The Design and | mplementation of the Reactor
An Object-Oriented Framework for Event Demultiplexing (Part 2 of 2)

Douglas C. Schmidt
schmidt@cs.wustl.edu
http://www.cswustl.edu/~schmidt/
Department of Computer Science
Washington University, St. Louis 63130

An earlier version of this paper appeared in the September
1993 issue of the C++ Report.

1 Introduction

Thisisthe second half of the third article in a series that de-
scribes techniques for encapsulating existing operating sys-
tem (OS) interprocess communication (1PC) services using
object-oriented (OO) C++ wrappers. In the first haf of this
article, a client/server application example was presented to
motivatetheutility of wrappersthat encapsul ate event demul-
tiplexing mechanisms[1]. Event demultiplexingisuseful for
developing event-driven network servers that receive and
process data arriving from multiple clients simultaneousdly.
The previous article also examined the advantages and dis-
advantagesof severa alternativel/O demultiplexing schemes
such as non-blocking 1/0, multipleprocess or thread creation,
and synchronous /O demultiplexing (via the sel ect and
pol | system cals).

This article focuses on the design and implementation of
an object-oriented framework called the React or. The
React or providesa portable interface to an integrated col-
lection of extensible, reusable, and type-secure C++ classes
that encapsulate and enhance the sel ect and pol | event
demultiplexing mechanisms [2]. To help simplify network
programming, the React or combines the demultiplexing
of synchronous 1/O-based events together with timer-based
events. When these events occur, the React or automeati-
caly dispatches the method(s) of previoudy registered ob-
jectsto perform application-specified services.

This article is organized as follows: Section 2 describes
the primary features offered by the React or framework;
Section 3 outlinesthe object-oriented design and implemen-
tation of the framework; Section 4 presents a distributed
logging example that demonstrates how the React or sim-
plifies the development of concurrent, event-driven network
applications; and Section 5 discusses concluding remarks.

2 Primary Features of the Reactor

TheReact or providesan object-oriented interfacethat sim-
plifiesthe devel opment of distributed applicationsthat utilize

[/O-based and/or timer-based demultiplexing mechanisms.
The following paragraphs describe the primary festures of-
fered by the React or framework:

e Export Uniform Object-Oriented Interfaces. Appli-
cations using the React or do not access the lower-level
I/O demultiplexing system calls directly. Instead, they in-
herit from a common Event _Handl er abstract base class
to form composite concrete derived classes (as illustrated
in Figure 1). The Event _Handl er base class specifies a
uniform interface consisting of virtual methods that handle
(2) synchronous input, output, and exceptions and (2) timer-
based events. Applications create objects of these derived
classes and register them with instances of the React or .

o Automate Event Handler Dispatching: When events
occur, the React or automatically invokes the appropri-
ate virtua method event handler(s) belonging to the pre-
registered derived class objects. Since C++ objects are reg-
istered with the React or (as opposed to stand-alone sub-
routines), any context information associated with an object
isretained between invocations of its methods. Thisis par-
ticularly useful for developing “stateful” services that retain
information in between client invocations.

e Support Transparent Extensibility: The functionality
of both the React or and its registered objects may be ex-
tended transparently without modifying or recompiling ex-
isting code. To accomplish this, the React or framework
employs inheritance, dynamic binding, and parameterized
types to decouple the lower-level event demultiplexing and
service dispatching mechanisms from the higher-level appli-
cation processing policies. Example low-level mechanisms
include (1) detecting events on multiple I/O handles, (2)
handling timer expiration, and (3) invoking the appropriate
method event handler(s) in response to events. Likewise,
application-specified policies include (1) connection estab-
lishment, (2) data transmission and reception, and (3) pro-
ng service requests from other participating hosts.

e Increase Reuse: The React or's demultiplexing and
di spatching mechanisms may be reused by many network ap-
plications. By reusing rather than redevel oping these mech-
anisms, developers are free to concentrate on higher-level
application-related issues, rather than repeatedly wrestling
with lower-level event demultiplexing details. In addition,

subsequent bug-fixes and enhancements are transparently
shared by dl applicationsthat utilize the React or 's com-
ponents. Conversely, developers that access sel ect and
pol | directly must reimplement the same demultiplexing
and dispatching code for every network application. More-
over, any modifications and improvements to this code must
be replicated manually in all related applications.

e EnhanceType-Security: TheReact or shieldsapplica
tion developersfrom error-prone, low-level detailsassociated
with programming existing 1/O demultiplexing system cals.
These detail sinvolve setting and clearing bitmasks, handling
timeouts and interrupts, and dispatching “call-back” meth-
ods. In particular, the React or diminates severa subtle
causes of errors with pol | and sel ect that involve the
misuse of I/O handlesand f d_set bitmasks.

e Improve Portability: TheReact or also shields appli-
cations from differences between sel ect and pol | that
impede portability. Asillustrated in Figure 5, the React or

exports the same interface to applications, regardless of the
underlying event demultiplexingsystem calls. Moreover, the
React or 'sobject-oriented architectureimprovesitsownin-
ternal portability. For example, porting the React or from
asel ect -based OS platformto apol | -based platform re-
quired only afew well-defined changes to the framework.

In addition to simplifying application development, the
React or aso performsits demultiplexing and dispatching
tasks efficiently. In particular, its event dispatching logic
improves upon common techniques that use sel ect di-
rectly. For instance, the sel ect -based React or uses
an ACE_Handl| e_Set class (described in Section 3.2) that
avoidsexaminingf d_set bitmasksonebit at atimein many
circumstances. An articlein afutureissue of the C++ Report
will empirically evaluate the performance of the React or
and compare it agai nst a non-object-oriented solutionwritten
in C that accesses 1/0 demultiplexing system calls directly.

3 TheObject-Oriented Design and Im-
plementation of the Reactor

This section summarizes the object-oriented design of the
React or framework’s primary class components, focus-
ing on the interfaces and strategic design decisions. Where
appropriate, tactical design decisionsand certain implemen-
tation details are also discussed. Section 3.1 outlinesthe OS
platform-independent components, Section 3.2 covers the
platform-dependent components.

The React or wasoriginaly modeled after a C++ wrap-
per for sel ect called the Di spat cher that is available
with the InterViews distribution [3]. The React or frame-
work described hereincludes several additional festures. For
example, the React or operates transparently on top of
both the System V Release 4 pol | interface and sel ect ,
which is available on both UNIX and PC platforms (via
the WINSOCK AP!). In addition, the React or framework

APPLICATION
LEVEL

FRAMEWORK
LEVEL

KERNEL
LEVEL

Ve

Figure 1. The Reactor Inheritance Hierarchy

contains support for multi-threading. In general, asinglein-
stance of the React or isactivein athread at any point in
time. However, there may be multiple different instances of
React or objects running in separate threads in a process.
The framework provides the necessary synchronization op-
erationsto prevent race conditions[4].

3.1 Platform-Independent Class Components

The following paragraphs summarize the salient charac-
teristics of the three platform-independent classes in the
React or : the ACE_Ti ne_Val ue, ACE_Ti mer _Queue,
and ACE_Event _Handl er classes:

e ACE_Time.Value: This class provides a C++ wrap-
per that encapsulates an underlying OS platform’s date and
time structure (such as the struct tineval datatype
on UNIX and POSIX platforms). Theti meval structure
contains two fields that represent time in terms of seconds
and microseconds. However, other OS platforms use differ-
ent representations, sothe ACE_Ti ne_Val ue classabstracts
these detailsto provide a portable C++ interface.

