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Enhancing the Adaptivity of Distributed Real-time and Embedded Systems 
via Standard QoS-enabled Dynamic Scheduling Middleware 

 

Abstract 
To support the dynamically changing QoS needs of open 
distributed real-time embedded (DRE) systems, it is essen-
tial to propagate QoS parameters and to enforce task QoS 
requirements adaptably across multiple endsystems dy-
namically in a way that is simultaneously efficient, flexible, 
and timely.  This paper makes three contributions to re-
search on QoS-enabled middleware that supports these 
types of open DRE systems. First, it describes the design 
and implementation of a dynamic scheduling  framework 
based on the OMG Real-Time CORBA 2.0 specification 
(RTC2) that provides capabilities for (1) propagating QoS 
parameters and a locus of excecution across endsystems 
via a distributable  thread abstraction and (2) enforcing the 
scheduling of multiple  distributable threads dynamically 
using standard CORBA middleware. Second, it examines 
the results of empirical studies conducted to validate our 
RTC2 framework in the context of open DRE systems.  
These experiments show that a range of policies for adap-
tive dynamic scheduling and management of distributable 
threads can be enforced efficiently in standard middleware 
for open DRE systems. Third, it presents results from case 
studies of multiple adaptive middleware QoS management 
technologies to monitor and control the quality, timeliness, 
and criticality of key operations (such as navigation and 
imagery transfer) adaptively in a representative DRE avon-
ics system.  

Keywords: Real-time CORBA, adaptive systems, dynamic 
scheduling.  

1. Introduction 
 

Emerging trends and challenges for  DRE systems and 
middleware. Developing distributed real-time and embed-
ded (DRE) systems whose quality of service (QoS) can be 
assured even in the face of changes in available resources is 
an important and challenging R&D problem.  QoS-enabled 
middleware has been applied successfully to certain types 
of DRE systems – primarily closed DRE systems where the 
set of application tasks that will run in the system and the 
loads they will place on system resources are known in ad-
vance.  For example, middleware based on the Real-time 
CORBA 1.0 (RTC1) standard [1] supports statically sched-
uled DRE systems (such as avionics mission computing and 

industrial process controllers) in which task eligibility can 
be mapped to a fixed set of priorities. 

For an important emerging class of open DRE systems 
(such as adaptive audio/video streaming [2], collaborative 
mission re-planning [3], and robotics applications designed 
for close interaction with their environments [4]), however, 
it is often not possible to know the entire set of application 
tasks that will run on the system, the loads they will impose 
on system resources in response to a dynamically changing 
environment, or the order in which the tasks will execute 
due to (1) variations in their operating environments, (2) 
contention with other tasks in the open system, or (3) to the 
loss or failure of resources (such as individual network links 
or endsystems).  This dynamism can occur because the 
number of combinations in which application tasks can be 
mapped to system resources is too large to compute effi-
ciently or because task run-time behaviors are simply too 
variable to predict accurately.  In either case, open DRE 
systems must be able to adapt dynamically to handle 
changes in resource availability and QoS requirements. 

Assuring effective QoS support in the face of dy-
namically changing requirements and resources – while also 
keeping the overhead of that assurance within reasonable 
bounds – requires a new generation of middleware mecha-
nisms. In particular, there are a number of limitations with 
applying RTC1 middleware capabilities to open DRE sys-
tems with dynamic QoS requirements (e.g., by handling any 
dynamic variations in task eligibility by manipulating fixed 
task priorities at run-time), including: 

• Limits on the number of priorities supported by com-
mon-off-the-shelf (COTS) real-time operating systems 
that can reduce the granularity at which dynamic varia-
tions in task eligibility can be enforced.  

• Without middleware-mediated mechanisms for enforc-
ing QoS, the application itself must provide priority 
manipulation mechanisms, which is tedious and error-
prone for DRE application developers.  

• Without open, well-defined, and replaceable schedul-
ing mechanisms within the middleware itself, it is hard 
to improve performance through close integration of 
middleware features or to achieve sufficient flexibility 
to customize the policies for QoS enforcement so they 
meet the needs of each application. 
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Solution approach 
�� ��

 Adaptive DRE middleware via 
dynamic scheduling. The OMG Real-Time CORBA 2.0 
specification (RTC2) [5] addresses the limitations with the 
fixed-priority mechanisms specified by RTC1. In particular, 
RTC2 extends RTC1 by providing interfaces and mecha-
nisms that applications can use to plug in dynamic schedul-
ers and interact with them across a distributed system.  
RTC2 therefore gives application developers more flexibil-
ity to specify and use scheduling disciplines and parameters 
that define and describe their execution and resource re-
quirements more accurately and adaptively. To accomplish 
this, RTC2 introduces two new concepts to Real-time 
CORBA: (1) distributable threads that are used to map 
end-to-end QoS requirements to sequential and branching 
distributed computations across the endsystems they trav-
erse and (2) a scheduling service architecture that allows 
applications to choose which mechanisms enforce task eli-
gibility. 

Since the RTC2 specification was only recently inte-
grated into the OMG CORBA standard, there are no com-
mercial products or research prototypes available for it yet.  
To facilitate the study of standards-based dynamic schedul-
ing middleware, we have therefore implemented a RTC2 
framework that enhances on our prior work with The ACE 
ORB (TAO) [6] (which is a widely-used open-source im-
plementation of Real-time CORBA 1.0 [1]) and its Real-
time Scheduling Service  (which supports static [7] and 
dynamic scheduling algorithms [8]). This paper describes 
how we designed and optimized the performance of our 
RTC2 Dynamic Scheduling framework to address the fol-
lowing design challenges for adaptive DRE systems:  

• Defining a means to install pluggable dynamic schedul-
ers that support more adaptive scheduling policies and 
mechanisms for a wide range of DRE applications, 

• Creating an interface that allows customization of inter-
actions between an installed RTC2 dynamic scheduler 
and an application, 

• Portable and efficient mechanisms for distinguishing 
between distributable thread and OS thread identities, 
and 

• Safe and effective mechanisms for canceling distribut-
able threads to give applications control over distrib-
uted concurrency. 

The results of our efforts have been integrated with the 
TAO open-source software release and are available from 
http://deuce.doc.wustl.edu/Download.html. 

Paper  organization. The remainder of this paper is organ-
ized as follows: Section 2 describes the RTC2 specification 
and explains the design of our RTC2 framework, which has 
been integrated with the TAO open-source Real-time 
CORBA Object Request Broker (ORB); Section 3 presents 

empirical studies of micro-benchmarks conducted to vali-
date our RTC2 approach and to quantify the costs of dy-
namic scheduling of distributable threads; Section 4 pre-
sents  empirical results of broader case studies that applied 
multiple adaptive middleware technologies to DRE avionics 
applications with real-time image delivery requirements; 
Section 5 compares our work with related research; and 
Section 6 offers concluding remarks. 

