
Towards Highly Optimized Real-time Middleware
for Software Product-line Architectures

Arvind S. Krishna†, Aniruddha Gokhale† and Douglas C. Schmidt†,
Venkatesh Prasad Ranganath‡ and John Hatcliff‡

†Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN
‡Dept. of Computing and Information Sciences, Kansas State University, Manhattan, KS

Abstract
This paper provides the following contributions to the study of mid-
dleware optimization techniques for product line architectures in
real-time systems. First, we identify different dimensions of gener-
ality in standards based middleware implementations. Second, we
describe how specialization approaches used in other domains in-
cluding OS, compiler and programming languages can be applied
to address middleware generality challenges. Third, we present
preliminary results from the application of our specialization tech-
niques. Our results illustrate that specialization techniques repre-
sent a promising approach for minimizing time/space overheads in
middleware.

1. INTRODUCTION

Emerging trends and challenges. Product-line architectures(PLA-
s) [1] are a promising technology for systematically addressing
the challenges of large-scale software systems. In contrast to con-
ventional software processes that produce separate point solutions,
PLA-based processes create families ofproduct variants[2] that
share a common set of capabilities, patterns, and architectural styles.
PLA based development processes are also desirable for Distributed
Real-time and Embedded (DRE) systems [2, 3] that are charac-
terized by their multiple, simultaneous constraints across different
quality of service (QoS) dimensions (such as memory footprint,
weight, and performance), which often makes them harder to de-
velop, maintain, and evolve than mainstream desktop and enter-
prise software.

DRE systems QoS challenges have hitherto led developers to
(re)invent custom applications that are tightly coupled tospecific
hardware/software platforms, which is tedious, error-prone, and
costly to evolve over product lifecycles. During the past decade,
therefore, a key technology for alleviating the tight coupling be-
tween applications and their underlying platforms has beenmiddle-
ware, which (1) functionally bridges the gap between applications
and platforms, (2) controls many aspects of end-to-end QoS,and
(3) simplifies the integration of components developed by multiple
technology suppliers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

However, key challenges must be overcome before middleware
can be applied broadly to support the QoS needs ofPLA-based
DRE systems. In particular, R&D is needed to help resolve the
tension between (1) thegenerality of standards-based middleware
platforms, which benefit from reusable architectures designed to
satisfy a broad range of application requirements, and (2)application-
specific product variants, which benefit from highly-optimized, cus-
tom middleware implementations. In resolving this tension, solu-
tions should ideally retain the portability and interoperability af-
forded by standard middleware.

Specialization techniques for resolving middleware generality
challenges. A promising solution approach to alleviate middle-
ware generality for PLAs is the use of specialization techniques
such as partial evaluation (PE). Jones et.al [4], define partial eval-
uation as a technique that creates a specialized version of agen-
eral program, which is more optimized for speed and size thanthe
original program. Specialization techniques draw from andhave
characteristics of language mechanisms such as program optimiza-
tion techniques [5], compilers [6] and program generation [7] and
generative programming techniques [8].

2. OVERVIEW OF SPECIALIZATION TECH-
NIQUES

Specialization approaches tailor code based on ahead of time
known invariant assumptions. Consider a given programp, and
inputsarg1 andarg2 as shown below.

pow (n,m): /* Computes n power m */
pre (n >= 0, m >= 0)

begin
i := 1
result = n
while (i <=m)
begin
result := result * n
i++

end
return n

end

Now given thatarg2 is know a priori (the value of m is 2),i.e.,
it is an invariant, specialization techniques can be used toproduce
a corresponding programpspl. The code snippet below illustrates
one such specialization ofp that takes only input argumentarg1.

spl_pow (n): /* Computes n * n */
pre (n >= 0, m >= 0)

begin
return n * n

end

The program splpow is called the specialization of program pow
with respect to the invariancem = 2. For a given programp and

its specializationpspl,
output(p) = output(pspl) (1)

speed(p) < speed(pspl) (2)

are necessary conditions and

size(p) > size(pspl) (3)

is a desirable condition. Specialization techniques simultane-
ously combine characteristics of: (1)program optimizer , by pro-
ducing a specialized program, which has the same behavior asthe
original version, but takes lesser steps, (2)compiler, by using tech-
niques like constant propagation (replacingarg1 with the constant
value), and (3)program generator, by generating the optimized
version of the program, either source or object code directly.

