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1.1 Introduction
Middleware trends. Over the past decade, distributed computing middleware, such as
CORBA (Obj 2002c), COM+ (Morgenthal 1999), Java RMI (Wollrath et al. 1996), and
SOAP/.NET (Snell and MacLeod 2001), has emerged to reduce the complexity of devel-
oping distributed systems. This type of middleware simplifies the development of distributed
systems by off-loading the tedious and error-prone aspects of distributed computing from ap-
plication developers to middleware developers. Distributed computing middleware has been
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used successfully in desktop and enterprise systems (Zahavi and Linthicum 1999) where scal-
ability, evolvability, and interoperability are essential for success. In this context, middleware
offers the considerable benefits of hardware-, language-, and OS-independence, as well as
open-source availability in some cases.

The benefits of middleware are also desirable for development of distributed, real-time,
and embedded (DRE) systems. Due to their multiple constraints across different dimensions
of performance, DRE systems are harder to develop, maintain, and evolve than mainstream
desktop and enterprise software. In addition to exhibiting many of the same needs as desktop
and enterprise systems, DRE systems impose stringent quality of service (QoS) constraints.
For example, real-time performance imposes strict constraints upon bandwidth, latency, and
dependability. Moreover, many embedded devices must operate under memory, processor,
and power limitations.

As DRE systems become more pervasive they are also becoming more diverse in their
needs and priorities. Examples of DRE systems include telecommunication networks (e.g.,
wireless phone services), tele-medicine (e.g., robotic surgery), process automation (e.g., hot
rolling mills), and defense applications (e.g., total ship computing environments). The addi-
tional difficulties faced in developing these systems intensifies the need for middleware to
off-load time-consuming and error-prone aspects of real-time and embedded computing, as
well as to eliminate the need for continual reinvention of custom solutions.

The Real-time CORBA specification (Obj 2002b) was standardized by the OMG to sup-
port the QoS needs of DRE systems. Real-time CORBA is a rapidly maturing middleware
technology designed for applications with hard real-time requirements, such as avionics mis-
sion computing (Schmidt et al. 1998b), as well as those with softer real-time requirements,
such as telecommunication call processing and streaming video (Schmidt et al. 2000a). When
combined with a quality real-time operating system foundation, well-tuned implementations
of Real-time CORBA can meet the end-to-end QoS needs of DRE systems, while also of-
fering the significant development benefits of reusable middleware Douglas C. Schmidt and
Frank Buschmann (2003).

Contributions of this chapter. Although Real-time CORBA offers substantial benefits –
and the Real-time CORBA 1.0 specification was integrated into the OMG standard several
years ago – it has not been universally adopted by DRE application developers, partly due to
the following limitations:� Lack of customization (or the difficulty of customization), where customization is

needed to enable Real-time CORBA Object Request Brokers (ORBs) to be used in
diverse domains,� Memory footprint overhead, stemming largely from monolithic ORB implementa-
tions that include all the code supporting the various core ORB services, such as con-
nection and data transfer protocols, concurrency and synchronization management, re-
quest and operation demultiplexing, (de)marshaling, and error-handling, and� Steep learning curve, caused largely by the complexity of the CORBA C++ mapping.

This chapter therefore presents the following contributions to the design and use of Real-time
CORBA middleware implementations that address the challenges outlined above:

1. It describes how highly-optimized ORB designs can improve the performance and pre-
dictability of DRE systems.
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2. It shows how well-designed Real-time CORBA middleware architectures can simul-
taneously minimize footprint and facilitate customization of ORBs to support various
classes of applications.

3. It shows that Java and Real-time Java (Bollella et al. 2000) features can be applied to
an ORB to simultaneously increase ease of use and predictability for Java-based DRE
applications.

The material in this chapter is based on our experience developing The ACE ORB (TAO) Schmidt
et al. (1998b) and ZEN (Klefstad et al. 2002). TAO is an open-source1 Real-time CORBA
ORB for use with C++, with enhancements designed to ensure efficient, predictable, and scal-
able QoS behavior for high-performance and real-time applications. ZEN is an open-source2

Real-time CORBA ORB for use with Java and Real-time Java, designed to minimize foot-
print and maximize ease of use. ZEN is inspired by many of the patterns, techniques, and
lessons learned from developing TAO. This chapter presents TAO and ZEN as case studies
of Real-time CORBA middleware to illustrate how ORBs can enable developers to control
the tradeoffs between efficiency, predictability, and flexibility needed by DRE systems.

Chapter organization. The remainder of this book chapter is organized as follows: Sec-
tion 1.2 provides an overview of Distributed Real-time and Embedded (DRE) systems, fo-
cusing on the challenges involved in developing these systems; Section 1.3 discusses how
Real-time CORBA can be used to ensure end-to-end predictability required for DRE systems;
Section 1.4 illustrates the motivation, design, successes, and limitation of TAO; Section 1.5
details the goals, technologies, design, and successes of ZEN; Section 1.6 summarizes how
our work relates to other research efforts on real-time middleware; and Section 1.7 presents
concluding remarks.

1.2 DRE System Technology Challenges
DRE systems are generally harder to develop, maintain, and evolve than mainstream desktop
and enterprise software since DRE systems have stringent constraints on weight, power con-
sumption, memory footprint, and performance. This section describes the requirements and
challenges present in this domain, both for contemporary DRE systems and for future DRE
systems.