2. The Design and Implementation of a Dy-
namic Scheduling Framework for  Real-Time 
CORBA 2.0  
 

This section describes the key characteristics and capabili-
ties of RTC2 specification and describes how the RTC2 
dynamic scheduling framework that we have integrated with 
the TAO Real-time CORBA ORB helps with the design and 
implementation of adaptive DRE systems.  Figure 1 illus-
trates the architecture of TAO’s RTC2 framework. 
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Figure 1: TAO’s RTC2 Architecture [9] 

The key elements of TAO’s RTC2 framework shown in 
Figure 1 are:  

1. Distributable threads, which applications use to trav-
erse endsystems along paths that can be varied on-the-
fly based on scheduling or application level decisions, 

2. Scheduling segments, which map policy parameters to 
distributable threads at specific points of execution so 
that new policies can be applied and existing policies 
can be adapted at finer granularity, 

3. Current execution locus, the head of an active distri-
butable thread, which much like the head of an applica-
tion or kernel thread can take alternative decision 
branches at run-time based on the state of the applica-
tion or of the supporting system software,  

4. Scheduling policies, which determine the eligibility of 
each thread based on parameters of the current schedul-
ing segment within which that thread is executing, and 

5. Dynamic scheduler, which reconciles and adapts the 
set of scheduling policies for all segments and threads 
on an endsystem, to determine which thread is active. 
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Distributable threads help to enhance the adaptivity of DRE 
systems end-to-end since they provide a more effective ab-
straction for dynamically managing the lifetime of sequen-
tial or branching distributed operations. The remainder of 
this section explains the concepts of distributable threads 
and the adaptive management of their real-time properties 
through the pluggable scheduling framework specified by 
RTC2.  This section also outlines the design of these con-
cepts in TAO’s RTC2 framework implementation.  We 
describe scheduling points, which govern how and when 
scheduling parameter values can be mapped to distributable 
threads.  We then conclude by discussing issues related to 
distributable thread identity (such as the need to emulate 
OS-level thread-specific mechanisms for storage or locking 
in middleware) and examine the interfaces and mechanisms 
needed to cancel distributable threads safely.  

2.1 Distr ibutable Threads 

DRE applications must manage key resources, such as CPU 
cycles, network bandwidth, and battery power, to ensure 
predictable behavior along each end-to-end path.  In RTC1-
based static DRE systems, application end-to-end priorities 
can be acquired from clients, propagated with invocations, 
and used by servers to arbitrate access to endsystem CPU 
resources.  For dynamic DRE systems, the fixed-priority 
propagation model provided by RTC1 is insufficient be-
cause these DRE systems require more information than 
just priority, e.g., they may need deadline, execution time, 
and laxity, and the values of at least some of those parame-
ters are likely to vary during system execution.  A more 
sophisticated abstraction than priority is thus needed to 
identify the most eligible schedulable entity, and additional 
scheduling parameters may need to be associated and 
propagated with it so that it can be scheduled appropriately.  

A natural unit of scheduling abstraction suggested by 
CORBA’s programming model is a thread that can execute 
object methods without regard for physical endsystem 
boundaries. In the RTC2 specification, this programming 
model abstraction is termed a distributable thread, which 
can span multiple endsystems and is the primary schedul-
able entity in RTC2-based DRE applications. A distribut-
able thread replaces the concept of an activity that was in-
troduced but not formalized in the RTC1 specification. 

Each distributable thread in RTC2 is identified by a 
unique system wide identifier called a Globally Unique Id 
(GUID ) [10]. A distributable thread may also have one or 
more execution scheduling parameters, e.g., priority, time-
constraints (such as deadlines), and importance. These pa-
rameters specify attributes used by RTC2 schedulers for 
resource arbitration, and also define and convey acceptable 
end-to-end timeliness bounds for completing the sequential 
execution of operations in CORBA object instances that 
may reside on multiple physical endsystems.  

Within each endsystem, the flow of control of the dis-
tributable thread is mapped onto the execution of a local 
thread provided by the OS. At a given instant, each dis-
tributable thread has only one execution point in the whole 
system, i.e., a distributable thread does not execute simulta-
neously on multiple endsystems it spans.  Instead, it exe-
cutes a code sequence consisting of nested distributed 
and/or local operation invocations, similar to how a local 
thread makes a series of nested local operation invocations.   

Below, we describe the key interfaces and properties of 
distributable threads in the RTC2 specification and explain 
how we implement those aspects in TAO.  For each of these 
topics we identify its relevance to adaptive DRE systems. 

Scheduling segment. A distributable thread comprises one 
or more scheduling segments. A scheduling segment is a 
code sequence whose execution is scheduled according to a 
distinct set of scheduling parameters specified by the appli-
cation. For example, the worst-case execution time, dead-
line, and criticality of a real-time operation is used by the 
Maximum Urgency First (MUF) [4] scheduling strategy. 
These parameters can be associated with a segment encom-
passing that operation on a particular endsystem, e.g., as 
shown for segment B in Figure 1. The code sequence that a 
scheduling segment comprises can include remote and/or 
local operation invocations.    It is possible to adapt the 
values of parameters for the current scheduling policy 
within a given scheduling segment, but to adapt the policy 
itself, a new scheduling segment must be entered. 

The Current inter face.  The RTSchedul i ng module’s 
Cur r ent  interface defines operations that begin, update 
(e.g., to modify scheduling parameter values), and end the 
scheduling segments described above, as well as create and 
destroy distributable threads. Each scheduling segment has 
a unique instance of this Cur r ent  object managed in local 
thread specific storage (TSS) [11] on each endsystem along 
the path of the distributable thread. A nested scheduling 
segment keeps a reference to the Cur r ent  instance of its 
enclosing scheduling segment. The following CORBA In-
terface Definition Language (IDL) fragment shows the op-
erations in the RTSchedul i ng: : Cur r ent  interface 
pertaining to scheduling segments and distributable threads 
that are implemented in TAO’s RTC2 dynamic scheduling 
framework: 

l ocal  i nt er f ace RTSchedul i ng: : Cur r ent  :      
                RTCORBA: : Cur r ent  {  
  voi d begi n_schedul i ng_segment   
    ( i n st r i ng schedul i ng_segment _name,  
     i n CORBA: : Pol i cy sched_par am,  
     i n CORBA: : Pol i cy i mpl i c i t _sched_par am)  
  r ai ses( UNSUPPORTED_SCHEDULI NG_DI SCI PLI NE) ;  
 
  voi d updat e_schedul i ng_segment  
    ( i n st r i ng schedul i ng_segment _name,  
     i n CORBA: : Pol i cy sched_par am,  
     i n CORBA: : Pol i cy i mpl i c i t _sched_par am)  
  r ai ses( UNSUPPORTED_SCHEDULI NG_DI SCI PLI NE) ;  
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  voi d end_schedul i ng_segment  
    ( i n st r i ng schedul i ng_segment _name) ;  
 
  Di st r i but abl eThr ead spawn (  
     i n Thr eadAct i on st ar t ,  
     i n CORBA: : Voi dDat a dat a,  
     i n st r i ng name,  
     i n CORBA: : Pol i cy sched_par am,  
     i n CORBA: : Pol i cy i mpl i c i t _sched_par am,  
     i n unsi gned l ong st ack_si ze,  
     i n RTCORBA: : Pr i or i t y base_pr i or i t y) ;  
} ;    

Each operation in the Cur r ent  interface of the RT 
Schedul i ng module is described below. 

begin_scheduling_segment() – A DRE application calls 
this operation to start a scheduling segment. If the caller is 
not already within a distributable thread, a new distributable 
thread is created. If the caller is already within a distribut-
able thread, a nested scheduling segment is created. The 
call to begi n_schedul i ng_segment ( )  is also a 
scheduling point, where the application interacts with the 
RTC2 dynamic scheduler to select the currently executing 
thread (Section 2.3 describes scheduling points in depth), 
and thus represents a point of fine-grain adaptability of 
overall system concurrency behavior. 

update_scheduling_segment() – This operation is a 
scheduling point the application uses to interact with the 
RTC2 dynamic scheduler to update the scheduling pa-
rameters and check whether or not the schedule remains 
feasible. It must be called only from within a scheduling 
segment. A CORBA: : BAD_I NV_ORDER exception is 
thrown if this operation is called outside a scheduling seg-
ment context, e.g., by code outside a distributable thread. 

