
 1

Enhancing the Adaptivity of Distributed Real-time and Embedded Systems
via Standard QoS-enabled Dynamic Scheduling Middleware

Abstract
To support the dynamically changing QoS needs of open
distributed real-time embedded (DRE) systems, it is essen-
tial to propagate QoS parameters and to enforce task QoS
requirements adaptably across multiple endsystems dy-
namically in a way that is simultaneously efficient, flexible,
and timely. This paper makes three contributions to re-
search on QoS-enabled middleware that supports these
types of open DRE systems. First, it describes the design
and implementation of a dynamic scheduling framework
based on the OMG Real-Time CORBA 2.0 specification
(RTC2) that provides capabilities for (1) propagating QoS
parameters and a locus of excecution across endsystems
via a distributable thread abstraction and (2) enforcing the
scheduling of multiple distributable threads dynamically
using standard CORBA middleware. Second, it examines
the results of empirical studies conducted to validate our
RTC2 framework in the context of open DRE systems.
These experiments show that a range of policies for adap-
tive dynamic scheduling and management of distributable
threads can be enforced efficiently in standard middleware
for open DRE systems. Third, it presents results from case
studies of multiple adaptive middleware QoS management
technologies to monitor and control the quality, timeliness,
and criticality of key operations (such as navigation and
imagery transfer) adaptively in a representative DRE avon-
ics system.

Keywords: Real-time CORBA, adaptive systems, dynamic
scheduling.

1. Introduction

Emerging trends and challenges for DRE systems and
middleware. Developing distributed real-time and embed-
ded (DRE) systems whose quality of service (QoS) can be
assured even in the face of changes in available resources is
an important and challenging R&D problem. QoS-enabled
middleware has been applied successfully to certain types
of DRE systems – primarily closed DRE systems where the
set of application tasks that will run in the system and the
loads they will place on system resources are known in ad-
vance. For example, middleware based on the Real-time
CORBA 1.0 (RTC1) standard [1] supports statically sched-
uled DRE systems (such as avionics mission computing and

industrial process controllers) in which task eligibility can
be mapped to a fixed set of priorities.

For an important emerging class of open DRE systems
(such as adaptive audio/video streaming [2], collaborative
mission re-planning [3], and robotics applications designed
for close interaction with their environments [4]), however,
it is often not possible to know the entire set of application
tasks that will run on the system, the loads they will impose
on system resources in response to a dynamically changing
environment, or the order in which the tasks will execute
due to (1) variations in their operating environments, (2)
contention with other tasks in the open system, or (3) to the
loss or failure of resources (such as individual network links
or endsystems). This dynamism can occur because the
number of combinations in which application tasks can be
mapped to system resources is too large to compute effi-
ciently or because task run-time behaviors are simply too
variable to predict accurately. In either case, open DRE
systems must be able to adapt dynamically to handle
changes in resource availability and QoS requirements.

Assuring effective QoS support in the face of dy-
namically changing requirements and resources – while also
keeping the overhead of that assurance within reasonable
bounds – requires a new generation of middleware mecha-
nisms. In particular, there are a number of limitations with
applying RTC1 middleware capabilities to open DRE sys-
tems with dynamic QoS requirements (e.g., by handling any
dynamic variations in task eligibility by manipulating fixed
task priorities at run-time), including:

• Limits on the number of priorities supported by com-
mon-off-the-shelf (COTS) real-time operating systems
that can reduce the granularity at which dynamic varia-
tions in task eligibility can be enforced.

• Without middleware-mediated mechanisms for enforc-
ing QoS, the application itself must provide priority
manipulation mechanisms, which is tedious and error-
prone for DRE application developers.

• Without open, well-defined, and replaceable schedul-
ing mechanisms within the middleware itself, it is hard
to improve performance through close integration of
middleware features or to achieve sufficient flexibility
to customize the policies for QoS enforcement so they
meet the needs of each application.