2.1 Specialization Example
In this section we show a concrete example of program spe-

cialization technique based on the C++ Standard Template Library
(STL) that provides a set of containers (Abstract Data Types) and
algorithms that can be used for PE. The code snippet below illus-
trates how template meta programming techniques can be usedas
a mechanism for partial evaluation.

template<i n t X>

s t r u c t f i bo num {
s t a t i c con s t num = f ibo num<X−1>::num +

f ibo num<X−2>::num ;
}
template<>

s t r u c t f ibo num<0> {
s t a t i c con s t num = 1 ; /∗ 0 t h number ∗ /

}
template<>

s t r u c t f ibo num<1> {
s t a t i c con s t num = 1 ; /∗ 1 s t number ∗ /

}
template<>

s t r u c t f ibo num<2> {
s t a t i c con s t num = 1 ; /∗ 2nd number ∗ /

}

The code above computes the nth fibonacci number. However,
this computation is done at compile time using PE as follows.Con-
sider the following statement:

con s t i n t f i b o 1 0 = f ibo num<10>::num ;

To evaluate fibo10, a C++ compiler recursively instantiates tem-
plates fibonum<9...1> to compute the 10th number. Thus all oc-
currences of fibo10 are substituted with the value directly thereby
improving program space and speed.

2.2 Specialization Mechanisms Applied to Dif-
ferent Domains

Specialization mechanisms have been applied to different do-
mains including scientific applications, functional programming,
operating systems and database systems. In computer graphics for
example, ray tracing algorithms compute information on howlight
rays traverse a scene based on different origination. Specializa-
tion of these algorithms [9] for a given scene have yielded better
performance rather than general purpose approaches. Similarly in
databases [10], general purpose queries have been transformed into
specific programs optimized for a given input. Similarly, training
neural networks [11] for a given scenario has improved its perfor-
mance.

The earliest of the efforts in Synthesis Kernel [12] pioneered the
idea of generating custom system calls for specific situations. The
motivation was to collapse layers and to eliminate unnecessary pro-
cedure calls. Others have extended this approach to use incremental
specialization techniques. For example in their work [13],Pu et al.,
have identified several invariants for a operating systemread call
for HP UX platform. Based on these invariants, code is synthe-
sized to adapt to different situations. Once the invariantsfail, either
re-plugging code is used to adapt to a different invariant ordefault
unoptimized code is used.

Specialization techniques have also been applied to various gen-
erations of middleware. [14] describes the use of the Tempo Cpro-
gram partial evaluator tool to automatically optimize common soft-
ware architecture structures with respect to fixed application con-
texts. For instance, the authors show how partial evaluation can be
applied to fold together and optimize layers in early generations of
middleware,i.e., a remote procedure call (RPC) implementation,
by specializing RPC invocations to the size and type of remote pro-
cedure parameters (yielding speed-ups of 1.7x and 3.5x).

3. SPECIALIZING MIDDLEWARE IMPLE-
MENTATIONS

Traditional specialization techniques have been used to optimize
applications in function/logic programming. There does not exist
any partial evaluation tool for object oriented programming lan-
guages such as C++ or Java. Other program specialization tech-
niques are commonly used in optimizing compilers. Distributed
Object Computing (DOC) middleware displays several character-
istics amenable to specialization such as (1) ability to runon differ-
ent platforms, (2) multitude of configuration options and (3) design
for flexibility and generality. Using a similar approach as an opti-
mizing compiler, specialization may be used to produce leaner and
meaner middleware implementations more tailored to the operating
context.

This section presents sources and methods of applying special-
ization techniques to middleware. The description for eachof the
specialization techniques are structured as follows: We first de-
scribe the motivation and opportunity for specialization,then at a
high level illustrate how the specialization can be carriedout. Fi-
nally, we show preliminary empirical results from our specializa-
tion application on the TAO [15] open-source C++ CORBA mid-
dleware that is widely used in production DRE systems (www.
dre.vanderbilt.edu/users.html).