end_scheduling_segment() – This operation marks the end 
of a scheduling segment and the termination of the distri-
butable thread if the segment is not nested within another 
segment. Every begi n_schedul i ng_segment ( )  call 
should have a corresponding call to end_schedul i ng_ 
segment ( ) . As noted earlier, in TAO’s RTC2 prototype 
the segment begin and end calls should be on the same host 
and in the same thread.  After an end_schedul i ng 
_segment ( )  operation, the distributable thread is operat-
ing with the scheduling parameter of the next outer sched-
uling segment scope. This nesting of scheduling segments 
represents an opportunity to manage scheduling behavior 
adaptively, by applying different scheduling policies for 
different modes of execution of each distributable thread, 
and mapping scheduling segments and their associated poli-
cies to application modes: as a distributable thread enters 
or leaves a particular mode of execution, it simply pushes 
or pops an appropriate nested scheduling segment.  

spawn() – A distributable thread can create a new distribut-
able thread by invoking the spawn( )  operation. If the 
scheduling parameters for the new distributable thread are 
not specified explicitly, the implicit scheduling parameters 

of the distributable thread calling spawn( )  are used. The 
spawn( )  operation can only be called by a distributable 
thread, otherwise a CORBA: : BAD_I NV_ORDER exception 
is thrown. The spawn( )  operation therefore represents the 
creation of a new independently managed schedulable en-
tity.  The name parameter provides a name for the sched-
uling segment created by spawn( ) . The sched_ par am 
and i mpl i c i t _sched_par am parameters provide the 
scheduling parameters for the new distributable thread.  If 
sched_par am is null, then the i mpl i c i t _sched_ 
par am of the scheduling segment calling spawn( )  will 
become the new distributable thread’s sched_par am.  
The dat a parameter passed to the spawn( )  operation is 
then passed to the following Thr eadAct i on: : do( )  
method invoked by spawn( ) : 
modul e RTSchedul i ng {  
  l ocal  i nt er f ace Thr eadAct i on {   
     voi d do( i n CORBA: : Voi dDat a dat a) ;  
  } ;  
} ; 

Thr eadAct i on: : do( )  is the entry point to the new 
scheduling segment and is called by spawn( )  in the 
context of the newly created distributable thread.   
 

Distr ibutable thread location. Now that we have ex-
plained the terminology and interfaces for distributable 
threads, and the adaptive behaviors that can be designed 
using those interfaces, we can illustrate how all the pieces 
fit together. A distributable thread may be entirely local to a 
host or it may span multiple hosts by making remote invo-
cations. Figures 2 and 3 therefore illustrate the different 
spans that are possible for distributable threads.  In these 
figures, calls made by the application are shown as solid 
dots, while calls made by interceptors within the middle-
ware are shown as shaded rectangles. 

BSS - A

BSS - B

ESS - A

ESS - B

Host 1 Host 2 Host 3

2 -  Way
Invocation

2 -  Way
Invocation

DT1

BSS - C

ESS - C

DT2

BSS - D

ESS - B

BSS - E

ESS - E

DT3

 
Figure 2: Distr ibutable Threads and Hosts They Span  

In Figure 2, DT1 makes a twoway invocation on an object 
on a different host and also has a nested segment started on 
Host 2 (BSS-B to ESS-B within BSS-A to ESS-A). DT2 
and DT3 are simple distributable threads that do not trav-
erse host boundaries. DT2 has a single scheduling segment 
(BSS-C to ESS-C), while DT3 has a nested scheduling 
segment (BSS-E to ESS-E within BSS-D to ESS-D).  In 
Figure 3 DT2 is created by the invocation of the 
RTSchedul i ng: : Cur r ent : : spawn( )  operation 
within DT1, while DT4 is implicitly created on Host 2 to 
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service a oneway invocation. DT4 is destroyed when the 
upcall completes on Host 2. 
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Figure 3: Ways to Spawn a Distr ibutable Thread  

2.2 Pluggable Scheduling 
 

Pluggable scheduling helps to make DRE systems more 
adaptive since different scheduling strategies can be inte-
grated in response to different application use cases and 
needs. Different distributable threads in a DRE system con-
tend for shared resources, such as CPU cycles. To support 
the end-to-end QoS demands of open DRE systems, it is 
imperative that such contention be resolved predictably, 
and yet the conditions under which that occur may vary 
significantly at run-time.  This tension between dynamic 
environments and predictable resource management neces-
sitates scheduling and dispatching mechanisms for these 
entities that are (1) based on the real-time requirements of 
each individual system, and (2) sufficiently flexible to be 
applied adaptively in the face of varying application re-
quirements and run-time conditions. In the RTC2 specifica-
tion, a local scheduling policy decides the sequence in 
which the distributable threads should be given access to 
the resources and the dispatching mechanism grants the 
resources according to the sequence decided by the sched-
uling policy. 

Various scheduling disciplines exist that require differ-
ent scheduling parameters, such as MLF [4], EDF [12], 
MUF [4], or RMS+MLF [13]. One or more of these sched-
uling disciplines (or any other discipline the system devel-
oper chooses) may be used by an open DRE system to ful-
fill its scheduling requirements. Supporting this flexibility 
requires a mechanism by which different dynamic schedul-
ers (each implementing one or more scheduling disciplines) 
can be plugged into an RTC2 implementation.  

The RTC2 specification provides a common CORBA 
IDL interface, RTSchedul i ng: : Schedul er . This 
interface has the semantics of an abstract class from which 
specific dynamic scheduler implementations can be derived. 
In the RTC2 specification, the dynamic scheduler is in-
stalled in the ORB and can be queried with the standard 
CORBA ORB: : r esol ve_i ni t i al _r ef er ences( )  
factory operation using the string “ RTSchedul er ” . The 
RTSchedul i ng: : Manager  interface shown below al-

lows the application to install custom dynamic schedulers 
and obtain a reference to the one currently installed. 

i nt er f ace RTSchedul i ng: : Manager  {  
    Schedul er  schedul er  ( ) ;  
    voi d schedul er  ( Schedul er ) ;  
} ;  

The RTSchedul er _Manager  object can be obtained via 
an ORB: r esol ve_i ni t i al _r ef er ence( )  call using 
the string “ RTSchedul er _Manager ” . The application 
then interacts with the installed RTC2 dynamic scheduler 
(e.g., passing its scheduling requirements) using operations 
defined in the RTSchedul i ng: : Schedul er  interface 
that is listed under Scheduler Upcalls in Table 1.  

Table 1: Summary of Scheduler  Upcalls for  User  Invoked 
Scheduling Points  

USER INVOKES SCHEDULER UPCALL 

Current::spawn Scheduler:: 
Begin_new_scheduling_segment 

Current:: 
begin_scheduling_segment 
 

Scheduler:: 

Begin_new_scheduling_segment 

Current:: 
begin_scheduling_segment 
 

Scheduler:: 

Begin_nested_scheduling_segment 

Current:: 
update_scheduling_segment 

Scheduler:: 
Update_scheduling_segment 

Current:: 
end_scheduling_segment 
 

Scheduler:: 

end_nested_scheduling_segment 

Current:: 
end_scheduling_segment 
 

Scheduler:: 

end_scheduling_segment 

DistributableThread:: 
cancel Scheduler::cancel 

  

Similarly, the ORB interacts with the RTC2 dynamic 
scheduler at the specific scheduling points described in Sec-
tion 2.3 to ensure proper dispatching and sharing of sched-
uling information across hosts. This is done through dy-
namic scheduler operations listed under scheduler upcalls 
in Table 2. 