The primary methods in the ACE_Ti me_Val ue class are
illustrated in Figure 2. The ACE_Ti me_Val ue wrapper
uses operator overloading to simplify time-based compar-
isonswithinthe React or . Overloading permits the use of
standard arithmetic syntax for relational expressionsinvolv-
ing time comparisons. For example, the following code cre-
ates two ACE_Ti me_Val ue objects constructed by adding
user-supplied command-line arguments to the current time,
and then displaying the appropriate ordering rel ationship be-
tween the two objects:

int nain (int argc, char *argv[])
{
if (argc !'=3) {
cerr << "usage: " << argv[O0]
<< " timel tinme2" << endl;

return 1;

ACE Tinme_Value ct =

ACE_CS: : gettineofday ();
ACE Tine_Value tvl = ct +

ACE_Ti ne_Val ue (ACE_CS::atoi (argv[1]));
ACE Tine_Value tv2 = ct +

ACE_Ti ne_Val ue (ACE_CS::atoi (argv[2]));

if (tvl > tv2)

cout << "tiner 1is greater" << endl;
else if (tv2 > tvl)

cout << "tiner 2 is greater" << endl;
el se

cout << "tiners are equal" << endl;
return O;

Methodsinthe ACE_Ti nme_Val ue class areimplemented
to compare “normalized” time quantities. Normalization ad-
juststhetwofieldsinat i meval structuretouseacanonical
encoding scheme that ensures accurate comparisons. For ex-
ample, after normalization, the quantity ACE_Ti nme_Val ue
(1, 1000000) will compareequa to ACE_Ti ne_Val ue
(2). Note that a direct bitwise comparison of the non-
normalized class fields would not detect thisequality.

e ACE_Timer_Queue: The Reactor’s timer-based
mechanisms are used useful for applications that require
timer support. For example, WWW servers require watch-
dog timers to rel ease resources if clients that connect do not
send an HTTP request within a specific timeinterval. Like-
wise, certain daemon configuration frameworks (such as the
Servi ce Control Manager inWindows NT) require
services under their control to periodically report their cur-
rent status. These “heart-beat” messages are used to ensure
that a service has not terminated abnormally.

The ACE_Ti mer _Queue class provides mechanisms that
alow applications to register time-based objects that derive
fromthe ACE_Event _Handl er baseclass(describedinthe
following bullet). The ACE_Ti mer _Queue ensuresthat the
handl e_t i meout method in these objects is invoked at
an application-specified time in the future. The methods of
the ACE_Ti mer _Queue classillustrated in Figure 3 enable
applicationsto schedul e, cancel, and invokethetimer objects.

An application schedules an ACE_Event _Handl er that
will expire after del ay amount of time. If it expires
then arg is passed in as the value to the event han-
dler’'shandl e_ti meout calback method. If i nt er val
does not equal ACE_Ti me_Val ue: : zero it is used to
reschedul e the event handler automatically. Theschedul e
method returns a handle to a timer that uniquely identi-
fies this event handler in the timer queue’s internal table.
The timer handle can be used by cancel to remove an
ACE_Event _Handl er before it expires. If a non-NULL
ar g ispassedtocancel itisset to the Asynchronous Com-
pletion Token (ACT) [5] passed in by the application when
thetimer was originally scheduled. Thismakesit possibleto
free up dynamically alocated ACTsto avoid memory leaks.

By default, the ACE_Ti mer _Queue is implemented
as a linked list of tuples containing ACE_Ti me_Val ue,

/1 Time value structure from/usr/include/sys/tine.h
/1 struct timeval { |ong secs; |long usecs; };

cl ass ACE_Ti me_Val ue

{

publi c:
ACE_Ti ne_Val ue (long sec = 0, long usec = 0);
ACE Tine_Value (tinmeval t);

/1 Returns sum of two ACE_Ti me_Val ues.
friend ACE Ti ne_Val ue operator +
(const ACE_Ti ne_Val ue &l hs,
const ACE_Ti ne_Val ue &rhs);

/1 Returns difference between two ACE_Ti me_Val ues.
friend ACE Ti ne_Val ue operator -
(const ACE_Ti ne_Val ue &l hs,
const ACE_Ti ne_Val ue &rhs);

/! Rel ational and conparison operators for
/1 nornalized ACE_Ti me_Val ues.
friend int operator <
(const ACE_Ti ne_Val ue &l hs,
const ACE_Ti ne_Val ue &rhs);

/1 Other relation operators...

private:

...

b . .
Figure 2: Interface for the ACE_Time_Value Class

cl ass ACE_Ti ner_Queue

{
publi c:
ACE_Ti mer _Queue (void);

/1 True if queue is enpty, else false.
int is_enpty (void) const;

/1 Returns earliest time in queue.
const ACE Ti nme_Val ue &earliest_time (void) const;

/1 Schedul e a HANDLER to be di spatched at
/1 the FUTURE_TI ME.
/1 and at subsequent | NTERVALs.
int virtual schedul e
(ACE_Event _Handl er *handl er,
const void *arg,
const ACE Ti ne_Val ue & uture_tine,
const ACE Ti ne_Val ue & nterval);

/1 Cancel all registered ACE_Event_Handl ers
/1 that match the address of HANDLER

int virtual cancel
(ACE_Event _Handl er *handl er);

/1 Cancel the single ACE_Event_Handl er natching the

/1 TIMER_ID value (returned from schedule()).
int virtual cancel (int tiner_id,
const void **arg = 0);

/1 Expire all timers <= EXPlI RE_TI ME
/1 (note, this routine nust be called nanually
/1 since it is not invoked asychronously).
voi d virtual expire
(const ACE_Ti me_Val ue &expire_tine);
private:
...

Figure 3: Interface for the ACE_Timer_Queue Class

ACE_Event Handl er *, and voi d * members. These
tuples are sorted by the ACE.Ti ne_Val ue field in
ascending order of ther “time-to-execute” The
ACE_ Event _Handl er * field is a pointer to the timer
object scheduled to be run at the time specified by the
ACE_Ti me_Val ue field. Thevoi d * field is an argument
supplied when atimer object is originally scheduled. When
atimer expires, this argument is automatically passed to the
handl e_t i meout method (described inthefollowing bul-
let).

Each ACE_Ti me_Val ue in the linked list is stored in
“absolute” time units (such as those generated by the UNIX
get ti meof day systemcall). However, sincevirtua meth-
ods are used in the class interface, applications can redefine
the ACE_Ti ner _Queue implementation to use aternative
data structures such as delta-lists [6] or heaps [7]. Delta
lists store time in “relative’ units represented as offsets or
“deltas’” from the earliest ACE_Ti ne_Val ue at the front of
the list. Heaps, on the other hand, use a “partially-ordered,
amost-complete binary tree” instead of asorted list to reduce
the average- and worst-case time complexity for inserting or
deleting an entry from O(n) to O(Ign). A heap representa-
tion may be more efficient for certain real-time application
usage patterns|[7].

o ACE_Event_Handler: This abstract base class specifies
an extensible interface used by portions of the React or
class that control and coordinate the automatic dispatch-
ing of I/O and timer mechanisms. The virtua methods
in the ACE_Event Handl er interface are illustrated in
Figure 4. The React or uses application-defined sub-
classes of the ACE_Event _Handl er base class to im-
plement its automated, event-driven call-back mechanisms.
These subclasses may redefine certain virtual methods in the
ACE_Event _Handl er base class to perform application-
defined processing in response to various types of events.
These events include (1) different types (e.g., “reading,”
“writing,” and “exceptions”) of synchronous I/O on one or
more handles and (2) timer expiration.
An

object of a subclass derived from ACE_Event _Handl er
typically supplies an 1/O handle! For example, the fol-
lowing Loggi ng_Accept or class fragment encapsulates
a “passive-mode” ACE_SOCK_Accept or factory provided
by the SOCK_SAP socket wrappers [8].

