Towards Highly Optimized Real-time Middleware
for Software Product-line Architectures

Arvind S. Krishna', Aniruddha Gokhalet and Douglas C. Schmidt',
Venkatesh Prasad Ranganatht and John Hatcliff
‘Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN
‘Dept. of Computing and Information Sciences, Kansas State University, Manhattan, KS

Abstract

This paper provides the following contributions to the stofimid-
dleware optimization techniques for product line architees in
real-time systems. First, we identify different dimensiohgener-
ality in standards based middleware implementations. S&coe
describe how specialization approaches used in other dosnak
cluding OS, compiler and programming languages can be adpli
to address middleware generality challenges. Third, wesgmé
preliminary results from the application of our specialipa tech-
niques. Our results illustrate that specialization tecjugs repre-
sent a promising approach for minimizing time/space ovadisen
middleware.

1. INTRODUCTION

Emerging trends and challenges Product-line architecture§PLA-
s) [1] are a promising technology for systematically adsires
the challenges of large-scale software systems. In caritt@a®n-
ventional software processes that produce separate phitions,
PLA-based processes create familiespadduct variants[2] that
share a common set of capabilities, patterns, and architéstyles.
PLA based development processes are also desirable foibDiet

Real-time and Embedded (DRE) systems [2, 3] that are charac-

terized by their multiple, simultaneous constraints asdifferent
quality of service (QoS) dimensions (such as memory footpri

weight, and performance), which often makes them hardeeto d
velop, maintain, and evolve than mainstream desktop anet-ent

prise software.

However, key challenges must be overcome before middleware

can be applied broadly to support the QoS need®loA-based
DRE systems. In particular, R&D is needed to help resolve the
tension between (1) thgenerality of standards-based middleware
platforms which benefit from reusable architectures designed to
satisfy a broad range of application requirements, andgglication-
specific product variantsvhich benefit from highly-optimized, cus-
tom middleware implementations. In resolving this tenswlu-
tions should ideally retain the portability and interof®lity af-
forded by standard middleware.

Specialization techniques for resolving middleware genetity
challenges A promising solution approach to alleviate middle-
ware generality for PLAs is the use of specialization teghas
such as partial evaluation (PE). Jones et.al [4], definegbantal-
uation as a technique that creates a specialized versiorgeha
eral program, which is more optimized for speed and size than
original program. Specialization techniques draw from hade
characteristics of language mechanisms such as programizgpt
tion techniques [5], compilers [6] and program generatigjnand
generative programming techniques [8].

2. OVERVIEW OF SPECIALIZATION TECH-
NIQUES

Specialization approaches tailor code based on ahead ef tim
known invariant assumptions. Consider a given proggamand
inputsargl andarg2 as shown below.

pow (n,m: /* Conputes n power
pre (n >= 0, m>= 0)

m */

DRE systems QoS challenges have hitherto led developers tobegi n

(re)invent custom applications that are tightly coupledpecific
hardware/software platforms, which is tedious, erromproand
costly to evolve over product lifecycles. During the pastatie,
therefore, a key technology for alleviating the tight canglbe-
tween applications and their underlying platforms has tmeielile-
ware, which (1) functionally bridges the gap between appliaatio
and platforms, (2) controls many aspects of end-to-end @n§,
(3) simplifies the integration of components developed bitipie
technology suppliers.

Permission to make digital or hard copies of all or part o thiork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

i =1

result =n

while (i <=m

begin

result :=result * n
| ++

end

return n

end

Now given thatarg2 is know a priori (the value of m is 2).e.,
it is an invariant, specialization techniques can be usegmtdduce
a corresponding prograpy,;. The code snippet below illustrates
one such specialization pfthat takes only input argumeat-g1.

spl _pow (n): /+ Conputes n * n =*/
pre (n >= 0, m>= 0)

begi n
return n * n

end

The program sppow is called the specialization of program pow
with respect to the invariance = 2. For a given progranp and

its specializatiomnsy:,

output(p) = output(pspi) @)
speed(p) < speed(pspi))

are necessary conditions and
size(p) > size(pspi) (3)

is a desirable condition. Specialization techniques diama-
ously combine characteristics of: (fijogram optimizer, by pro-
ducing a specialized program, which has the same behavibeas
original version, but takes lesser steps,q@npiler, by using tech-
niques like constant propagation (replacingy1 with the constant
value), and (3program generator, by generating the optimized
version of the program, either source or object code directl