Christopher Gill*, Louis Mgeta,Yuanfang
Zhang, and Stephen Torri

*Box 1045, One Brookings Drive
Washington Univ., St. Louis, MO 63130

cdgill@cse.wuslt.edu

Yamuna Krishnamurthy and
Irfan Pyarali

OOMWorks LLC, Metuchen, NJ
{yamuna,irfan}@oomworks.com

Douglas C. Schmidt
Vanderbilt University

Nashville, TN
d.schmidt@vanderbilt.edu

 2

Solution approach
�� ��

 Adaptive DRE middleware via
dynamic scheduling. The OMG Real-Time CORBA 2.0
specification (RTC2) [5] addresses the limitations with the
fixed-priority mechanisms specified by RTC1. In particular,
RTC2 extends RTC1 by providing interfaces and mecha-
nisms that applications can use to plug in dynamic schedul-
ers and interact with them across a distributed system.
RTC2 therefore gives application developers more flexibil-
ity to specify and use scheduling disciplines and parameters
that define and describe their execution and resource re-
quirements more accurately and adaptively. To accomplish
this, RTC2 introduces two new concepts to Real-time
CORBA: (1) distributable threads that are used to map
end-to-end QoS requirements to sequential and branching
distributed computations across the endsystems they trav-
erse and (2) a scheduling service architecture that allows
applications to choose which mechanisms enforce task eli-
gibility.

Since the RTC2 specification was only recently inte-
grated into the OMG CORBA standard, there are no com-
mercial products or research prototypes available for it yet.
To facilitate the study of standards-based dynamic schedul-
ing middleware, we have therefore implemented a RTC2
framework that enhances on our prior work with The ACE
ORB (TAO) [6] (which is a widely-used open-source im-
plementation of Real-time CORBA 1.0 [1]) and its Real-
time Scheduling Service (which supports static [7] and
dynamic scheduling algorithms [8]). This paper describes
how we designed and optimized the performance of our
RTC2 Dynamic Scheduling framework to address the fol-
lowing design challenges for adaptive DRE systems:

• Defining a means to install pluggable dynamic schedul-
ers that support more adaptive scheduling policies and
mechanisms for a wide range of DRE applications,

• Creating an interface that allows customization of inter-
actions between an installed RTC2 dynamic scheduler
and an application,

• Portable and efficient mechanisms for distinguishing
between distributable thread and OS thread identities,
and

• Safe and effective mechanisms for canceling distribut-
able threads to give applications control over distrib-
uted concurrency.

The results of our efforts have been integrated with the
TAO open-source software release and are available from
http://deuce.doc.wustl.edu/Download.html.

Paper organization. The remainder of this paper is organ-
ized as follows: Section 2 describes the RTC2 specification
and explains the design of our RTC2 framework, which has
been integrated with the TAO open-source Real-time
CORBA Object Request Broker (ORB); Section 3 presents

empirical studies of micro-benchmarks conducted to vali-
date our RTC2 approach and to quantify the costs of dy-
namic scheduling of distributable threads; Section 4 pre-
sents empirical results of broader case studies that applied
multiple adaptive middleware technologies to DRE avionics
applications with real-time image delivery requirements;
Section 5 compares our work with related research; and
Section 6 offers concluding remarks.

2. The Design and Implementation of a Dy-
namic Scheduling Framework for Real-Time
CORBA 2.0

This section describes the key characteristics and capabili-
ties of RTC2 specification and describes how the RTC2
dynamic scheduling framework that we have integrated with
the TAO Real-time CORBA ORB helps with the design and
implementation of adaptive DRE systems. Figure 1 illus-
trates the architecture of TAO’s RTC2 framework.

Object (Servant)

IDL
Stubs

IDL
Skeletons

ORB Core

Dynamic
Scheduler

BSS-A

ESS-A

Client

Service Context

Scheduling
segment

A

Object
AdapterDynamic

Scheduler

BSS-B

ESS-B

Service Context

Scheduling
segment

B

1 Distr ibutable thread

2

Current locus of execution3

B: MUF

A: EDFA: EDF

Segment scheduling policies4

55

Figure 1: TAO’s RTC2 Architecture [9]

The key elements of TAO’s RTC2 framework shown in
Figure 1 are:

1. Distributable threads, which applications use to trav-
erse endsystems along paths that can be varied on-the-
fly based on scheduling or application level decisions,

2. Scheduling segments, which map policy parameters to
distributable threads at specific points of execution so
that new policies can be applied and existing policies
can be adapted at finer granularity,

3. Current execution locus, the head of an active distri-
butable thread, which much like the head of an applica-
tion or kernel thread can take alternative decision
branches at run-time based on the state of the applica-
tion or of the supporting system software,

4. Scheduling policies, which determine the eligibility of
each thread based on parameters of the current schedul-
ing segment within which that thread is executing, and

5. Dynamic scheduler, which reconciles and adapts the
set of scheduling policies for all segments and threads
on an endsystem, to determine which thread is active.

