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Abstract Real-time and embedded systems have traditionally been designed for
closed environments where operating conditions, input workloads, and resource
availability are known a priori, and are subject to little or no change at runtime. There
is increasing demand, however, for adaptive capabilities in distributed real-time and
embedded (DRE) systems that execute in open environments where system opera-
tional conditions, input workload, and resource availability cannot be characterized
accurately a priori. A challenging problem faced by researchers and developers of
such systems is devising effective adaptive resource management strategies that can
meet end-to-end quality of service (QoS) requirements of applications. To address
key resource management challenges of open DRE systems, this paper presents the
Hierarchical Distributed Resource-management Architecture (HiDRA), which pro-
vides adaptive resource management using control techniques that adapt to workload
fluctuations and resource availability for both bandwidth and processor utilization
simultaneously.

This paper presents three contributions to research in adaptive resource manage-
ment for DRE systems. First, we describe the structure and functionality of HIDRA.
Second, we present an analytical model of HiDRA that formalizes its control-
theoretic behavior and presents analytical assurance of system performance. Third,
we evaluate the performance of HiDRA via experiments on a representative DRE
system that performs real-time distributed target tracking. Our analytical and em-
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pirical results indicate that HIDRA yields predictable, stable, and efficient system
performance, even in the face of changing workload and resource availability.

Keywords Distributed systems - Real-time systems - Embedded systems - Adaptive
systems - Quality of service - Hierarchical control

1 Introduction

Distributed real-time and embedded (DRE) systems form the core of many mission-
critical domains, including autonomous air surveillance (Sharma et al. 2004), total
ship computing environments (Schmidt et al. 2001), and supervisory control and data
acquisition systems (Boyer 1993; Fernandez and Fernandez 2005; Carlson 2002). Of-
ten, these DRE systems execute in open environments where system operating con-
ditions, input workload, and resource availability cannot be characterized accurately
a priori. These characteristics are beginning to emerge in today’s large-scale systems
of systems (CORPORATE Computer Science and Telecommunications Board 1992),
and they will dominate in the next-generation of ultra-large-scale DRE systems (In-
stitute 2006). Achieving high end-to-end quality of service (QoS) is important and
challenging for these types of systems due to their unique characteristics, includ-
ing (1) constraints in multiple resources (e.g., limited computing power and network
bandwidth) and (2) highly fluctuating resource availability and input workload.

Conventional resource management approaches, such as rate monotonic schedul-
ing (Lehoczky et al. 1989; Liu and Layland 1973), are designed to manage system re-
sources and providing QoS in closed environments where operating conditions, input
workloads, and resource availability are known in advance. Since these approaches
are insufficient for open DRE systems, there is a need to introduce resource man-
agement mechanisms that can adapt to dynamic changes in resource availability and
requirements. A promising solution is feedback control scheduling (FCS) (Cucinotta
et al. 2004; Abdelzaher et al. 2003; Lu et al. 2002), which employs software feed-
back loops that dynamically control resource allocation to applications in response to
changes in input workload and resource availability. These techniques enable adap-
tive resource management capabilities in DRE systems that can compensate for fluc-
tuations in resource availability and changes in application resource requirements at
runtime. When FCS techniques are designed and modeled using rigorous control-
theoretic techniques and implemented using QoS-enabled software platforms, they
can provide robust and analytically sound QoS assurance.

Although existing FCS algorithms have been shown to be effective in managing
a single type of resource, they have not been enhanced to manage multiple types of
resources. It is still an open issue, therefore, to extend individual FCS algorithms to
work together in a coordinated way to manage multiple types of resources, such as
managing computational power and network bandwidth simultaneously. To address
this issue, we have developed a control-based multi-resource management frame-
work called Hierarchical Distributed Resource management Architecture (HiDRA).
HiDRA employs a control-theoretic approach featuring two types of feedback con-
trollers that coordinate the utilization of computational power and network bandwidth
to prevent over-utilization of system resources. This capability is important because
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processor overload can cause system failure and network saturation can cause conges-
tion and severe packet loss. HIDRA improves system QoS by modifying appropriate
application parameters, subject to the constraints of the desired utilization.

This paper provides contributions to both theoretical and experimental research
on FCS. Its theoretical contribution is its use of control theory to formally prove
the stability of HIDRA. Its experimental contribution is to evaluate empirically how
HiDRA works for a real-time distributed target tracking application built atop The
ACE ORB (TAO) (Schmidt et al. 1998), which is an implementation of Real-time
CORBA (Object Management Group 2002). Our experimental results validate our
theoretical claims and show that HIDRA yields desired system resource utilization
and high QoS despite fluctuations in resource availability and demand by efficient
resource management and coordination for multiple types of resources.

The remainder of the paper is organized as follows: Sect. 2 describes the archi-
tecture and QoS requirements of our DRE system case study; Sect. 3 explains the
structure and functionality of HIDRA; Sect. 4 formulates the resource management
problem of our DRE system case study described in Sect. 2 and presents an analy-
sis of HIDRA; Sect. 5 empirically evaluates the adaptive behavior of HIDRA for our
DRE system case study; Sect. 6 compares our research on HIDRA with related work;
and Sect. 7 presents concluding remarks.

2 Case study: target tracking DRE system

This section describes a real-time distributed target tracking system that we use as
a case study to investigate adaptive management of multiple system resources in a
representative open DRE system. The tracking system provides emergency response
and surveillance capabilities to help communities and relief agencies recover from
major disasters, such as floods, hurricanes, and earthquakes. In this system, multiple
unmanned air vehicles (UAVs) fly over a pre-designated area (known as an “area of
interest”) capturing live images. The architecture of this distributed target tracking
system, which is similar to other reconnaissance mission systems (Loyall et al. 2005)
and target tracking systems (Corman 2001, 2002), is shown in Fig. 1.

Each UAV serves as a data source, captures live images, compresses them, and
transmits them to a receiver over a wireless network. The receiver serves as a data
sink, receives the images sent from the UAVs, and performs object detection. If the
presence of an object of interest is detected in the received images, the tracking sys-
tem determines the coordinates of the objects automatically and keeps tracking it.
The coordinates of the object is reported to responders who use this information to
determine the appropriate course of action, e.g. initiate a rescue, airlift supplies, etc.

O oo Target
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Fig. 1 Target tracking DRE system architecture
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Humans, animals, cars, boats, and aircraft are typical objects of interest in our track-
ing system.
The QoS of our resource-constrained DRE system is measured as follows:

e Target-tracking precision, which is the distance between the computed center of
mass of an object and the actual center of mass of the object, and

e End-to-end delay, which is the time interval between image capture by the UAV
and computation of the coordinates of an object of interest. End-to-end delay
includes image processing delay at the UAV, network transmission delay, and
processing delay of the object detection and tracking sub-system at the receiver.

Just as any real-time system, end-to-end delay is a crucial QoS in our emergency
response system and must be as low as possible. A set of coordinates computed with
a lower precision and lower end-to-end delay is preferred over a set of coordinates
computed with a higher precision and/or higher end-to-end delay.

There are two primary types of resources that constrain the QoS of our DRE sys-
tem: (1) processors that provide computational power available at the UAVs and the
receiver and (2) the wireless network bandwidth that provides communication band-
width between the UAVs and the receiver. To determine the coordinates accurately,
images captured by the UAVs must be transmitted at a higher quality when an object
is present. This in turn increases the network bandwidth consumption by the UAV. To
increase the utility of the system, images are transmitted at a higher rate by the UAVs
when objects of interest are present in the captured images. This in-turn increases the
processor utilization at the receiver node, and thus increases the processing delay of
the object detection and tracking sub-system. Moreover, transmission of images of
higher quality at a higher rate increases the bandwidth consumption by the UAV. If
the network bandwidth is over-utilized considerably, the network transmission delay
increases, which in-turn increases the end-to-end delay.

Utilization of system resources (i.e., wireless network bandwidth and computing
power at the receiver) are therefore subject to abrupt changes caused by the presence
of varying numbers of objects of interest. Moreover, the wireless network bandwidth
available to transmit images from the UAVs to the receiver depends on the channel
capacity of the wireless network, which in-turn depends on dynamic factors, such as
the speed of the UAVs and the relative distance between UAVs and the receiver due
to adaptive modulation (IEEE Std 1997; Holland et al. 2001).

The coupling between the utilization of multiple resources, varying resource avail-
ability, and fluctuating input workloads motivate the need for adaptive management
of multiple resources. To meet this need, the captured images in our system are com-
pressed using JPEG, which supports flexible image quality (Wallace 1991). Like-
wise, we choose to use image streams rather than video because video compression
algorithms are computationally expensive, the computation power of the on-board
processor on the UAVs is limited, and emergency response and surveillance appli-
cations and operators do not necessarily need video at 30 frames per sec. However,
the computational power of the UAV on-board processor is large enough to compress
images of the highest quality and resolution and transmit them to the receiver without
overloading the processor.

In JPEG compression, a parameter called the quality factor is provided as a user-
specified integer in the range 1 to 100. A lower quality factor results in smaller data
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size of the compressed image. The quality factor of the image compression algorithm
can therefore be used as a control knob to manage the bandwidth utilization of an
UAV. To manage the computational power of the receiver, end-to-end execution rate
of applications is used as the control knob.