1.2.1 Challenges of Today’s DRE Systems
Some of the most challenging problems facing software developers are those associated with
producing software for real-time and embedded systems in which computer processors con-
trol physical, chemical, or biological processes or devices. Examples of such systems include
airplanes, automobiles, CD players, cellular phones, nuclear reactors, oil refineries, and pa-
tient monitors. In most of these real-time and embedded systems, the right answer delivered

1TAO can be downloaded from http://deuce.doc.wustl.edu/Download.html.
2ZEN can be downloaded from http://www.zen.uci.edu.
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too late becomes the wrong answer, i.e., achieving real-time performance end-to-end is es-
sential. In addition, some embedded devices have limited memory (e.g., 64-512 KB) available
for the platform and applications.

The three primary characteristics of DRE systems pose the following requirements for
their development:

� As distributed systems, DRE systems require capabilities to manage connections and
message transfer between separate machines.� As real-time systems, DRE systems require predictable and efficient end-to-end control
over system resources.� As embedded systems, DRE systems have weight, cost, and power constraints that
limit their computing and memory resources. For example, embedded systems often
cannot use conventional virtual memory, since software must fit on low-capacity stor-
age media, such as electrically erasable programmable read-only memory (EEPROM)
or non-volatile random access memory (NVRAM).

1.2.2 Challenges of Future DRE Systems
As hard as today’s DRE systems are to develop, DRE systems of the future will be even more
challenging. Many of today’s real-time and embedded systems are relatively small-scale, but
the trend is toward significantly increased functionality and complexity. In particular, real-
time and embedded systems are increasingly being connected via wireless and wireline net-
works to create distributed real-time and embedded systems, such as total ship computing
environments, tele-immersion environments, fly-by-wire air vehicles, and area/theater bal-
listic missile defense. These DRE systems include many interdependent levels, such as net-
work/bus interconnects, many coordinated local and remote endsystems, and multiple layers
of software.

Some of the key attributes of future DRE systems can be characterized as follows:

� Multiple quality of service (QoS) properties, such as predictable latency/jitter, through-
put guarantees, scalability, dependability, and security, must be satisfied simultane-
ously and often in real time,� Different levels of service will occur under different system configurations, environ-
mental conditions, and costs, and must be handled judiciously by the system infras-
tructure and applications,� The levels of service in one dimension must be coordinated with and/or traded off
against the levels of service in other dimensions to achieve the intended application
and overall mission results, and� The need for autonomous and time-critical application behavior requires flexible sys-
tem infrastructure components that can adapt robustly to dynamic changes in mission
requirements and environmental conditions.

All of these attributes are interwoven and highly volatile in DRE systems, due to the dynamic
interplay among the many interconnected parts.

DRE applications are increasingly combined to form large-scale distributed systems that
are joined together by the Internet and intranets. These systems can further be combined with
other distributed systems to create “systems of systems.” Example of these large-scale DRE
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systems of systems include Just-in-time manufacturing inventory control systems that sched-
ule the delivery of supplies to improve efficiency. Figure 1.1 illustrates how the combination
of individual manufacturing information systems is fundamental to achieve the efficiencies of
modern “just-in-time” manufacturing supply chains. Information from engineering systems

Parts

Distribution

Assembly

Products

Engineering

Figure 1.1 Characteristics of Manufacturing System of Systems

is used to design parts, assemblies, and complete products. Parts manufacturing suppliers
must keep pace with (1) engineering requirements upstream in the supply chain and (2) dis-
tribution constraints and assembly requirements downstream. Distribution must be managed
precisely to avoid parts shortages while keeping local inventories low. Assembly factories
must achieve high throughput, while making sure the output matches product demand at the
sales and service end of the supply chain. Throughout this process, information gathered at
each stage of the supply chain must be integrated seamlessly into the control processes of
other stages in the chain.

1.2.3 Limitations with Conventional DRE System Development
Designing DRE systems that implement all their required capabilities, are efficient, pre-
dictable, and reliable, and use limited computing resources is hard; building them on time
and within budget is even harder. In particular, DRE applications developers face the follow-
ing challenges:

� Tedious and error-prone development — Accidental complexity proliferates, be-
cause DRE applications are often still developed using low-level languages, such as C
and assembly language.� Limited debugging tools — Although debugging tools are improving, real-time and
embedded systems are still hard to debug, due to inherent complexities, such as con-
currency, asynchrony, and remote debugging.� Validation and tuning complexities — It is hard to validate and tune key QoS prop-
erties, such as (1) pooling concurrency resources, (2) synchronizing concurrent opera-
tions, (3) enforcing sensor input and actuator output timing constraints, (4) allocating,
scheduling, and assigning priorities to computing and communication resources end-
to-end, and (5) managing memory.
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Due to these challenges, developers of DRE systems have historically tended to rediscover
core concepts and reinvent custom solutions that were tightly coupled to particular hardware
and software platforms. The continual rediscovery and reinvention associated with this soft-
ware development process has kept the costs of engineering and evolving DRE systems too
high for too long. Improving the quality and quantity of systematically reusable software via
middleware is essential to resolving this problem Douglas C. Schmidt and Frank Buschmann
(2003).

1.3 Overview of Real-time CORBA
To address the challenges for DRE systems described in Section 1.2, the OMG has stan-
dardized the Real-time CORBA specification. Version 1.0 of this specification (Obj 2002b)
defines standard features that support end-to-end predictability for operations in statically
scheduled and provisioned CORBA applications. Version 2.0 of this specification (Obj 2001)
defines mechanisms for dynamically scheduled and provisioned CORBA applications. This
section first presents an overview of the CORBA reference model and its key components
and then describes how versions 1.0 and 2.0 of the Real-time CORBA specification add QoS
capabilities to CORBA.

