrete reactor
program Event Handler : Reactor
I Reactor() I

INITIALIZE A—:

register_handler(callback) |

REGISTER HANDLER
get handle()

EXTRACT HANDLE -
handle_events()

select) |

handle_input()

START EVENT LOOP

FOREACH EVENT DO

DATA ARRIVES
handle_output()

OK TO SEND
handle signal()

SIGNAL ARRIVES

REGISTERED
OBJECTS

APPLICATION

2: recy_request(msg) 4 getq(msg)

S:sve(msg)

TIMER EXPIRES

EVENT HANDLING INITIALIZATION

REMOVE HANDLER

CLEANUP

handle timeout()

remove_handler(callback

handle_close()

FRAMEWORK

KERNEL

The Active Object Pattern

e Intent

— Decouples method execution from method invoca-
tion and simplifies synchronized access to shared
resources by concurrent threads

e This pattern resolves the following forces
for concurrent communication software:

— How to allow blocking operations (such as read

and write) to execute concurrently

— How to simplify concurrent access to shared state

Structure of the Active Object
Pattern in ACE

&)
N
~— gynch | ¢ e
[l & =~ "TsyneH |

. : /" Task '=——1
Service — ¢ / as \
b oT T Topenp0—»2)

\ close()=0 |

\ o put()=0 /

S $ve(=0 /
>~ /
Y

\7
P N L _lsyNew |

. |
/ Service \\\ [Message‘fJ
T === | i \ /
¢+ _/Event | ObJ—eCt,' < Queue,
*/ Handler | \ suspend()=0
7T esume()=0 /
l/ handle_input() ‘< AN W/
N

CONCT TN
\ handle_output() \I ,’Shared |

\ handle_exception() | | i /
\| handle_signal() I | M /I
| handle_timeout () ,
| handle close() 7 \ fini ()=0 II
Il get_handle()=0 e ! info()=0/

_ init)=0 |

|
—_— /
\\@/// \\;g//
J

-

Collaboration in ACE Active
Objects

ty : Task
2: enqueue (msg) 3:sve ()
% 4: dequeue (msg)

: Message .
Queue

ACTIVE 5: put (msg)
1: put (msg)

tq : Task

:Message
Queue
:Message
Queue ACTIVE

ACTIVE

Using the Active Object Pattern
for Blob Streaming

REGISTERED
OBJECTS

: Message

: Blob
Processor 4
2:recv_request(msg) 4: getq(msg)
3: putq(msg) S:sve(msg)

APPLICATION

FRAMEWORK

KERNEL

Half-Sync/Half-Async Pattern

e Intent

— An architectural pattern that decouples synchronous
I/O from asynchronous I/O in a system to simplify
programming effort without degrading execution
efficiency

e This pattern resolves the following forces
for concurrent communication systems:

— How to simplify programming for higher-level com-
munication tasks

> These are performed synchronously (via Active
Objects)

— How to ensure efficient lower-level I/O communi-
cation tasks

> These are performed asynchronously (via the Re-
actor)

Structure of the
Half-Sync/Half-Async Pattern

~

1,4: read((htx‘ ! !

MESSAGE QUEUES

TASK LAYER

/3: enqueue(data)

EXTERNAL
EVENT SOURCES

TASK LAYER

ASYNCHRONOUS QUEUEING SYNCHRONOUS

Collaborations in the
Half-Sync/Half-Async Pattern

SYNC QUEUEING ASYNC

External Async Message Sync
Event Source Task Queue Task

I notification() i
— M

EXTERNAL EVENT

|
RECY MSG read(msg)

PHASE

work()
| —]

enqueue(msg)
—

PROCESS MSG

DEQUEUE MSG

EXECUTE TASK

\
\
!
\
!
!
!
ENQUEUE MSG }
\
\
\
\
\
\
\
!

PHASE PHASE

N

Using the Half-Sync/Half-Async
Pattern for Blob Streaming

e Thisillustrates input processing (output pro-
cessing is similar)

: Blob
Handle

4: getq(msg)
S:sve(msg)

SYNCH TASK

: Message
Queue

: Blob
Processor

QUEUEING

2: recv_request(msg)
3: putq(msg)

1: handle_input()
¢ Reactor

ASYNC TASK

The Acceptor Pattern

e Intent

— Decouple the passive initialization of a service from
the tasks performed once the service is initialized

e This pattern resolves the following forces
for network servers using interfaces like sock-
ets or TLI:

1. How to reuse passive connection establishment code
for each new service

How to make the connection establishment code
portable across platforms that may contain sock-
ets but not TLI, or vice versa

How to ensure that a passive-mode descriptor is
not accidentally used to read or write data

How to enable flexible policies for creation, con-
nection establishent, and concurrency

Structure of the Acceptor Pattern

CONNECTION APPLICATION

REACTIVE

LAYER

LAYER

LAYER

—~—_
// n SOCK Stream ~ ——| Concrete_Svc_Handler
71 SOCK_Acceptor

.
\ Concrete / e .

