The Reactor
An Object-Oriented Wrapper for Event-Driven
Port Monitoring and Service Demultiplexing
(Part 1 of 2)

Douglas C. Schmidt
schmidt@cs.wustl.edu
http://www.cswustl.edu/~schmidt/
Department of Computer Science
Washington University, St. Louis 63130

An earlier version of this paper appeared in the February
1993 issue of the C++ Report.

1 Introduction

Thisis part one of the third article in a series that describes
techniques for encapsulating existing operating system (OS)
interprocess communication (IPC) services within object-
oriented (OO) C++ wrappers. The first article explains
the main principles and motivations for OO wrappers [1],
which simplify thedevel opment of correct, concise, portable,
and efficient applications. The second article describes an
OO wrapper cdled | PC_SAP [2] that encapsulates the BSD
socket and System V TLI system call Application Program-
matic Interfaces (APIs). | PC_SAP enables application pro-
grams to access local and remote | PC protocol families such
as TCP/IP viaatype-secure, object-oriented interface.

This third article presents an OO wrapper for the 1/0
port monitoring and timer-based event notification facilities
provided by the sel ect and pol | system calls! Both
sel ect andpol | enable applicationsto specify atime-out
interval to wait for the occurrence of different types of input
and output events on one or more 1/O descriptors. sel ect
and pol | detect when certain 1/O or timer events occur and
demultiplex these events to the appropriate application(s).
As with many other OS APIs, the event demultiplexing in-
terfaces are complicated, error-prone, non-portable, and not
easily extensible. An extensible OO framework called the
React or wasdevel opedto overcometheselimitations. The
React or provides a set of higher-level programming ab-
stractions that simplify the design and implementation of
event-driven distributed applications. The React or aso
shields developers from many error-prone details in the ex-
isting event demultiplexing APIs and improves application
portability between different OS variants.

The React or is somewhat different than the | PC_SAP
class wrapper described in[2]. | PC_SAP added arelatively
“thin” OO veneer to the BSD socket and System V TLI
APIs. On the other hand, the React or provides a signif-

1Thesel ect call is available on BSD and SVR4 UNIX platforms, as
well aswith the WinSock API; pol | isavailablewith System V variants of
UNIX.

icantly richer set of abstractions than those offered directly
by sel ect orpol | . Inparticular, theReact or integrates
I/O-based port monitoring together with timer-based event
notification to providea general framework for demultiplex-
ing application communication services. Port monitoring
is used by event-driven network servers that perform 1/0
on many connections simultaneoudly. Since these servers
must handle multiple connectionsit isnot feasibleto perform
blocking I/O on a single connection indefinitely. Likewise,
the timer-based APIs enable applications to register certain
operationsthat are periodically or aperiodically activated via
acentralized timer facility controlled by the React or .
Thistopicisdivided intotwo parts. Part one (presented in
this article) describes a distributed logging facility that mo-
tivates the need for efficient event demultiplexing, examines
severa aternative solution approaches, eval uates the advan-
tages and disadvantages of these aternatives, and compares
them with the React or . Part two (appearing in a subse-
guent issue of the C++ Report) focuses on the OO design
aspects of theReact or . In addition, it discussesthe design
and implementation of the distributed logging facility. This
example illustrates precisely how the React or simplifies
the development of event-driven distributed applications.

2 Example: A Distributed Logging Fa-
cility

To motivatethe utility of event demultiplexing mechanisms,
thissection describes the requirements and behavior of adis-
tributed logging facility that handles event-driven I/O from
multiplesources“simultaneously.” AsshowninFigurel, the
distributedlogging facility offers several servicesto applica
tionsthat operate concurrently throughout anetwork environ-
ment. Firgt, it provides a centralized location for recording
certain status information used to simplify the management
and tracking of distributed application behavior. To facilitate
this, the client daemon time-stamps outgoing logging records
to alow chronological tracing and reconstruction of the ex-
ecution order of multiple concurrent processes executing on
separate host machines. Second, the facility a so enablesthe
prioritized delivery of logging records. These records are
received and forwarded by the client daemon in the order of

Oct 31 14:48:13 lQ%(wta.ngo cs.wustl.edu@38491@7@client::unable to fork in function spawn
Oct 31 14:50:28 1 ! wmll edu()lx 2(@?2(@drwho::sending request to server mambo

STORAGE DEVICE

CLIENT
| LOGGING
DAEMON

SERVER LOGGING
DAEMON

¢
fork () ==-1)
) OR (LM _I ERROR
"unable to fork in function spawn");

if (Options::instance ()->debu /’/, CLIENT
ACE_DEBUG (LM_DEBUG# LOGGING

"sending request to server pef DAEMON
server_host); V

Figure1: Network Environment for the Distributed Logging
Facility

their importance, rather than in the order they were originaly
generated.

Centralizing thelogging activities of many distributed ap-
plicationswithin a single server is also useful sinceit serial-
izesaccessto shared output devicessuch asconsol es, printers,
files, or network management databases. |n contrast, without
such acentralized facility, it becomes difficult to monitor and
debug applications consisting of multiple concurrent pro-
cesses. For example, the output from ordinary C st di o
library subroutines (such as f put s and pri nt f) that are
caled simultaneously by multiple processes or threads is
often scrambled together when it is displayed in a single
window or console.

The distributed logging facility is designed using a
client/server architecture. The server logging daemon? col-
lects, formats, and outputs logging records forwarded from
client1ogging daemons running on multiplehoststhroughout
aloca and/or wide-area network. Output from the logging
server may be redirected to various devices such as print-
ers, persistent storage repositories, or logging management
consoles.