3 The hierarchical distributed resource-management architecture (HiDRA)

This section presents the Hierarchical Distributed Resource-management Architec-
ture (HIDRA), which employs a control-theoretic approach to manage processors
and network bandwidth simultaneously. Our control framework is shown in Fig. 2
and consists of three entities: monitors, controllers, and effectors. A monitor is as-
sociated with a specific system resource and periodically updates the controller with
the current resource utilization. The controller implements a particular control algo-
rithm and computes the adaptations decisions for each application (or a set of applica-
tions) to achieve the desired system resource utilization. Each effector is associated
with an application and modifies application parameters to achieve the controller-
recommended application adaptation.

We proceed to instantiate the HIDRA control framework for the domain of target
tracking described in Sect. 2. Each application in our DRE system is composed of two
subtasks: image compression and target tracking. To ensure end-to-end QoS, there-
fore, resource utilization of both subtasks must be controlled. As shown in Fig. 3,
HiDRA consists of two types of feedback control loops: (1) a processor control loop
located at the receiver that manages the processor utilization and (2) a bandwidth con-
trol loop located at each UAV that manages the bandwidth utilization. These loops
control the utilization of the critical system resources and coordinate the execution of
the image compression and target tracking subtasks. One approach to manage these
system resources is to design independent feedback control loops. Unfortunately, this
approach does not take into consideration the coupling between the two types of sys-
tem resources and does not necessarily assure system stability. Therefore, we struc-
ture these control loops in a hierarchical fashion so that the processor control loop
at the receiver is viewed as the outer control loop and the bandwidth control loop at
each UAV is viewed as the inner control loop.

As shown in Fig. 4, the processor utilization monitor and processor controller
serve as the resource monitor and controller of the processor control loop, respec-
tively. The objective of the processor controller is to ensure that the processor utiliza-
tion is maintained at a specified set-point despite variations in resource availability
and input workload. The utilization set-point of the receiver processor is an input to
the processor controller and is specified during system initialization. The controlled

Application Resource Utilization

F‘:
System . N
Adaptation
Monitor Resource —» Controller p —»  Effector Application
N Decisions Parameters
Utilization

Fig. 2 The HiDRA control framework
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Fig. 5 Bandwidth control feedback loop

variable for this loop is the processor utilization of the receiver, and the control input
from the processor controller to the system are the image transmission rates, which
are fed to the rate adapter in the UAVs. For the processor control loop, therefore, rate
adapters serve as effectors.

The bandwidth allocator shown in Fig. 3 is responsible for dynamically computing
the bandwidth allocation to each UAV based on (1) presence/absence of objects of
interest in the images received from the corresponding UAV and (2) variations in
available wireless network bandwidth. The bandwidth controller of each UAV views
this allocation as the bandwidth utilization set-point. The bandwidth allocator ensures
that the bandwidth requirement of UAVs capturing images of one or more objects of
interest is met.

As shown in Fig. 5, the bandwidth utilization monitor and the bandwidth controller
serve as the monitor and controller of the bandwidth control loop, respectively. The
objective of the bandwidth controller is to ensure that the bandwidth utilization of
the UAV is maintained at the specified set-point despite variations in resource avail-
ability and input workload. Inputs to the bandwidth controller include the bandwidth
utilization set-point, which is provided by the bandwidth allocator, and image trans-
mission rate, a model parameter of the bandwidth controller which is provided by
the processor controller. Based on these inputs, the bandwidth controller computes
an appropriate value of the JPEG quality factor to transmit the image of the highest
quality, subjected to the specified bandwidth limitation. The controlled variable is the
network bandwidth utilization of each UAV and the control input from the bandwidth
controller to the system is the quality factor of the JPEG compression algorithm. This
input is fed to the implementation of the JPEG compression algorithm, which serves
as the effector for this control loop. The coupling between the two types of system re-
sources is captured by using the image transmission rates computed by the processor
controller as an input parameters to the bandwidth controllers.

4 Control design and analysis

This section first formalizes the resource management problem of our real-time dis-
tributed target tracking system. We then map HiDRA to this system to show how
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it addresses key resource management challenges of our DRE system. Finally, we
present analysis that shows how HiDRA ensures the stability of our system. The for-
malism described below forms the foundations for the design and implementation of
HiDRA. It also provides analytical assurance about system performance under fluc-
tuating workload and varying resource availability.

4.1 Problem formulation

The following notations are used throughout the remaining of the paper. The tar-
get tracking system consists of n UAVs, and therefore, n end-to-end tasks {7; | 1 <
i < n}, each with two subtasks, i.e., an image compression subtask executing at
UAYV; and a target-tracking subtask executing at the receiver. The sampling period
of the processor controller (outer feedback loop) and the bandwidth controller (inner
feedback loop) are represented by 72" and Tsi“, respectively. The sampling periods
T2 and Ti" are selected to be larger than the maximum task period. All the entities
that make up the bandwidth control loop (such as monitor, controller, and effector) are
collocated on each UAV. However, for the processor control feedback loop, the moni-
tor and the controller are collocated on the receiver, whereas the effectors are located
at each UAV. As a result, in the processor control feedback loop, the communication
between the controller and the effectors is over a wireless network. Although there
are no theoretical constraints on the sampling periods, for these practical reasons,
T is selected to be greater than .. In our model, kth and «th sampling period
represent the kth sampling period of the processor controller and the xth sampling
period of the bandwidth controller, respectively.

Each end-to-end task 7; is invoked periodically at a rate r; (k) at the kth sampling
instant of the processor controller. The rate r; (k) is assumed to take values within the
range [rimi“, r{"*]. During the kth sampling instant of the processor controller, images
are compressed and transmitted by 7;’s data source, UAV;, to the receiver at the rate
of r; (k) images/second. C (k) represents the channel capacity (available bandwidth)
of the wireless network during the kth sampling period. For example, in a 802.11b
wireless network, C (k) can vary from 1 Mbps to 11 Mbps. The channel capacity can
be obtained form the wireless network card using operating system tools/commands
such as iwlist.

4.1.1 Bandwidth allocator

During each sampling period of the processor controller, the bandwidth allocator
computes a desirable bandwidth allocation for each task 7;. The wireless network
bandwidth allocation to each task 7; is recomputed by the bandwidth allocator if the
presence of an object of interest was detected by any of the target-tracking subtasks
or a variation in the available bandwidth was detected during the previous sampling
period. For each task, bandwidth is allocated such that the net bandwidth utilization
is below the set-point B®, i.e.:

> bi(k) < B°C(k) (0

i=1
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where bf (k) is the bandwidth allocation (utilization set-point) for task 7; during the
kth sampling period of the processor controller.

Let p(k) and p; (k) represent the total number of objects of interest tracked by the
system and the number of objects being tracked by 7; during the kth sampling period,
respectively. Let b, represent the minimum bandwidth allocation to each task so
that images of the lowest quality can be transmitted to the receiver. Bandwidth is thus
allocated to each end-to-end task as a function of p(k) and p; (k) as follows:

BSC(k)/n if p(k) =0,

¥ C(k)—nbmin) pi (k :
bmin + (B*C( )p’(1k) ) pi (k) lfp(k) > 0,

bi (k) = VT, |1<i<n. (2

If the total number of objects of interest tracked by the system is 0, bandwidth is
equally allocated to each task. If the total number of objects of interest tracked by
the system is greater than O, we assume all objects of interest are of equal impor-
tance, and bandwidth allocation to tasks is based on the number of objects currently
being tracked by that task. This design ensures that a greater amount of bandwidth
is allocated to tasks that are currently tracking objects of interest as compared to the
ones that are not. If objects of interest are of varying importance, a bandwidth allo-
cation policy that takes into consideration the importance of object of interest can be
employed without any modifications to HIDRA.

4.1.2 Processor utilization controller

We use the approach in (Lu et al. 2002) to model processor utilization. Section 4.2
uses the following model in the stability analysis of HIDRA. The target-tracking sub-
task of each end-to-end task 7; has an estimated execution time of ¢; known at design
time. The estimated processor utilization by the target-tracking subtask of task 7; dur-
ing the kth sampling period is denoted as E; (k) and is computed as

Ei(k) = ciri (k) 3

where r; (k) is the invocation rate of end-to-end task 7; during the kth sampling pe-
riod. The net estimated processor utilization during the kth sampling period is there-
fore

n
E(k) =) ciri(k). )
i=1
At runtime, however, the actual execution times may be different since they depend

on the presence (and number) of objects in the images. At runtime, therefore, the
actual processor utilization U (k) can be written as

U(k) =G p(k)E(k) &)

where G, (k) is the processor utilization ratio. Although, G, (k) is unknown, it is rea-
sonable to assume that the worst case utilization ratio G, = maxy{G,(k)} is known.
Let the processor utilization set-point of the receiver node be represented as U*.
From (5), the process utilization model can be written as

AU+ 1) = AUK) + G ,(k)v, (k) ©6)
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where AU (k) = U (k) — U® and v, (k) = E(k + 1) — E (k). The task of the feedback
controller is to compute v, (k) so that U (k) converges to U* (or AU (k) — 0).
We consider a linear proportional controller

vy (k) = K, AU (k) 7

where K, is a control gain which will be selected so that the system is stable. A pro-
portional controller is used because of the simplicity in the derivation of the control
gain that ensures stability and in the implementation that incurs minimal computa-
tional overhead. Actuators implement the control signal v, (k) by changing the invo-
cation rate of end-to-end tasks. The closed-loop system is described by

AUk +1) =[1+ K, G ,()1AU (k). ®)

The control algorithm is implemented as follows. During each sampling period,
the controller compares the current processor utilization U (k) with the utilization set-
point U*, and computes the net estimated utilization E(k + 1) for the next sampling
period based on the equation E(k + 1) = E(k) + K, AU (k). Since the presence of
one or more objects of interest in the received images increases the execution time the
target-tracking subtask, computational power is allocated to target tracking subtasks
based on the number of objects of interest that are present in the received images. We
therefore have

Ei(k+1)= - (Ek+1)—nEpin) pi (k) Hpe =0 VIi|l<i=n (9
Emin + St if p(k) > 0, -

where p (k) represents the total number of objects of interest captured by all the tasks
in the system, p; (k) represents the number of objects of interest being captured by
T; during the kth sampling period, and E;, represents the minimum processor al-
location to each task so that images can be processed by the receiver at the lowest
rate.