cl ass Loggi ng_Acceptor :
publ i ¢ ACE_Event _Handl er

{
public:
Loggi ng_Accept or (ACE_I NET_Addr &addr)
: acceptor_ (addr) { /* ... */ }

/1 Doubl e-di spat chi ng hook.
virtual ACE_HANDLE get _handl e (void) const {
return this->acceptor_.get_handle ();

}

/1 Factory that creates and activates

11/0 handles may be omitted in derived class objects that are purely
timer-based.

typedef u_l ong React or _Mask;
typedef int ACE_HANDLE;

cl ass ACE_Event _Handl er

-
publi c:

/1 It is possible to bitwise "or" these val ues
/1 together to instruct the Reactor to check for
/1 multiple I/O activities on a single handle.

enum {

READ _MASK = 01,

WRI TE_MASK = 02,

EXCEPT_MASK = 04,

RWE_MASK = READ MASK | WRI TE_MASK | EXCEPT_MASK

H

/1l Returns the 1/0 handl e associated with the
/1 derived object (rmust be supplied by a subclass).
virtual ACE_HANDLE get _handl e (void) const = O;

/1 Called when object is renoved fromthe Reactor.
virtual int handle_cl ose (ACE_HANDLE, Reactor_Mask);
/1 Called when input becomes avail abl e.
virtual int handl e_i nput (ACE_HANDLE);
/1 Called when output is possible.
virtual int handl e_output (ACE_HANDLE);
/1 Called when urgent data is avail able.
virtual int handl e_except (ACE_HANDLE);

/1 Called when timer expires (TV stores the
// current time and ARG is the argunent given
/1 when the handl er was originally schedul ed).
virtual int handle_tineout (const ACE Ti nme_Val ue &tv,
const void *arg = 0);

/1 Called when signal is triggered by CS.
virtual int handle_signal (int signun;

Figure 4: Interface for the ACE_Event_Handler Class

/1 a Loggi ng_Handl er.
virtual int handle_i nput (ACE_HANDLE) {
ACE_SCOCK_St ream peer _handl er;

t hi s->acceptor _. accept (peer_handler);
/'l Create and activate a Loggi ng_Handler. ..

}
...

private:

{

H

int nain (int argc,

/1 Passive-node socket acceptor.
ACE_SOCK_Accept or acceptor_;

char *argv[])

/1 Event denulti pl exer.
ACE_React or reactor;

Loggi ng_Accept or accept or
((ACE_I NET_Addr) PORT_NUM ;

reactor.register_handl er
(&acceptor, ACE_Event _Handl er: : READ_MASK) ;

/1 Loop ‘‘forever’’ accepting connections and
/1 and handling | oggi ng records.
for (;;)
reactor. handl e_events ();
/* NOTREACHED */

Internally, the Reactor::register_handler

method retrieves the underlying I/O handle by invoking the
accept or object’'s get _handl e virtual method. When

theReact or : : handl e_event s method isinvoked, han-
dies of all registered objects are aggregated and passed to
sel ect (or poll). This OS-level event demultiplexing
call detectsthe occurrence of 1/0-based events on these han-
dles. When input events occur or output events become
possible, the I/O handles become “active” At this time,
the React or notifies the appropriate derived objects by
invoking the method(s) that handle the event(s).? For in-
stance, in the example above, when a connection request
arrives the React or calsthe handl e_i nput method of
the ACE_Accept or class. This method accepts the new
connection and creates a Loggi ng_Handl er (not shown)
that reads all data sent by the client and displays it on the
standard output stream.

The ACE_Ti mer _Queue class described above handles
time-based events. When atimer managed by this queue ex-
pires, thehandl e_t i meout method of apreviously sched-
uled ACE_Event _Handl er derived objectisinvoked. This
method is passed the current time, as well asthevoi d * ar-
gument passed in when the derived object was originally
scheduled.

When any methodinan ACE_Event _Handl er object re-
turns —1, the React or automatically invokes that object’s
handl e_cl ose method. The handl e _cl ose method
may be used to perform any user-defined termination ac-
tivities (such as deleting dynamic memory allocated by the
object, closing log files, etc.). Upon return of this call-back
function, theReact or removestheassociated derived class
object from itsinternal tables.

3.2 Platform-Dependent Class Components

The ACE_React or class provides the central inter-
face for the React or framework. On UNIX platforms,
this class is the only part of the framework that contains
platform-dependent code (the private representation of the
ACE_Ti me_Val ue class may differ on non-UNIX plat-
forms, aswell).

o ACE_Reactor: Figure6 illustrates the primary methods
inthe React or classinterface, which encapsulates and ex-
tends the functionality of sel ect and pol | . These meth-
ods may be grouped into the following general categories:

e Manager methods — The constructor and open meth-
ods create and initialize objects of the ACE_React or
by dynamically alocating various data structures (de-
scribedin Section 3.2.1and 3.2.2 below). Thedestructor
and cl ose methods deall ocate these data structures.

¢ |/O-based event handler methods — Objectsthat are de-
rived from subclasses of the ACE_Event _Handl er
class may be instantiated and registered with an in-
stance of the React or viather egi st er _handl e

2Note that the activated 1/0 handle is passed as an argument to the
handl e_i nput call-back function (though it is ignored in this case since
the accept or class instance variable keeps encapsulates the underlying
handle).

method. Event handlers may aso be removed via the
r enove_handl er method.

Timer-based event handler methods —

ACE_Ti me_Val ue arguments that are passed to
the ACE_React or 'sschedul e_ti ner method are
specified “relative’ to the current time. For example,
the following code schedules an object to print “hello
world” every i nt er val number of seconds, starting
del ay secondsinto the future:

class Hello_World : public ACE_Event_Handl er
{

public:
virtual int handle_tineout (
const ACE_Ti me_Val ue &tv,
const void *arg) {
ACE_DEBUG ((LM DEBUG "hello world\n"));
return O;

}
...

b

int min (int argc, char *argv[])
{
if (argc !'= 3)
ACE_ERROR_RETURN ((LM _ERROR,
"usage: % delay interval\n",
argv[0]), -1);
React or reactor;

Hel lo_World handler; // timer object.

ACE_Ti ne_Val ue delay = ACE _COS::atoi (argv[1]);
ACE_Tine_Value interval = ACE_CS::atoi (argv[2]);

reactor.schedul e_tiner (&andler, O,
del ay, interval);

for (53)
reactor. handl e_events ();

/* NOTREACHED */
}
However, the default implementation of the underly-
ing ACE_Ti mer _Queue storesthevauesin “absolute’
timeunits. That is, it adds the scheduled timeto the cur-
rent time of day.

Sincetheinterface of the ACE_React or class consists
of vi rt ual methodsitisstraight-forward to extendthe
ACE_React or 's default functionality via inheritance.
For example, modifying the ACE_Ti mer _Queue im-
plementation to use one of the aternative represen-
tations described in Section 3.1 requires no visible
changestothe ACE_React or 'spubl i corpri vat e
interface.

Event-loop methods —

After registering I/0-based and/or timer-based objects,
an application entersan event-loop that call seither of the
two React or : : handl e_.event s methods continu-
ously. These methodsblock for an application-specified
timeinterval awaiting the occurrence of (1) synchronous
I/0 events on one or more handles and (2) timer-based
events. Aseventsoccur, the ACE_React or dispatches
the appropriate method(s) of objectsthat the application
registered to handl e these events.