As shown in Figure 1, the InterProcess Communication
(IPC) structure of the logging facility involves severa lev-
els of demultiplexing. For instance, each client host in
the network contains multiple application processes (such
as P1, P>, and P3) that may participate with the distributed

2A daemonis an OS processthat runs continuously “in the background,”
performing system-rel ated services such as updating routing table entries or
handling network file system requests.

logging facility. Each participating process uses the ap-
plication logging API depicted in the rectangular boxes in
Figure 1 to format debugging traces or error diagnosticsinto
logging records. A logging record is an object containing
severa header fields and a payload with a maximum size
of approximately 1K bytes. When invoked by an applica
tion process, theLog_Msg: : | og APl prepends the current
process identifier and program name to the record. It then
uses the “record-oriented” named pipe IPC mechanism to
demultiplex these composite logging records onto a single
client logging daemon running on each host machine. The
client daemon prepends a time-stamp to the record and then
employs aremote |PC service (such as TCP or RPC) to de-
multiplex the record into a server logging daemon running
on adesignated host in the network. The server operatesin
an event-driven manner, processing logging records as they
arrive from multiple client daemons. Depending on the log-
ging behavior of the participating applications, the logging
records may be sent by arbitrary clients and arrive a the
server daemon at arbitrary timeintervals.

A separate TCP stream connection is established between
each clientlogging daemon and the designated server logging
daemon. Each client connection is represented by a unique
I/O descriptor in the server. In addition, the server aso
mai ntai nsadedi cated | /O descriptor to accept new connection
requestsfrom client daemons that want to participatewith the
distributedloggingfacility. During connection establishment
the server caches the client’s host name (illustrated by the
ovasinthelogging server daemon), and usesthisinformation
to identify the client in the formatted records it printsto the
output device(s).

The compl ete design and impl ementation of thedistributed
logging facility is described in [3]. The remainder of the
current article presents the necessary background materia
by exploring severad aternative mechanisms for handling
1/O from multiple sources.

3 Operating System Event Demulti-
plexing

Modern operating systems such as UNIX, Windows NT,
and OS2 offer several techniques that alow applications to
perform 1/0O on multiple descriptors “simultaneoudly.” This
section describes four aternatives and compares and con-
trasts their advantages and disadvantages. To focus the dis-
cussion, each aternativeis characterized in terms of the dis-
tributed logging facility described in Section 2 above. In
particular, each section presents a skeletal server logging
daemon implemented with the alternative being discussed.
To save space and increase clarity, the examples utilize the
OO | PC_SAP socket-wrapper library described in aprevious
C++ Report article[2].

Thehandl e_l oggi ng_r ecor d function shownin Fig-
ure 2 is also invoked by al the example server daemons.
Thisfunction is responsiblefor receiving and processing the

typedef int ACE _HANDLE;
const int ACE_INVALI D HANDLE = 1;

/1 Performtwo recvs to sinulate a nessage-oriented service
/1 via the underlying bytestreamoriented TCP connection.

/1 The first recv reads the length (stored as a fixed-size
/1 integer) of the adjacent |ogging record.
/1 then reads "length" bytes to obtain the actual record.
/1 Note that the sender nust also follow this protocol. ..

ssize_t
handl e_l oggi ng_record (ACE_HANDLE handl e)
{

size_t msg_len;
Log_PDU | og_pdu;

ssize_t n = ACE CS::recv (handle, (char *) &nmsg_len,
si zeof mnsg_len);

if (n!= sizeof nsg_len)
return n;
el se {
nsg_l en = ntohl (nsg_len); // Convert byte-ordering.
n = ACE CS::recv (handle, (char *) & og_pdu, nsg_len);
if (n!= msg_len)
return -1;
| og_pdu. decode ();
if (log_pdu.get_len () == n)
/1 Cbtain lock here for concurrent designs.
| og_pdu. print (output_device);
/1 Rel ease |ock here for concurrent designs.
return n;
}
}

Figure 2: Function for Handling Logging Records

logging records and writing them to the appropriate output
device® Any synchronization mechanisms required to se-
rialize access to the output device(s) are aso performed in
this function. In general, the concurrent multi-process and
multi-thread approaches are somewhat more complicated to
develop since output must be seriadized to avoid scrambling
thelogging records generated from all the separate processes.
To accomplish this, the concurrent server daemons cooperate
by using some form of synchronization mechanisms (such as
semaphores, locks, or other |PC mechanisms like FIFOs or
message queues) in the handl e_| oggi ng_r ecor d sub-
routine.

3.1 A Non-blocking I/0O Solution

One method for handling 1/0O on multiple descriptors in-
volves the use of “polling.” Polling operates by cycling
through a set of open descriptors, checking each one for
pending 1/0 activity. Figure 4 presents a code fragment that
illustrates the genera structure of this approach. Initialy,
an | PC_SAP acceptor object is created and set into “non-
blocking mode” viathe ACE_.SOCK_Accept or: : enabl e
member function. Next, the main loop of the server it-
erates across the open descriptors, attempting to receive
logging record input from each descriptor. If input is
available immediately, it is read and processed. Other-
wise, thehandl e_l oggi ng-r ecor d functionreturns—1,
errno is set to EWOULDBLOCK, and the loop con-
tinues polling a the next descriptor. After al the open
I/0O connections have been polled once, the server accepts

SNote that this implementation isn’t portable to Win32 since socket
endpointsare represented asvoi d * HANDLEs, rather thani nt s.