2.1 Specialization Example

In this section we show a concrete example of program spe-
cialization technique based on the C++ Standard Templdtetyi
(STL) that provides a set of containers (Abstract Data Typesl
algorithms that can be used for PE. The code snippet belagill
trates how template meta programming techniques can beassed
a mechanism for partial evaluation.

template<int X>
struct fibo_num {
static const num
fibo_num<X—2>::
}

template<>

struct fibo_.num<0> {
static const num

}

template<>

struct fibo_num<1>
static const num

}

template<>
struct fibo_num<2> {
static const num = 1; /* 2nd number x/

}

The code above computes thé iibonacci number. However,
this computation is done at compile time using PE as folld@@an-
sider the following statement:

fiboonum<X—1>::num +
num ;

1; /* Oth number */

{

1; /* 1st number x/

const int fibo_10 fibo_num<10>::num;

To evaluate fibdlO, a C++ compiler recursively instantiates tem-
plates fibanum<9...1> to compute the 70 number. Thus all oc-
currences of fibdl0 are substituted with the value directly thereby
improving program space and speed.

2.2 Specialization Mechanisms Applied to Dif-
ferent Domains

Specialization mechanisms have been applied to different d
mains including scientific applications, functional pragming,
operating systems and database systems. In computer egdphi
example, ray tracing algorithms compute information on figi
rays traverse a scene based on different origination. Sl
tion of these algorithms [9] for a given scene have yieldettiebe
performance rather than general purpose approaches.a8jmiil
databases [10], general purpose queries have been traesfanto
specific programs optimized for a given input. Similarlgiting
neural networks [11] for a given scenario has improved itfope
mance.

The earliest of the efforts in Synthesis Kernel [12] pioreekthe
idea of generating custom system calls for specific sitnatidhe
motivation was to collapse layers and to eliminate unnecggso-
cedure calls. Others have extended this approach to usaveatal
specialization techniques. For example in their work [E3]et al.,
have identified several invariants for a operating systemd call
for HP_UX platform. Based on these invariants, code is synthe-
sized to adapt to different situations. Once the invariaitseither
re-plugging code is used to adapt to a different invariartedault
unoptimized code is used.

Specialization techniques have also been applied to \&gen-
erations of middleware. [14] describes the use of the Tempm€E
gram partial evaluator tool to automatically optimize coomsoft-
ware architecture structures with respect to fixed appiinaton-
texts. For instance, the authors show how partial evalnatEm be
applied to fold together and optimize layers in early geti@na of
middleware,i.e., a remote procedure call (RPC) implementation,
by specializing RPC invocations to the size and type of remoo-
cedure parameters (yielding speed-ups of 1.7x and 3.5x).

3. SPECIALIZING MIDDLEWARE IMPLE-
MENTATIONS

Traditional specialization techniques have been usedtimze
applications in function/logic programming. There does$ exst
any partial evaluation tool for object oriented programgnlan-
guages such as C++ or Java. Other program specializatibn tec
niques are commonly used in optimizing compilers. Disteou
Object Computing (DOC) middleware displays several charac
istics amenable to specialization such as (1) ability tocwdiffer-
ent platforms, (2) multitude of configuration options angld8sign
for flexibility and generality. Using a similar approach asapti-
mizing compiler, specialization may be used to producedeand
meaner middleware implementations more tailored to theabing
context.

This section presents sources and methods of applyingadpeci
ization techniques to middleware. The description for eafctine
specialization techniques are structured as follows: W fe-
scribe the motivation and opportunity for specializatitren at a
high level illustrate how the specialization can be caroetl Fi-
nally, we show preliminary empirical results from our spédiza-
tion application on the TAO [15] open-source C++ CORBA mid-
dleware that is widely used in production DRE systenvam|.
dre.vanderbilt. edu/users. htm).