 3

Distributable threads help to enhance the adaptivity of DRE
systems end-to-end since they provide a more effective ab-
straction for dynamically managing the lifetime of sequen-
tial or branching distributed operations. The remainder of
this section explains the concepts of distributable threads
and the adaptive management of their real-time properties
through the pluggable scheduling framework specified by
RTC2. This section also outlines the design of these con-
cepts in TAO’s RTC2 framework implementation. We
describe scheduling points, which govern how and when
scheduling parameter values can be mapped to distributable
threads. We then conclude by discussing issues related to
distributable thread identity (such as the need to emulate
OS-level thread-specific mechanisms for storage or locking
in middleware) and examine the interfaces and mechanisms
needed to cancel distributable threads safely.

2.1 Distr ibutable Threads

DRE applications must manage key resources, such as CPU
cycles, network bandwidth, and battery power, to ensure
predictable behavior along each end-to-end path. In RTC1-
based static DRE systems, application end-to-end priorities
can be acquired from clients, propagated with invocations,
and used by servers to arbitrate access to endsystem CPU
resources. For dynamic DRE systems, the fixed-priority
propagation model provided by RTC1 is insufficient be-
cause these DRE systems require more information than
just priority, e.g., they may need deadline, execution time,
and laxity, and the values of at least some of those parame-
ters are likely to vary during system execution. A more
sophisticated abstraction than priority is thus needed to
identify the most eligible schedulable entity, and additional
scheduling parameters may need to be associated and
propagated with it so that it can be scheduled appropriately.

A natural unit of scheduling abstraction suggested by
CORBA’s programming model is a thread that can execute
object methods without regard for physical endsystem
boundaries. In the RTC2 specification, this programming
model abstraction is termed a distributable thread, which
can span multiple endsystems and is the primary schedul-
able entity in RTC2-based DRE applications. A distribut-
able thread replaces the concept of an activity that was in-
troduced but not formalized in the RTC1 specification.

Each distributable thread in RTC2 is identified by a
unique system wide identifier called a Globally Unique Id
(GUID) [10]. A distributable thread may also have one or
more execution scheduling parameters, e.g., priority, time-
constraints (such as deadlines), and importance. These pa-
rameters specify attributes used by RTC2 schedulers for
resource arbitration, and also define and convey acceptable
end-to-end timeliness bounds for completing the sequential
execution of operations in CORBA object instances that
may reside on multiple physical endsystems.

Within each endsystem, the flow of control of the dis-
tributable thread is mapped onto the execution of a local
thread provided by the OS. At a given instant, each dis-
tributable thread has only one execution point in the whole
system, i.e., a distributable thread does not execute simulta-
neously on multiple endsystems it spans. Instead, it exe-
cutes a code sequence consisting of nested distributed
and/or local operation invocations, similar to how a local
thread makes a series of nested local operation invocations.

Below, we describe the key interfaces and properties of
distributable threads in the RTC2 specification and explain
how we implement those aspects in TAO. For each of these
topics we identify its relevance to adaptive DRE systems.

Scheduling segment. A distributable thread comprises one
or more scheduling segments. A scheduling segment is a
code sequence whose execution is scheduled according to a
distinct set of scheduling parameters specified by the appli-
cation. For example, the worst-case execution time, dead-
line, and criticality of a real-time operation is used by the
Maximum Urgency First (MUF) [4] scheduling strategy.
These parameters can be associated with a segment encom-
passing that operation on a particular endsystem, e.g., as
shown for segment B in Figure 1. The code sequence that a
scheduling segment comprises can include remote and/or
local operation invocations. It is possible to adapt the
values of parameters for the current scheduling policy
within a given scheduling segment, but to adapt the policy
itself, a new scheduling segment must be entered.