The second recv

SERVER
LOGGING DAEMON

maxhandlep

acceptor

|___CONNECTION
' REQUEST

([
LT,

LOGGING
RECORDS

LOGGING
RECORDS

const u_short

int
nmain (void)

}

11

ACE_SOCK_Accept or

Figure 3: Nonblocking 1/O Server

LOGGER_PORT = 10000;

Create a server end-point.
accept or

ACE_SOCK_Stream new_stream

11

ACE_HANDLE s_handle =
ACE_HANDLE naxhandl epl =

11

Extract descriptor.
acceptor.get_handle ();
s_handle + 1;

Set acceptor in non-blocking node.

accept or. enabl e (ACE_NONBLOCK) ;

/1 Loop forever perform ng |ogger server processing.
for (;;) {
/1 Poll each descriptor to see if |ogging
// records are inmediately available on
/1 active network connections.
for (ACE_HANDLE handle = s_handle + 1;
handl e < nmaxhandl ep1;
handl e++) {
ssize_t n = handl e_l oggi ng_record (handle);
if (n == ACE_I NVALI D _HANDLE) {
if (errno == EWOULDBLOCK) // No input pending.
conti nue;
el se ACE_DEBUG ((LMDEBUG, "recv failed\n"));
else if (n ==0) {
/1 Keep descriptors contiguous.
ACE_Cs: : dup2 (handl e, --nmaxhandl epl);
ACE_C8:: cl ose (nmaxhandl epl);
}
/1 Check if new connection requests have arrived.
whil e (acceptor.accept (newstream) != -1) {
/1 Make new connecti on non-bl ocki ng.
new_stream enabl e (ACE_NONBLOCK) ;
handl e = new_stream get_handle ();
ACE_ASSERT (handle + 1 == maxhandl epl);
maxhand| epl++;
}
if (errno != EWDULDBLOCK)
ACE_DEBUG ((LM DEBUG, "accept failed"));
}
/* NOTREACHED */

Figure4: A Nonblocking I/O Server (Version 1)

((ACE_I NET_Addr) LOGGER_PORT) ;

int
nmain (void)

I/l Create a server end-point.
ACE_SOCK_Acceptor acceptor ((ACE_I NET_Addr) PORTNUM ;
ACE_SOCK_St ream new_stream

/1 Extract descriptor.
ACE_HANDLE s_handl e = acceptor.get_handle ();
ACE_HANDLE naxhandl epl = s_handle + 1;

fd_set in_use; // Bitmask for active descriptors.
FD _ZERO (& n_use);
FD SET (s_handle, & n_use);

/1 Set acceptor SAP into non-bl ocking node.
accept or. enabl e (ACE_NONBLOCK) ;

/1 Loop forever perform ng |ogger server processing.
for (;;) {
/1 Poll each descriptor to see if |ogging
// records are immediately available on
/1 active network connections.
for (ACE_HANDLE handle = s_handle + 1;
handl e < naxhandl ep1;
handl e++) {
ssize_t n;

if (FD_ISSET (handle, & n_use) &&
(n = handl e_l oggi ng_record (handle)) == -1) {
if (errno == EWOULDBLOCK) // No input pending.
conti nue;
el se

ACE_DEBUG ((LM DEBUG “recv failed"));

else if (n == 0) {

ACE _C8: :cl ose (handle);

FD CLR (handl e, & n_use);

if (handle + 1 == npaxhandl epl) {
/1 Skip past unused handl es.
while (!'FD_I SSET (--handle, & ead_handles))

conti nue;

maxhandl epl = handle + 1;

}

}
/1 Check if new connection requests have arrived.
while (acceptor.accept (newstreanm) != -1) {
/1 Make new connection non-bl ocking.
new_stream enabl e (ACE_NONBLQOCK) ;
handl e = new stream get _handle ();
FD SET (handl e, & n_use);
if (handl e >= maxhandl epl)
maxhandl epl = handle + 1;
}
if (errno != EWOULDBLOCK)
ACE_DEBUG ((LM DEBUG "accept failed"));

}
I* NOTREACHED */
}

Figure5: A Polling, Nonblocking I/O Server (Version 2)

MASTER SERVER
PROCESS

CONNECTION
REQUEST

LOGGING
RECORDS

LOGGING
RECORDS

Figure 6: Multi-process Server

any new connection requests that have arrived and starts
polling the descriptors from the beginning again. When the
handl e_l oggi ng_r ecor d function returns O (signifying
the client has closed the connection), the corresponding 1/0
descriptor isclosed. At this point, the server makes a dupli-
cate of thehighest descriptor and storesit into the slot number
of the terminating descriptor (in order to maintain a contigu-
ous range of descriptors). In contrast, Figure 5 illustrates a
similar approach that usesan f d_set bitmask to keep track
of the currently active descriptors.

The primary disadvantage with pollingisthat it consumes
excessive CPU cycles by making unnecessary system calls
while “busy-waiting.” For instance, if input occurs only
intermittently on the 1/0O descriptors, the server process will
repeatedly and superfluoudly poll descriptorsthat do not have
any pending logging records. On the other hand, if I/O is
continuously received up all descriptors, this approach may
be reasonable. In addition, an advantage with pollingis that
it is portable across OS platforms.