EVENT
HANDLER

EVENT
HANDLER

EVENT
HANDLER

EVENT
HANDLER

EVENT
~\ HANDLER

[[

TIMER QUEUE
EXCEPTION EVENT HANDLERS |

WRITE EVENT HANDLERS |

TIME
VALUE

TIME
VALUE

LD
[]
[]

READ EVENT HANDLERS |
REACTOR
OBJECT

C++ LIBRARY LEVEL

—{SELECT() INTERFACE |~

o APPLICATION-DEFINED ~ ,~———" "

> CONCRETE DERIVED CLAss | fandie input() '\

o (1) SELECT-BASED hende outp)) (2) POLL-BASED

; REACTOR o T REACTOR
/haﬁalgin ut N

o \ handle:ou‘gpu(t)() N

— \ handle_exception() //

s I'handle_timeout() .~ gyENT HANDLER

o / handle_close() ,~

5' REGISTERED { get handle() ABSTRACT BASE CLASS REGISTERED

[an OBJECTS == OBJECTS

< ! \

= =\ HANDLER) =\ HANDLER

EVENT
HANDLER

EVENT
HANDLER

EVENT
HANDLER

TIME

VALUEI I I > |

TIMER QUEUE

TIME
VALUE

N

L

A

EVENT HANDLERS I

POLL
IN

POLL
IN

POLL
out

POLL
PRI

POLLFD VECTOR |

REACTOR

OBJECT
— —{ PoLL() INTERFACE |

OPERATING SYSTEM LEVEL

Figure5: The Reactor’s External Interfaces and Internal Data Structures

Thefollowing paragraphs describe the primary differences
betweenthepol | -based and sel ect -based versionsof the
ACE_React or . Although the implementations of certain
methods in the ACE_React or class differ across OS plat-
forms, the method names and overal functionality remain
the same. This uniformity stems from the modularity of
the ACE_React or s design and implementation, which en-
hances its reuse, portability, and maintainability.

3.21 ClassComponentsfor the select-based Reactor

As shown in Figure 5 (1), the sel ect -based implementa-
tion of the ACE_React or contains three dynamically alo-
cated ACE_Event _Handl er * arrays. These arrays store
pointers to the registered ACE_Event _Handl er objects
that process the reading, writing, exception, and/or timer-
based events. The ACE Handl e_Set class provides an
efficient C++ wrapper for the underlying f d_set bitmask
datatype. Anf d_set mapsthel/O handle name-space onto
acompact bit-vector representation and provides several op-
erations for enabling, disabling, and testing bits correspond-
ing to 1/0 handles. One or more f d_set sis passed to the
sel ect call. The ACE_Handl e_Set class optimizes sev-
eral common f d_set operations by (1) using “full-word”
comparisons to minimize unnecessary bit manipulations and
(2) caching certain values to avoid recalculating bit-offsets
on each call.

3.2.2 ClassComponentsfor the poll-based Reactor

The pol | interface is more general than sel ect, alow-
ing applications to wait for a wider-range of events (such
as “priority-band” 1/O events). Therefore, the pol | -based
React or implementation shown in Figure 5 (2) is some-
what smaller and less complicated than the sel ect -based
version. For example, the pol | -based ACE_React or re-
quires neither the three ACE_LEvent Handl er * arrays
nor the ACE_Handl e_Set class. Instead, a single array
of ACE_Event _Handl er pointersand anarray of pol | f d
structures are dynamicaly alocated and used internaly to
storetheregistered ACE_Event _Handl er derived classob-
jects.

4 Using and Evaluating the Reactor

The React or framework is intended to simplify the de-
velopment of distributed applications, particularly network
servers. To illustrate a typical usage of the React or, the
following section examines the desi gn and i mpl ementation of
thedistributed ogging application presented in[1]. Thissec-
tion describes the primary C++ class componentsin the log-
ging application, compares the object-oriented React or -
based solution with an earlier version writtenin C, and dis-
cussestheinfluenceof C++onboththeReact or framework
and the distributed logging facility.

cl ass Reactor
t
publi c:

/! = lnitialization and term nati on nethods.
enum { DEFAULT_SI ZE = FD_SETSI ZE };

/1 Initialize a Reactor instance that nay
/1 contain SIZE entries (RESTART indicates
/] to restart systemcalls after interrupts).

Reactor (int size, int restart = 0);
virtual int open (int size = DEFAULT_SI ZE,
int restart = 0);

/1 Default constructor.
Reactor (void);

/1 Performcleanup activities to cl ose down
/1 an instance of a REACTOR
voi d cl ose (void);

I/ O-based event handl er net hods

/'l Register an ACE _Event _Handl er object according
/1 to the Reactor_Mask(s) (i.e., "reading,"
/1 "witing," and/or "exceptions").
virtual int register_handl er (ACE_Event_Handl er *,
React or _Mask) ;

/1 Renpve the handl er associated with the
/] appropriate Reactor_Mask(s).

virtual int renove_handl er (ACE_Event _Handl er *,
React or _Mask) ;
/1 = Timer-based event handl er nethods

/'l Register a handler to expire at tine DELTA
/1 When DELTA expires the handl e_tineout()
/1 method will be called with the current tine
/1 and ARG as paraneters. |f INTERVAL is > 0
/1 then the handler is reinvoked periodically
/] at that INTERVAL. DELTA is interpreted
/1 "relative" to the current tinme of day.
virtual void schedule_tinmer (
ACE_Event _Handl er *,
const void *arg,
const ACE_Ti me_Val ue &delta,
const ACE Tinme_Value & nterval =
ACE_Ti nmer _Queue: : zero);

/1 Locate and cancel tinmner.
virtual void cancel _tiner (ACE_Event_Handl er *);
/1 = Event-1oop nethods
/1 Block process until |1/0O events occur or tiner

/] expires, then dispatch activated handler(s).
virtual int handl e_events (void);

/'l Performa tinmed event-loop that waits up to TV
/1 time units for events to occur; if no events
/1 occur then 0 is returned, otherw se return

/1 TV - (actual _tinme_waited).
virtual int handle_events (ACE_Ti me_Val ue &tv);
private:

11
}
Figure6: Interface for the Reactor Class

Oct 29 14:48:13 1992@crimee.ics.uci.edu@38491@7@client::unable to fork in function spawn
Oct 29 14:50:28 1992@zola.ics.uci.edu@18352@2@drwho::sending request to server bastille

STORAGE DEVICE

i
SERVER LOGGING
DAEMON
G G
R .
int spawn (void) { "‘W“
if (fork () ==-1) SERVER E;J z
Log_Msg::log (LOG_ERROR, Q@
"unable to fork in function spawn"); \\\\‘?’
= 5 L
N
&
s
<
NETWORK <

if (Options::debugging)
Log_Msg::log (LOG_DEBUG,
“"sending request to server %s",
server_host);
Comm_Manager::send (request, len);

Figure 7: Run-time Activities in the Distributed Logging
Facility

4.1 Distributed Logging Facility Overview

The distributed logging facility presented below was orig-
inally designed for a commercial on-line transaction pro-
cessing product. The logger facility uses a client/server ar-
chitecture to provide logging services for workstations and
symmetric multi-processors linked across local area and/or
widearea networks. Thelogging facility combinesthe event
demultiplexing and dispatching features of the React or to-
gether with the object-oriented interface to BSD sockets and
the System V Transport Layer Interface (TLI) provided by
the | PC_SAP wrapper library (described in [8]). Logging
providesan “append-only” storage service that records diag-
nostic information sent from one or more applications. The
primary unit of logging isthe record. Incoming records are
appended to the end of a log and al other types of write
access are forbidden.