If the total number of objects of interest tracked by the system is 0, computational
power is equally allocated to each task. If the total number of objects of interest
tracked by the system is greater than 0, however, allocation of computational resource
to tasks is weighted based on the number of objects currently being tracked by that
task. This design ensures that a greater amount of computational power is allocated
to tasks that are currently tracking objects of interest as compared to the ones that are
not. From (3), (7), and (9) we derive the task execution rate as follows:

E())+UH)-UK,/G :
o (k)+( (110,- )Kp/Gp if p(k) =0,
ri = . ; -Us —nEni :
E;m n p,(k)(E(k)+(U(l<[),(k()/Ci)Kp/Gp 1 Enin) if p(k) > 0, (10)

VT; |1 <i<n.
4.1.3 Bandwidth utilization controller

We next present the analytical model of the bandwidth controller for each UAV. The
following notations are used in this model where the symbols correspond to each
UAV and the subscript is omitted for simplicity:
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e b(k): Actual bandwidth utilization in the «th sampling period.

e b*(k): Desired bandwidth utilization (set-point) computed by the bandwidth allo-
cator in the kth sampling period as shown in equation (2).

e r(k): Task rate computed by the processor controller in the kth sampling period, as
shown in equation (10).

e s: Size of an uncompressed image, which is a constant and known at design time.

e ¢(k): Quality factor of image compression algorithm (JPEG) computed by the
bandwidth controller in the xth sampling period.

e ¢(q) : Estimated size of the compressed image compressed with quality factor ¢q.

To simplify our notation, we express r (k) and b° (k) with respect to the index « by
defining r (k) =r(k), b* (k) =b°(k), k <k <k + 1.

The controlled variable of this feedback control loop is the bandwidth utilization,
b(x), and the control input from the controller to the UAV is the quality factor of the
image compression algorithm, g («x). The controller computes an appropriate value
of quality factor, g(x), to ensure that the bandwidth utilization of the UAV, b(x),
converges to the set-point, b°(k), computed by (2).

The average size of the compressed image, ¢ (¢q), is related to the quality factor of
the image compression algorithm, g, by a non-linear function as shown in Fig. 6. For
the purpose of our control design, however, we choose g within the range [10, 70]
where this function can be approximated by a linear one. A piecewise linear function
can also be used. For 10 < g <70, we have

$(q) =sgq +w (I

where g is the slope and w is the y-intersect of the linear approximation of the func-
tion in Fig. 6.

Images are compressed with a quality factor g and transmitted at the rate r from
the UAV to the receiver. Therefore, the bandwidth utilization contributed by the UAV
is

bk)=r)(q) =r(k)sgq k) +r(K)w.

Fig. 6 Linearization of ¢(q) 0.3 - - - T T T
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Let Ab(k) =b(x) — b* (k) and vp (k) = q(k + 1) — g (x), then the bandwidth utiliza-
tion can be described by the dynamical model

Ab(k + 1) = Ab(k) +r(k)sgup (k). (12)

The objective of the feedback controller is to determine v, (k) as a function of
Ab(k) so that the bandwidth utilization converges to the set-point. However, the
bandwidth utilization b(k) is not directly available due to measurement noise. The
bandwidth utilization monitor measures the bandwidth utilization as the rate at which
data is written by the image compression subtask to the underlying network stack. It
must be noted that the bandwidth utilization monitor measures the bandwidth uti-
lization of the UAV and not the channel capacity or the utilization of the wireless
network. Therefore, the resolution of the bandwidth utilization monitor is in the or-
der of the size of the compressed image. Hence, even a small variation in the sam-
pling period and the image transmission rate will considerably affect the measured
bandwidth utilization. Although the sampling period of the bandwidth controller is
a constant, from a practical standpoint, the sampling period might vary marginally
due to the jitter associated with the timer that is employed to implement the periodic
task. Moreover, the image transmission rate varies significantly at runtime since it is
dynamically computed by the processor controller.

Let b(x) denote the measured bandwidth utilization in the xth sampling period.
We assume that the effect of the measurement noise can be described by

b(k) =b(x) +n(k)

where the measurement noise n (k) is assumed to be a discrete-time Gaussian process
with zero mean and variance E[n?(x)]. The variance can be approximated experi-
mentally by transmitting images with a known rate and computing the square of the
rms value of the difference between the predicted utilization b(k) and the measured
utilization b(x) (Franklin et al. 1997).

To remove the measurement noise in the measured bandwidth utilization, we em-
ploy a Kalman filter (Welch and Bishop 2001) to estimate the actual bandwidth uti-
lization. Alternatively, a simple low-pass measurement filter can be used. We select
a Kalman filter because it provides good transient and steady-state performance, it
is optimal in the sense that the variance of the estimation error is minimized, and it
allows the stability analysis of the closed loop system based on the certainty equiva-
lence principle (or separation principle) (Astrom and Wittenmark 1990). It should be
noted that the processor utilization monitor obtains the processor utilization directly
from the underlying operating system, and therefore is of higher resolution compared
to the bandwidth utilization monitor.

The Kalman filter computes recursively the estimated bandwidth utilization b(x)
based on the measured bandwidth utilization b(k) and the bandwidth utilization
model (12). Let 5™ (k) the predicted bandwidth utilization in the xth sampling pe-
riod given by

b= (k) =bk — 1)+ r(k — Dsgup(k — 1).
The output of the Kalman filter is
b(k) =b" (k) + K (k) (b(k) — b~ () (13)
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where K (k) is a filter gain that is computed recursively in order to minimize the
variance of the estimation error € (k) = b(k) — Z;(K) (Welch and Bishop 2001; Astrom
and Wittenmark 1990).

The output of the Kalman filter, I;(K), is used by the bandwidth controller as the
current bandwidth utilization. We consider a linear controller

vy (k) = Kp Ab(k) (14)

where K, is the control gain that will be selected so that the system is stable. During
each sampling period, the controller compares the estimated bandwidth utilization
b(x) with the utilization set-point b*° (k), and computes the quality factor ¢ (k + 1) by

gk +1)=q ) + KpAb(k). (15)
4.2 Stability analysis

A control system is said to be stable if and only if the system converges to an equi-
librium for any set of initial conditions. In our case study, the initial conditions are
used to represent the changes in workload (due to the change of the images’ content)
and/or resource availability. Our target tracking system is therefore stable if resource
utilization of both the system resources (i.e., processor utilization at the receiver and
the network bandwidth utilization) converge to their respective utilization set-points
in the presence of workload changes and/or resource availability. Although the con-
troller is designed based on a time-invariant model (constant upper bounds on re-
source utilization), we show that the system is stable even when resource availability
and/or utilization changes at runtime, i.e., the system is time-varying.

A feedback control loop can be stabilized by selecting the controller so that the
poles of the closed loop system are in the unit circle (Astrom and Wittenmark 1990;
Franklin et al. 1997). The bandwidth utilization control loop includes the Kalman
filter (13) and the linear controller (14). A consequence of the separation principle is
that the control synthesis problem can be solved separately and the dynamics of the
closed-loop system are determined by the dynamics of the controller and the optimal
filter (Astrom and Wittenmark 1990). Specifically, the poles of the closed loop system
are determined by the poles of the controller and the poles of the Kalman filter. At
steady-state the gain of the Kalman filter converges to a stationary value that ensures
stability for the estimation error € (k). Therefore, in our analysis we can focus on
imposing conditions on the bandwidth utilization control gain K} to ensure that the
pole of the bandwidth utilization controller is inside the unit circle.

We can stabilize each of the two types of feedback control loops by selecting the
gains K, and K, so that the corresponding poles are in the unit circle. Such a design,
however, does not necessarily ensure the stability of the hierarchical control archi-
tecture since it does not take into consideration the interaction between the feedback
loops (due to the presence of r(k) in (12)). We next present an analysis result that
allows us to select the control gains so that the overall stability is assured.

Assuming that the input buffer of the receiver is never empty, it is clear that the
processor utilization is independent of the bandwidth utilization. If we select K, so
that —=2/G, < K, <0 then

AU (k) =1+ K ,G,()F AU (ko), k> ko
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and AU (k) — Osince |1 + K,G (k)| < 1.