The Current inter face. The RTSchedul i ng module’s
Cur r ent interface defines operations that begin, update
(e.g., to modify scheduling parameter values), and end the
scheduling segments described above, as well as create and
destroy distributable threads. Each scheduling segment has
a unique instance of this Cur r ent object managed in local
thread specific storage (TSS) [11] on each endsystem along
the path of the distributable thread. A nested scheduling
segment keeps a reference to the Cur r ent instance of its
enclosing scheduling segment. The following CORBA In-
terface Definition Language (IDL) fragment shows the op-
erations in the RTSchedul i ng: : Cur r ent interface
pertaining to scheduling segments and distributable threads
that are implemented in TAO’s RTC2 dynamic scheduling
framework:

l ocal i nt er f ace RTSchedul i ng: : Cur r ent :
 RTCORBA: : Cur r ent {
 voi d begi n_schedul i ng_segment
 (i n st r i ng schedul i ng_segment _name,
 i n CORBA: : Pol i cy sched_par am,
 i n CORBA: : Pol i cy i mpl i c i t _sched_par am)
 r ai ses(UNSUPPORTED_SCHEDULI NG_DI SCI PLI NE) ;

 voi d updat e_schedul i ng_segment
 (i n st r i ng schedul i ng_segment _name,
 i n CORBA: : Pol i cy sched_par am,
 i n CORBA: : Pol i cy i mpl i c i t _sched_par am)
 r ai ses(UNSUPPORTED_SCHEDULI NG_DI SCI PLI NE) ;

 4

 voi d end_schedul i ng_segment
 (i n st r i ng schedul i ng_segment _name) ;

 Di st r i but abl eThr ead spawn (
 i n Thr eadAct i on st ar t ,
 i n CORBA: : Voi dDat a dat a,
 i n st r i ng name,
 i n CORBA: : Pol i cy sched_par am,
 i n CORBA: : Pol i cy i mpl i c i t _sched_par am,
 i n unsi gned l ong st ack_si ze,
 i n RTCORBA: : Pr i or i t y base_pr i or i t y) ;
} ;

Each operation in the Cur r ent interface of the RT
Schedul i ng module is described below.

begin_scheduling_segment() – A DRE application calls
this operation to start a scheduling segment. If the caller is
not already within a distributable thread, a new distributable
thread is created. If the caller is already within a distribut-
able thread, a nested scheduling segment is created. The
call to begi n_schedul i ng_segment () is also a
scheduling point, where the application interacts with the
RTC2 dynamic scheduler to select the currently executing
thread (Section 2.3 describes scheduling points in depth),
and thus represents a point of fine-grain adaptability of
overall system concurrency behavior.

update_scheduling_segment() – This operation is a
scheduling point the application uses to interact with the
RTC2 dynamic scheduler to update the scheduling pa-
rameters and check whether or not the schedule remains
feasible. It must be called only from within a scheduling
segment. A CORBA: : BAD_I NV_ORDER exception is
thrown if this operation is called outside a scheduling seg-
ment context, e.g., by code outside a distributable thread.

end_scheduling_segment() – This operation marks the end
of a scheduling segment and the termination of the distri-
butable thread if the segment is not nested within another
segment. Every begi n_schedul i ng_segment () call
should have a corresponding call to end_schedul i ng_
segment () . As noted earlier, in TAO’s RTC2 prototype
the segment begin and end calls should be on the same host
and in the same thread. After an end_schedul i ng
_segment () operation, the distributable thread is operat-
ing with the scheduling parameter of the next outer sched-
uling segment scope. This nesting of scheduling segments
represents an opportunity to manage scheduling behavior
adaptively, by applying different scheduling policies for
different modes of execution of each distributable thread,
and mapping scheduling segments and their associated poli-
cies to application modes: as a distributable thread enters
or leaves a particular mode of execution, it simply pushes
or pops an appropriate nested scheduling segment.