Table 2:  Summary of Scheduler  Upcalls for  ORB Invoked 
Scheduling Points  

ORB INTERCEPTS SCHEDULER UPCALL 

Outgoing request  Scheduler::send_request 

Incoming request Scheduler::receive_request 

Outgoing reply Scheduler::send_reply 

Incoming reply Scheduler::receive_reply 

 

2.3 Scheduling Points 
 

An application and ORB interact with the RTC2 dynamic 
scheduler at well-defined points to schedule distributable 
threads in a DRE system.  These points can be defined a 
priori in more static systems, while in adaptive systems, the 
traversal of these points can be placed under adaptive con-
trol by the distributable threads, as Section 2.1 described.  
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These scheduling points allow an application and ORB to 
provide the RTC2 dynamic scheduler up-to-the-instant in-
formation about the competing tasks in the system, so it can 
make scheduling decisions in a consistent and predictable 
but also adaptive manner. We now describe these schedul-
ing points, which are illustrated in Figure 4. 
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Figure 4: RTC2 Scheduling Points [9] 

Scheduling points 1-3 in Figure 4 are points where an ap-
plication interacts with the RTC2 dynamic scheduler, as 
summarized in Table 1.  The key application-level schedul-
ing points and their characteristics are described below. 

New distr ibutable threads and segments. When a new 
scheduling segment or new distributable thread is created, 
the RTC2 dynamic scheduler must be informed so that it 
can schedule the new segment. The RTC2 dynamic sched-
uler schedules the new scheduling segment based on its 
parameters and those of the active scheduling segments for 
other distributable threads in the system.  This occurs 
whenever application code outside a distributable thread 
calls the begi n_new_schedul i ng_segment ( )  op-
eration to create a new distributable thread, or when code 
within a distributable thread makes a call to 
begi n_nest ed_schedul i ng_segment ( )  to create 
a nested scheduling segment. 

Changes to scheduling segment parameters. When the 
Cur r ent : : updat e_schedul i ng_segment ( )  op-
eration is invoked by a distributable thread to adapt its 
scheduling parameters, it updates scheduling parameters of 
the corresponding scheduling segment by making a call to 
Schedul er : : updat e_schedul i ng_segment ( ) . 

Termination of a scheduling segment or  distr ibutable 
thread. The RTC2 dynamic scheduler should be informed 
when Cur r ent : : end_schedul i ng_segment ( )  is 
invoked by a distributable thread to end a scheduling seg-

ment or when a distributable thread is cancelled, so it can 
reschedule the system accordingly.  Hence, the 
Cur r ent : : end_schedul i ng_segment ( )  operation 
invokes the end_schedul i ng_segment ( )  operation 
on the RTC2 dynamic scheduler to indicate when the out-
ermost scheduling segment is terminated. The dynamic 
scheduler then reverts the thread to its original scheduling 
parameters. If a nested scheduling segment is terminated the  
dynamic scheduler invokes the Schedul er : : end_ 
nest ed_schedul i ng_segment ( )  operation. The 
RTC2 dynamic scheduler then ends the scheduling segment 
and resets the distributable thread to the scheduling parame-
ters of the enclosing scheduling segment scope.  

As described in Section 2.4.2, a distributable thread 
can also be terminated from the application or another dis-
tributable thread by calling the cancel ( )  operation on 
the distributable thread. When the distributable thread is 
cancelled, the Schedul er : : cancel ( )  operation is 
called automatically by the RTC2 framework, which allows 
the application to inform the RTC2 dynamic scheduler that 
a distributable thread has been cancelled.  

Scheduling points 4-7 in Figure 4 are points where an 
ORB interacts with the RTC2 dynamic scheduler, i.e., when 
remote invocations are made between different hosts, and 
are summarized in Table 2. Collocated invocations occur 
when the client and server are located in the same process. 
In collocated twoway invocations, the thread making the 
request also services the request. Unless a scheduling seg-
ment begins or ends at that point, therefore, the distribut-
able thread does not have to be rescheduled by the RTC2 
dynamic scheduler. Collocated oneway invocations do not 
result in creation of a new distributable thread in TAO’s 
RTC2 implementation due to (1) the overhead of distribut-
able thread creation for collocated oneways, (2) scheduling 
overhead and complexity, (3) lack of interceptor support for 
collocated oneways, and (4) lack of support for executing 
collocated calls in separate threads. 

The ORB interacts with the RTC2 dynamic scheduler 
at points where the remote operation invocations are sent 
and received. Client-side and server-side interceptors are 
therefore installed to allow interception requests as they are 
sent and received. These interceptors are required (a) to 
intercept where a new distributable thread is spawned in 
oneway operation invocations and create a new GUID for 
that thread on the server, (b) to populate the service con-
texts, sent with the invocation, with the GUID and required 
scheduling parameters of the distributable thread, (c) to re-
create distributable threads on the server, (d) to perform 
cleanup operations for the distributable thread on the server 
when replies  are sent back to a client for twoway opera-
tions, and (e) to perform cleanup operations on the client 
when the replies from twoway operations are received. 
These interception points interact with the RTC2 dynamic 
scheduler so it can make appropriate scheduling decisions.  
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The key RTC2 ORB-level scheduling points and their char-
acteristics are described below. 

Send request. When a remote operation invocation is 
made, the RTC2 dynamic scheduler must be informed to 
ensure that it can (1) populate the service context of the 
request to embed the appropriate scheduling parameters of 
the distributable thread and (2) potentially re-map the local 
thread associated with the distributable thread to service 
another distributable thread. As discussed in Section 2.4, 
when the distributable thread returns to that same ORB, it 
may be mapped to a different local thread than the one with 
which it was associated previously. The client request 
interceptor’s send_r equest ( )  operation is invoked 
automatically just before a request is sent. This operation in 
turn invokes Schedul er : : send_r equest ( )  with the 
schedul-ing parameters of the distributable thread that is 
making the request. The scheduling information in the 
service context of the invocation enables the RTC2 
dynamic scheduler on the remote host to schedule the 
incoming request appropriately. 

Receive request. When a request is received, the server 
request interceptor’s r ecei ve_r equest ( )  operation is 
invoked automatically by the RTC2 framework before the 
upcall to the servant is made. This operation in turn invokes 
Schedul er : : r ecei ve_r equest ( ) , passing it the 
received service context that contains the GUID and 
scheduling parameters for the corresponding distributable 
thread. It is the responsibility of the RTC2 dynamic 
scheduler to unmarshal the scheduling information in the 
service context that is received. The RTC2 dynamic 
scheduler uses this information to schedule the thread 
servicing the request, and the ORB requires it to reconstruct 
a RTSchedul i ng: : Cur r ent , and hence a distributable 
thread, on the server. 

Send reply – When the distributable thread returns via a 
twoway reply to a host from which it migrated, the 
send_r epl y( )  operation on the server request intercep-
tor is called automatically by the RTC2 framework just 
before the reply is sent. This operation in turn calls the 
Schedul er : : send_r epl y( )  operation on the server-
side RTC2 dynamic scheduler so it can perform any sched-
uling of the thread  making the upcall as required by the 
scheduling discipline used so the next eligible distributable 
thread in the system is executed.  

Receive reply. Distributable threads migrate across hosts 
through twoway calls. The distributable thread returns to 
the previous host, from where it migrated, through the reply 
of the two-request. When the reply is received the client 
request interceptor’s r ecei ve_r epl y( )  operation is 
invoked. This operation in turn invokes Schedul er : :  
r ecei ve_r epl y( )  on the client-side RTC2 dynamic 
scheduler, which then performs any scheduling related deci-

sions required by the scheduling discipline, as a distribut-
able thread re-enters the system. 

2.4 Challenges of Implementing an RTC2 
Framework  

To manage adaptive behavior of distributable threads effi-
ciently, predictably, and correctly, an RTC2 framework 
must resolve a number of design challenges. Specifically, 
when distributable threads are involved, two key adaptation 
strategies are problematic:  

• Transferring ownership of storage, locks and other 
reserved system resources, and  

• Truncating the execution  of tasks that are no longer 
relevant or that risk interfering with system correctness. 