3.1 Opportunities for Middleware Specializa-
tion

To improve performance and footprint for different applioas,
middleware implementations incorporate several horeofgen-
eral purpose) optimizations such as predictable and degl&pre-
quest demultiplexing techniques, that ensufé) look up time [16]
and collocation optimization, which bypasses the netwohenrv
client and server reside in the same address space. Howeese,
optimizations are still generic, for example redundantc&kefor
remoting are performed to accommodate for generaliy, capa-
bility to communicate over the wire as well. In the remaindér
this section, we describe different dimensions of middienspe-
cializations that we are working on to improve middlewareSQo
above and beyond existing general-purpose optimizations.

Specialization for target location The collocation optimization
in middleware bypass the network completely when both tieacl
and server objects are collocated. However, in this stnatnid-
dleware is also general purposes,, it still can send and request

remote CORBA requests. Similarly, an object may be a “sing’,
only receive events and updates from other sources but sever
out any events itself. General purpose middleware worksth b
cases, however, considerable footprint and performanpeove-
ments can be obtained by eliminating unnecessary checksoaied
within the middleware.

For example, in the special collocation case where ther@is n
remoting,i.e., there is no need to make remote calls and the code
required to make remote connections (connection handiiaig)c
can be eliminated; same case for sink components. Furthtrei
collocated case, as all calls are known a priori to be on theesa
node, checks to see if a call is remote or local can also bd-elim
nated. These checks span multiple layers within the midcaliew
including message invocation classes in the I/O layer arelcob
proxies in the ORB core layers.

Extrapolate rather than send. HTTP caching works by storing
web pages in a local machine and servicing requests to theteem
page from the local cache. After a given time, the web page#exp
and a remote request is sent. A CORBA client/server perfocama
can be improved via caching. For example, before sending a re
quest to the server, a client can check to see if it has a previo
response which is still valid. This eliminates a roundtrygiead.
Some middleware implementations, including ACE+TAO suppo
a mechanism called Smart Proxies [17] which enable extaipol
rather than sending a request to the server.

Specialize middleware framework implementations Middleware
is often developed as a set of frameworks that can be exteartkd
configured with alternative implementations of key compusg
such as different types of transport protocelgy(TCP/IP, VME, or
shared memory), event demultiplexing mechaniseng, (reactive-,
proactive-, or thread-based), request demultiplexiragegies €.9,
dynamic hashing, perfect hashing, or active demuxing), comd
currency modelsg.g, thread-per-connection, thread pool, or thread-
pre-request). However, most applications only use a sudfsee
different features provided by the middleware frameworkr -
ample, certain applications use only the TCP/IP protocotémm-
munication or use the thread-per-connection concurretiayesy.
In this situation, the frameworks can be specialized to iekte
dynamic dispatching overheads based on the type of cormate
ponent used by the application that is know a priori.

Specialize deployment platform characteristics Another key di-
mension of generality stems from the deployment platforms o
which middleware and PLA applications are hosted. Exampies
this deployment platform generality include different ®%ecific
system calls, compiler flags and optimizations, and harelvimr
struction sets. Every OS, compiler, and hardware platfaorige
different configuration settings that perform differerglyd can be
tuned to minimize the time/space overhead of middlewareapad
plications. For example, sendfile() optimizations avddain cer-
tain platforms, such as Linux can be used to avoid data cdyges
tween middleware and kernel buffers thereby minimizing-end
end latencies for application using the middleware.

3.2 Summary of Results

In this section we present preliminary empirical resultstéoget
object location specialization discussed in Section 3.kis Epe-
cialization targets collocated components that do notiregamot-
ing capabilities. In this case, remoting checks along theest/re-
sponse processing path within the middleware can be eltetdna
This specialization is applied above and beyond the stdraidio-
cation optimization supported in a Real-time CORBA implatae

Throughput
6000 ﬂ{

M General 2500
7 Specializes

2000—

Size

3000

5500

50000

45000

4000

3500

@
Q
<3
S

1500

e (k.B)

calls/sec

2500

2000

1000—

1500

1000

500

5000

AU
sizi

QAN

0

0

Figure 1: Results for Target Object Location Specializatio

tion and completely eliminates remoting tests (the gefigyah the
collocation optimization. The specialization is compkitvith the
CORBA specification since no changes are made to the CORBA
interfaces.