From (10), it follows that in the steady state the utilization for each task U; (k) will
be stable (it will converge to a set-point U} that depends on the presence of objects
in the image data) and we can write

AU;(k+ 1) = a; (k) AU; (k) (16)

where the function «; (k) satisfies |o; (k)| < 1.
Let r;} denote the rate of the ith task at the steady state, then r; (k) = r + Ar; (k)
where Ar;(k) — 0. The bandwidth utilization model for the ith UAV is

Abi(k + D) =[14 (] + Ar; (K))ngé]Abi («). a7

The primary challenge of the stability analysis of our framework is the coupling
between the processor and bandwidth controllers. As it can be seen in (17), the control
input from the processor controller to the system, Ar;(k), is used by the bandwidth
controller. Our objective is to deduce the stability properties of the system (16—17)
by studying the isolated system

AUj(k+ 1) = a;(k), AU; (k), (18)
Abi(k +1) = [1+rfsg K} 1Ab; (k) (19)

where the equations have been decoupled by setting Ar; (k) = 0.

Theorem 1 The system (16—17) is stable if and only if the isolated system (18-19) is

stable.
Proof Define the norm ||[x1,x2]|| = |[[x1, x2]llcc = max{|x], |x2]} and denote
AU;(k), Abi(x) and AUiI k), AbiI («) the solutions of (16—17) and (18-19) respec-
tively.

“Only-if”: If the system (16-17) is stable, then there exists function «(x) with
(k) — 0 such that

ILAU; (), Ab; ()T || < ) I[AU; (ko), Ab; (ko)1 | (20)

Vk > ko and for every initial condition [AU;(kg), Ab; (ko)]T where AU;(k) =
AU;(k),k <k <k+1.

In particular, suppose that the initial condition is [0, Ab; (Ko)]T, then by (20) Vi >
ko, |Ab! ()| < a(k)| Ab! (ko)|, which shows that the system (18-19) is stable.
“If”: Tt is easy to see that AU; (k) = AUI.I (k) so we have to analyze only Ab;(x).
Define n;(k) = 1 + rfgK} and n(c, Ar;(k)) = 1 + (r{ + Ar;(k))gK}. From the
stability of (18—19), we have that |n; (k)| < 1 and there exists a function a (k) with
0 < ap(x) — 0 such that

AL} () (7 (k) — 1) < —aa () AD7 (o)
for every Ab; (ko) and k > ko. But we can write
AD} (k + 1) — Ab} (k) = A} () (7 (k) — 1) + Ab} (k) (% (kc, Ari (k) — 07 ()
< —a2 (k) A (ko) + ¥ (k)
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where y (k) — 0 since Ar;(k) — 0. Ab; (k) — 0 and the system (16—17) is therefore
stable. O

Using the above theorem, we can select the control gains so that our hierarchical
control architecture is stable. For the processor utilization feedback loop, the gain
could be selected to satisfy —2/G,, < K, < 0 that ensures stability (Lu et al. 2002;
Abeni and Buttazzo 2001). Similarly, for the bandwidth utilization control loop, the
gain should be selected so that (19) is stable. Since r; is not known at design time,
we can select the gain to satisfy —2/(r/"™) < K li < 0. A reasonable choice for se-
lecting the control gains is to use deadbeat control (Franklin et al. 1997) based on the
worst case utilization ratio and maximum task rate respectively, i.e. K, = —-1/G,,
and K li: = —1/r"*. This selection tries to minimize the settling time keeping the
overshoot equal to zero. Although deadbeat control may introduce saturation if the
ranges for the control effectors, i.e. the rate and the quality factor are small, its per-
formance was satisfactory for our case study. Other criteria for selection of the gain
can be found in (Lu et al. 2002).

5 Performance results and analysis

This section first presents the testbed for our target tracking system, which was used
to evaluate the performance of HiDRA in the context of a representative open DRE
system. We then describe our experiments and analyze the results obtained to evalu-
ate the performance of our DRE system empirically with and without HIDRA under
varying wireless bandwidth availability and input workload. The goal of our experi-
ments was to validate our theoretical claims and show that HiDRA yields predictable
and high-performance resource management and coordination for multiple types of
resources.

5.1 Hardware and software testbed

Our experiments were performed on the Emulab (White et al. 2002) testbed at Univer-
sity of Utah (www.emulab.net). The hardware configuration consists of three nodes
acting as UAVs and one receiver node. Images from the UAVs were transmitted to a
receiver via a wireless LAN configured with a maximum channel capacity of 2 Mbps.
The hardware configuration of all the nodes was a 3 GHz Intel Pentium IV processor,
1 GB physical memory, 802.11 a/b/g WIFI interface (Atheros 5212 chipset), and 120
GB hard drive. The Redhat 9.0 operating system with wireless support was used for
all the nodes.

The following software packages were also used for our experiments: (1) TAO
1.4.7, which is our open-source implementation of Real-time CORBA (Object Man-
agement Group 2002) that HiDRA and our DRE system case study are built upon, (2)
Ffmpeg 0.4.9-prel with Fobs-0.4.0 front-end, which is an open-source library that
decodes video encoded in MPEG-2, MPEG-4, Real Video, and many other video
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formats to yield raw images, and (3) ImageMagick 6.2.5, which is an open-source
software suite that we used to compress the raw images to JPEG image format.!

5.2 Target tracking DRE system implementation

The entities in our target tracking DRE system are implemented as CORBA objects
and communicate over the TAO (Schmidt et al. 1998) Real-time CORBA Object Re-
quest Broker to achieve desired real-time performance. The end-to-end application
consists of pairs of CORBA objects: the UAV data source and the receiver data sink.
The UAV data source object that executes on each UAV’s on-board processor per-
forms the following actions: (1) extracts raw images from an on-disk video file using
Ffmpeg with Fobs front end,? (2) compress the raw image into JPEG format using
ImageMagick, and (3) “pushes” the compressed images over the wireless link to the
data sink object via a CORBA oneway method invocation.

A data sink object at the receiver processes the images received from the corre-
sponding UAV. Each data sink object contains two functional modules: one that de-
termines the presence of one or more objects of interest in the received images, and
the other tracks the coordinates of objects of interest in the received image, if present.
The second functional module is executed only if the presence of one or more objects
of interest is detected by the first module.

To perform target tracking, received images are compared with a reference image,
that is given during system initialization. To obtain the reference image, a raw image
is extracted from a frame in the video that contains the object of interest. This raw
image is then compressed using JPEG compression algorithm with a quality factor
of 100 and used as the reference image. The received images are converted from
color to gray-scale, and the processed image is “subtracted” from the reference image
to obtain the difference image. If the average pixel value of the difference image
is greater than a threshold (which indicates the presence of one of more objects of
interest), the center of mass of the objected is computed. This approach is common
and the coordinates of a moving object can be tracked using a Kalman filter (Dellaert
and Thorpe 1997).

Table 1 summarizes the number of lines of code of various entities in our middle-
ware and DRE multimedia system case study.’

5.3 Experiment configuration

Our experiments consisted of three (emulated) UAVs containing the data source ob-
ject that (1) decoded the video from a file, (2) extracted the raw images, (3) com-
pressed them using JPEG compression, and (4) transmitted the compressed images to
the corresponding data sink object at the receiver node. Wireless network bandwidth

IHiDRA is distributed with TAO, which is our open-source implementation of Real-time CORBA, and
can be obtained from http://deuce.doc.wustl.edu/Download.html. Other open-source software packages
used in our DRE multimedia system can be obtained from the following locations: Ffmpeg http://ffmpeg.
mplayerhq.hu/, Fobs http://fobs.sourceforge.net/, and ImageMagick http://www.imagemagick.org.

2We used pre-recorded video which was made available on each UAV node as our source of “live” video.

3Lines of source code was measured using SLOCCount (http://www.dwheeler.com/sloccount/).
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Table 1 Lines of source code

for various system elements Entity Total lines of source code
HiDRA 12243
DRE Target Tracking System 19875
Ffmpeg + Fobs 214092
ImageMagick 253270
The ACE ORB (TAO) 907035

was shared between the three data source/data sink object pairs, and the computa-
tional power at the receiver node was shared between the three data sink CORBA
objects.

We evaluated the adaptive resource management capabilities of HIDRA under
the following operational conditions: (1) constant bandwidth availability and con-
stant workload, (2) constant bandwidth availability and varying workload, (3) varying
bandwidth availability and constant workload, and (4) varying bandwidth availability
and varying workload. These experimental configurations were chosen to evaluate the
performance of HiDRA under all possible combinations of fluctuations in bandwidth
availability and input workload. We evaluate the performance of the system when it
was operated with independent feedback control loops to demonstrate the advantages
of the proposed hierarchical architecture. In all operating conditions, we monitored
the processor utilization at the receiver and wireless network bandwidth utilization
between the UAVs and the receiver. Processor utilization at each UAV node was not
monitored since the computational power of the UAV on-board processor was suffi-
ciently large to compress images of the highest quality and resolution and transmit
them to the receiver without overloading the processor.

Bandwidth consumption by each UAV was measured as the rate at which data was
written to the underlying network stack by the UAV data source CORBA object. The
bandwidth utilization can also be measured at the receiver node using the techniques
described in (Shah et al. 2005). Since our measurement of bandwidth consumption
by each UAV was noisy, we used a Kalman filter to suppress the disturbances in the
measured bandwidth utilization. Processor utilization at the receiver was measured
using the data from the /proc/stat file. In our experiments, we also measured
application QoS properties, such as target-tracking precision and average end-to-end
delay.