Below we examine two technical challenges we faced when 
implementing RTC2 distributable threads in TAO: (1) man-
aging distributable vs. OS thread identities and (2) cancel-
ing distributable threads. For each challenge, we describe 
the context in which the challenge arises, identify the spe-
cific problem that must be addressed, describe our solution 
for resolving the challenge, and explain how this solution 
was applied to TAO’s RTC2 framework. 

2.4.1 Managing Distributable vs. OS Thread Identity 
Context. A key design issue with the RTC2 specification is 
that in modern ORB middleware with alternative concur-
rency strategies [14], a distributable thread may be mapped 
on each endsystem to several different OS threads over its 
lifetime.     

Host 1 Host 2

OS
Thread

1

DT 1

tss_write

tss_read

OS
Thread

2

OS
Thread

1

DT 2

 
Figure 5: TSS with Distr ibutable Threads  

 

Figure 5 illustrates how a distributable thread can use 
thread-specific storage (TSS), lock resources recursively so 
that they can be re-acquired later by that same distributable 
thread, or perform any number of other operations that are 
sensitive to the identity of the distributable thread perform-
ing them. In Figure 5, distributable thread DT1 associated 
with OS thread 1 writes information into TSS on endsystem 
A and then migrates to endsystem B. Before DT1 migrates 
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back to endsystem A, DT2 migrates from endsystem B to 
endsystem A.  For efficiency, flexible concurrency strate-
gies such as thread pools [15] may map distributable 
threads to whatever local threads are available. For exam-
ple, Figure 5 shows DT2 mapped to OS thread 1 and when 
DT1 migrates back to endsystem A it is mapped to OS 
thread 2. 

Problem. Problems can arise when DT1 wants to obtain the 
information it previously stored in TSS. If native OS-level 
TSS was used, OS thread 2 cannot access the TSS for OS 
thread 1, so DT1’s call to t ss_r ead( )  in Figure 5 will 
fail. Moreover, the OS-level TSS mechanism does not offer 
a way to substitute the OS thread identity used for a TSS 
call, even temporarily.  

Solution. To resolve these problems, some notion of distri-
butable thread identity is needed that is separate from the 
identities of operating system threads.  Likewise, mecha-
nisms are needed that use distributable thread GUIDs rather 
than OS thread IDs, which results in an emulation of OS-
level mechanisms in middleware that can incur additional 
overhead.  We quantify the cost of this approach in our ex-
perimental results presented in Section 3.1. 

2.4.2 Canceling a Distributable Thread 
Context. DRE applications may need to cancel distribut-
able threads that become useless due to deadline failure or 
to changing application requirements at run-time, or that 
might interfere with other distributable threads that have 
become more important. In the RTC2 specification, a dis-
tributable thread’s interface provides a  cancel ( )  opera-
tion that can be invoked to stop the corresponding distribut-
able thread. The Di st r i but abl eThr ead instance is 
created when the outer most scheduling segment is created. 
All nested scheduling segments are associated with the 
same distributable thread that they constitute. 

Problem. Safe and effective cancellation of a distributable 
thread requires that two conditions are satisfied: (1) can-
cellation must only be invoked on a distributable thread that 
in fact exists in the system and multiple cancellation of a 
distributable thread must not occur and (2) because a distri-
butable thread may have locked resources or performed 
other operations with side effects outside that distributable 
thread, the effects of those operations must be reversed be-
fore the distributable thread is destroyed. 

Solution. To cancel a distributable thread, the application 
can only call the cancel ( )  operation on the instance of 
the distributable thread that is to be cancelled. Moreover, 
once cancellation is successful that instance becomes inva-
lid for further cancellation. In the TAO RTC2 framework, 
this operation causes the CORBA: : THREAD_CANCELLED 
exception to be (1) raised in the context of the distributable 
thread at the next scheduling point for the distributable 
thread and (2) propagated to where the distributable thread 
started, as illustrated in Figure 6.  A distributable thread can 

be cancelled any time on any host that it currently spans. As 
shown in Figure 6, the distributable thread was cancelled on 
Host 2, even though it is currently executing on Host 3.  

When the cancel ( )  operation is called, a thread 
cancelled exception is propagated to the start of the distri-
butable thread. As shown in Figure 6, the CORBA: :  
THREAD_CANCELLED exception is propagated from Host 
2 to Host 1 where the distributable thread started. Since the 
cancellation is not forwarded to the head of the distributable 
thread if it is not on the same host, the cancellation will 
only be processed after the distributable thread returns to 
Host 2 from Host 3. 

BSS - A

cancel DT

Process the
cancel at next

scheduling point

Propagate
cancel

Head of DT

Host 1 Host 2 Host 3

DT cancelled

 
Figure 6: Distr ibutable Thread Cancellation [9] 

Note that while the distributable thread is a local interface, 
the head of the distributable thread may not be executing 
within the same address space as the thread calling 
cancel ( ) . Hence, cancel ( )  is implemented by setting 
a flag in the Di st r i but abl eThr ead interface to mark 
it as cancelled. At the next local scheduling point of the 
distributable thread a check for cancellation of the dis-
tributable thread will be performed. If the flag is set the 
distributable thread is cancelled, the CORBA: : THREAD_ 
CANCELLED exception is raised, and the relevant resources 
are released. After CORBA: : THREAD_CANCELLED is 
raised and the distributable thread is cancelled, the local 
thread that the distributable thread was mapped is released, 
possibly to be used by another distributable thread. 

3. Empir ical Evaluation of Real-Time 
CORBA 2.0 Dynamic Scheduling in TAO  

This section presents the results of micro-benchmarks of 
our RTC2 implementation in TAO described in Section 2. 
Section 4 then present the results of a two broader case 
studies based on a production DRE application. The studies 
in this section serve primarily to quantify the overhead in-
curred by TAO’s RTC2 dynamic scheduling framework. 
We first describe experiments that quantify the cost to sup-
port a representative thread-identity-aware mechanism 
based on thread specific storage (TSS) from the OS to the 
middleware.  We then describe experiments that evaluated 
alternative mechanisms for scheduling distributable threads 
according to their importance.  
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3.1 Performance Overhead of Thread ID 
Management  

Exper iment overview and configuration. Section 2.4.1 
describes the challenges associated with emulating distri-
butable thread identity via thread-specific storage in mid-
dleware, rather than using OS-level TSS support. To quan-
tify the additional overhead of TSS support in middleware, 
we conducted several experiments to compare and contrast 
the cost of creating TSS keys, and writing and reading TSS 
data on a single endsystem.  

The experiments were conducted on a single-CPU 2.8 
GHz Pentium 4 machine with 512KB cache and 512Mb 
RAM, running Red Hat Linux 9.0 (2.4.18 Kernel) with the 
KURT-Linux patches and using ACE version 5.3.2.  The 
experiments were run as root, in the real-time scheduling 
class, and the experimental data were collected using the 
ACE high resolution timer. Experiments to assess the cost 
of TSS key creation were run by iteratively creating 500 
different keys and measuring the time it took to create each 
one.  Experiments to assess the cost of TSS write and read 
operations were run by repeatedly writing and then reading 
from one storage location associated with a single TSS key. 

Empir ical results. Figure 7 shows that the cost of creating 
the TSS keys in middleware was noticeably higher than the 
cost of creating TSS keys in the OS. Moreover, the slope at 
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Figure 7: TSS Key Creation Latency 

which the cost of key creation in middleware increased with 
each additional key was higher than the slope at which the 
cost of each additional key increased with OS-level TSS 
support.   Similarly, Figure 8 shows that the cost of 
r ead( )  and wr i t e( )  operations in middleware TSS 
emulation were noticeably higher than in OS-level TSS. 