3.2 A Multi-Process Solution

Another approach (shown in Figure 6) involves designing
the application as a “concurrent server,”* which creates a
separate OS process to manage the communication channel
connected to each client logging daemon. Figure 7 presents
code that illustrates this technique. The main loop in the
master server blocks while listening for the arrival of new
client connection requests. When a request arrives, a sepa
rate slave process is created viaf or k. The newly crested
slave process performs blocking 1/0 on a single descriptor
in the | oggi ng_handl er subroutine, which receives all
logging records sent from its associated client. When the

4Concurrent servers are described in detail in [4].

/1 Handle all 1|ogging records froma particul ar
/1 client (run in each slave process).

static void

| oggi ng_handl er (ACE_HANDLE handl e)

{

/1 Perform a "bl ocking" receive and process
/1 client logging records until client shuts down
/1 the connection.
for (ssize_t n;
(n = handl e_l oggi ng_record (handle)) > 0;)
conti nue;

if (n==-1)
ACE_DEBUG ((LM DEBUG "recv failed"));

/1 Shutdown the child process.
ACE CS::exit ();
}

// Reap zonbie d children (run in the naster process).
static void
child_reaper (int)

for (int res;
(res = ACECS::waitpid (-1, 0, WWOHANG) > 0
|| (res == -1 && errno == EINTR);)
conti nue;

}

static void
| oggi ng_acceptor (void)
{

I/l Create a server end-point.

ACE_SOCK_Acceptor acceptor ((ACE_I NET_Addr) LOGGER PORT);

ACE_SOCK_St ream new_stream

/1 Loop forever performng |ogging server processing.
for (5;) {
/1 Wait for client connection request and create a
/1 new ACE _SOCK_Stream endpoint (note, accept is
/1 automatically restarted after interrupts).
acceptor. accept (new strean;

// Create a new process to handle client request.
switch (ACE_CS::fork ()) {
case -1:
ACE_DEBUG ((LM DEBUG "fork failed")):
br eak;
case 0: // In child.
acceptor.close ();
| oggi ng_handl er (new_ stream get_handle ());
/* NOTREACHED */
default: // In parent.
new streamclose ();
br eak;

}

}
/* NOTREACHED */
}

/1 Master process.
int
mai n (void)

/1 Set up the SIGCHLD signal handler.
si gaction sa;

/1l Restart interrupted system calls.

sa.sa_flags = SA RESTART;

ACE_CsS: : si genptyset (&sa.sa_nask);

sa.sa_handl er = child_reaper;

/1 Arrange to reap deceased children.

if (ACE_CS: :sigaction (SIGCHLD, &sa, 0) == -1)
ACE_ERROR_RETURN ((LM ERRCR "sigaction"), -1);

| oggi ng_acceptor ();

Figure 7: A Multi-Process Server

corresponding client daemon terminates, a0 isreturned from
ther ecv system call, which terminates the slave process.
At this point, the OS sends a SIGCHLD signal to the master
process. The chi | d_reaper signa handler catches this
signal and “reaps’ the zombie' d child’s exit status informa:
tion. Notethat theoccurrence of signalsintheserver requires
the main loop in the master process to handleinterrupts cor-
rectly. On most UNIX platforms, certain system cdls (e.g.,
accept) arenot restarted automati cally when signal s occur.
An application may detect this by checking if er r no con-
tainsthe EINTR vauewhentheaccept systemcal returns
ACE_| NVALI D_HANDLE.

The multiple process design has several disadvantages.
First, it may consume excessive OS resources (such as
process-tabledots, one of whichisallocated for each client),
which may increase the OS scheduling overhead. Second,
a context switch is typicaly required to restart a waiting
process when input arrives. Third, handling signals and in-
terrupted system calls properly involves writing subtle and
potentially error-pronecode. For example, thesi gacti on
interface must be used with SVR4 to ensure that the signa
dispositionremains set to the previously registered call-back
function after the first SIGCHLD signa is caught. Finally,
increased software compl exity resultsfromimplementing the
mutual exclusion mechanisms that serialize access to output
devices. Given the “event-driven, discrete message” com-
munication pattern of the distributed logging facility, this
additiona overhead and complexity is unnecessarily expen-
sive.

However, certain other types of network servers do ben-
efit significantly from creating separate processes that han-
die client requests. In particular, this approach improves
the response times of servers that are either (1) 1/0 bound
(e.g., complicated relational database queries) or (2) involve
simultaneous, longer-duration client services that require a
variable amount of time to execute (e.g., file transfer or re-
mote login) [5]. Another advantage is that overall server
performance may be improved in an application-transparent
manner, if theunderlying operating system supports multiple
processing elements effectively.

3.3 A Multi-Threaded Solution

Thethird approach utilizesamulti-threaded approach. The
example illustrated in Figure 9 uses the SunOS 5.x threads
library [6] to implement a multi-threaded concurrent server.
Other thread libraries (such as POSIX and Windows NT
threads) offer an equivalent solution. In the example code, a
new thread a spawned by the ACE_Thr ead: : spawn rou-
tineto handle each client connection. In addition to creating
the necessary stack and other datastructures necessary to exe-
cuteaseparatethread of control,the ACE_Thr ead: : spawn
routinecalsthel oggi ng_handl er function. This func-
tionreceivesall theloggingrecordsthat arrivefromaparticu-
lar client. Notethat when aclient shutsdown, thet hr _exi t
routineisused to exit the particul ar thread, not the entire pro-
Cess.