Thedistributedlogging facility iscomprised of thefollow-
ing three main components depicted in Figure 7:

o Application Logging Interface: Application processes
(e.g., P1, P, P3) running on client hosts use the Log_Msg
C++ classto generate various types of logging records (such
as LOG_ERROR and LOG_DEBUG). The Log_Msg: : | og
method provides a pri nt f -style interface. Figure 8 de-
scribes the priority levels and data format for records ex-
changed by the application interface and the logging dae-
mons. When invoked by an application, thelogginginterface
formats and timestamps these records and writes them to a
well-known named pipe (also called a FIFO), wherethey are

consumed by aclient logging daemon.

¢ Client LoggingDaemon: Theclientloggingdaemonisa
single-threaded, iterative daemon that runs on every host ma-
chine participating in the distributed logging service. Each
client logging daemon is connected to the read-side of the
named pipe used to receive logging records from applica
tions on this machine. Named pipes are used since they are
an efficient form of locahost-only IPC. In addition, the se-
mantics of named pipesin System V Release 4 UNIX have
been expanded to alow “priority-band” messages that may
be received in “order-of-importance,” as well as in “order-
of-arrival” (whichisstill the default behavior) [9].

The complete design of the client logging daemon and
the application logging interface will appear in a subsegquent
C++ Report article that presents C++ wrappers for severa
“local-host” 1PC mechanisms (such as System V Release 4
FIFOs, STREAM pipes, message queues, and UNIX-domain
stream sockets). In generd, a client logging daemon con-
tinuoudly receives the logging recordsin priority order from
applications, convertsthe multi-byterecord header fieldsinto
network-byte order, and forwards the records to the server
logging daemon (which typically runs on aremote host).

e Server Logging Daemon: The server logging daemon
isaconcurrent daemon that continuously collects, reformats,
and displaystheincominglogging recordsto variousexterna
devices. These devices may include printers, persistent stor-
age repositories, or logging management consoles. The re-
mainder of thisarticlefocuses on the server logging daemon.
In addition, several React or and | PC_SAP mechanisms
are also illustrated and described throughout this example.

4.2 The Server Logging Daemon

The following section discusses the interface and im-
plementation of the primary classes used to construct the
server logging daemon. The logging server is a single-
threaded, concurrent dagmon that runs in a single pro-
cess. Concurrency is provided by having the React or
“time-dice” its attention to each active client in a round-
robin fashion. In particular, during every invocation of the
React or: : handl e_.event s method, a single logging
record is read from each client whose I/O handle became
active during thisiteration. These logging records are writ-
ten to the standard output of the server 1ogging daemon. This
output may be redirected to various devices such as print-
ers, persistent storage repositories, or 1ogging management
consoles.

In addition to the main driver program shown below in
Section 4.2.3, several other C++ class components appesar in
the logging facility architecture. The class inheritance and
parameterization relationships between the various compo-
nents are illustrated in Figure 9 using Booch notation [10].
To enhance reuse and extensibility, the component shownin
thisfigure are designed to decouple the following aspects of
the application architecture:

/1 The follow ng data type indicates the relative

/1 priorities of the |ogging nessages,

froml owest

/1 to highest priority...

enum Log_Priority

}s

/1 Shutdown the | ogger
LM SHUTDOWN = 1,
/1 Messages indicating function-calling sequence
LM TRACE = 2,
/1 Messages that contain information nornally
/1 use only when debuggi ng a program
LM DEBUG = 3,
/1 | nformational
LM I NFO = 4,
/1 Conditions that are not error condition
/1 but that may require special handling
LM NOTICE = 5
/1 \\rning nessages
LM WARNI NG = 6,
/1 Initialize the |ogger
LM STARTUP = 7,
/1 Error nessages
LM ERROR = 8,
/l Critical conditions, e.g.
LM CRITICAL = 9,
/1 A condition that should be corrected i nmedi at ey,
/1 such as a corrupted system dat abase
LM ALERT = 10,
/1 A panic condition (broadcast to all users)
LM EMERGENCY = 11,
/1 Maxinmumlogging priority + 1
LM MAX = 12

nmessages

hard device errors

struct Log_Record

enum {

/1 Maxi mum nunber of bytes in |ogging record
MAXLOGVBGLEN = 1024

b

/1 Type of 1ogging record
Log_Priority type_;

/1 length of the |ogging record
long I ength_;

/1 Time |ogging record generated
long time_stanp_;

/1 1d of process that generated the record
long pid_;

/1 Logging record data
rec_dat a_[MAXLOGVEGLEN] ;

Figure 8: Logging Record Format

1 »n _|Logging_Handler _~"|ACE_SOCK_Stream
£, ¢ ,~—~""|ACE _SOCK_Acceptor ([ACE_INET Addr
EE & __~ ACE_INET_Addr - J
< = - . ;

SEE il Loggng /1 Lossig
= \ ndler
E % g Acceptor | \ andle)
& AN ! o~
O~ \ T ~—
\\ ‘\

' ” AL VeI ER 1 X
y @ TN ISVC_HANDLER | TN T T
e A Z \ PEER_ACCEPTOR! l IPEER_STREAM }
EE) IPEER_ ADDR ___; .~ ACE |PEER ADDR |
9 < % , 7 / o
2 2 & / ACE | \ Sve /
£22Z \ Acceptor \ Handler /

o O N —— AN -
R . <
~~-® -7

VIR &""‘\ &”/\\

2 e . p - \
.82 O PERR pEER)
g g g ! \) l ACCEPTOI}// 7 777> \STREAM -

zs) Evfﬁt Nl JEvent { "=~ 7

£ 9 (_Handler) ¢ Handler)

.

Figure 9: Class Componentsin the Server Logging Daemon

e React or framework components—The componentsin
theReact or framework discussed in Section 3 encap-
sulate the lowest-level mechanisms for performing the
1/0 demultiplexing and event handler dispatching.

o Connection-rel ated mechanisms— The componentsdis-
cussed in Section 4.2.1 represent a set of generic tem-
plates that provide reusable connection-related mech-
anisms. In particular, the ACE_Accept or template
class is a genera-purpose class designed to accept net-
work connections with remote clients. Likewise, the
ACE_Svc_Handl er template class isanother general -
purpose class designed to send and/or receive data
to/from connected clients.

o Application-specific services — The components dis-
cussed in Section4.2.2 represent theappli cati on-specific
portion of the distributed logging facility. In particu-
lar, the Loggi ng_Accept or class supplies specific
parameterized types to the ACE_Accept or, which
cregtes a connection handling instantiation that is
specific for the logging application. Likewise, the
Loggi ng_Handl er classisinstantiatedto providethe
application-specific functionality necessary to receive
and process logging records from remote clients.

Ingeneral, by adopting thishighly-decoupl ed object-oriented
decomposition, the development and maintenance of the
server logging daemon was simplified significantly, com-
pared with the original approach.

421 Connection-related Mechanisms

e The ACE_Acceptor Class. Thisparameterized typepro-
videsa generictemplate for afamily of classes that standard-
ize and automate the steps necessary to accept network con-
nection requests from clients. Figure 10 illustratestheinter-

/1 A tenplate class for handling connection requests from

/1l a renmote client.

tenpl ate <cl ass SVC_HANDLER,
cl ass PEER_ACCEPTOR,
cl ass PEER_ADDR>
cl ass ACE_Acceptor : public ACE Event Handl er

{
public:
ACE_Acceptor (ACE_Reactor *r,
const PEER_ADDR &a);
“ACE_Acceptor (void);

private:
virtual ACE_HANDLE get _handl e (voi d) const;
virtual int handl e_i nput (ACE_HANDLE);
virtual int handl e_cl ose (ACE_HANDLE,
React or _Mask) ;

/1 Accept connections.
PEER_ACCEPTCR accept or _;

/1 Perforns event denuxing.
ACE_Reactor *reactor_;

H
Figure 10: Class Interface for Accepting Connections

facefor the ACE_Accept or class® Thisclassinheritsfrom
ACE_Event _Handl er, which enables it to interact with
the React or framework. In addition, this template class
is parameterized by a composite PEER_ HANDL ER subclass
(which must understand how to perform /O with clients),
a PEER ACCEPTOR class (which must understand how to
accept client connections), and PEER_ADDR (whichisa C++
wrapper for the appropriate address family).