3.1 Opportunities for Middleware Specializa-
tion

To improve performance and footprint for different applications,
middleware implementations incorporate several horizontal (gen-
eral purpose) optimizations such as predictable and scalable (1) re-
quest demultiplexing techniques, that ensureO(1) look up time [16]
and collocation optimization, which bypasses the network when
client and server reside in the same address space. However,these
optimizations are still generic, for example redundant checks for
remoting are performed to accommodate for generality,i.e., capa-
bility to communicate over the wire as well. In the remainderof
this section, we describe different dimensions of middleware spe-
cializations that we are working on to improve middleware QoS
above and beyond existing general-purpose optimizations.

Specialization for target location. The collocation optimization
in middleware bypass the network completely when both the client
and server objects are collocated. However, in this situation, mid-
dleware is also general purpose,i.e., it still can send and request

remote CORBA requests. Similarly, an object may be a “sink”,i.e.,
only receive events and updates from other sources but neversend
out any events itself. General purpose middleware works in both
cases, however, considerable footprint and performance improve-
ments can be obtained by eliminating unnecessary checks andcode
within the middleware.

For example, in the special collocation case where there is no
remoting,i.e., there is no need to make remote calls and the code
required to make remote connections (connection handling code)
can be eliminated; same case for sink components. Further, in the
collocated case, as all calls are known a priori to be on the same
node, checks to see if a call is remote or local can also be elimi-
nated. These checks span multiple layers within the middleware,
including message invocation classes in the I/O layer and object
proxies in the ORB core layers.

Extrapolate rather than send. HTTP caching works by storing
web pages in a local machine and servicing requests to the remote
page from the local cache. After a given time, the web page expires
and a remote request is sent. A CORBA client/server performance
can be improved via caching. For example, before sending a re-
quest to the server, a client can check to see if it has a previous
response which is still valid. This eliminates a roundtrip overhead.
Some middleware implementations, including ACE+TAO support
a mechanism called Smart Proxies [17] which enable extrapolation
rather than sending a request to the server.

Specialize middleware framework implementations. Middleware
is often developed as a set of frameworks that can be extendedand
configured with alternative implementations of key components,
such as different types of transport protocols (e.g., TCP/IP, VME, or
shared memory), event demultiplexing mechanisms (e.g., reactive-,
proactive-, or thread-based), request demultiplexing strategies (e.g.,
dynamic hashing, perfect hashing, or active demuxing), andcon-
currency models (e.g., thread-per-connection, thread pool, or thread-
pre-request). However, most applications only use a subsetof the
different features provided by the middleware framework. For ex-
ample, certain applications use only the TCP/IP protocol for com-
munication or use the thread-per-connection concurrency strategy.
In this situation, the frameworks can be specialized to eliminate
dynamic dispatching overheads based on the type of concretecom-
ponent used by the application that is know a priori.

Specialize deployment platform characteristics. Another key di-
mension of generality stems from the deployment platforms on
which middleware and PLA applications are hosted. Examplesof
this deployment platform generality include different OS-specific
system calls, compiler flags and optimizations, and hardware in-
struction sets. Every OS, compiler, and hardware platform provide
different configuration settings that perform differentlyand can be
tuned to minimize the time/space overhead of middleware andap-
plications. For example, sendfile() optimizations available on cer-
tain platforms, such as Linux can be used to avoid data copiesbe-
tween middleware and kernel buffers thereby minimizing end-to-
end latencies for application using the middleware.

3.2 Summary of Results
In this section we present preliminary empirical results for target

object location specialization discussed in Section 3.1. This spe-
cialization targets collocated components that do not require remot-
ing capabilities. In this case, remoting checks along the request/re-
sponse processing path within the middleware can be eliminated.
This specialization is applied above and beyond the standard collo-
cation optimization supported in a Real-time CORBA implementa-

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

ca
lls

/s
ec

General
Specialized

Throughput

0

500

1000

1500

2000

2500

3000

si
ze

 (
k.