Analysis of the results. Although the costs of middleware 
TSS emulation was higher (as is to be expected), these re-
sults also show that the cost of middleware emulation of 
TSS falls within reasonable limits.  For key creation, both 
OS and middleware TSS support show linear cost increases 
with additional keys, and for read and write operations the 
cost of each read or write remains essentially constant over 

multiple iterations.  Moreover, the total cost of create, read, 
and write operations is very small (< 4 usec even to create 
the 500th key) compared to the time-scales on which distri-
butable threads operate (on the order of seconds) in the 
empirical studies described next in Section 3.2. 
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Figure 8: TSS Write and Read Latency 

3.2 Dynamic Scheduling Performance 

Exper iment overview and configuration. To examine the 
ability of different scheduling mechanisms to respond adap-
tively to changes in parameters like task importance, we 
plugged two different implementations of the Schedul er  
interface – an OS Thread Priority Scheduler and a Most 
Important First Scheduler – into the TAO ORB version 
1.3.2 to test the behavior of its RTC2 dynamic scheduling 
framework with different scheduling strategies.  Both im-
plementations of the Schedul er  interface use a schedul-
ing strategy that prioritizes distributable threads according 
to their importance.  

The OS Thread Priority (TP) Scheduler is an RTC2 
dynamic scheduler implementation that schedules the dis-
tributable threads by mapping each one’s dynamic impor-
tance to native OS priorities. The onus of dispatching the 
distributable threads is thus delegated to the OS-level 
thread scheduler, according to the native OS priorities as-
signed to the local threads to which the distributable threads 
are mapped.  The GUID of a migrating distributable thread 
is propagated in the GIOP service context. The importance 
of a migrating distributable thread is carried across the 
endsystems it traverses using the RTC1 CLI ENT_ 
PROPAGATED priority propagation model. It is possible for 
the application to change a distributable thread’s impor-
tance dynamically.  However, the resolution with which the 
TP Scheduler can enforce the ordering of distributable 
threads by their importance parameters is limited by the 
number of available OS priorities. 

The Most Important First (MIF) Scheduler illustrated 
in Figure 9 is our RTC2 dynamic scheduler implementation 
that schedules distributable threads by their importance, 
with the most important thread scheduled to execute at any 
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given time. The application again specifies the importance 
of the thread as a scheduling parameter to the MIF Sched-
uler. The MIF Scheduler maintains a ready queue that 
stores distributable threads in order of their importance, 
with the most important distributable thread that is ready for 
execution at head of the queue. The local thread to which 
each distributable thread in the queue is mapped waits on a 
condition variable. When a distributable thread reaches the 
head of the queue (which implies that it is the next to be 
executed), the MIF Scheduler signals the corresponding 
condition variable on which the local thread is waiting, and 
hence awakens it. With the MIF Scheduler, both the impor-
tance and GUID of the distributable thread are propagated 
in the GIOP service context.  

C
V

C
V

1510

Ready Queue of Distributable Threads

+ 8

1510 8

New Distributable Thread

Ready Queue of Distributable Threads

C
V

C
V

C
V

C
V

C
V

CV - Condition Variable
Importance

-         Distributable Thread

 

Figure 9: MIF Scheduler  - Inser tion into  Ready Queue 

The experimental configuration we used to examine 
both the TP and MIF schedulers is identical. The test con-
sisted of a set of local and distributed (spanning two hosts) 
distributable threads. The hosts were both running RedHat 
Linux 7.1 in the real-time scheduling class. The local distri-
butable threads consisted of threads performing CPU bound 
work on the local host for a given execution time. The dis-
tributed distributable threads (1) performed the specified 
local CPU bound work on the local host, (2) then made the 
remote invocation performing CPU bound work on the re-
mote host for a given execution time, and (3) came back to 
the local host to perform the specified local CPU bound 
work. Tables 3 and 4 show the scheduling parameters of 
distributable threads on host 1 and host 2 respectively: the 
execution times for local work before and after the remote 
invocation are separated by a ‘+’ . 

Empir ical results. Figure 10  and Figure 11 show how 
distributable threads are scheduled dynamically as they 
enter and leave the system across multiple hosts by the TP 
Scheduler and the MIF Scheduler respectively. The start 
times of the distributable threads in both graphs are offset 
from T=0 by less than 1 sec, which is the time taken to ini-
tialize the experiments and start the distributable threads. 
Since both the TP and MIF schedulers use the same sched-

uling policy based on the importance of the distributable 
threads, the graphs are nearly identical. The graphs show 
the run-time distributable thread schedules on both the 
hosts. On host 1, DT1 and DT2 start at time (T) = 0 and 
DT3 starts at T=12. Since DT1 is of higher importance than 
DT2 it is scheduled to run first. On host 2, DT4 starts at 
T=0 and is scheduled for execution as DT5 is not ready to 
run till T=9. 

Table 3: Distr ibutable Thread Schedule on Host 1  

GUID 
Start 
Time  

(secs) 

Importance 
Execution Time 

(secs) Span 

   Local Remote  

1 0 9 3+3 3 Dist 

2 0 3 6+6 3  Dist 

3 12 1 6 N/A Local 

 

Table 4: Distr ibutable Thread Schedule on Host 2  

Execution 
Time 

 

GUID 

Start Time 

(secs) 
Importance 

Local Dist 

Span 

4 0 5 9 N/A Local 

5 9 7 3 N/A Local 

 

Figure 10:  OS Thread Pr ior ity Scheduler  Graph 
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Figure 11: MIF Scheduler  Graph 

After executing for 3 secs DT1 makes a two-way op-
eration invocation on host 2 and waits for a reply. DT4 is 
suspended to allow DT1 to execute on host 2 as DT1 is of 
higher importance. When DT1 is executing on host 2 the 
respective RTC2 dynamic scheduler on host 1 continues to 
schedule DT2 on host 1 as it has the highest importance on 
host1. DT1 completes execution on host 2 after T=3 and 
returns to host 1 and resumes execution, for T=3, after pre-
empting DT2. DT4 resumes on host 2. DT1 completes its 
execution cycle of T=9 on host 1. Hence, DT2 is scheduled 
on host 1 for the next 3 secs. On host 2 DT5 enters the sys-
tem at T=9. DT5 pre-empts DT4 as it is of higher im-
portance and executes for 3 secs. 

At T=12 DT2 has completed 6 secs of local execution 
and makes a twoway invocation to host 2. DT3 enters the 
system at T=12 and is scheduled for execution for 3secs. 
On host 2, DT5 completes its cycle of execution and DT4 is 
scheduled. DT2 does not get to execute immediately on 
host 2 as DT5 is of higher importance. After DT4 com-
pletes execution on host 2, DT2 is scheduled on host 2 for 
the next 3 secs. DT3 continues execution on host 1. DT2 
completes execution on host 2 and returns to host 1. DT3 
completes its cycle of execution and DT2 is scheduled till 
its cycle of local execution is complete. 

Analysis of the results.  The experimental results of the TP 
and MIF schedulers demonstrate that system-wide dynamic 
scheduling can be achieved with TAO’s RTC2 framework 
when tasks (represented by the distributable threads) enter 
and leave the system dynamically. Since both the TP and 
MIF schedulers schedule the distributable threads based on 
their importance, both the graphs are nearly identical. The 
one small but important difference is in the times at which 
the threads are suspended and resumed, due to the context 
switch time for the MIF scheduler (which is at the applica-
tion level) compared to the TP scheduler (which is at the 
OS level). These results validate our hypothesis that dy-

namic schedulers implementing different scheduling disci-
plines and even using different scheduling mechanisms can 
be plugged into TAO’s RTC2 framework to schedule the 
distributable threads in the system according to a variety of 
requirements, while maintaining reasonable efficiency. 