We defined target-tracking precision as the inverse of target-tracking error, which
is the distance between the computed center of mass of an object and the actual center
of mass of the object. To compute the actual center of mass of the object, we identified
an object present in the video as the object of interest, performed target-tracking on
the raw images extracted from the video, and used this value as a reference. At the
data sink object, the target-tracking results were then compared with this reference
value.

End-to-end delay consists of (1) processing delay at the UAV, (2) network trans-
mission delay from the UAV node to the receiver and (3) processing delay at the
receiver node. To measure the end-to-end delay, an image was timestamped by the
data source object when the raw image was extracted from the pre-recorded video
file, before it was compressed and transmitted to the corresponding data sink object.
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Upon completion of processing of the received image by the data sink object, the
time-stamp of the image was compared with the current time on the receiver node to
obtain the end-to-end delay. To eliminate time skews, physical clocks on all the nodes
in our hardware testbed were synchronized using NTP (Mills 1988).

In all the above listed operational conditions, we compare the performance of our
DRE system when it was operated with and without HIDRA. Comparison of system
performance is decomposed into comparison of resource utilization and application
QoS. For system resource utilization, we compare (1) wireless network bandwidth
utilization and (2) processor utilization of the receiver node. For application QoS, we
compare (1) target-tracking precision and (2) average end-to-end delay.

For all our experiments, we chose the sampling period of the processor controller
and the bandwidth controller as 10 seconds and 1 second, respectively. The minimum
and maximum image transmission rate [rmin, 'max] Was 5 and 15 images/second.
Therefore, as explained in Sect. 4.2, the control gain for the bandwidth controller
(Kp) was computed to be —0.06 (—1/15). Since G, was measured to be 2, the con-
trol gain for the processor controller (K,) was computed to be —0.5 (—1/2). The
processor utilization set-point was selected to be 0.7. The goal of utilization con-
trol is to (1) prevent processor overload (which can cause system instability), and
(2) avoid unnecessarily under utilizing the processor (which leads to a low task rate).
The choice of 0.7 as the set point achieves the desired trade off between overload pro-
tection and high task rate in our system. Since an IEEE 802.11 DCF-based network
has a utilization of approximately 0.7 with 20 active nodes (Bianchi 2000), the wire-
less bandwidth utilization set-point was also configured at 0.7. Although for a system
with four nodes the achievable channel utilization could be higher than 0.7 (e.g., as
high as 0.8), this value varies depending on many other factors such as packet size,
channel bit rate, etc. Considering all these factors, we set the bound to 0.7 conserva-
tively.

5.4 Experiment 1: constant bandwidth availability and constant workload

We now present the results obtained from running the experiment under a constant
channel capacity of 2 Mbps and a constant 2 objects of interest tracked by the system.
This experimental setup provides an operational condition where resource availability
and input workload are known a priori and not subjected to change during the course
of the experiments. Images containing objects of interest were captured by UAVs 1
and 2. This experiment serves as the baseline for all other experiments. It validates
that when the tracking system is operated with HiIDRA the following behavior oc-
curs: (1) utilization of system resources converge to their respective set-points and
(2) application QoS converges to the values that were obtained when the system was
operated without HIDRA and application parameters were chosen a priori.

We compare the performance against a static configuration. In the static configu-
ration, application parameters, such as image transmission rates and quality factor of
the JPEG image compression algorithm, were chosen a priori. Values of these para-
meters were selected such that (1) both processor utilization of the receiver node and
the wireless bandwidth utilization is equal to the set-point of 0.7 and (2) application
QoS are maximized. The settings of the static configuration of the system are shown
in Table 2.
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Table 2 Application

parameters chosen in advance UAV Image transmission rate Quality factor
(images/s)
UAV 1 10 40
UAV 2 10 40
UAV 3 10 40
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Fig. 7 Exp 1: Comparison of processor utilization. a Processor utilization with HIDRA; b Processor
utilization without HIDRA

5.4.1 Comparison of resource utilization

Figures 7 and 8 compare the processor utilization at the receiver node and the wire-
less network bandwidth utilization when the system was operated with and without
HiDRA. The output of the bandwidth utilization monitor, shown in Fig. 8(b), was
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Wireless Network Bandwidth Utilization

1 . 4
=
8
I
N
S 04 ]
0.2 ]
O L L L
500 1000 1500
Time (sec)
(@)
Wireless Network Bandwidth Utilization
1 . 4
0.8 1
=
S
= 0.6 rw‘“‘w
N
S 04t 1
0.2 r |
0 L L L
500 1000 1500
Time (sec)
()
Wireless Network Bandwidth Utilization
1 |
0.8
=
.2
g 0.6 {l it
N
5 04f
0.2
0 1 1 1
500 1000 1500
Time (sec)

(©

Fig. 8 Exp 1: Comparison of bandwidth utilization. a Bandwidth utilization with HIDRA; b Bandwidth
utilization with HIDRA (estimates using a Kalman filter); ¢ Bandwidth utilization without HIDRA
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processed with a Kalman filter and used by the bandwidth controller as the current
bandwidth utilization.

Figures 7(b) and 8(c) show that when the system was operated without HIDRA,
resource utilization of both the resources is 0.7 during the course of the experiment.
Similarly, Figs. 7(a), 8(a), and 8(b) show that when the system was operated with
HiDRA, resource utilization converges to the set-point of 0.7 and in maintained at 0.7
for the remaining duration of the experiment. These results show that when the system
is operated using HiDRA, system resource utilization converges to the respective
utilization set-points.

5.4.2 Comparison of QoS

We now compare the application QoS—(1) target-tracking precision, and (2) average
end-to-end delay.

Fig. 9 compares the target-tracking error obtained when the system was operated
with and without HiDRA. Figures 9(a) and 9(b) show that average target-tracking
error—and therefore target-tracking precision—is nearly the same when the system
was operated with and without HIiDRA.

Table 3, which compares the end-to-end delay when the system was operated with
and without HiDRA, shows that average end-to-end delay is the same as when the
system was operated with and without HIDRA. Based on these results, we conclude
that QoS of applications in our DRE system converges to the values obtained when
the system was operated without HIDRA and application parameters were chosen a
priori.

From our comparison of resource utilization and system QoS, we conclude that
when the system is operated with HIDRA (1) utilization of system resources converge
to their respective set-points and (2) application QoS converge to the values that were
obtained when the system was operated without HIDRA and application parameters
were chosen a priori.

5.5 Experiment 2: decoupled independent feedback control loops

We now demonstrate the effect of employing the processor control loop and band-
width control loops in an independent fashion. To decouple these two types of feed-
back control loops, the bandwidth controller of all the UAVs assume a constant image
transmission rate of 10 images per second. However, the actual image transmission
rates are dynamically modified by the processor controller and the rate adapter at
runtime.

In this section, we present the results obtained from running the experiment un-
der a constant channel capacity of 2 Mbps and varying number of objects of interest
in the system. This experiment demonstrates the need for an hierarchical architec-
ture by analyzing the effect of employing multiple independent feedback loops under
constant resource availability and varying input workload. Table 4 summarizes the
number of objects of interest that were tracked as a function of time.
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Fig. 9 Exp 1: Comparison of target-tracking error. a UAV-1; b UAV-2

Table 3 Exp 1: Comparison of

end-to-end delay Number of objects End-to-end delay (ms)
With HiDRA Without HIDRA
2 117 117

5.5.1 Analysis of resource utilization

Figure 10(a) shows the processor utilization at the receiver node when the system was
operated with independent feedback loops. Figure 10(a) and Table 4 show that the in-
crease in the processor utilization at 7 = 300 s is due to the presence of the first object
of interest. Figure 10(a) shows that although the processor utilization increased above
0.7, within the next several sampling periods, the processor control loop restored the
processor utilization to the desired set-point of 0.7. This was achieved as a result of re-
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Table 4 Objects of interest as a function of time

Time (s) Number of objects
UAV 1 UAV 2 UAV 3 Total

0-300 0 0 0 0
300-500 1 0 0 1
500-700 1 1 0 2
700-1100 1 1 1 3
1100-1300 0 1 1 2
1300-1500 0 0 1 1
1500-2000 0 0 0 0

ducing the execution rates of data-source/receiver pair(s) deemed less important, i.e.,
ones that captured images where objects of interest were absent. At 7 = 500 s and
T =700 s, the presence of the second and third object of interest were detected. As
Fig. 10(a) shows, the processor utilization quickly re-converges to the set-point after
a transient increase. At T = 1, 100 s the total number of objects being tracked by the
system reduced from 3 to 2. Although there was a decrease in the processor utiliza-
tion, the processor control loop restored the processor utilization to the set-point by
increasing the execution rate of important data-source/data sink pair(s). Similarly, the
processor control loop ensured that the processor utilization converges to the desired
set-point for the remaining duration of the experiment.

From Fig. 10(b), which shows the wireless network bandwidth utilization when
the system was operated with independent feedback loops, it can be seen that the
bandwidth utilization is significantly below the set-point of 0.7 during the entire
course of the experiment. This is because the bandwidth controller assumes that the
image transmission rate to be a constant 10 images per second, where as the im-
age transmission rate is dynamically varied by the processor controller and the rate
adapter at runtime in order to maintain the processor utilization at the desired value
of 0.7. The bandwidth controller does not have complete knowledge of the state of
the system, namely the image transmission rate, and as a result, the quality factor
computed by the bandwidth controller does not aid the UAV in achieving the desired
bandwidth utilization.