1.3.1 Overview of CORBA
CORBA Object Request Brokers (ORBs) allow clients to invoke operations on distributed
objects without concern for object location, programming language, OS platform, commu-
nication protocols and interconnects, and hardware (Henning and Vinoski 1999). Figure 1.2
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Figure 1.2 Key Components in the CORBA Reference Model

illustrates the following key components in the CORBA reference model (Obj 2002c) that
collaborate to provide this degree of portability, interoperability, and transparency:

Client. A client is a role that obtains references to objects and invokes operations on them
to perform application tasks. A client has no knowledge of the implementation of the object
but does know the operations defined via its interface.
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ORB Core. An ORB core is the layer of a CORBA ORB implementation that is respon-
sible for connection and memory management, data transfer, endpoint demultiplexing, and
concurrency control. When a client invokes an operation on an object, the ORB Core is re-
sponsible for delivering the request to the server and returning the response, if any, to the
client. For remote objects, the ORB Core, transfers requests using the General Internet Inter-
ORB Protocol (GIOP) that runs atop many transport protocols, including TCP/IP and many
embedded systems interconnects.

Object. In CORBA, an object is an instance of an OMG Interface Definition Language
(IDL) interface. Each object is identified by an object reference, which associates one or
more paths through which a client can access an object on a server. Over its lifetime, an
object can be associated with one or more servants that implement its interface.

Servant. This component implements the operations defined by an OMG IDL interface. In
object-oriented (OO) languages, such as C++ and Java, servants are implemented using one
or more class instances. In non-OO languages, such as C, servants are typically implemented
using functions and structs. A client never interacts with servants directly, but always
through objects identified via object references.

OMG IDL Stubs and Skeletons. IDL stubs and skeletons serve as a “glue” between the
client and servants, respectively, and the ORB. Stubs implement the Proxy pattern (Buschmann
et al. 1996) and marshal application parameters into a common message-level representation.
Conversely, skeletons implement the Adapter pattern (Gamma et al. 1995) and demarshal the
message-level representation back into typed parameters that are meaningful to an applica-
tion.

Object Adapter. An Object Adapter is a composite component that associates servants
with objects, creates object references, demultiplexes incoming requests to servants, and col-
laborates with the IDL skeleton to dispatch the appropriate operation upcall on a servant.
Object Adapters enable ORBs to support various types of servants that possess similar re-
quirements. Even though different types of Object Adapters may be used by an ORB, the
only Object Adapter defined in the CORBA specification is the Portable Object Adapter
(POA) Pyarali and Schmidt (1998).

1.3.2 Overview of Real-time CORBA 1.0
The Real-time CORBA 1.0 specification is targeted for statically scheduled and provisioned
DRE systems, where the knowledge of applications that will run on the system and/or the pri-
orities at which they execute are known a priori. This specification leverages features from
the CORBA standard (such as the GIOP protocol) and the Messaging specification (Object
Management Group 1998) (such as the QoS policy framework) to add QoS control capabili-
ties to regular CORBA. These QoS capabilities help to improve DRE application predictabil-
ity by bounding priority inversions and managing system resources end-to-end. Figure 1.3
illustrates the standard features that Real-time CORBA provides to DRE applications to en-
able them to configure and control the following resources:

� Processor resources via thread pools, priority mechanisms, intra-process mutexes, and
a global scheduling service for real-time applications with fixed priorities. To enforce
strict control over scheduling and execution of processor resources, Real-time CORBA
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1.0 specification enables client and server applications to (1) determine the priority at
which CORBA invocations will be processed, (2) allow servers to pre-define pools of
threads, (3) bound the priority of ORB threads, and (4) ensure that intra-process thread
synchronizers have consistent semantics in order to minimize priority inversion.� Communication resources via protocol properties and explicit bindings to server ob-
jects using priority bands and private connections. An Real-time CORBA endsystem
must leverage policies and mechanisms in the underlying communication infrastruc-
ture that support resource guarantees. This support can range from (1) managing the
choice of the connection used for a particular invocation to (2) exploiting advanced
QoS features, such as controlling the ATM virtual circuit cell rate.� Memory resources via buffering requests in queues and bounding the size of thread
pools. Many DRE systems use multi-threading to (1) distinguish between different
types of service, such as high-priority vs. low-priority tasks (Harrison et al. 1997)
and (2) support thread preemption to prevent unbounded priority inversion. Real-time
CORBA, specification defines a standard thread pool model (Schmidt et al. 2001) to
pre-allocate pools of threads and to set certain thread attributes, such as default priority
levels. Thread pools are useful for real-time ORB endsystems and applications that
want to leverage the benefits of multi-threading, while bounding the amount of memory
resources, such as stack space, they consume. Moreover, thread pools can be optionally
configured to buffer or not buffer requests, which provides further control over memory
usage.

Client
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Figure 1.3 Real-time CORBA 1.0 Features
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Figure 1.4 Distributable Thread Abstraction

1.3.3 Overview of Real-time CORBA 2.0
The Real-time CORBA 2.0 specification is targeted for dynamically scheduled and provi-
sioned DRE systems, where the knowledge of applications that will run on the system and/or
the priorities at which they execute is not known a priori. Real-time CORBA 2.0 extends ver-
sion 1.0 by providing interfaces and mechanisms to plug in dynamic schedulers and interact
with them. It allows applications to specify and use the scheduling disciplines and parameters
that most accurately define and describe their execution and resource requirements, e.g., this
specification supports the following capabilities:
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� It allows application developers to associate any scheduling discipline, e.g., Earliest
Deadline First or Maximum Urgency First, with the scheduler.� It enables the scheduling parameters to be associated with the chosen discipline at any
time.� It provides a set of ORB/Scheduler interfaces that support the development of portable
(i.e., ORB-independent) schedulers.