B
)

Size

Figure 1: Results for Target Object Location Specialization

tion and completely eliminates remoting tests (the generality) in the
collocation optimization. The specialization is compatible with the
CORBA specification since no changes are made to the CORBA
interfaces.

All experiments were performed on an Intel Pentium III 851 Mhz
processor with 512 MB of main memory running on Linux 2.4.7-
timesys-3.1.214 kernel, which contains a very predictablereal-time
kernel module. The TAO middleware used for the experiments was
version 1.4.7, which was compiled with gcc version 3.2.2.

Figure 1 shows the footprint and throughput improvements ac-
crued by the target object location specialization. As shown in
the figure, footprint for a collocated application improvesby ∼40
kiloBytes, which is a 12% improvement over the general-purpose
TAO implementation. This specialization also removes redundant
tests along the critical path, which improves end-to-end throughput
by ∼7% over the general-purpose collocation optimization imple-
mented by TAO. These results show how eliminating redundantre-
moting functionality can improve size and performance of general-
purpose middleware.

Figure 2 illustrates the QoS improvements accrued by applying
all of the middleware specializations discussed in Section3.1 to a
remote CORBA operation. The average end-to-end latency forthe
specialized TAO dropped by∼43%, while the dispersion measure
was twice as good as general-purpose optimized TAO implementa-
tion, indicating considerable improvement in predictability, which
is essential for DRE systems.

50

100

150

200

250

300

350

La
te

nc
y(

us
) General

Specialized

Average

50

100

150

200

250

300

350

La
te

nc
y(

us
)

99%

1

2

3

4

5

6

La
te

nc
y(

us
)

Standard Deviation

50

100

150

200

250

300

350

La
te

nc
y(

us
)

Max

Figure 2: Results for Cumulative Specialization Application

Similarly, the 99% bound values for the specialized TAO im-

proved by∼40% while worst-case measures improved by∼150µse-
cs, which is a 45% improvement over the general-purpose TAO
implementation. End-to-end throughput measures improvedby n
average of∼65%. To measure performance speed up for a com-
plicated data structure, we ran the experiment using the complex
data structure from our demarshaling experiments. For a sequence
length of 64 average latency improved by∼26%, while for a length
of 4,096 latency improved by∼51%.

4. CONCLUDING REMARKS AND FUTURE
WORK

Traditional program specialization techniques such as partial eval-
uation have been used to specialize a given program based on ahead
of time known invariant properties. This paper described how such
specialization techniques are also applicable to standards-based mid-
dleware implementations for PLAs. Our preliminary resultsshow
that application of specialization techniques can minimize the time-
/space overheads of applications using standards based middleware
without (1) changes to the application code and (2) compromising
compliance to the CORBA specification. Our ultimate goal is to
enable other middleware developers to analyze and implement the
specializations. We are working on developing a comprehensive
CORBA specialization modelbased on [18] that – independent of
a particular CORBA implementation – identifies (1) points inan
ORB architecture where specialization is beneficial and (2)API
extensions to the architecture that providehooksfor achieving ef-
fective specialization.

Our preliminary implementation of the specialization techniques
illustrated that manually applying these specializationsto thousands
of lines of C++ middleware code would be infeasible. Our future
work therefore focuses on developing languages and tools toauto-
mate static and dynamic analysis to identify opportunitiesfor spe-
cialization and to collect information that can drive the specializa-
tion process. We are also developing transformation engines that
automatically perform the refactoring, partial evaluation, and code
weaving necessary to achieve specialized middleware implementa-
tions.

Figure 3 illustrates a futuristic view of a specialization process.
In this approach, middleware models and PLA invariance speci-

fication is fed to a middleware specializer that generates a middle-
ware configuration suitable for the PLA. From this base configu-
ration model, the variability specifications,e.g., the assembly and
deployment aspects are woven by a variability weaver generating
an optimized middleware implementation.

5. REFERENCES
[1] D. L. Parnas, “On the Design and Development of Program

Families,” IEEE Transactions on Software Engineering, vol. SE-2,
no. 1, pp. 1–9, 1976.