5.5.2 Analysis of QoS

We now analyze the application QoS—(1) target-tracking precision and (2) average
end-to-end delay. From Fig. 11, which shows the target-tracking errors that was ob-
tained when the system was operated with independent feedback loops, it can be seen
that the target tracking error is high when the system was operated with independent
feedback loops. This is because the bandwidth control loops compute images quality
factors that do not utilize the bandwidth allocated to each UAV effectively. Therefore,
as shown in Fig. 10(b), the wireless network bandwidth was severely under-utilized.
This accounts for the high target tracking error when the system was operated with
independent feedback loops.
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Fig. 10 Exp 2: resource utilization. a Processor utilization; b Bandwidth utilization

These results demonstrate that when the system was operated with indepen-
dent feedback loops, wireless network bandwidth was severely under-utilized, which
therefore leads to a high target tracking error, or a low QoS.

Table 5 shows the end-to-end delay when the system was operated with indepen-
dent feedback loops. From Tables 3 and 5 it can be seen that when the system tracked
2 objects of interest, the same end-to-end delay was achieved when the system was
operated with independent feedback loops, with HiDRA, and without HiDRA as
the system resource utilization was maintained below the specified utilization set-
point. This is because the wireless network begins to experience packet losses and
re-transmissions when the utilization is above 0.7 (Bianchi 2000). When the system
was operated with HIDRA, without HIDRA, and with independent feedback loops,
since the bandwidth utilization was below 0.7, the network transmission delays are
nearly equal. Moreover, since the processor utilization in both the cases were below
the utilization set-point (as shown in Figs. 7(a), 7(b) and 10(a)), the end-to-end delays
are equal.
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UAV 1 Target Tracking Error
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Fig. 11 Exp 2: target-tracking error. a UAV-1; b UAV-2; ¢ UAV-3
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Table 5 Exp 2: end-to-end

delay Number of objects End-to-end delay (ms)
0 20
1 60
2 117
3 157

These results show the effect of employing multiple feedback loops—processor
control loop and bandwidth control loops—in an independent fashion. Although the
processor utilization converges to the desired value, the bandwidth utilization is sig-
nificantly lower than the desired value. This results in severe under utilization of
system resources and low QoS, both of which are undesirable. Therefore, we now
demonstrate how HiDRA, using an hierarchical approach, achieves desired system
resource utilization and improves QoS.

5.6 Experiment 3: constant bandwidth availability and varying workload

We next present the results obtained from running the experiment under a constant
channel capacity of 2 Mbps and varying number of objects of interest in the sys-
tem. This experiment demonstrates the adaptive resource management capabilities
of HiDRA under constant resource availability and varying input workload. Table 4
summarizes the number of objects of interest that were tracked as a function of time.
In this experiment, when the system was operated without HiDRA, the static system
configuration shown in Table 2 was used.

5.6.1 Comparison of resource utilization

Figures 12 and 13 compare the processor utilization at the receiver node and the wire-
less network bandwidth utilization when the system was operated with and without
HiDRA. The output of the bandwidth utilization monitor, shown in Fig. 13(b), was
processed with a Kalman filter and used by the bandwidth controller as the current
bandwidth utilization.

Figures 12(a) and 12(b) and Table 4 show that the increase in the processor uti-
lization at T = 300 s is due to the presence of the first object of interest. Fig. 12(a)
shows that although the processor utilization increased above 0.7, within the next
several sampling periods, HiDRA restored the processor utilization to the desired
set-point of 0.7. HIDRA achieved this result by reducing the execution rates of data-
source/receiver pair(s) deemed less important, i.e., ones that captured images where
objects of interest were absent. As shown in Fig. 12(b), when the system was oper-
ated without HiDRA, the processor utilization remained at 0.85, which is significantly
higher than the utilization set-point of 0.7.

At T =500 s, the presence of the second object of interest was detected. The
processor utilization thus increased to 0.9 when the system was operated without
HiDRA, as shown in Fig. 12(b). As Fig. 12(a) shows that the processor utilization
quickly re-converges to the set-point after a transient increase when the system was
operated with HIDRA.
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Fig. 12 Exp 3: comparison of processor utilization. a Processor utilization with HiDRA; b Processor
utilization without HIDRA

At T =700 s, the presence of the third object of interest was detected. As a result,
when the system was operated without HIDRA, the processor utilization increased
to 1, as shown in Fig. 12(b). Once again, Fig. 12(a) shows that the processor utiliza-
tion quickly re-converges to the set-point after a transient increase when the system
was operated with HIDRA.

At T =1, 100 s the total number of objects being tracked by the system reduced
from 3 to 2. Although there was a decrease in the processor utilization, HiDRA re-
stored the processor utilization to the set-point by increasing the execution rate of
important data-source/data sink pair(s). Similarly, HIDRA ensured that the processor
utilization converges to the desired set-point for the remaining duration of the exper-
iment. Similarly, Figs. 13(a) and 13(b) shows how HiDRA ensures that the wireless
bandwidth utilization converges to the desired set-point of 0.7 within bounded time,
even under fluctuating workloads.
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Fig. 13 Exp 3: comparison of bandwidth utilization. a bandwidth utilization with HIDRA; b bandwidth
utilization with HIDRA (processed using a Kalman filter); ¢ bandwidth utilization without HIDRA
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These results show how HiDRA ensures that the processor utilization of the re-
ceiver node—as well as the wireless bandwidth of the network—converges to the de-
sired set-point within bounded time, even under fluctuating workloads. We therefore
conclude that HIDRA ensures utilization of multiple system resources is maintained
within the specified bounds, thereby ensuring system stability.

5.6.2 Comparison of QoS

We now compare the application QoS—(-1) target-tracking precision and (2) average
end-to-end delay.

Figure 14 compares the target-tracking errors that were obtained when the system
was operated with and without HiDRA. Table 4 shows that during 7' € [300 s, 500 s],
there was only one object of interest that was tracked by the system, and this object
was tracked by UAV 1. When the system was operated without HiDRA, the static
configuration of the system (shown in Table 2) assumed that there was a total 2 objects
of interests being tracked by the system. As a result, Fig. 14(a) shows that the target
tracking error during 7 € [300 s, 500 s] is lower when the system was operated with
HiDRA than without it.

During T € [500 s, 700 s], a total of 2 objects of interest that were tracked by the
system, and these objects were tracked by UAV 1 and UAV 2. This input workload is
the same as the static configuration of the system. As a result, Figs. 14(a) and 14(b)
show that the target tracking error during 7 € [500 s, 700 s] is nearly the same when
the system was operated with and without HIDRA.

During T € [700 s, 1100 s], however, a total of three objects of interest were being
tracked by the system, one by each UAV. This input workload is higher than the
input workload under which the static configuration of the system was selected. To
maintain the bandwidth utilization within specified bounds, therefore, HIDRA lowers
the quality factor of the images transmitted by the UAVs to the receiver during 7 €
[700's, 1100 s]. As a result, Figs. 14(a), 14(b), and 14(c) show that the target tracking
error during 7' € [700 s, 1100 s] is higher when the system was operated with HIDRA
than without it. Similarly, the target tracking precision of the received images for the
remaining time intervals can be analyzed.

These results demonstrate that HIDRA effectively maintains utilization of sys-
tem resource below the specified set-points despite fluctuations in input workload by
gracefully adjusting application QoS.

Table 6 compares the end-to-end delay when the system was operated with and
without HiDRA. This table shows that when the total number of objects of interest
tracked by the system was 2 or less, the end-to-end delay was the same when the
system was operated with and without HIDRA. This result occurred because the static
configuration of the system was selected assuming 2 objects of interest were being
tracked by the system. When the number of objects tracked by the system increased
to 3, however, system resource were over-utilized considerably when the system was
operated without HiDRA, as compared to when the system was operated with it.
As a result, when the system was operated without HIDRA, the end-to-end delay is
significantly higher than when the system was operated with HIDRA.

HiDRA reacts to fluctuations in input workload by modifying application parame-
ters such as JPEG quality factor. These adaptations ensure that system resources are
not over-utilized and thus lowers average end-to-end delay.
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Fig. 14 Exp 3: comparison of target-tracking error. a UAV-1; b UAV-2; ¢ UAV-3
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Table 6 Exp 3: comparison of

end-to-end delay Number of objects End-to-end delay (ms)
With HiDRA Without HiDRA
0 20 20
1 60 60
2 117 117
3 160 250

Table 7 Channel capacity and bandwidth utilization set-point as a function of time

Time (s) Channel capacity =~ Bandwidth utilization =~ Normalized Normalized bandwidth
(Mbps) set-point (Mbps) channel capacity  utilization set-point
0480 2.0 0.7*20=14 20/20=1.0 1.4/2.0=0.7
480-1480 1.0 0.7*1.0=0.7 1.0/2.0=05 0.7/2.0=0.35
1480-2000 2.0 0.7*%20=14 20/20=1.0 1.4/2.0=0.7

5.7 Experiment 4: varying bandwidth availability and constant workload

We now present the results obtained from running the experiment under varying chan-
nel capacity of the wireless network and a constant 2 number of objects of interest
tracked by the system. This experiment demonstrates the adaptive resource manage-
ment capabilities of HIDRA under varying resource availability and constant input
workload. We normalize the channel capacity, bandwidth utilization, and bandwidth
utilization set-point to the maximum channel capacity of 2 Mbps. Table 7 summarizes
the variation in channel capacity and bandwidth utilization set-point as a function of
time. As it can be seen in Table 7, the variation in the channel capacity represents
a “step function”. A step function is selected because it is one of the most severe
form of variation (or disturbance) that a control system can be subjected to. This ex-
periment validates that HIDRA can maintain system stability even under such severe
variation in channel capacity. Images containing objects of interests were captured
by UAVs 1 and 2. In this experiment, the static configuration of the system shown in
Table 2 was used when the system was operated without HIDRA.