The Real-time CORBA 2.0 specification defines the following two key capabilities that
provide significant enhancements compared with version 1.0:

� Distributable thread. Dynamic DRE systems require more information than just pri-
ority, i.e., fixed-priority propagation is not sufficient to ensure end-to-end timeliness
requirements. Instead, an abstraction is required that identifies a schedulable entity and
associates with it the appropriate scheduling parameters. The Real-time CORBA 2.0
specification defines a distributable thread abstraction that enables a thread to execute
operations on objects without regard for physical node boundaries. This abstraction is
the loci of execution that spans multiple nodes and scheduling segments. Figure 1.4
shows a distributable thread ����� that spans two nodes Host 1 and Host 2 as a part of
a two-way invocation on a remote object.� Scheduling service architecture. To facilitate the association of various scheduling
disciplines with a dynamic scheduler, the Real-time CORBA 2.0 specification defines a
Scheduling Service interface that provides mechanisms for plugging in different sched-
ulers. An application passes its scheduling requirements to the scheduler via these in-
terfaces. Similarly, the ORB also interacts with the scheduler at specific scheduling
points to dispatch and share scheduling information across nodes.

As discussed above, Real-time CORBA versions 1.0 and 2.0 provides mechanisms to
meet the needs of a wide variety of DRE applications that possess different constraints and
priorities. These differing needs, however, must be met through appropriate designs and im-
plementations of ORBs. In particular, DRE system designers need configurable ORBs to
provide a flexible range of choices to meet the needs of their particular system’s functional
and QoS requirements. Research and implementation experience gained while developing
Real-time CORBA ORBs have yielded insights, which in turn have led to the evolution of a
palette of ORB design alternatives to meet those specialized needs. Sections 1.4 and 1.5 il-
lustrate various ways in which ORBs can offer differing advantages, providing the flexibility
of different alternatives for developers of DRE applications.

1.4 TAO: C++ based Real-time CORBA middleware

1.4.1 Motivation
Traditional tools and techniques used to develop DRE software are often so specialized that
they cannot adapt readily to meet new functional or QoS requirements, hardware/software
technology innovations, or emerging market opportunities. Standard commercial-off-the-
shelf (COTS) middleware could therefore be implemented and deployed in an efficient and
dependable manner, to provide advantages of COTS middleware to DRE applications. Until
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recently, however, it was not feasible to develop mission-critical DRE systems using stan-
dard COTS middleware due to its inability to control key QoS properties, such as predictable
latency, jitter, and throughput; scalability; dependability; and security.

Over the past decade, researchers at Washington University, St.Louis, University of Cali-
fornia, Irvine, and Vanderbilt University have worked with hundreds of developers and com-
panies from around the world to overcome the problems outlined above. The results has
been an open-source standard CORBA Object Request Broker (ORB) called The ACE ORB
(TAO) (Schmidt et al. 1998b). The remainder of this section describes TAO and summarizes
its current status and impact.

1.4.2 TAO Architecture and Capabilities
TAO is a C++ ORB that is compliant with most of the features and services defined in the
CORBA 3.0 specification (Obj 2002c), as well as the Real-time CORBA specification (Obj
2002b). The latest release of TAO contains the following components shown in Figure 1.5
and outlined below:

1.4.2.1 IDL Compiler

TAO’s IDL compiler (Gokhale and Schmidt 1999) is based on the enhanced version of the
freely available SunSoft IDL compiler. The latest CORBA 3.0 IDL-to-C++ mapping has
been implemented, including the latest CORBA Component Model and POA features. The
IDL compiler also supports the Object-by-Value specification and the CORBA Messaging
specification, as well as asynchronous method invocations. In addition, TAO’s IDL com-
piler can generate stubs/skeletons that can support either native C++ exceptions or the more
portable CORBA::Environment approach. Finally, TAO’s IDL compiler generates code
for smart proxies that allow 3rd party applications to “plug” features into clients and portable
interceptors that implement the Interceptor pattern (Schmidt et al. 2000b).

1.4.2.2 Inter-ORB Protocol Engine

TAO contains a highly optimized (Gokhale and Schmidt 1998) protocol engine that imple-
ments the CORBA 3.0 General/Internet Inter-ORB Protocol (GIOP/IIOP), version 1.0, 1.1,
and 1.2. TAO can therefore interoperate seamlessly with other ORBs that use the standard
IIOP protocol. TAO’s protocol engine supports both the static and dynamic CORBA pro-
gramming models, i.e., the SII/SSI and DII/DSI, respectively. TAO also supports Dynamic
Anys, which facilitate incremental demarshaling. In addition, TAO supports a pluggable pro-
tocols framework (O’Ryan et al. 2000) that enables GIOP messages to be exchanged over
non-TCP transports, including shared memory, UDP unicast, UDP multicast, UNIX-domain
sockets, Secure Sockets (SSL), and VME backplanes. TAO’s pluggable protocols framework
is important for DRE applications that require more stringent QoS protocol properties than
TCP/IP provides.