SERVER

|SERVER

————
. 22ing

: logging | handler

acceptor }

\ | —»

281
handler

CONNECTION
CLIENT|— REQUEST

LOGGING
RECORDS

LOGGING
RECORDS

7

Figure 8: Multi-thread Server

/1 Handle all 1|ogging records froma particul ar
/1 client (run in each slave thread).

static void *

| oggi ng_handl er (ACE_HANDLE handl e)

{

ssize_t n;

/1 Perform a "bl ocking" receive and process

/1 client |ogging records until client shuts

/1 down the connection.

while ((n = handl e_l ogging_record (handle)) > 0)
conti nue;

if (n==-1)
ACE_DEBUG ((LM DEBUG "recv failed"));

ACE CS::close (handle);

I/l Exits thread, *not* entire process!
ACE_Thread: :exit ();
}

static void
| oggi ng_acceptor (void)
{

I/l Create a server end-point.
ACE_SOCK_Acceptor acceptor ((ACE_I NET_Addr) LOGGER PORT);
ACE_SOCK_St ream new_stream

/1 Loop forever performng |ogging server processing.
for (;;) {
/1 Wait for client connection request and create a
/1 new ACE _SOCK_Stream endpoi nt (automatically
/1l restarted upon interrupts).
acceptor. accept (new strean;

// Create a new thread to handle client request.

if (ACE_Thread:: spawn
(ACE_THR_FUNC (I oggi ng_handl er),
(void *) new stream get _handle (),
THR_DETACHED | THR_NEWLWP) != 0)
ACE_ERROR ((LM ERROR "thr_create failed"));

}
/* NOTREACHED */
}

/1 Master server.
int
nmain (void)

| oggi ng_acceptor ();

Figure9: A Multi-Threaded Server

int select

/1 Maxi num descriptor plus 1.

int width,

/1 bit-mask of "read" descriptors to check.
fd_set *readfds,

/1 bit-mask of "wite" descriptors to check.
fd_set *witefds,

/1 bit-mask of "exception" descriptors to check.
fd_set *exceptfds,

/1 Amount of tinme to wait for events to occur.
struct timeval *tineout

Figure10: Thesel ect Interface

int poll
(

/1 Array of descriptors of interest.

struct pollfd fds[],

/1 Nunber of descriptors to check.

unsi gned |ong nfds,

/1 Length of tine to wait, in mlliseconds.

int tinmeout

)i
Figure11: Thepol | Interface

The multi-threaded approach is relatively simple to im-
plement, assuming a reasonable thread library is available,
and provides several advantages over a multi-process ap-
proach. For example, the complicated signa handling se-
mantics are no longer an issue since the server spawns new
threadsas” detached.” A detached thread in SUnOS5.x never
re-synchronizes nor re-joinswith the main thread of control
when it exits. Moreover, compared with a process, it may
be more efficient to create, execute, and terminate a thread,
due to a reduction in context switching overhead [7]. In
addition, sharing of globa data objects is aso often more
convenient since no special operations must be performed to
obtain shared memory.

Traditiona operating systems (such as older versions of
UNIX and Windows) do not provide adequate support for
threads. For example, some thread variants only allow one
outstanding system call per-process, and othersdo not permit
multiple threads of control to utilize certain OS APIs (such
as socketsor RPC). In particular, many traditional UNIX and
standard C library routineswere not designed to bere-entrant,
which complicates their use in a multi-threaded application.

3.4 TheEvent Demultiplexing Solution

The fourth approach utilizesthe event demultiplexing facili-
tiesavailableviathesel ect andpol | systemcals. These
mechanisms overcome many limitations with the other so-
lutions described above. Both sel ect and pol | alow
network applicationsto wait various lengths of time for dif-
ferent types of 1/0 eventsto occur on multiplel/O descriptors
without requiring either polling or multiple process or thread
invocations. This section outlines the sel ect and pol |
system calls, sketches example implementations of the log-
ging server daemon using these two calls, and contrasts the
limitationsof the existing event demultiplexing serviceswith
the advantages of the React or OO classlibrary.

34.1 Thesdect and poll System Calls

The following paragraphs describe the similarities and dif-
ferences of the sel ect system cal (shown in Figure 10)
and the pol | system call (shown in Figure 11). Both these
calls support 1/0-based and timer-based event demultiplex-
ing. The syntax and semantics of both sel ect and pol |
are described in greater detail in [8].

Despite their different APIs, sel ect and pol | share
many common features. For example, they both wait for
various input, output, and exception® events to occur on a
set of 1/0O descriptors, and return an integer value indicating
how many eventsoccurred. |n addition, both system callsen-
able applicationsto specify atime-out interva that indicates
the maximum amount of time to wait for 1/0O events to tran-
spire. The three basic time-out intervals include (1) waiting
“forever,” (i.e., until an I/O event occurs or a signal inter-
rupts the system call), (2) waiting a certain number of time
units (measured in either seconds/micro-seconds (sel ect)
or milli-seconds (pol 1)), and (3) performing a “poll” (i.e.,
checking all the descriptors and returning immediately with
the results).

There are adso severa differences between sel ect and
pol | . Forexample, sel ect usesthreedescriptor sets(one
for reading, one for writing, and one for exceptions), which
are implemented as bit-masks to reduce the amount of space
used. Each bit in abit-mask corresponds to a descriptor that
may be enabled to check for particular 1/O events. Thepol |
function, ontheother hand, issomewhat moregeneral and has
aless convolutedinterface. Thepol | APl includesan array
of pol | f d structures, a count of the number of structures
in the array, and atimeout value. Each pol | f d structurein
the array contains (1) the descriptor to check for 1/0O events
(avaue of —1 indicates that this entry should be ignored),
(2) the event(s) of interest (e.g., various priorities of input
and output conditions) on that descriptor, and (3) the event(s)
that actually occurred on thedescriptor (such asinput, output,
hangups, and errors), which are enabled upon return from the
pol | system call. Note that in versions of System V prior
torelease 4, pol | only worked for STREAM devices such
as terminas and network interfaces. In particular, it did not
work onarbitrary |/O descriptorssuch as ordinary UNI X files
and directories. Thesel ect and SVR4 pol | systemcals
operate upon all types of 1/0O descriptors.