5.7.1 Comparison of resource utilization

Figures 15 and 16 compare the processor utilization at the receiver node and the
normalized bandwidth utilization when the system was operated with and without
HiDRA. The output of the bandwidth utilization monitor, shown in Fig. 16(b), was
processed with a Kalman filter and used by the bandwidth controller as the current
bandwidth utilization. From Figs. 15(a) and 15(b) it can be seen that under this ex-
perimental scenario, processor utilization is equal to the set-point of 0.7 when the
system was operated both with and without HIDRA.

Figure 16(c) shows that when the system was operated without HIDRA, the nor-
malized bandwidth utilization during 7 € [0 5,480 s] and T € [1480 s,2000 s]
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Fig. 15 Exp 4: comparison of processor utilization. a Processor utilization with HiDRA; b Processor
utilization without HIDRA

was 0.7, which is equal to the set-point. During T € [480 s, 1480 s] the normal-
ized bandwidth utilization was 0.5, which is equal to the normalized channel capac-
ity and significantly greater than the normalized set-point of 0.35. From Figs. 16(a)
and 16(b), however, it can be seen that when the system was operated with HIDRA,
the normalized bandwidth utilization converged to the normalized utilization set-
point even under varying channel capacity. HIDRA achieved this behavior by lower-
ing the quality factor of the images in response to fluctuations in network bandwidth.
These results show that HIDRA ensures the wireless bandwidth utilization con-
verges to the desired set-point within bounded time, even under varying network
bandwidth availability. We therefore conclude that HIDRA ensures system resource
utilization is maintained within the specified bounds, thereby ensuring system stabil-
ity.
@ Springer
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Fig. 16 Exp 4: comparison of normalized bandwidth utilization. a Normalized bandwidth utilization with
HiDRA; b Normalized bandwidth utilization with HIDRA (processed using a Kalman filter); ¢ Normalized
bandwidth utilization without HIDRA
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Fig. 17 Exp 4: comparison of target-tracking error. a UAV-1; b UAV-2

5.7.2 Comparison of QoS

We now compare the application QoS, which includes (1) target-tracking precision
and (2) average end-to-end delay.

Figure 17 compares the target-tracking error that was obtained when the system
operated with and without HIDRA. As shown in Table 7, during T € [0 s, 480 s]
and T €[1, 480 s, 2000 s] the channel capacity of the wireless network was 2 Mbps,
which is the resource availability under which the static configuration of the system
was selected. As a result, Figs. 17(a) and 17(b) show that the target tracking error
during 7 € [0s,480 s] and T € [1, 480 s, 2000 s] is nearly the same when the system
was operated with HIDRA and without HiDRA.

During T € [480 s, 1480 s], however, the channel capacity of the wireless network
was 1 Mbps. Within this time interval, the wireless bandwidth resource availability is
half the wireless bandwidth resource availability under which the static configuration
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Table 8 Exp 4: comparison of

end-to-end delay Number of objects End-to-end delay (ms)
With HiDRA Without HIDRA
2 185 276

of the system was selected. To maintain the bandwidth utilization within specified
bounds, HiDRA lowers the quality factor of the images transmitted by the UAVs
to the receiver during 7 € [480 s, 1480 s]. As a result, Figs. 17(a) and 17(b) show
that the target tracking error during 7' € [480 s, 1480 s] was higher when the system
was operated with HIiDRA than when the system was operated without it. These
results demonstrate that HIDRA effectively maintains utilization of system resource
below the specified set-points despite variations in bandwidth resource availability by
gracefully adjusting application QoS.

Table 8 compares the end-to-end delay when the system was operated with and
without HIDRA. This table shows that end-to-end delay was much lower when the
system was operated with HIDRA than without it. When the system was operated
without HiDRA, during T € [480 s, 1480 s], the utilization of the wireless network
bandwidth is equal to its channel capacity, which increased packet loss, retransmis-
sion delays, and in turn network transmission delay. This behavior accounts for the
increase in the average end-to-end delay because the static configuration of the sys-
tem was selected assuming 2 objects of interest were being tracked by the system and
a constant channel capacity of 2 Mbps. When the system was operated with HIDRA,
however, HiDRA reacts to variations in channel capacity by modifying application
parameters such as JPEG quality factor. These adaptations ensure that system re-
sources are not over-utilized and thus lowers average end-to-end delay.

5.8 Experiment 5: varying bandwidth availability and varying workload

We finally present the results obtained from running the experiment under varying
channel capacity of the wireless network, as well as varying number of objects of
interest in the system. This experiment demonstrates the adaptive resource manage-
ment capabilities of HIDRA under varying resource availability and fluctuating input
workload. We, once again, normalize the channel capacity, bandwidth utilization, and
bandwidth utilization set-point to the maximum channel capacity of 2Mbps. Table 4
summarizes the number of objects of interests that were tracked as a function of time.
Table 7 summarizes the variation of channel capacity as a function of time. In this
experiment, when the system was operated without HiDRA, the static configuration
of the system shown in Table 2 was used.

5.8.1 Comparison of resource utilization

Figures 18 and 19 compare the processor utilization at the receiver node and the wire-
less network bandwidth utilization when the system was operated with and without
HiDRA. The output of the bandwidth utilization monitor, shown in Fig. 19(b), was
processed with a Kalman filter and used by the bandwidth controller as the current
bandwidth utilization.
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Fig. 18 Exp 5: comparison of processor utilization. a Processor utilization with HiDRA; b Processor
utilization without HIDRA

Figure 18 and Table 4 show that the increase in the processor utilization at 7 =
300 s is due to the presence of the first object of interest. From Fig. 18(a) it can
be seen that although the processor utilization increased above 0.7, within the next
several sampling periods, HiDRA restored the processor utilization to the desired
set-point of 0.7. This behavior was achieved by reducing the execution rates of data-
source/receiver pair(s) deemed less important, i.e., ones that captured images where
objects of interest were absent. As shown in Fig. 18(b), when the system was operated
without HiDRA, the processor utilization remained at 0.85, which is significantly
higher than the utilization set-point of 0.7.

At T =500 s, the presence of the second object of interest was detected. As a
result, Fig. 18(b) shows that processor utilization increased to 0.95 when the system
was operated without HIDRA. As shown in Fig. 18(a), however, the processor utiliza-
tion quickly re-converges to the set-point after a transient increase when the system
was operated with HiDRA.
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Fig. 19 Exp 5: comparison of normalized bandwidth utilization. a Normalized bandwidth utilization with
HiDRA; b Normalized bandwidth utilization with HIDRA (processed using a Kalman filter); ¢ Normalized
bandwidth utilization without HIDRA
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At T =700 s the presence of the third object of interest was detected. When the
system was operated without HiDRA, Fig. 18(b) shows how the processor utilization
increased to 1. As shown in Fig. 18(a), however, once again the processor utilization
quickly re-converges to the set-point after a transient increase when the system was
operated with HIDRA.

At T = 1100 s the total number of objects currently being tracked by the sys-
tem reduced from 3 to 2, although there was a decrease in the processor utilization,
HiDRA restored the processor utilization of 0.7 by increasing the execution rate of
important data-source/data sink pair(s). Similarly, HIDRA ensured that the proces-
sor utilization converges to the desired set-point for the remaining duration of the
experiment.

These results show that HIDRA ensures that the processor utilization of the re-
ceiver node converges to the desired set-point within bounded time, even under fluc-
tuating workloads.

Figure 19(c) shows that when the system was operated without HIDRA, the nor-
malized bandwidth utilization during 7 € [0 5,480 s] and T € [1480 s, 2000 s] was
below the normalized set-point of 0.7. During T € [480 s, 1480 s] the normalized
bandwidth utilization was 0.5, which is equal to the channel capacity and significantly
greater than the normalized set-point of 0.35. From Figs. 19(a) and 19(b), however, it
can be seen that when the system operated with HiDRA, the normalized bandwidth
utilization converged to the normalized utilization set-point even under varying chan-
nel capacity. This behavior was achieved by lowering the quality factor of the images
in response to the variations in network bandwidth availability and input workload.

These results show that HIDRA ensures that the wireless bandwidth utilization
converges to the desired set-point within bounded time, even under varying channel
capacity and input workload. We therefore conclude that HIDRA ensures utilization
of system resources is maintained within the specified bounds, even under varying
resource availability and input workload, thereby ensuring system stability.