1.4.2.3 ORB Core

TAO’s ORB Core provides an efficient, scalable, and predictable (Schmidt et al. 2001) two-
way, one-way, and reliable one-way synchronous and asynchronous communication infras-
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Figure 1.6 Optimizations in TAO ORB

tructure for high-performance and real-time applications. It provides the following concur-
rency models (Schmidt et al. 1998a): (1) reactive, (2) thread-per-connection, (3) thread pool
(including the Real-time CORBA thread pool API), and (4) reactor-per-thread-priority (which
is optimized for deterministic real-time systems). TAO’s ORB Core is based on patterns and
frameworks in ACE (Schmidt and Huston 2002a,b), which is a widely used object-oriented
toolkit containing frameworks and components that implement key patterns (Schmidt et al.
2000b) for high-performance and real-time networked systems. The key patterns and ACE
frameworks used in TAO include the Acceptor and Connector, Reactor, Half-Sync/Half-
Async and Component/Service Configurator.

1.4.2.4 Portable Object Adapter

TAO’s implementation of the CORBA Portable Object Adapter (POA) (Pyarali and Schmidt
1998) is designed using patterns that provide an extensible and highly optimized set of re-
quest demultiplexing strategies (Pyarali et al. 1999), such as perfect hashing and active de-
multiplexing, for objects identified with either persistent or transient object references. These
strategies allow TAO’s POA to provide constant-time lookup of servants based on object keys
and operation names contained in CORBA requests.

1.4.2.5 Implementation and Interface Repositories

TAO’s Implementation Repository automatically launches servers in response to client re-
quests. TAO also includes an Interface Repository that provides clients and servers with run-
time information about IDL interfaces and CORBA requests.

In addition, TAO provides many of the standard CORBA services, including Audio/Video
Streaming Service (Mungee et al. 1999), Concurrency Service, Telecom Logging Service,
Naming Service, Notification Service, Property Service, Time Service, and Trading Service.
TAO also provides non-standard services that are targeted for various types of DRE applica-
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tion domains, including a Load Balancing service (Othman et al. 2001), a Real-time Event
Service (Schmidt and O’Ryan 2002), and a Real-time Scheduling Service (Gill et al. 2001).

1.4.3 TAO Successes
The TAO project has been active since 1997. The ACE project, which provides the reusable
frameworks and components upon which TAO is based, has been active since 1991. During
this time, results from the ACE and TAO projects have had a significant impact on middleware
researchers and practitioners, as described below:

1.4.3.1 Research Innovations

For the past decade, research on TAO has focused on optimizing the efficiency and pre-
dictability of the ORB to meet end-to-end application QoS requirements by vertically inte-
grating middleware with OS I/O subsystems, communication protocols, and network inter-
faces. TAO is designed carefully using architectural, design, and optimization patterns (Schmidt
et al. 2000b) that substantially improve the efficiency, predictability, and scalability of DRE
systems. The optimization related research contribution of the TAO project illustrated in Fig-
ure 1.4.2.2 includes the following:

� An ORB Core that supports deterministic real-time concurrency and dispatching strate-
gies. TAO’s ORB Core concurrency models are designed to minimize context switch-
ing, synchronization, dynamic memory allocation, and data movement.� Active demultiplexing and perfect hashing optimizations that associate client requests
with target objects in constant time, regardless of the number of objects, operations, or
nested POAs.� A highly-optimized CORBA IIOP protocol engine and an IDL compiler that gener-
ates compiled stubs and skeletons. TAO’s IDL compiler also implements many of the
optimizations pioneered by the Flick IDL compiler (Eide et al. 1997).� TAO can be configured to use a non-multiplexed connection model, which avoids prior-
ity inversion and behaves predictably when used with multi-rate real-time applications.� TAO’s pluggable protocols allow the support of real-time I/O subsystems (Kuhns et
al. 1999) designed to minimize priority inversion interrupt overhead over high-speed
ATM networks and real-time interconnects, such as VME.� TAO’s Real-time Event Service and static and dynamic Scheduling Services integrate
the capabilities of TAO ORB described above. These services form the basis for next-
generation real-time applications for many research and commercial projects, includ-
ing ones at Boeing, Cisco, Lockheed Martin, Raytheon, Siemens, and SAIC.

1.4.3.2 Technology Transitions

Now that TAO has matured, thousands of companies around the world have used it in a wide
range of domains, including aerospace, defense, telecom and datacom, medical engineering,
financial services, and distributed interactive simulations. In addition, a number of companies
began to support it commercially. Open-source commercial support, documentation, training,
and consulting for TAO is available from PrismTech and OCI. OCI also maintains the TAO
FAQ and anonymous CVS server. iCMG has developed its K2 Component Server based on
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the CORBA Component Model (CCM) specs (BEA Systems, et al. 1999)and TAO. The K2
Component Server is a server-side infrastructure to develop and deploy CORBA Components
written in CORBA 3.0 IDL. It is based on OMG’s CCM that includes a Component Model,
Container Model, Packaging and Deployment, Component Implementation Framework and
Inter-working with EJB 1.1.

1.5 ZEN: Real-Time Specification for Java (RTSJ) based
Real-time CORBA middleware

1.5.1 Motivation
Although there have been many successful deployments of Real-time CORBA (such as those
outlined in Section 1.4.3), Real-time CORBA middleware has suffered to some extent from
the following limitations:� Lack of feature subsetting – Early implementations of CORBA middleware incurred

significant footprint overhead due to ORB designs that were implemented as a large
body of monolithic code, which stymies feature subsetting and makes it hard to mini-
mize middleware footprint.� Inadequate support for extensibility – Distributed systems not only require a full
range of CORBA services but also need middleware to be adaptable, i.e., meet the
needs of wide variety of applications developers. Current Real-time CORBA middle-
ware designs are not designed with the aim of applicability in various domains.� Increased complexity – A key barrier to the adoption of Real-time CORBA mid-
dleware arises from steep learning curve caused by the complexity of the CORBA
C++ mapping (Schmidt and Vinoski 2000; ZeroC 2003). Real-time CORBA middle-
ware should therefore be designed using programming languages that shield applica-
tion developers from type errors, memory management, real-time scheduling enforce-
ment,and steep learning curves.