Classes instantiated from the ACE_Accept or template
are capable of the following behavior:

1. Accepting connection requests sent from remoteclients;

2. Dynamically dlocating an object of the

PEER_HANDL ER subcl ass;

3. Registering this object with an instance of the
React or. In turn, the PEER_ HANDLER class must
know how to process data exchanged with the client.

Figure 11 depicts the ACE_Accept or class implemen-
tation. When one or more connection requests arrive, the
handl e_i nput method isautomatically dispatched by the
React or. This method behaves as follows. Firgt, it dy-
namically creates a separate PEER HANDL ER object, which
is responsible for processing the logging records received
from each new client. Next, it accepts an incoming connec-
tion into that object. Finaly, it calls the open hook. This
hook can register the newly created PEER_ HANDL ER object
withaninstance of theReact or or can spawn off a separate
thread of control, etc.

e The ACE_Svc_ Handler Class. This parameterized type
provides a generic template for processing data sent from
clients. In the distributed logging facility, for example, the

S3This is a simplified version of the ACE_Accept or. For a complete
implementation see [11].

/1 Shorthand nanes
#define SH SVC_HANDLER
#define PL PEER_ACCEPTOR
#defi ne PA PEER_ADDR

tenpl ate <class SH, class PL, class PA>
ACE_Acceptor<SH, PL, PA>::ACE_Acceptor
(ACE_Reactor *r, const PA &addr)
reactor_ (r),
acceptor_ (addr)
{
}

tenpl ate <class SH, class PL,
ACE_Accept or <SH, PL,

cl ass PA> ACE_HANDLE
PA>: : get _handl e (voi d) const

return this->acceptor_.get_handle ();

}
tenpl ate <class SH, class PL, class PA> int
ACE_Acceptor<SH, PL, PA>::handl e_cl ose
(ACE_HANDLE, React or _Mask)
return this->acceptor_.close ();

cl ass PA>
:“ACE_Acceptor (void)

tenpl ate <class SH, class PL,
ACE_Acceptor<SH, PL, PA>:

t hi s->handl e_cl ose ();

}

/1 Generic factory for accepting connections from
/1 client hosts, creating and activating a
/] service handler.

class PA> int
PA>: : handl e_i nput

tenpl ate <class SH, class PL,

ACE_Accept or<SH, PL,
(ACE_HANDLE)

{

/'l Create a new Svc_Handl er.
SH *svc_handl er = new SH (this->reactor_);

/'l Accept connection into the handler.
t hi s->acceptor _.accept (*svc_handler);

/1 Activate the handler.
svc_handl er - >open (0);

}
Figure 11: ClassImplementation for Accepting Connections

/1 Receive client nmessage fromthe renote clients.

tenpl ate <cl ass PEER_STREAM cl ass PA>
class ACE_Svc_Handl er : public ACE_Event _Handl er

{
publi c:
ACE_Svc_Handl er (ACE_Reactor *r)
reactor_ (r) {}

/1 Must be filled in by subclass
virtual int open (void *) = 0;

operat or PEER_STREAM &() ;

/1 Denul tipl exi ng hooks.
virtual ACE_HANDLE get _handl e (voi d) const;

protected:
/1 Connection open to the client.
PEER _STREAM peer _stream ;

/1 Performs event denuxing.
ACE_Reactor *reactor_;

Figure12: Class Interface for Handling Services

10

#defi ne PS PEER_STREAM

/1 Extract the underlying PS (e.g., for

/1 use by accept()).

tenpl ate <class PS, class PA>
ACE_Svc_Handl er <PS, PA>::operator PS &()

{

}

tenpl ate <class PS, class PA> ACE_HANDLE
ACE_Svc_Handl er<PS, PA>::get_handl e (void) const

return this->peer_stream;

return this->peer_stream.get_handle ();

Figure 13: Class Implementation for Service Handling

I/O format involveslogging records. However, different for-
meats are easily substituted for other applications. Typically,
objects of classesinstantiated from ACE_Svc_Handl er are
dynamically created and registered with the React or by
the handl e_i nput routinein the ACE_Accept or class.
The interface of the ACE_Svc_Handl er class is depicted
in Figure 12. Aswith the ACE_Accept or class, thisclass
inheritsfunctionality from the ACE_Event _Handl er base
class.

Figure13illustratesthe ACE_Svc_Handl er classimple-
mentation. The class constructor caches the host address
of the associated client when an object of this class is dy-
namically allocated. Asillustrated by the “console” window
in Figure 7, the name of this host is printed aong with the
logging records received from a client logging daemon.

The ACE.Svc_Handl er:: handl edi nput method
simply invokes the pure virtua method recv. This
recv function must be supplied by subclasses of
ACE_Svc_Handl er; it is responsible for performing
application-specific /O behavior. Note how the combination
of inheritance, dynamic binding, and parameteri zed typesfur-
ther decoupl esthe general -purpose portions of theframework
(such as connection establishment) from the application-
specific functionality (such as receiving logging records).

WhentheACE_React or removesaACE_Svc_Handl er
object from itsinternal tables, the object’shandl e_cl ose
methodis called automatically. By default, thismethod deal -
locates the object’s memory (which was originaly allocated
by the handl e_i nput method in the ACE_Accept or
class). Objects are typically removed when a client logging
daemon shuts down or when a serious transmission error oc-
curs. To insure that ACE_Svc_Handl er aobjects are only
allocated and deallocated dynamically, the destructor is de-
clared in the private section of the class (shown at the bottom
of Figure 12).

4.2.2 Application-Specific Services

e The Logging-Acceptor Class: To implement the dis-
tributedlogging applicationtheLoggi ng-Accept or class
isinstantiated from the generic ACE_Accept or templateas
follows:

typedef ACE_Acceptor
<Loggi ng_Handl er,
ACE_SCOCK_Accept or,
ACE_| NET_Addr > Loggi ng_Acceptor;

The PEER HANDLER parameter is instantiated with the
Loggi ng_Handl er class (described in the following
bullet below), PEERACCEPTOR is replaced by the
ACE_SCCK_Accept or class, and PEERADDR is the
ACE_| NET_Addr class.

The ACE_SOCK* and ACE.I NET_Addr instantiated
types are part of a C++ wrapper caled SOCK_SAP [g].
SOCK_SAP encapsul ates the BSD socket interface for trans-
ferring data reliably between two processes that may run on
different host machines. However, these classes could aso
be any other network interface that conformed to the inter-
face used in the parameterized class (such as the TLI _SAP
wrapper for the System V Transport Layer Interface (TL1)).
For example, depending on certain properties of the under-
lying OS platform (such as whether it isa BSD or System
V variant of UNIX), the logging application may instantiate
the ACE_Svc_Handl er class to use either SOCK_SAP or
TLI _SAP asfollows:

/1 Logging application.

#if defined (MI_SAFE_SOCKETS)
typedef ACE_SOCK_St r eam PEER_STREAM
#el se

typedef ACE_TLI _Stream PEER_STREAM
#endi f // MI_SAFE_SOCKETS.

cl ass Loggi ng_Handl er
publ i ¢ ACE_Svc_Handl er <PEER_STREAM
ACE_I NET_Addr >

1.