3.4.2 Sdect-based Logging Server Example

Figure 13 illustrates a code fragment that uses the BSD
sel ect system call to perform the main processing loop
of the server logging daemon. This server implementation
employs two descriptor sets: (1) r ead_handl es (which
keeps track of the 1/O descriptors associated with active
client connections) and (2) t enp_handl es (which is a
copy of the r ead_handl es descriptor set that is passed

5A commonexampleof exceptioneventsarethe TCP protocol’s* urgent”
data, which informs applications that special activities may have occurred
on acommunication channel.

SERVER
LOGGING DAEMON

[

LOGGING
RECORDS

maxhan
acceptor

NETWORK / read handles

CONNECTION
REQUEST

LOGGING
RECORDS

Figure 12: Select-based Server

by “valuelresult” to the sel ect system cal). Initidly, the
only bit enabled inther ead_handl es descriptor set corre-
spondsto the I/O descriptor that “listens’ for new incoming
connection requests to arrive from client logging daemons.

After theinitidization is complete, the main loop invokes
sel ect witht enp_handl es asitsonly descriptor set ar-
gument (since the server isnot interested in either “write”’ or
“exception” events). Since the fina argument is a NULL
struct tinmeval * NULL pointer, the sel ect call
blocks until one or more clients send logging records or
request new connections (note that sel ect must be man-
ually restarted if interrupts occur). When sel ect returns,
thet enp_handl es variable is modified to indicate which
descriptors have pending logging record data or new client
connection requests. Logging records are handled first by
iterating through the t enp_handl es set checking for de-
scriptors that are now ready for reading (note that the se-
mantics of sel ect guarantee that r ecv will not block on
thisread). Ther ecv function returns 0 when a client shuts
the connection down. This informs the main server loop to
clear the particular bit representing that connection in the
read_handl es set.

After al the pending |ogging records have been processed,
the server checks whether new connection requests have ar-
rived on the listening 1/O descriptor. |f one or more requests
have arrived, they are all accepted and the corresponding
bitsare enabled in the r ead_handl es descriptor set. This
section of code illustrates the “polling” feature of sel ect .
For example, if bothfieldsinthest ruct ti meval argu-
ment areset to 0, sel ect will check the enabled descriptor
and return immediately to notify the application if there are
any pending connection regquests. Note how the server uses
thewi dt h variable to keep track of the largest I/O descrip-
tor value. This value limits the number of descriptors that
sel ect must inspect upon each invocation.

int
main (void)

I/l Create a server end-point.
ACE_SOCK_Acceptor acceptor ((ACE_I NET_Addr) LOGGER PORT);
ACE_SOCK_St ream new_stream

ACE_HANDLE s_handl e = acceptor.get_handle ();
ACE_HANDLE naxhandl epl = s_handle + 1;

fd_set tenp_handles;
fd_set read_handles;

FD_ZERO (& enp_handl es) ;
FD_ZERO (& ead_handl es);
FD_SET (s_handl e, &read_handles);

/1 Loop forever performng |ogging server processing.
for (;;) {
tenp_handl es = read_handl es; // structure assignnent.

/1 Wait for client 1/0O events.
ACE _C8::sel ect (maxhandl epl, &t enp_handles, 0, 0);

/1 Handl e pending |ogging records first (s_handle + 1
/1l is guaranteed to be lowest client descriptor).
for (ACE_HANDLE handle = s_handle + 1;
handl e < naxhandl ep1;
handl e++)
if (FD_I SSET (handle, & enp_handles)) {
ssize_t n = handl e_l oggi ng_record (handle);
/1 Quaranteed not to block in this case!
if (n==-1)
ACE_DEBUG ((LMDEBUG "logging failed"));
else if (n==0) {
/1 Handl e client connection shutdown.
FD CLR (handl e, &read_handles);
ACE _C8::cl ose (handle);
if (handle + 1 == npaxhandl epl) {
/1 Skip past unused descriptors.
while (!'FD_I SSET (--handle, & ead_handles))
conti nue;
maxhandl epl = handle + 1;

}
}

if (FD_I SSET (s_handl e, & enp_handles)) {

/1 Handl e all pending connection requests

/1 (note use of "polling" feature).

while (ACE_CS::sel ect
(s_handle + 1, &enp_handles, 0, O,
ACE_Ti ne_Val ue: : zero) > 0)

if (acceptor.accept (new stream) == -1)
ACE_DEBUG ((LM DEBUG "accept"));
el se {

handl e = new stream get _handle ();
FD SET (handl e, &read_handles);
if (handl e >= maxhandl epl)

nmaxhandl epl = handle + 1;

) }
/* NOTREACHED */

}
Figure13: An Event Demultiplexing Server Using the select
API

/1 Maxi num per-process open |/O descriptors.
const int MAX_HANDLES = 200;

int
main (void)

/1 Create a server end-point.