Custom software development and evolution is labor-intensive and error-prone for complex
DRE applications. Middleware design should therefore be simultaneously extensible, provide
feature subsetting, and be easy to use, thereby minimizing the the total system acquisition and
maintenance costs.

In recent years, the Java programming language has emerged as an attractive alterna-
tive for developing middleware. Java is easier to learn and program, with less inherent and
accidental complexity than C++. There is also a large and growing community of Java pro-
grammers, since many schools have adopted Java as a teaching language. Java also has other
desirable language features, such as strong typing, dynamic class loading, introspection, and
language-level support for concurrency and synchronization. Implementation in Java could
therefore provide an easy-to-use Real-time CORBA middleware tool, shielding application
developers from the steep learning curve due to type errors, memory management, and real-
time scheduling enforcement.

Conventional Java run-time systems and middleware have historically been unsuitable for
DRE systems, however, due to

1. The under-specified scheduling semantics of Java threads, which can lead to the most
eligible thread not always being run.
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2. The ability of the Java Garbage Collector (GC) to preempt any other Java thread, which
can yield unpredictably long preemption latencies.

To address these problems, the Real-time Java Experts Group has defined the RTSJ (Bollella
et al. 2000), which extends Java in several ways, including (1) new memory management
models that allow access to physical memory and can be used in lieu of garbage collection
and (2) stronger guarantees on thread semantics than in conventional Java. Real-time Java
offers middleware developers a viable means of producing middleware with a simpler pro-
gramming model that still offers control over memory and threading necessary for acceptable
predictability.

1.5.2 ZEN Architecture and Capabilities
The ZEN ORB developed at the University of California, Irvine, leverages the lessons learned
from our earlier efforts on TAO’s design, implementation, optimization, and benchmarking.
ZEN is a Real-time CORBA ORB implemented using Java and Real-time Java (Bollella et
al. 2000), which simplifies the programming model for DRE applications. To address the
challenges specific to DRE systems, the ZEN project has the following research goals:

� Provide an ORB which increases ease of use by leveraging the advantages of Java.� Reduce middleware footprint to facilitate memory-constrained embedded systems de-
velopment, yet provide a full range of CORBA services for distributed systems.� Demonstrate the extent to which COTS languages, run-time systems, and hardware
can meet the following QoS performance requirements: (1) achieve low and bounded
jitter for ORB operations; (2) eliminate sources of priority inversion; and (3) allow
applications to control Real-time Java features.

Our experience developing TAO taught us that achieving a small memory footprint is only
possible if the architecture is designed to support this goal initially. Implementing a full-
service, flexible, specification-compliant ORB with a monolithic ORB design can yield a
large memory footprint, as shown in Figure 1.7. ZEN has therefore been designed using
a micro-ORB architecture. Sidebar 1 discusses the advantages and disadvantages of the
monolithic- and micro-ORB architectures shown in Figures 1.7 and 1.8.

In ZEN, we generalized TAO’s pluggable protocol framework to other modular services
within the ORB so that they need not be loaded until they are used. ZEN’s flexible and
extensible micro-ORB design (rather than monolithic-ORB design) is used for all CORBA
services. In particular, we applied the following design process systematically:

1. Identify each core ORB service whose behavior may vary. Variation can depend upon
(1) a user’s optional choice for certain behavior and (2) which standard CORBA fea-
tures are actually used.

2. Move each core ORB service out of the ORB and apply the Virtual Component pat-
tern (Corsaro et al. 2002) to make each service pluggable dynamically.

3. Write concrete implementations of each abstract class and factories that create in-
stances of them.

ZEN’s ORB architecture is based on the concept of layered pluggability, as shown in Fig-
ure 1.8. Based on our earlier work with TAO, we factored eight core ORB services (object
adapters, message buffer allocators, GIOP message handling, CDR Stream readers/writers,
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Sidebar 1: Monolithic v/s Micro-ORB Architectures

In a monolithic ORB architecture, the ORB is a single component that includes all the code includ-
ing those of configuration variations. This component is loaded as one executable. The advantage
of a monolithic design is that its run-time performance is often efficient, it is relatively easy to
code, and it can support all CORBA services. The main disadvantage, however, is that a mono-
lithic ORB implementation can incur excessive memory footprint and therefore must rely on OS
virtual memory, even if only a small subset of its features are used.

Basing an ORB architecture on patterns (Gamma et al. 1995; Schmidt et al. 2000b) can help
to resolve common design forces and separate concerns effectively. For instance, the pluggable
design framework can lead to a micro-ORB architecture that substantially reduces middleware
footprint and increases flexibility. In a Micro-ORB architecture only a small ORB kernel is loaded
in memory, with various components linked and loaded dynamically on demand. The advantage
of this design is the significant reduction in footprint and the increase in extensibility. In particu-
lar, independent ORB components can be configured dynamically to meet the needs of different
applications. The disadvantage is that dynamic linking on-demand incurs jitter, which may be
undesirable for many DRE systems.

protocol transports, object resolvers, IOR parsers, and Any handlers) out of the ORB to re-
duce its memory footprint and increase its flexibility. We call the remaining portion of code
the ZEN kernel. Moreover, each ORB service itself is decomposed into smaller pluggable
components that are loaded into the ORB only when needed.