Thedegree of flexibility offered by thistemplate-based ap-
proach isextremely useful when devel oping applicationsthat
must run portability across multiple OS platforms. In fact,
the ability to parameterize applicationsby transport interface
is useful across variants of OS platforms (e.g., SunOS 5.2
does not provide a thread-safe socket implementation).

e The Logging Handler Class: This class is created by
instantiating the ACE_Svc _Handl er classasfollows:

cl ass Loggi ng_Handl er :
publ i c ACE_Svc_Handl er <ACE_SOCK_St r eam
ACE_| NET_Addr >

{
publi c:
/1 Open hook.
virtual int open (void) {

/] Register ourselves with the Reactor so
/1 we can be dispatched automatically when
/1 1/Oarrives fromclients.
reactor_.regi ster_handl er

(this, ACE_Event _Handl er:: READ_MASK) ;

/1 Demul tipl exi ng hook.
virtual int handl e_i nput (ACE_HANDLE);

11

The PEER.STREAM parameter is replaced with the
ACE_SOCK_St r eam class and the PEER ADDR parame-
ter is replaced with the ACE.I NET_Addr class. The
handl e_i nput method is called automatically by the
ACE_React or when input arives on the underlying
ACE_SOCK_St r eam It isimplemented as follows:*

/1 Callback routine for handling the reception of
/1 remote | ogging transm ssions fromclients.

int
Loggi ng_Handl er: : handl e_i nput (ACE_HANDLE)
{

size_t len;

ssize_t n = this->peer_stream.recv
(& en, sizeof len);

if (n == sizeof len) {
Log_Record Ir;

len = ntohl (len);

n = this->peer_stream.recv_n (&r, len));

if (n!=1len)
ACE_ERROR_RETURN ((LM _ERROR,

"client logger", this->host_nane), -1);
I r.decode ();
if (Ir.len == n)
Ir.print (this->host_nane, 0, stderr);
el se
ACE_ERROR_RETURN ((LM DEBUG,
"error, Ir.len = %,
Ir.len, n), -1);
return O;
}
el se
return n;

}

Note how this example perform two r ecvs to simulate a
message-oriented service via the underlying TCP connec-
tion (recall that TCP provides bytestream-oriented, rather
than record-oriented, service). The first r ecv reads the
length (stored as a fixed-size integer) of the following log-
ging record. The second r ecv then reads “length” bytesto
obtain the actual record. Naturally, the client sending this
message must a so follow this message framing protocol.

423 TheMain Driver Program
Thefollowingevent-loop drivestheReact or -based log-

ging server:

int

main (int argc,

{

char *argv[])

/1 Event denulti pl exer.
ACE_React or reactor;

const char *program nane = argv[O0];
ACE_LOG_MSG >open (program nane);

if (argc !'= 2)

ACE_ERROR_RETURN ((LM _ERROR,
"usage: % port-nunber"),

(argv[1]);

“Note that this implementation is not entirely robust in its handling of
“short reads.”

-1);

u_short server_port = ACE_CS:: at oi

"o at host %\n",

n = %\n",

SERVER
LOGGING
DAEMON

: Logging
andler
4&

REGISTERED
OBJECTS

LOGGING
RECORDS

CONNECTION
REQUEST

N\

Figure 14: Run-time Configuration of the Server Logging
Daemon

Loggi ng_Accept or accept or
(& eactor, (ACE_| NET_Addr) server_port);

reactor.register_handl er (&acceptor);

/1 Loop forever, handling client requests.

for (;;)
reactor. handl e_events ();

/* NOTREACHED */
return O;

The main program starts by opening a logging channel
that directs any logging records generated by the server toits
own standard error stream. The example code in Figures 11
and 13illustrates how the server uses the application logging
interface to log its own diagnostic messages locally. Note
that sincethisarrangement doesnot recursively usethe server
logging daemon there is no danger causing of an “infinite-
logging-loop.”

The server then opens an instance of the React or, in-
stantiatesaLoggi ng_Accept or object, and registersthis
object with the React or . Next, the server enters an end-
less loop that blocks in the handl e_event s method un-
til events are received from client logging daemons. Fig-
ure 14 illustrates the state of the logging server daemon a&f -
ter two clients have contacted the React or and become
participants in the distributed logging service. As shown
in the figure, a Loggi ng_Handl er object has been dy-
namically instantiated and registered for each client. As

12

incoming events arrive, the React or handles them by au-
tomatically dispatching (1) the handl e_i nput method of
the Loggi ng_Accept or and Loggi ng_Handl er class.
When connection requests arrive from client logging dae-
mons, the Loggi ng-Accept or : : handl e.i nput func-
tionisinvoked. Likewise, when logging records or shutdown
messages arrive from previously connected client logging
daemons, the Loggi ng_-Handl er:: handl e.i nput
functionisinvoked.

Figure 7 portraysthe entire system during execution. Log-
ging records are generated from the application logging in-
terface, forwarded to client logging daemons, transmitted
across the network to the server logging daemon, and finally
displayed on the server logging console. The logging in-
formation that is displayed indicates (1) the timethe logging
record was generated by theapplicationinterface, (2) thehost
machine the application was running on, (3) theprocessiden-
tifier of the application, (4) the priority level of the logging
record, (5) thecommand-linename (i.e., “ar gv[0] ") of the
application, and (6) an arbitrary text string that contains the
text of the logging message.

4.3 Evaluating Alternative Logging Imple-
mentations

This section compares the object-oriented and non-object-
oriented versions of the distributed logging facility in terms
of severd software quality factors such as modul arity, exten-
sibility, reusability, and portability.

4.3.1 Non-Object-Oriented Version

TheReact or -based distributedloggingfacility isan object-
oriented reimplementation of an earlier functionally equive
lent, non-object-oriented logging facility. The origina ver-
sion was developed for aBSD UNIX-based commercial on-
linetransaction processing product. It wasinitiadly writtenin
Cand used BSD socketsand sel ect directly. Later, it was
ported to a system that provided only the System V-based
TLI and pol | interfaces.

The original C implementation is difficult to modify, ex-
tend, and port dueto (1) tightly-coupledfunctionality and (2)
an excessive use of global variables. For example, the event
demultiplexing, service dispatching, and event processing
operations in the original version are tightly-coupled with
both the acceptance of client connection requests and there-
ception of client logging records. In addition, several global
data structures are used to maintain the rel ationship between
(1) per-client context information (such as the client host-
name and current processing status) and (2) 1/0 handles that
identify the appropriate context record. Therefore, any en-
hancements or modifications to the program directly affects
the existing source code.

432 Object-Oriented Version

The object-oriented React or -based version uses data ab-
straction, inheritance, dynamic binding, and templatesto (1)
minimize the reliance on globa variables and (2) decou-
ple the application policies that process incoming connec-
tions and data from the lower-level mechanisms that per-
form demultiplexing and dispatching. The React or -based
logging fecility contains no global variables. Instead, each
Loggi ng_Handl er object registered with the React or
encapsul ates the client address and the underlying 1/0 handle
used to communicate with clients.

By decoupling the policies and mechanisms, a number
of software quality factors are enhanced. For example, the
reusability and extensibility of system components was im-
proved, which simplified both theinitial development effort
and subsegquent modifications. Since the React or frame-
work performs al the lower-level event demultiplexing and
servicedispatching, only asmall amount of additional codeis
required to implement the server logging daemon described
in Section 4.1. Moreover, the additional code is primar-
ily concerned with application processing activities (such
as accepting new connections and receiving client logging
records). In addition, templates help to localize application-
specific code to within a few, well-defined modules.