5.8.2 Comparison of QoS

We now compare the application QoS—(1) target-tracking precision, and (2) average
end-to-end delay.

Figure 20 compares the target-tracking error that were obtained when the system
was operated with and without HiDRA. Table 4 shows that during 7' € [300 s, 500 s]
there was only one object of interest tracked by the system using UAV 1. When the
system was operated without HIDRA, the static configuration of the system (as shown
in Table 2) assumed (1) that there were a total of 2 objects of interests being tracked
by the system and (2) a constant channel capacity of 2 Mbps. As a result, Fig. 20(a)
shows that the target tracking error during 7' € [300 s, 480 s] is lower when the system
was operated with HIDRA than without it.

During T € [480 s, 1480 s], however, the channel capacity of the wireless network
was 1 Mbps. During Within this time interval, the wireless network bandwidth avail-
ability was half the bandwidth availability under which the static configuration of the
system was selected. To maintain the bandwidth utilization within specified bounds,
therefore, HIDRA lowers the quality factor of the images transmitted by the UAVs
to the receiver during T € [480 s, 1480 s]. As a result, Figs. 20(a), 20(b), and 20(c)
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Fig. 20 Exp 5: Comparison of target-tracking error. a UAV-1; b UAV-2; ¢ UAV-3
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Table 9 Exp 5: comparison of

end-to-end delay Number of objects End-to-end delay (ms)
With HiDRA Without HiDRA
0 20 20
1 80 123
2 137 235
3 206 327

show that the target tracking error during T € [480 s, 1480 s] was higher when the
system was operated with HIDRA than without it.

These results demonstrate that HIDRA effectively maintains utilization of system
resource below the specified set-points despite fluctuations in input workload and
variations in bandwidth resource availability by gracefully adjusting application QoS.

Table 9 compares the end-to-end delay when the system was operated with and
without HiDRA. This table shows that end-to-end delay is much lower when the
system operates with HiDRA than without it. When the system was operated with-
out HiDRA the utilization of the wireless network bandwidth is equal to its channel
capacity during T € [480 s, 1480 s], which resulted in increased packet loss, retrans-
mission delays, which in turn increased network transmission delay. This behavior
accounts for the increase in the average end-to-end delay because the static configu-
ration of the system was selected assuming 2 objects of interest were being tracked
by the system and a constant channel capacity of 2 Mbps. When the system was
operated with HIDRA, however, it reacts to variations in channel capacity and num-
ber of objects by modifying application parameters, such as the JPEG quality factor.
These adaptations ensures that system resources are not over-utilized and thus lowers
average end-to-end delay.

5.9 Summary

HiDRA responds to fluctuation in input workload and the most severe form of vari-
ation in resource availability by periodically monitoring and control of resource uti-
lization. Both our theoretical and empirical analysis assures that the utilization of
system resources converge to their specified utilization set-points even if a set-point
is specified as a time-varying reference signal. However, the only assumption is that
the variation in the reference signal is slower than the sampling period.

Our results show that when resources utilization increases above the desired set-
point, HIDRA lowers the utilization by modifying application parameters, such as
execution rates and JPEG quality factor. These adaptations ensure that (1) system
resources are not over-utilized and (2) enough resources are available for important
applications. Our results also show that when the system was operated with inde-
pendent feedback loops, system resources are severely under-utilized, and as a result
application QoS are significantly reduced.

Our analysis of the results described above suggests that applying hierarchical
adaptive resource management to our target tracking system helps to (1) maintain
system resource utilization within specified bounds and (2) improve overall system
QoS. These improvements are achieved largely due to monitoring of system resource
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utilization, adaptive resource provisioning, and efficient system workload manage-
ment by means of HIDRA'’s resource monitors, hierarchical controllers, and effectors,
respectively.

6 Related work

A number of control-theoretic approaches have been applied to real-time system to
overcome limitations with traditional scheduling approaches that are not suited to
handle dynamic changes in resource availability and result in a rigidly scheduled
system that adapts poorly to change. A survey of these techniques is presented in
(Abdelzaher et al. 2003). This section summarizes the relationship of related work on
control-theoretic approaches with our research on HiDRA.

Feedback control scheduling (FCS) (Lu et al. 2002) is designed to address the
challenges of applications with stringent end-to-end QoS executing in open DRE
systems. These algorithms provide robust and analytical performance assurances de-
spite uncertainties in resource availability and/or demand. FC-U and FC-M (Lu et al.
2003) and HySUCON (Koutsoukos et al. 2005) to manage the processor utilization.
CAMRIT (Wang et al. 2004) applies control-theoretic approaches to ensure trans-
mission deadlines of images over an unpredictable network link and also presents
analytic performance assurance that the transmission deadlines are met.

A hierarchical control scheme that integrates resource reservation mechanisms
(Cucinotta et al. 2004; Lipari et al. 2004) with application specific QoS adaptation
(Brandt et al. 1998) is proposed in (Abeni and Buttazzo 2001). This control scheme
features a two-tier hierarchical structure: (1) a global QoS manager that is responsible
for allocating computational resources to various applications in the system and (2)
application-specific QoS managers/adapters that modify application execution to use
the allocated resources efficiently and improves application QoS.

Although the approaches outlined above are similar to HiDRA, these algo-
rithms/mechanisms perform resource management of only one type of system re-
source, i.e., either computing power or network bandwidth. HIDRA’s contribution to
control-theoretic research, therefore, is its ability to perform resource management
of both network and computing resources, which is crucial for many real-world DRE
systems.

One approach to manage both computing power and network bandwidth is to man-
age the network bandwidth utilization with CAMRIT and processor utilization with
either the hierarchical control structure proposed in (Abeni and Buttazzo 2001), FC-
U/FC-M, or HySUCON. Unfortunately, this approach does not take into considera-
tion the coupling between the two types of system resources and does not necessarily
assure system stability.

The work of (Li and Nahrstedt 1999) utilizes task control model and fuzzy control
model to enhance the QoS adaptation decision of multimedia DRE systems. The
control framework established in this work, however, is still confined to single type
of resource, i.e., network bandwidth in a distributed visual tracking system.

As described in Sect. 3, HIDRA uses hierarchical feedback control loops—the
processor utilization feedback loop and bandwidth utilization loop—to manage the
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utilization of system resources, which can be extended to handle more types of re-
sources and end-to-end applications without significant modifications to the existing
architecture. Moreover, HIDRA'’s feedback loops are designed so that the adaptation
decisions made by one does not conflict with the decisions made by the other. As
shown in Sect. 4.2 and Sect. 5, HIDRA’s design results in a hierarchical control ar-
chitecture that ensures system stability.

7 Concluding remarks

Open DRE systems require end-to-end QoS enforcement from their underlying oper-
ating platforms to operate correctly. These systems often run in environments where
resource availability is subject to dynamic change. To meet end-to-end QoS in these
dynamic environments, DRE systems can benefit from adaptive resource manage-
ment architectures that monitors system resources, performs efficient application
workload management, and enables efficient resource provisioning for executing ap-
plications. Resource management mechanisms based on control-theoretic techniques
are emerging as a promising solution to handle the challenges of applications with
stringent end-to-end QoS executing in DRE systems. These mechanisms enable adap-
tive resource management capabilities in open DRE systems and adapt gracefully to
fluctuation in resource availability and application resource requirement at runtime.

This paper described HIDRA, which is our hierarchical distributed resource man-
agement architecture based on control-theoretic techniques that provides adaptive
resource management, such as resource monitoring and application adaptation, that
are key to supporting open DRE systems. We first presented the theoretical analy-
sis that shows how HiDRA ensures stability in our DRE system. We then evaluated
the performance of HiDRA using a representative target tracking DRE system im-
plemented using Real-time CORBA and composed of two types of system resources
(i.e., computational power at the receiver and wireless network bandwidth) and three
applications (i.e., UAV data sender/receiver pairs). Our theoretical analysis and em-
pirical results show that HIDRA delivers efficient resource utilization by maintain-
ing system resource utilization within specified bounds even under fluctuating work
loads, thereby ensuring system stability and delivering effective QoS. However, as
HiDRA tries to achieve the desired utilization set-point of system resources at all
times, where there is no resource contention between applications executing in the
system, the system can be operated without HIDRA to conserve system resources.
When resource contention arises, the system can be operated with HIDRA to ensure
that the utilization of system resources is maintained within the specified set-point.

The lessons learned by applying HiDRA to our target tracking system thus far
include:

e HiDRA'’s Control-theoretic approaches yielded in an adaptive resource manage-
ment architecture that can gracefully handle fluctuations in resource availability
and/or demand for open DRE systems.

e The formalisms presented in the paper form the foundation for a resource man-
agement framework based on control-theoretic principles that can be used to per-
form system stability analysis and obtain theoretical assurance about system per-
formance.
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e Developing applications in which parameters can be fine-tuned to modify the ap-
plication operation and utilization of system resources helps achieve higher QoS
of applications and enables HIDRA to maintain system resource utilization within
desired bounds.

DRE systems are increasingly being used for mission-critical applications that op-
erate in hostile environments. Often these systems are subjected to QoS attacks that
aim at degrading system performance significantly. These attacks often results in loss
of system resources, which in turn affects the QoS of mission critical applications
operating on these systems. In future work, we will also extend HiDRA to detect
such attacks early and prevent them from reducing the QoS of mission-critical appli-
cations.
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