All experiments were performed on an Intel Pentium Il 8512vih
processor with 512 MB of main memory running on Linux 2.4.7-
timesys-3.1.214 kernel, which contains a very predictedaé-time
kernel module. The TAO middleware used for the experimeais w
version 1.4.7, which was compiled with gcc version 3.2.2.

Figure 1 shows the footprint and throughput improvements ac
crued by the target object location specialization. As shdmw
the figure, footprint for a collocated application improvss~40
kiloBytes, which is a 12% improvement over the general-psep
TAO implementation. This specialization also removes neldunt
tests along the critical path, which improves end-to-emdughput
by ~7% over the general-purpose collocation optimization anpl
mented by TAO. These results show how eliminating redundant
moting functionality can improve size and performance ofegal-
purpose middleware.

Figure 2 illustrates the QoS improvements accrued by applyi
all of the middleware specializations discussed in Sed@idrto a
remote CORBA operation. The average end-to-end latenapéor
specialized TAO dropped by43%, while the dispersion measure
was twice as good as general-purpose optimized TAO impleanen
tion, indicating considerable improvement in predicti&ilwhich
is essential for DRE systems.

Average 99%
350 350
300 300
250 250
7 ‘ W Genera [| gL
5 200 . 5 200
g == &7
& 150} & 150} . 9
100 Z —————————————————— 100 g ——————————————————
| E——— e] E—— | —
% £ % 1
Standard Deviation Max
6 350
5 300}
= 250
24 g,
R 5 2001
i § 150
r 100}
2 % 50}
L % r
1 %Z

Figure 2: Results for Cumulative Specialization Applicaton

Similarly, the 99% bound values for the specialized TAO im-

proved by~40% while worst-case measures improveddiyb0use-

cs, which is a 45% improvement over the general-purpose TAO

implementation. End-to-end throughput measures impriyed

average of~65%. To measure performance speed up for a com-

plicated data structure, we ran the experiment using theptsom
data structure from our demarshaling experiments. For aeseg
length of 64 average latency improved%26%, while for a length
of 4,096 latency improved by51%.

4. CONCLUDING REMARKSAND FUTURE
WORK

Traditional program specialization techniques such asgbaval-
uation have been used to specialize a given program basdttad a
of time known invariant properties. This paper described boch
specialization techniques are also applicable to stasdaaded mid-
dleware implementations for PLAs. Our preliminary resshew
that application of specialization techniques can mineie time-
/space overheads of applications using standards baseltemaie
without (1) changes to the application code and (2) comsomi
compliance to the CORBA specification. Our ultimate goalois t
enable other middleware developers to analyze and implethen
specializations. We are working on developing a comprahens
CORBA specialization moddbased on [18] that — independent of
a particular CORBA implementation — identifies (1) pointsaim
ORB architecture where specialization is beneficial andAR)
extensions to the architecture that providmksfor achieving ef-
fective specialization.

Our preliminary implementation of the specialization teicfues
illustrated that manually applying these specializatiorthousands
of lines of C++ middleware code would be infeasible. Our fatu
work therefore focuses on developing languages and toalstts
mate static and dynamic analysis to identify opportunittesspe-
cialization and to collect information that can drive thespliza-
tion process. We are also developing transformation esgimat
automatically perform the refactoring, partial evaluatiand code
weaving necessary to achieve specialized middleware mggita-
tions.

Figure 3 illustrates a futuristic view of a specializatialogess.

In this approach, middleware models and PLA invarianceispec
fication is fed to a middleware specializer that generate&ddle
ware configuration suitable for the PLA. From this base canfig
ration model, the variability specifications.g, the assembly and
deployment aspects are woven by a variability weaver géngra
an optimized middleware implementation.