The separation of policies and mechanisms in the
React or 's architecture facilitates extensibility and porta-
bility both “above’ and “below” its public interface. For
example, extending the server logging daemon’s function-
dity (eg., adding an “authenticated logging” features) is
straight-forward. Such extensions simply inherit from the
ACE_Event _Handl er base class and selectively imple-
ment the necessary virtua method(s). Likewise, by in-
stantiating the ACE_Accept or and ACE_Svc_Handl er
templates, subsequent applications may be produced with-
out redevel oping existing infrastructure. On the other hand,
modifying the original non-object-oriented C version in this
manner, however, would require direct changes to the exist-
ing code.

It is aso possible to modify the React or ’s underlying
1/O demulti plexing mechani sm without aff ecting existing ap-
plication code. For example, porting the React or -based
distributed logging facility from a BSD platform to a Sys-
tem V platform requires no visible changes to application
code. On the other hand, porting the origina C version
of the distributed logging facility from sockets/sel ect to
TLI/pol | was tedious and time consuming. It aso intro-
duced severa subtle errors into the source code that did not
manifest themselves until run-time. Furthermore, in certain
communi cation-intensive applications, data is always avail-
ableimmediately onone or more handles. Therefore, polling
thesehandl esvianon-blocking 1/0 may bemoreefficient than
usingsel ect orpol | . Asbefore, extendingtheReact or
to support thisaternativedemultipl exingimplementation not
modify its public interface.

13

4.4 C++ Language Impact

Several C++ language features are instrumental to both the
design of the React or and the distributed logging facility
that utilizes its functionality. For example, the data hid-
ing capabilities provided by C++ classes improves portabil-
ity by encapsulating and isolating the differences between
sel ect and pol | . Likewise, the technique of register-
ing C++ class objects (rather that stand-aone subroutines)
with the React or helps integrate application-specific con-
text information together with multiple method that access
thisinformation. Parameterized types are useful for increas-
ing the reusability of the ACE_Accept or class by allow-
ing it to be instantiated with PEER_ HANDLERs other than
Loggi ng_-Handl er and PEER.ACCEPTORs other than
ACE_SOCK_Accept or . In addition, inheritance and dy-
namic binding facilitatetransparent extensibility by allowing
developersto enhance thefunctionality of theReact or and
its associated applications without modifying existing code.

Dynamic binding is used extensively in the React or .
A previous C++ Report article on the | PC_SAP wrapper
[8] discusses why avoiding dynamic binding is often advis-
able when designing “thin” C++ wrappers. |In particular,
the overhead resulting from indirect virtual table dispatching
may discourage devel opersfrom using themore modular and
type-secure OO interfaces. However, unlike | PC_SAP, the
React or framework providesmore than just athin OO ve-
neer around the underlying OS system calls. Therefore, the
significant increase in clarify, extensibility, and modularity
compensates for the dight decrease in efficiency. Moreover,
the React or is typicaly used to develop distributed sys-
tems. A careful examination of the major sources of over-
head in distributed systems reveals that most performance
bottlenecks result from activities such as caching, latency,
network/host interface hardware, presentation-level format-
ting, memory-to-memory copying, and process management
[12]. Therefore, the additional memory reference overhead
caused by dynamic binding is insignificant in comparison
[13].

To justify these claims empirically, an upcoming article
in the C++ Report will present the results of a benchmark-
ing experiment that measures the performance of | PC_SAP
and the React or. These performance results are based
upon a distributed system benchmarking tool that measures
client/server performance in adistributed environment. This
tool also indicates the overhead of using C++ wrappers for
IPC mechanisms. In particular, there are two functionally
equivalent versions of the benchmarking tool: (1) an object-
oriented version that uses the | PC_SAP and React or C++
wrappers and (2) a non-object-oriented version written in
C that uses the sockets, sel ect, and pol | system cals
directly. The experiment measures the performance of the
object-oriented implementation and the non-object-oriented
implementation in a controlled manner.

5 Concluding Remarks

TheReact or isaobject-oriented framework that simplifies
the development of concurrent, event-driven distributed sys-
tems by making it easier to write correct, compact, portable,
and efficient applications. It accomplishes this by encapsu-
lating existing operating system demulti plexing mechanisms
within an object-oriented C++ interface. In general, by sepa-
rating policiesand mechanisms,theReact or supportsreuse
of existing system components, improves portability, and
providestransparent extensibility.

One disadvantage with the React or -based approach is
that it is somewhat difficult a first to conceptualize where
an application’s main thread of control occurs. This is a
typical problem with event-loop-driven dispatchers such as
theReact or orthe higher-level X-windowstoolkits. How-
ever, theconfusion surrounding this“indirect event-callback”
dispatching model typically disappears quickly after writing
severa applicationsthat use this approach.

The source code and documentation for the React or
and | PC.SAP C++ wrappers is avalable online at

http://ww. cs. wist! . edu/ ~schmi dt/ACE. htm .

Alsoincluded withthisreleaseareasuiteof test programsand
examples, as well as many other C++ wrappers that encap-
sulate named pipes, STREAM pipes, nrap, and the System
V IPC mechanisms (i.e.,, message queues, shared memory,
and semaphores). Upcoming articles in the C++ Report will
describe the design and implementation of these wrappers.

References

[1] D. C. schmidt, “The Reactor: An Object-Oriented Interface
for Event-Driven UNIX 1/O Multiplexing (Part 1 of 2),” C++
Report, vol. 5, February 1993.

W. R. Stevens, Advanced Programming in the UNIX Environ-
ment. Reading, Massachusetts: Addison Wesley, 1992.

M. A. Linton and P. R. Calder, “The Design and Implemen-
tation of InterViews,” in Proceedings of the USENIX C++
Workshop, November 1987.

D. C. Schmidt, “Transparently Parameterizing Synchroniza-
tion Mechanismsinto a Concurrent Distributed Application,”
C++ Report, val. 6, July/August 1994.

T. H. Harrison, D. C. Schmidt, and . Pyarali, “ Asynchronous
Completion Token: an Object Behavioral Pattern for Efficient
Asynchronous Event Handling,” in Proceedings of the 3¢
Annual Conference on the Pattern Languages of Programs,
(Monticello, lllinois), pp. 1-7, September 1996.

D. E. Comer and D. L. Stevens, Internetworking with TCP/IP
Vol 1I: Design, Implementation, and Internals. Englewood
Cliffs, NJ: Prentice Hall, 1991.

R. E. Barkley and T. P. Lee, “A Heap-Based Callout Imple-
mentation to Meet Real-Time Needs,” in Proceedings of the
USENIX Summer Conference, pp. 213-222, USENIX Associ-
ation, June 1988.

D. C. Schmidt, “IPC_SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

UNIX Software Operations, UNIX System V Release 4 Pro-
grammer’s Guide: STREAMS. Prentice Hall, 1990.

(2]
(3]

(4]

(9]

(6]

(8]

(9]

14

[10] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2"¢ Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

D. C. Schmidt, “Acceptor and Connector: Design Patterns
for Initializing Communication Services,” in Proceedings of
the 1°* European Pattern Languages of Programming Con-
ference, July 1996.

D. C. Schmidt and T. Suda, “ Transport System Architecture
Services for High-Performance Communications Systems,”
IEEE Journal on Selected Areasin Communication, vol. 11,
pp. 489-506, May 1993.

A. Koenig, “When Not to Use Virtual Functions,” C++ Jour-
nal, vol. 2, no. 2, 1992.

[11]

[12]

[13]