[2] D. C. Sharp, “Reducing Avionics Software Cost Through Component
Based Product Line Development,” inProceedings of the 10th
Annual Software Technology Conference, Apr. 1998.

[3] B. S. Doerr and D. C. Sharp, “Freeing Product Line Architectures
from Execution Dependencies,” inProceedings of the 11th Annual
Software Technology Conference, Apr. 1999.

[4] N. Jones, C. Gomard, and P. Sestoft,Partial Evaluation and
Automatic Program Generation. Englewood Cliffs, NJ: Prentice Hall,
1993.

[5] V. Itkin, “On Partial and Mixed Program Execution,” inProgram
Optimization and Transformation, pp. 17–30, CCN, 1983. (In
Russian).

[6] S. Abramov and N. Kondratjev, “A Compiler Based on Partial
Evaluation,” inProblems of Applied Mathematics and Software
Systems, pp. 66–69, Moscow, USSR: Moscow State University, 1982.
(In Russian).

PLA

invariants

Middleware

models

Generative

middleware
specializer

Product-specific

assembly

variability

Product-specific

deployment

variability

Specialized

Middleware
Configuration

model

Variability

Weaver &
generator

Optimized
Middleware

validation

Figure 3: Model-driven Middleware Specialization Approach

[7] P. Thiemann and M. Sperber, “Program Generation With Class,” in
Informatik’97, Aachen, Germany, September 1997(M. Jarke,
K. Pasedach, and K. Pohl, eds.), Berlin: Springer-Verlag, 1997.

[8] K. Czarnecki and U. Eisenecker,Generative Programming: Methods,
Tools, and Applications. Boston: Addison-Wesley, 2000.

[9] P. Andersen, “Partial Evaluation Applied to Ray Tracing,” DIKU
Research Report 95/2, DIKU, 1995.

[10] C. Sakama and H. Itoh, “Partial Evaluation of Queries inDeductive
Databases,”New Generation Computing, vol. 6, no. 2,3,
pp. 249–258, 1988.

[11] L. Lei, G.-H. Moll, and J. Kouloumdjian, “A Deductive Database
Architecture Based on Partial Evaluation,”SIGMOD Record, vol. 19,
pp. 24–29, September 1990.

[12] C. Pu, H. Massalin, and J. Ioannidis, “The Synthesis Kernel,”
Computing Systems, vol. 1, pp. 11–32, Winter 1988.

[13] C. Pu, T. Autery, A. Black, C. Consel, C. Cowan, J. W. Jon Inouye,
Lakshmi Kethana, and K. Zhang, “Optimistic Incremental
Specialization: Streamlining a Commercial Operating System,” in
Symposium of Operating System Principles, (Copper Mountain
Resort, Colorado), Dec. 1995.

[14] R. Marlet, S. Thibault, and C. Consel, “Efficient Implementations of
Software Architectures via Partial Evaluation,”Automated Software
Engineering: An International Journal, vol. 6, pp. 411–440, October
1999.

[15] Institute for Software Integrated Systems, “The ACE ORB (TAO).”
www.dre.vanderbilt.edu/TAO/, Vanderbilt University.

[16] A. S. Krishna, D. C. Schmidt, R. Klefstad, and A. Corsaro, “Towards
Predictable Real-time Java Object Request Brokers,” inProceedings
of the 9th Real-time/Embedded Technology and Applications
Symposium (RTAS), (Washington, DC), IEEE, May 2003.

[17] N. Wang, K. Parameswaran, and D. C. Schmidt, “The Designand
Performance of Meta-Programming Mechanisms for Object Request
Broker Middleware,” inProceedings of the6th Conference on
Object-Oriented Technologies and Systems, (San Antonio, TX),
pp. 103–118, USENIX, Jan/Feb 2000.

[18] G. Daugherty, “A Proposal for the Specialization of HA/DRE
Systems,” inProceedings of the ACM SIGPLAN 2004 Symposium on
Partial Evaluation and Program Manipulation (PEPM 04), (Verona,
Italy), ACM, Aug. 2004.