In addition to ZEN’s goals of ease of use and small footprint, an additional goal is to
support the predictability requirements of DRE systems, such as end-to-end priority preser-
vation, upper bounds on latency and jitter, and bandwidth guarantees.

1.5.3 ZEN Successes
The ZEN project has been active since 1999. In a short span of time, ZEN is impacting
middleware researchers and practitioners, as described below:

1.5.3.1 Research Innovations

Similar to TAO, research on ZEN has focused on optimizing the efficiency and predictability
of the ORB to meet end-to-end application QoS requirements. In particular research on ZEN
focuses on achieving predictability by applying optimization principle patterns and the RTSJ
to Real-time CORBA as discussed below.
Applying optimization principle patterns to ZEN. At the heart of ZEN are optimization
principle patterns (Pyarali et al. 1999) that improve the predictability as required by DRE
applications. These optimizations are applied at the algorithmic and data structural level and
are independent of the Java virtual machine (JVM). In ZEN, these strategies are applied at
the following levels:� Object Adapter layer – Optimizations applied in this layer include predictable and

scalable
1. Request demultiplexing techniques that ensure �	�
��� look up time irrespective

of the POA hierarchy (Krishna et al. 2003),
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Figure 1.8 Micro-ORB Architecture

2. Object key processing techniques that optimize the layout and processing of
object keys based on POA policies (Krishna et al. 2004),

3. Thread-pooling techniques that control CPU resources by bounding the number
of threads created by the middleware, and

4. Servant lookup techniques that ensure predictable-servant to-object-id opera-
tions in the POA.

� ORB Core layer – Optimizations applied in this layer include the following:
1. Collocation optimizations, that minimize the marshaling/de-marshaling over-

head based on object/ORB location,
2. Buffer-allocation strategies, that optimize the allocation and caching of buffers

to minimize garbage collection, and
3. Reactive I/O using Java’s nio (Hutchins 2002) package that allows asynchronous

communication.

Applying RTSJ features to ZEN. The OMG Real-time CORBA specification was adopted
several years before the RTSJ was standardized. Real-time CORBA’s Java mapping therefore
does not use any RTSJ features. To have a predictable Java-based Real-time CORBA ORB
like ZEN, however, it is necessary to take advantage of RTSJ features to reduce interference
with the GC and improve predictability. In these optimizations, RTSJ features are directly
associated within key ORB core components to enhance predictability accrued from the op-
timization principle patterns.

Our goal for apply RTSJ features to ZEN is to (1) comply with the Real-time CORBA
specification and (2) be transparent to developers of DRE applications. Our predictability-
enhancing improvements of ZEN begin by identifying the participants associated with pro-
cessing a request at both the client and server sides. For each participant identified, we as-
sociate the component with non-heap regions and resolve challenges arising from this asso-
ciation. RTSJ features can be utilized (Krishna et al. 2004) to implement mechanisms in a
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Real-time CORBA ORB, such as priority-banded thread pool lanes, to improve ORB pre-
dictability. These mechanisms can be implemented in each of the following design layers
within ZEN:

1. I/O layer, e.g., Acceptor/Connector and Reactor,
2. ORB Core layer, e.g., CDR streams and Buffer Allocators, and
3. Object Adapter layer, e.g., Thread Pools and the POA.

After the key ORB core components are allocated within scoped and immortal memory
and RealtimeThreads are used for request/response processing, predictability will im-
prove. Currently ZEN has been ported (Krishna et al. 2003) to both ahead of time compiled
RTSJ platforms such as jRate (Corsaro and Schmidt 2002) and interpreted platforms like
OVM (OVM/Consortium 2002).

1.5.3.2 Technology Transitions

The ZEN project is part of the DARPA PCES (Office n.d.) program, which provides language
technology to safely and productively program and evolve cross-cutting aspects to support
DRE middleware and “plug & play” avionics systems. Although ZEN’s development is still
in its early stages, ZEN is being used to support several other research projects. The dis-
tributed automated target recognition (ATR) project (Dudgen and Lacoss 1993) developed at
MIT, uses ZEN to transmit images of identified targets to another vehicle over wireless eth-
ernet. ZEN supports the FACET (Hunleth and Cytron 2002) real-time event channel (RTEC)
implemented in RTSJ, whose design is based on that of the TAO RTEC. ZEN is also being ex-
tended to support the CORBA component model (CCM), which is designed to support DRE
system development by composing well-defined components. The Cadena project (Hatcliff et
al. 2003), provides an integrated environment for building and modeling CCM system. ZEN
is currently being integrated with Cadena to model CCM implementations using a combina-
tion of the ZEN ORB, ZEN CCM, and FACET.

1.6 Related Work
In recent years, a considerable amount of research has focused on enhancing the predictability
of real-time middleware for DRE applications. In this section, we summarize key efforts
related to our work on TAO and ZEN.
QoS middleware R&D. An increasing number of efforts are focusing on end-to-end QoS
properties by integrating QoS management into standards-based middleware.

URI (Wolfe et al. 1997) is a Real-time CORBA system developed at the US Navy Re-
search and Development Laboratories (NRaD) and the University of Rhode Island (URI).
The system supports expression and enforcement of dynamic end-to-end timing constraints
through timed distributed method invocations (TDMIs) (Fay-Wolfe et al. 1995).