(
|Sve Handler Concrete /
\ Toren ! Acceptor)

s

r B
SVC_HANDLER |
= -] PEER_ACCEPTOR \

\
\ Handler ! B /é) Acceptor]
{\ |make svc_handler() {/
laccept_svc_handler() N

|activate_svc_handler() /

|/ open() //
\Ohandle input() __~

——~ -
- ~—— ~_ -

— PEER_STREAM
L,,r,,7J

|
| open) |
\

TN

sh = make_svc_handler();
accept_svc_handler (sh);
activate_svc_handler (sh);

s

L~

_/Event \

\ ‘Handler l/’q Reactor

\
/handle _input() \Il

\’/ _/———‘/

Collaboration in the Acceptor

Pattern

acc: :SOCK sh: reactor :
Acceptor Acceptor Sve_Handler Reactor

INITIALIZE PASSIVE ! OPEH() open()}

ENDPOINT

Server

REGISTER HANDLER

|
EXTRACT HANDLE | ‘gel*handle()

} handle_events()

START EVENT LOOP

ENDPOINT

} ‘ selecl()|j:
|

|_handle_input()

|
|
™ |
register_handler(acc) | ‘j
T t
| |
}
|
1
|
FOREACH EVENT DO }

CONNECTION EVENT
sh = make_svc_handler()

accept_svc_handler (sh)
activate_svc_handler (sh)

CREATE, ACCEPT,
AND ACTIVATE OBJECT

.
REGISTER HANDLER register_handler(sh)|

FOR CLIENT 1/O

SERVICE

I get_handle()
JSctnandie) |
EXTRACT HANDLE }
DATA EVENT

PROCESS MSG

Using the Acceptor Pattern for
Blob Streaming

: Acceptor

PASSIVE

LISTENER CONNECTIONS

SERVICE

PROCESSING INITIALIZATION INITIALIZATION

! handle_close()
———=— |

1 handle_close()

CLIENT SHUTDOWN

|

|

|

1

} handle_input()
} sve()
|

|

|

|

I

SERVER SHUTDOWN

e Acceptor factory creates, connects, and ac-

tivates a Svc_Handler

1: sh = make_svc_handler()
2: accept_svc_handler(sh)
3: activate_svc_handler(sh)

: Reactor

Evaluation and Recommendations

Understand communication requirements and
network/host environments

Measure performance empirically before adopt-
ing a communication model

— Low-speed networks often hide performance over-
head

Insist CORBA implementors provide hooks
to manipulate options

— e.g., setting socket queue size with ORBeline was
hard

Increase size of socket queues to largest
value supported by OS

Tune the size of the transmitted data buffers
to match MTU of the network

Evaluation and Recommendations
(cont’d)

e Use IDL sequences rather than IDL strings
to avoid unnecessary data access (i.e. strlen)

e Use write/read rather than send/recv on
SVR4 platforms

e Long-term solution:

— Optimize DOC frameworks
— Add streaming support to CORBA specification

e Near-term solution for CORBA overhead on
high-speed networks:

— e.g., Blob Streaming integrates CORBA with ACE

Optimizations

Y

{

DYNAMIC ORB OBJECT

INVOCATION INTERFACE ADAPTER
INTERFACE OPTIMIZATIONS

DEMULTIPLEXING

OBJECT GIOP TRANSPORT

REQUEST BROKER J— PROTOCOL
OPTIMIZATIONS

OS KERNEL OS KERNEL YOSUBSYSTEM

OPTIMIZATIONS

NETWORK NETWORK

e
ADAPTER ADAPTER ADAPTER

OPTIMIZATIONS

e To be effective for use with performance-
critical applications over high-speed networks,
CORBA implementations must be optimized

Obtaining ACE

e The ADAPTIVE Communication Environ-
ment (ACE) is an OO toolkit designed ac-
cording to key network programming pat-
terns

e All source code for ACE is freely available
— Anonymously ftp to wuarchive.wustl.edu

— Transfer the files /languages/c++/ACE/*.gz and
gnu/ACE-documentation/*.gz

e Mailing list
— ace-users@cs.wustl.edu

— ace-users-request@cs.wustl.edu

¢ WWW URL

— http://www.cs.wustl.edu/~schmidt/ACE.html