ACE_SOCK_Accept or acceptor
((ACE_I NET_Addr) LOGGER_PORT) ;

ACE_SOCK_Stream new_stream

struct pollfd poll_array[MAX_HANDLES] ;
ACE_HANDLE s_handl e = acceptor.get_handle ();

pol | _array[0].fd = s_handle;
pol | _array[0].events = POLLIN,

for (int nhandles = 1;;) {
/1 Vit for client 1/0 events.
ACE CS::poll (poll_array, nhandles);

/1 Handl e pending | oggi ng nessages first
/1 (poll_array[i = 1].fd is guaranteed to be
/1 lowest client descriptor).

for (int i =1; i < nhandles; i++) {
if (ACE_BIT_ENABLED (poll_array[i].revents, POLLIN))
{

char buf [BUFSI Z] ;
ssize_t n_logging_record (poll_array[i].fd);
/1 Quaranteed not to block in this case!.
if (n==-1)
ACE_DEBUG ((LMDEBUG, "read failed"));
else if (n ==0) {
/1 Handl e client connection shutdown.
ACE_Cs::close (poll_array[i].fd);
pol | _array[i].fd = poll_array[--nhandles].fd;

}
}
if (ACE_BIT_ENABLED (poll_array[O0].revents, POLLIN))

/1 Handl e all pending connection requests
/1 (note use of "polling" feature).
while (ACE CS::poll (poll_array, 1,
ACE_Ti ne_Val ue: : zero) > 0)

if (acceptor.accept (new stream &client) == -1)
ACE_DEBUG ((LM DEBUG, "accept"));
el se {

pol | _array[nhandl es].fd = POLLI N
pol | _array[nhandl es++] . fd
= new_stream get _handle ();

) }
/* NOTREACHED */

}
Figure 14: An Event Demultiplexing Server Using the poll
API

3.4.3 Poll-based L ogging Server Example

Figure 14 reimplements the main processing loop of the
server logging daemon using the SystemV UNIX pol | sys-
tem cdl in place of sel ect . Notethat the overall structure
of the two servers is amost identical. However, a number
of minor modifications must be made to accommodate the
pol | interface. For example, unlikesel ect (which uses
separate f d_set bitmasks for reading, writing, and excep-
tionevents) pol | usesasinglearray of pol | f d structures.
Ingenerdl, thepol | APl ismoreversatilethansel ect , d-
lowing applicationsto wait for awider-range of events (such
as “priority-band” 1/0 events and signals). However, the
overall complexity and total number of source linesin the
two examples is approximately the same.

3.4.4 Limitations with Existing Event Demultiplexing
Services

The event demultiplexing services solve severd limitations
with the alternative approaches presented above. For exam-
ple, the event demultiplexing-based server logging dagmon
requiresneither “busy-waiting” nor separate processcreation.
However, there are still a number of problems associated
with using either sel ect or pol | directly. This section
describes some of the remaining problems and explains how
theReact or isdesigned to overcome these problems.

e Complicated and Error-Prone Interfaces: The inter-
faces for sel ect and pol | are very genera, combining
severa services such as“timed-waits’ and multiplel/O event
notificationwithinasingle system call entry point. Thisgen-
eraity increases the complexity of learning and using the
I/0 demultiplexing fecilities correctly. The React or, on
the other hand, provides a less cryptic APl consisting of
multiple member functions, each of which performsasingle
well-defined activity.

In addition, as with many OS APIs, the 1/O demultiplex-
ing facilities are weakly-typed. This increases the potential
for making common mistakes such as not zeroing-out the
f d_set dtructure before enabling the 1/O descriptor bits,
forgetting that the wi dt h argument to sel ect or pol |
is actually the “maximum enabled I/O descriptor plus 1,
or neglecting to set the value of thef d field of ast ruct
pol | f dto—1if that I/O descriptor value should be ignored
when calling pol | .

Since applications built upon the React or framework
donot access sel ect orpol | directly, it isnot possibleto
accidentally misusetheseunderlying systemcalls. Moreover,
theReact or may be used in conjunction with the strongly-
typed local and remote communication services provided by
the | PC_SAP wrapper library [2]. This further reduces the
likelyhood for type errorsto arise a run-time.

e Low-Levd Interfaces: Thesel ect interfaceisrather
low-level, requiring programmers to manipulate up to three
different descriptor set bit-masks. Moreover, these bit-masks
arepassedtothesel ect cal using“vaue/result” parameter
semantics. Therefore, as shown in Figure 13, the server code
must explicitly store the original descriptor set in a scratch
variable, pass thisvariable to the sel ect call (which may
modify it), examinetheresultsto determinewhich descriptors
became enabled, and potentially update the original descrip-
tor set. The code to implement thislogic tends to be tedious
and prone to subtle errors such as mistakenly updating bits
in the wrong descriptor set.

The React or, on the other hand, completely shields
application programmers from such low-level details. As
showninFigure 15, instead of mani pul ating descriptor set bit-
masks, inheritanceisused to derive and instanti atecomposite
objects (called “Event _Handl er s”) that perform certain
application-defined actions when certain types of events oc-
cur. Once instantiated, these Event _Handl er objects are
registered with the React or . The React or arranges to

REGISTERED
OBJECTS

APPLICATION
LEVEL

FRAMEWORK
LEVEL

KERNEL
LEVEL

-
\

Figure 15: Registering Objects with the Reactor

“call-back” the appropriate member function(s) when (1) I/0
events occur on the descriptor associated with the registered
object or (2) when timer-based events expire.