ROFES (RWTH Aachen 2002) is a Real-time CORBA implementation for embedded sys-
tems. ROFES uses a microkernel-like architecture (RWTH Aachen 2002). ROFES has been
adapted to work with several different hard real-time networks, including SCI (S. Lankes and
Bemmerl 2001), CAN, ATM, and an ethernet-based time-triggered protocol (S. Lankes and
Jabs 2002).
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The Quality Objects (QuO) distributed object middleware, developed at BBN Technolo-
gies (Zinky et al. 1997), is based on CORBA and provides the following support for agile
wide area based applications: the run-time performance tuning and configuration through the
specification of Quality of Service (QoS) regions, and reconfiguration strategies that allow
the QuO run-time to trigger reconfiguration adaptively as system conditions change.

The Time-triggered Message-triggered Objects (TMO) project (Kim 1997) at the Univer-
sity of California, Irvine, supports the integrated design of distributed OO systems and real-
time simulators of their operating environments. The TMO model provides structured timing
semantics for distributed real-time object-oriented applications by extending conventional
invocation semantics for object methods, i.e., CORBA operations, to include (1) invocation
of time-triggered operations based on system times and (2) invocation and time-bounded
execution of conventional message-triggered operations.

The Kokyu project, at Washington University St. Louis, provides a multi-paradigm strate-
gized scheduling framework. Kokyu has been implemented within TAO’s Real-Time Event
Service. Kokyu enables the the configuration and empirical evaluation of multiple scheduling
paradigms, including static (e.g., Rate Monotonic (RMS) (Liu and Layland 1973)), dynamic
(e.g., earliest deadline first (EDF) (Liu and Layland 1973)) and hybrid (e.g., maximum ur-
gency first (MUF) (Stewart and Khosla 1992)) scheduling strategies.

The Component Integrated ACE ORB (Wang et al. 2003a) project is an implementa-
tion of the CORBA Component Model (CCM) (Obj 2002a) specification. CIAO provides a
component-oriented paradigm to DRE system developers by abstracting DRE-critical sys-
temic aspects, such as QoS requirements and real-time policies, as installable/configurable
units supported by the CIAO component framework (Wang et al. 2003b).

The Model Driven Architecture (MDA) (Gokhale et al. 2003) adopted by the OMG is a
software development paradigm that applies domain-specific modeling languages systemat-
ically to engineer DRE systems. MDA tools are being combined with QoS-enabled compo-
nent middleware to address multiple QoS requirements of DRE systems in real-time (Trask
2000).
RTSJ middleware research. RTSJ middleware is an emerging field of study. Researchers
are focusing at RTSJ implementations, benchmarking efforts, and program compositional
techniques.

The TimeSys corporation has developed the official RTSJ Reference Implementation
(RI) (TimeSys 2001), which is a fully compliant implementation of Java that implements
all the mandatory features in the RTSJ. TimeSys has also released the commercial version,
JTime, which is an integrated real-time JVM for embedded systems. In addition to supporting
a real-time JVM, JTime also provides an ahead-of-time compilation model that can enhance
RTSJ performance considerably.

The jRate (Corsaro and Schmidt 2002) project is an open-source RTSJ-based real-time
Java implementation developed at Washington University, St. Louis. jRate extends the open-
source GNU Compiler for Java (GCJ) run-time system (GNU is Not Unix 2002) to provide
an ahead-of-time compiled platform for RTSJ.

The Real-Time Java for Embedded Systems (RTJES) program (Jason Lawson 2001) is
working to mature and demonstrate real-time Java technology. A key objective of the RTJES
program is to assess important real-time capabilities of real-time Java technology via a com-
prehensive benchmarking effort. This effort is examining the applicability of Real-time Java
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within the context of real-time embedded system requirements derived from Boeing’s Bold
Stroke avionics mission computing architecture (Sharp 1998).

Researchers at Washington University in St. Louis are investigating automatic mecha-
nisms (Deters et al. 2001) that enable existing Java programs to become storage-aware RTSJ
programs. Their work centers on validating RTSJ storage rules using program traces and
introducing storage mechanisms automatically and reversibly into Java code.

1.7 Concluding Remarks
DRE systems are growing in number and importance as software is increasingly used to
automate and integrate information systems with physical systems. Over 99% of all micro-
processors are now used for DRE systems (Alan Burns and Andy Wellings 2001) to control
physical, chemical, or biological processes and devices in real time. In general, real-time
middleware (1) off-loads the tedious and error-prone aspects of distributed computing from
application developers to middleware developers, (2) defines standards that help to reduce
total ownership costs of complex software systems, and (3) enhances extensibility for future
application needs. In particular, Real-time CORBA has been used successfully in a broad
spectrum of DRE systems, conveying the benefits of middleware to the challenging require-
ments of applications in domains ranging from telecommunications to aerospace, defense,
and process control.

As Real-time CORBA middleware has evolved to meet the needs of DRE systems, mid-
dleware developers are designing ORB implementations that offer unique advantages and
allow DRE systems developers to control the tradeoffs between different development con-
cerns. Universal adoption of early versions of Real-time CORBA middleware has been ham-
pered to some extent, however, by the steep learning curve of the CORBA C++ mapping and
the difficulty of obtaining skilled C++ developers. Java and Real-time Java have emerged as
an attractive alternative, since they are simpler to learn and have less inherent and accidental
complexity.

The next generation of Real-time CORBA middleware, such as the ZEN ORB described
in this chapter, is designed to reduce the difficulties of earlier middleware by combining
Real-time Java with Real-time CORBA. The result is an easy-to-use, extensible, flexible,
and standards-based middleware with an appropriate footprint and QoS to meet the needs
of many DRE systems. As illustrated by the TAO and ZEN case studies described in this
chapter, future generations of middleware will continue to evolve to meet the changing and
demanding needs of DRE systems.
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