4. Empir ical Case Studies of Adaptive Sched-
uling in Real-Time Avionics Systems  

Although the micro-benchmarks in Section 3 help to quan-
tify the behavior of TAO’s RTC2 dynamic scheduling 
framework in a controlled environment, to truly evaluate 
how to apply adaptive dynamic scheduling techniques ef-
fectively in complex DRE systems requires case studies of 
actual systems.  This section therefore describes two case 
studies that apply our dynamic scheduling middleware in 
the context of real-time avionics computing systems devel-
oped by The Boeing Company, running on production com-
puting, communication, and avionics hardware.  The first 
case study examines the effects of applying the cancellation 
mechanisms described in Section 2.4.2 to non-critical real-
time operations.  The second case study examines the per-
formance of adaptive operation rate re-scheduling within a 
multi-layered resource management architecture for real-
time image transfer. 

4.1 Case Study 1 
�� ��

 Effects of Cancellation of 
non-Cr itical Operations 

Case study overview and configuration. Many complex 
DRE systems perform a mixture of critical and non-critical 
real-time operations, for which it is desirable to maximize 
the ability of non-critical operations to meet their deadlines, 
while ensuring that all critical operations also meet their 
deadlines.  When the CPU is overloaded (which can happen 
all too readily in open systems in dynamic operating envi-
ronments), canceling some operations so that others are 
more likely to meet their deadlines is an important strategy 
for ensuring best use of the CPU resource. In this case 
study, we used an Operational Flight Program (OFP) sys-
tem architecture based upon commercial hardware, soft-
ware, standards, and practices that supports re-use of appli-
cation components across multiple client platforms.  The 
OFP is primarily concerned with integrating remote sensor 
and actuator systems throughout the aircraft with the cock-
pit information displays and controls used by the pilot and 
other aircraft personnel.  

The  system architecture for our first case study in-
cluded an OFP consisting of approximately 70 operations, 
the Bold Stroke avionics domain-specific middleware layer 
[16] built upon TAO, the TAO Dynamic Scheduling Ser-
vice, and the TAO Real-Time Event Service [17], config-
ured for various scheduling strategies described in Sections 
2 and 3. This middleware isolates applications from the 
underlying hardware and OS, enabling hardware or OS ad-
vances from the commercial marketplace to be integrated 
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more easily with the avionics application. We conducted 
measurements of two key areas of resource management: 
cancellation of non-critical operations that are at risk of 
missing their deadlines, and protecting critical operations. 
The analysis below features a comparison of two canonical 
scheduling strategies, the hybrid static/dynamic Maximum 
Urgency First (MUF) [4] strategy (which assigns operations 
to strict priority lanes according to their criticality and the 
schedules them dynamically within each lane according to 
laxity) and the static Rate Monotonic Scheduling (RMS) 
[12] strategy (which assigns operations to strict priority 
lanes according to their rates of invocation, and schedules 
each lane in FIFO order). Measurements were made on 200 
MHz Power PC Single Board Computers running the 
VxWorks 5.3 operating system.  

 
Figure 12: Effects of non-Cr itical Operation Cancellation 

Operation cancellation. Figure 12 shows the effects of 
cancelling non-critical operations in the MUF hybrid 
static/dynamic scheduling strategy in conditions of CPU 
overload. Operation cancellation can potentially help re-
duce the amount of wasted work performed in operations 
that miss their deadlines. Assuming there is no residual 
value of an operation that completes past its deadline, this 
wasted time increases the amount of unusable overhead. We 
observed that while the MUF strategy with operation can-
cellation was more effective in limiting the number of op-
erations that were dispatched and then missed their dead-
lines, the number of operations that made their deadlines in 
each case was comparable. We attribute this to the short 
execution times of several of the non-critical operations. In 
fact, the variation with cancellation had slightly lower num-
bers of non-critical operations that were successfully dis-
patched, as operation cancellation is necessarily pessimistic. 

Protecting cr itical operations. We also compared the ef-
fects of non-critical operation cancellation on critical and 
non-critical operations in overload, in the hybrid 
static/dynamic MUF scheduling strategy and the static RMS 

strategy. Figure 13 shows the number of deadlines made 
and missed for each strategy. 

 
Figure 13: Effects of Cancellation under Over load Conditions  

With no operation cancellation, MUF met all of its dead-
lines, while RMS missed between 2 and 6 critical opera-
tions per sample. Furthermore, MUF successfully dis-
patched additional non-critical operations. We investigated 
whether adding operation cancellation might have reduced 
the number of missed deadlines for critical operations with 
RMS, by reducing the amount of wasted work. However, it 
appears that the overhead of operation cancellation in fact 
makes matters worse, with between 6 and 7 misses per 
sample. We interpret this to mean that there were few op-
portunities for effective non-critical operation cancellation 
in RMS under the experimental conditions. 

Analysis of the case study. The results from this case study 
offer the following insights about the use of adaptive mid-
dleware to support DRE systems more effectively. First, 
operation cancellation can be an effective way to shed tasks 
that cannot meet their deadlines during resource overload.  
Second, these results indicate that hybrid static/dynamic 
scheduling strategies are more likely to benefit from opera-
tion cancellation than purely static ones – because hybrid 
static-dynamic scheduling strategies prioritize critical tasks 
as a whole over non-critical ones, the availability of the 
CPU to non-critical tasks is more variable and more sparse 
so that more non-critical tasks are likely potential candi-
dates for cancellation.  Moreover, because operation can-
cellation is necessarily pessimistic, it is essential to avoid 
overestimating the risk of operations missing their dead-
lines, which can result in overly aggressive cancellation 
degrading rather than improving the overall performance of 
the system.  As is true for many adaptive resource manage-
ment techniques, the more accurate the information that the 
cancellation mechanism has about deadline failure risks, the 
more accurate its cancellation decisions and the better its 
effect on overall system performance.  
 



 13 

4.2 Case Study 2 
�� ��

 Adaptive Scheduling Be-
havior  in Multi-level Resource Management 

Case study overview and configuration. Our second case 
study examines the performance of adaptive rescheduling of 
operation rates within the context of layered multi-level 
resource management [20].  We have applied the layered 
resource management architecture shown in Figure 14 to 
provide an open systems “bridge”  between legacy on-board 
embedded avionics systems and off-board information 
sources and systems. The foundation of this bridge is the 
interaction of two Real-time CORBA [1] ORBs (TAO and 
ORBExpress) using a pluggable protocol to communicate 
over a very low (and variable) bandwidth Link-16 data net-
work. We then applied several middleware technologies in 
higher architectural layers to manage key resources and 
ensure the timely exchange and processing of mission criti-
cal information. In combination, these techniques support 
browser-like connectivity between server and client nodes, 
with the added assurance of real-time performance in a 
highly resource-constrained and dynamic environment.  The 
evaluation system described in this section leverages exist-
ing open middleware platforms similar to those described in 
Section 4.1.  
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Figure 14: Multi-Level Resource Management Model  

System resource management model. The resource man-
agement model for the evaluation system in this case study 
is illustrated in Figure 14. When a client-side operator re-
quests an image, that request is sent from the browser ap-
plication to an application delegate [20], which then sends 
a series of requests for individual tiles via TAO over a vari-
able low-bandwidth Link-16 connection to the server. The 
delegate initially sends a burst of requests to fill the server 
request queue; it then sends a new request each time a tile is 

received. For each request, the delegate sends the tile’s de-
sired compression ratio, determined by the progress of the 
overall image download when the request is made.  