5, REFERENCES

[i] D.L.Parnas, "On the Design and Development of Program
Families,”IEEE Transactions on Software Engineeringl. SE-2,
no. 1, pp. 1-9, 1976.

[2] D.C. Sharp, “Reducing Avionics Software Cost Througm@mnent
Based Product Line Development,” Broceedings of the 10th
Annual Software Technology Conferenagr. 1998.

[3] B. S. Doerr and D. C. Sharp, “Freeing Product Line Arcttitees
from Execution Dependencies,” Rroceedings of the 11th Annual
Software Technology Conferendgor. 1999.

[4] N. Jones, C. Gomard, and P. Sestéfistial Evaluation and
Automatic Program Generatiofcnglewood Cliffs, NJ: Prentice Hall,
1993.

[5] V. ltkin, “On Partial and Mixed Program Execution,” Program
Optimization and Transformatiompp. 17-30, CCN, 1983. (In
Russian).

[6] S. Abramov and N. Kondratjev, “A Compiler Based on Pértia
Evaluation,” inProblems of Applied Mathematics and Software
Systemspp. 66—-69, Moscow, USSR: Moscow State University, 1982.
(In Russian).

Specvialized
Product-specific| | Middleware Product-specific
assembly Configuration deployment
variability model variability

Optimized
Middleware

validation

Figure 3: Model-driven Middleware Specialization Approach

[7] P. Thiemann and M. Sperber, “Program Generation Witts€lan
Informatik’97, Aachen, Germany, September 1@97Jarke,
K. Pasedach, and K. Pohl, eds.), Berlin: Springer-Verl@9,71
[8] K. Czarnecki and U. Eiseneckégenerative Programming: Methods,
Tools, and ApplicationsBoston: Addison-Wesley, 2000.
[9] P. Andersen, “Partial Evaluation Applied to Ray TracinglKU
Research Report 95/2, DIKU, 1995.
C. Sakama and H. Itoh, “Partial Evaluation of QuerieBaductive
Databases,New Generation Computingol. 6, no. 2,3,
pp. 249-258, 1988.
L. Lei, G.-H. Moll, and J. Kouloumdjian, “A Deductive Babase
Architecture Based on Partial EvaluatioSIGMOD Recordvol. 19,
pp. 24—-29, September 1990.
C. Pu, H. Massalin, and J. loannidis, “The Synthesisngt
Computing Systemsol. 1, pp. 11-32, Winter 1988.
C. Pu, T. Autery, A. Black, C. Consel, C. Cowan, J. W. Joouye,
Lakshmi Kethana, and K. Zhang, “Optimistic Incremental
Specialization: Streamlining a Commercial Operating &ystin
Symposium of Operating System Principl@opper Mountain
Resort, Colorado), Dec. 1995.
R. Marlet, S. Thibault, and C. Consel, “Efficient Implentations of
Software Architectures via Partial EvaluatioAlitomated Software
Engineering: An International JournaVol. 6, pp. 411-440, October
1999.
Institute for Software Integrated Systems, “The ACEEDHAO).”
www.dre.vanderbilt.edu/TAO/, Vanderbilt University.
[16] A.S. Krishna, D. C. Schmidt, R. Klefstad, and A. Corsédfmwards
Predictable Real-time Java Object Request Brokerdrateedings
of the 9th Real-time/Embedded Technology and Applications
Symposium (RTASWashington, DC), IEEE, May 2003.
N. Wang, K. Parameswaran, and D. C. Schmidt, “The Deaigh
Performance of Meta-Programming Mechanisms for ObjecuBRsiy
Broker Middleware,” inProceedings of thé*" Conference on
Object-Oriented Technologies and Syste(Bsn Antonio, TX),
pp. 103-118, USENIX, Jan/Feb 2000.
G. Daugherty, “A Proposal for the Specialization of HHRE
Systems,” ifProceedings of the ACM SIGPLAN 2004 Symposium on
Partial Evaluation and Program Manipulation (PEPM Q4)/erona,
Italy), ACM, Aug. 2004.

[20]

(11]

[12]

[13]

[14]

[15]

[17]

(18]