Figure 16 depicts the main event-loop of the React or -
based logging server. In this example, a com-
posite class caled Loggi ng_Acceptor is derived
from the Event Handl er base class. An instance
of this class is then constructed and registered with
the Reactor. After registration, the server ini-
tiates an event-loop that automatically dispatches the
Loggi ng-Accept or: : handl ed nput member func-
tion when connection requests arrive. A subsequent ar-
ticle [3] describes the design and implementation of the
Loggi ng-Accept or and Loggi ng_Handl er classes
and other components used to implement the React or in
greater detail.

Non-PortablelInterfaces: Although event demultiplexing
is not part of the POSIX standard, System V Release 4,
BSD UNIX, and WINSOCK all support the sel ect API.
However, BSD UNIX and WINSOCK do not support pol | .
Likewise, versions of System V prior to Release 4 do not
support sel ect . Therefore, it is difficult to write portable
code that uses event demultiplexing since there are several
competing “ standards’ to choosefrom, (i.e., BSD and System
V UNIX). This often increases the complexity of develop-
ing and maintai ning application source code since achieving
portability may require the use of conditiona compilation
that is parameterized by the host OS type.

The React or, on the other hand, provides a consistent
APl available across OS platforms. This API not only pro-
videsahigher level programming abstraction, but also shields
application programs from lexical and syntactic incompati-
bilities exhibited by the sel ect and pol | demultiplex-
ing mechanisms. Therefore, applications need not maintain
multiple source versions or try to merge the event demuilti-

class Loggi ng_Acceptor : public ACE Event_Handl er

public:
/1 The following tw nenber functions override
/1 the virtual functions in the ACE_Event_Handl er.
virtual ACE HANDLE get_handl e (void) const

return this->acceptor_->get_handle ();

}
virtual int handle_i nput (ACE_HANDLE handl e);
/1 See next article for additional details...

private:
ACE_SOCK_Acceptor acceptor_;
I

const int LOGGER PORT = 10000;

int
mai n (voi d)

/1 Reactor object.
ACE_React or reactor;

Loggi ng_Accept or
acceptor ((ACE_I NET_Addr) LOGGER PORT);

reactor.register_handl er (&acceptor);
/1 Loop forever handling |ogging events.

for (i)
reactor. handl e_events ();

}
Figure 16: Main Event Loop for Reactor-Based Server Log-
ging Daemon

: SERVER
) LOGGING DAEMON

CONNECTION
LIENT) — REeQUEST
"

LOGGING

RECORDS
LOGGING

RECORDS o , S

Figure 17: Reactor-based Server

10

plexing functionality illustrated in Figure 13 and Figure 14
withinasingle subroutine-based API. Instead, the React or
enables devel opers to write applications that utilize asingle
uniform and extensible OO API, which is then mapped onto
the appropriate underlying event demultiplexing interface.
In thisapproach, conditional linking may be used in place of
conditiona compilation to support bothsel ect and pol |
implementations simultaneously.

Non-Extensible Interfaces. With the event demultiplex-
ing solutions shown in Figure 13 and Figure 14, it is nec-
essary to directly modify the origina demultiplexing loop
in order to modify or extend application services. With the
Reactor, on the other hand, the existing infrastructure code
is not modified when applications change their behavior. I1n-
stead, inheritance is used to create a new derived class that
isinstantiated, registered, and invoked automatically by the
React or to perform the appropriate operations.

4 Summary

This article presents the background material necessary to
understand the behavior, advantages, and disadvantages of
existing UNIX mechanisms for handling multiple sources of
I/0 in a network application. An OO wrapper called the
React or has been devel oped to encapsulate and overcome
the limitations with the sel ect and pol | event demulti-
plexing system calls. The object-oriented design and imple-
mentation of the React or is explored in greater detail in
part two of thisarticle (appearing inthe next C++ Report). In
addition to describing the class relationships and inheritance
hierarchies, the follow-up article presents an extended ex-
ample involving the distributed logging facility. This exam-
pleillustrateshow the React or simplifiesthe devel opment
of event-driven network servers that manage multiple client
connections simultaneoudly.

References

[1] D.C. Schmidt, “ Systems Programming with C++ Wrap-
pers. Encapsulating Interprocess Communication Ser-
vices with Object-Oriented Interfaces,” C++ Report,
vol. 4, September/October 1992.

D. C. Schmidt, “IPC_SAP: An Object-Oriented Interface
to Interprocess Communication Services,” C++ Report,
vol. 4, November/December 1992.

(2]

(3]

[4]

(5]

D. C. Schmidt, “The Object-Oriented Design and Im-
plementation of the Reactor: A C++ Wrapper for UNIX
I/0 Multiplexing (Part 2 of 2),” C++ Report, vol. 5,
September 1993.

W. R. Stevens, UNIX Network Programming. Engle-
wood Cliffs, NJ Prentice Hall, 1990.

D. E. Comer and D. L. Stevens, Internetworking with
TCP/IP Vol 111 Client — Server Programming and Ap-
plications. Englewood Cliffs, NJ: Prentice Hall, 1992.

(6]

(8]

J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shiv-
alingiah, M. Smith, D. Stein, J. Voll, M. Weeks, and
D. Williams, “Beyond Multiprocessing... Multithread-
ing the SUNOS Kerndl,” in Proceedings of the Summer
USENIX Conference, (San Antonio, Texas), June 1992.

A. D. Birrdl, “An Introduction to Programming with
Threads,” Tech. Rep. SRC-035, Digital Equipment Cor-
poration, January 1989.

W. R. Stevens, Advanced Programming in the UNIX En-
vironment. Reading, Massachusetts: Addison Wedley,
1992.

11