On the server, an ORBExpress/RT Ada ORB [22] receives 
each request from the Link-16 connection, and from there 
each tile goes into a queue of pending tile requests. A col-
laboration server pulls each request from that queue, fetches 
the tile from the server’s virtual folder containing the im-
age, and compresses the tile at the ratio specified in the 
request. The collaboration server then sends the compressed 
tile back through ORBExpress and across Link-16 to the 
client. Server-side environmental simulation services emu-
late additional workloads that would be seen on the com-
mand and control (C2) server under realistic operating con-
ditions. Back on the client, each compressed tile is received 
from Link-16 by TAO and delivered to a servant that places 
the tile in a queue where it waits to be processed. The tile is 
removed from the queue, decompressed, and then delivered 
by client-side operations to Image Presentation Module 
(IPM) hardware which renders the tile on the cockpit dis-
play. The decompression and IPM delivery operations are 
dispatched by a TAO Event Service [17] at rates selected 
by the TAO Dynamic Scheduling Service.  
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Figure 15: Adaptive Schedule Computation Latency 

 

Schedule re-computation latency. We measured schedule 
re-computation overhead resulting from priority and rate re-
assignment by the TAO Dynamic Scheduling Service. Fig-
ure 15 plots schedule re-computations while the system is 
performing adaptation of both image tile compression and 
decompression and IPM operation rates, at deadlines for 
downloading the entire image of 48, 42, and 38 seconds. 
The key insight from these results is that the number and 
duration of re-scheduling computations is both (1) reduced 
overall compared to our earlier results [19] and (2) propor-
tional to the degree of rate adaptation that is useful and nec-
essary for each deadline.  

The main feature of interest in Figure 15 is the down-
ward settling of schedule computation times, as the ranges 
of available rates is narrowed toward a steady-state solution 
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and the input set over which the scheduler performs its 
computation is thus reduced. We also observed an interest-
ing phase transition in the number of re-computations be-
tween the infeasible and barely feasible deadlines. If we 
arrange trials in descending order according to the number 
of re-computations in each, we get 42, 46, 48, 50, 52, 54, 
and then 58 seconds, and then finally 38 second and 1 sec-
ond deadlines showed the same minimal number of compu-
tations. The duration of the experiment for the 42 second 
deadline was comparable to that for other deadlines. 

Analysis of the case study. This second case study demon-
strates that adaptive rescheduling techniques can be applied 
to adjust the rates of operation invocation at run-time in 
response to dynamically varying environments.  The con-
vergence of the scheduling behavior toward lower latencies 
and smaller input sets is a good example of desirable adap-
tation performance in DRE systems.  As future work, we 
are investigating questions of convergence and stability 
raised by this case study, by applying formal control theory 
to guide the adaptation of operation rates, image tile com-
pression ratios, and other factors relevant to adaptive DRE 
systems. 

5. Related Work 

The Quality Objects (QuO) distributed object middleware 
is developed at BBN Technologies [20]. QuO is based on 
CORBA and provides the following support for agile appli-
cations running in wide-area networks: (1) run-time per-
formance tuning and configuration through the specifica-
tion of QoS regions, behavior alternatives, and reconfigu-
ration strategies that allows the QuO run-time to adaptively 
trigger reconfiguration as system conditions change (repre-
sented by transitions between operating regions) and (2) 
feedback across software and distribution boundaries based 
on a control loop in which client applications and server 
objects request levels of service and are notified of changes 
in service. We have integrated our earlier dynamic schedul-
ing service (Kokyu [23]) with the QuO framework and plan 
future integration of our RTC2 framework with QuO. 

The Realize project at UCSB has developed an ap-
proach based on object migration and replication, to im-
prove performance of soft real-time distributed systems 
[24], [25]. This approach constitutes a higher level of adap-
tive control for soft real-time QoS management, and is 
complementary to our RTC2 framework. In particular, a 
system developer might apply Realize to provide soft real-
time load balancing across endsystems, using our RTC2 
framework to integrate scheduling and dispatching of dis-
tributable threads that transit those endsystems. 

The Time-triggered Message-triggered Objects (TMO) 
project [26] at the University of California, Irvine, supports 
the integrated design of distributed OO systems and real-
time simulators of their operating environments. The TMO 
model provides structured timing semantics for distributed 

real-time object-oriented applications by extending conven-
tional invocation semantics for object methods, i.e., 
CORBA operations, to include (1) invocation of time-
triggered operations based on system times and (2) invoca-
tion and time bounded execution of conventional message-
triggered operations.  TMO is a compatible technology to 
our RTC2 framework, particularly for the open area of re-
search of time-triggered management of distributable 
threads. 

The RTC2 specification allows pluggable dynamic 
schedulers. However, this means that endsystems, or even 
segments within an endsystem, along an end-to-end path 
could be applying differing scheduling disciplines and 
scheduling parameters. For example, one endsystem could 
order the eligibility of distributable threads per the EDF 
scheduling discipline using deadlines, and another per the 
MUF scheduling discipline using criticality, deadlines, and 
execution times. RTC2 does not address the issue of inter-
operability of schedulers on the endsystems that a distribut-
able thread spans. Juno [27], a meta-programming architec-
ture for heterogeneous middleware interoperability, ad-
dresses the above issues. It formalizes the above problems, 
defines formalisms to express different instances of the 
problem and maps the formalized abstractions to a software 
architecture based on Real-time CORBA. 

6. Concluding Remarks  

The OMG Real-time CORBA 2.0 (RTC2) specification 
defines a dynamic scheduling framework that enhances the 
development of open distributed real-time and embedded 
(DRE) systems that possess dynamic QoS requirements. 
The RTC2 framework provides a distributable thread ca-
pability that can support execution sequences requiring dy-
namic scheduling and enforce their QoS requirements based 
on scheduling parameters associated with them. The RTC2 
distributable threads abstraction can extend over as many 
hosts that the execution sequence may span. Flexible 
scheduling is achieved by plugging in dynamic schedulers 
that implement different scheduling strategies, such as EDF, 
MLF, MUF, or RMS+MLF, as well as the TP and MIF 
strategies described in Section 3. 

TAO’s implementation of the RTC2 specification has 
addressed a broader set of issues than the standard itself 
covers, such as mapping distributable and local thread iden-
tities, supporting hybrid static and dynamic scheduling, and 
defining efficient mechanisms for enforcing a variety of 
scheduling policies. We learned the following lessons from 
our experience developing and empirically evaluating 
TAO’s RTC2 framework:  

• RTC2 is a good beginning towards addressing the dy-
namic scheduling issue in DRE systems. To achieve 
correctness, however, there is a need for a robust im-
plementation of a Scheduling Service that works in 
conjunction with the RTC2 framework. By integrating 
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our earlier work on middleware scheduling frameworks 
[7] [8] [23] within the RTC2 standard, we have pro-
vided a wider range of scheduling policies and mecha-
nisms. 

• Some features that are implemented for the efficiency 
of thread and other resource management can hinder 
the correct working of the RTC2 framework. For ex-
ample, managing distributable threads is more costly 
and complicated due to sensitivity of key mechanisms 
to their identities, as is discussed in Section 2.4.  

• System-wide dynamic scheduling is not yet as perva-
sive as fixed-priority static scheduling in practice, 
which has limited the scope of the RTC2 specification. 
In particular, it does not yet address interoperability of 
the dynamic schedulers on different hosts. Instead, it 
only ensures propagation of timeliness requirements of 
an execution sequence across the hosts it spans so it 
can be scheduled on each host. 

• Empirical case studies based on actual DRE systems 
(such as those presented in Section 4) are essential to 
(1) understand how techniques such as cancellation and 
adaptive rescheduling can be applied effectively in 
complex DRE systems and (2) determine the appropri-
ate role of RTC2 mechanisms with respect to other 
middleware mechanisms that could be used alternately.    

As future work, we are investigating what additional gains 
in QoS assurance and efficiency of resource management in 
open DRE systems can be achieved by integrating diverse 
scheduling policies and mechanisms within our RTC2 
framework, according to the semantics of each particular 
open DRE system application.  Our preliminary results [28] 
indicate that even more customized forms of scheduling can 
be achieved efficiently within the RTC2 framework. 
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