spawn() – A distributable thread can create a new distribut-
able thread by invoking the spawn() operation. If the
scheduling parameters for the new distributable thread are
not specified explicitly, the implicit scheduling parameters

of the distributable thread calling spawn() are used. The
spawn() operation can only be called by a distributable
thread, otherwise a CORBA: : BAD_I NV_ORDER exception
is thrown. The spawn() operation therefore represents the
creation of a new independently managed schedulable en-
tity. The name parameter provides a name for the sched-
uling segment created by spawn() . The sched_ par am
and i mpl i c i t _sched_par am parameters provide the
scheduling parameters for the new distributable thread. If
sched_par am is null, then the i mpl i c i t _sched_
par am of the scheduling segment calling spawn() will
become the new distributable thread’s sched_par am.
The dat a parameter passed to the spawn() operation is
then passed to the following Thr eadAct i on: : do()
method invoked by spawn() :
modul e RTSchedul i ng {
 l ocal i nt er f ace Thr eadAct i on {
 voi d do(i n CORBA: : Voi dDat a dat a) ;
 } ;
} ;

Thr eadAct i on: : do() is the entry point to the new
scheduling segment and is called by spawn() in the
context of the newly created distributable thread.

Distr ibutable thread location. Now that we have ex-
plained the terminology and interfaces for distributable
threads, and the adaptive behaviors that can be designed
using those interfaces, we can illustrate how all the pieces
fit together. A distributable thread may be entirely local to a
host or it may span multiple hosts by making remote invo-
cations. Figures 2 and 3 therefore illustrate the different
spans that are possible for distributable threads. In these
figures, calls made by the application are shown as solid
dots, while calls made by interceptors within the middle-
ware are shown as shaded rectangles.

BSS - A

BSS - B

ESS - A

ESS - B

Host 1 Host 2 Host 3

2 - Way
Invocation

2 - Way
Invocation

DT1

BSS - C

ESS - C

DT2

BSS - D

ESS - B

BSS - E

ESS - E

DT3

Figure 2: Distr ibutable Threads and Hosts They Span

In Figure 2, DT1 makes a twoway invocation on an object
on a different host and also has a nested segment started on
Host 2 (BSS-B to ESS-B within BSS-A to ESS-A). DT2
and DT3 are simple distributable threads that do not trav-
erse host boundaries. DT2 has a single scheduling segment
(BSS-C to ESS-C), while DT3 has a nested scheduling
segment (BSS-E to ESS-E within BSS-D to ESS-D). In
Figure 3 DT2 is created by the invocation of the
RTSchedul i ng: : Cur r ent : : spawn() operation
within DT1, while DT4 is implicitly created on Host 2 to

 5

service a oneway invocation. DT4 is destroyed when the
upcall completes on Host 2.

Host 2

BSS - A

ESS - A

1 - Way
Invocation

Host 3

DT3
DT4

Host 1

spawn ()DT1

DT2

Figure 3: Ways to Spawn a Distr ibutable Thread

2.2 Pluggable Scheduling

Pluggable scheduling helps to make DRE systems more
adaptive since different scheduling strategies can be inte-
grated in response to different application use cases and
needs. Different distributable threads in a DRE system con-
tend for shared resources, such as CPU cycles. To support
the end-to-end QoS demands of open DRE systems, it is
imperative that such contention be resolved predictably,
and yet the conditions under which that occur may vary
significantly at run-time. This tension between dynamic
environments and predictable resource management neces-
sitates scheduling and dispatching mechanisms for these
entities that are (1) based on the real-time requirements of
each individual system, and (2) sufficiently flexible to be
applied adaptively in the face of varying application re-
quirements and run-time conditions. In the RTC2 specifica-
tion, a local scheduling policy decides the sequence in
which the distributable threads should be given access to
the resources and the dispatching mechanism grants the
resources according to the sequence decided by the sched-
uling policy.

Various scheduling disciplines exist that require differ-
ent scheduling parameters, such as MLF [4], EDF [12],
MUF [4], or RMS+MLF [13]. One or more of these sched-
uling disciplines (or any other discipline the system devel-
oper chooses) may be used by an open DRE system to ful-
fill its scheduling requirements. Supporting this flexibility
requires a mechanism by which different dynamic schedul-
ers (each implementing one or more scheduling disciplines)
can be plugged into an RTC2 implementation.

The RTC2 specification provides a common CORBA
IDL interface, RTSchedul i ng: : Schedul er . This
interface has the semantics of an abstract class from which
specific dynamic scheduler implementations can be derived.
In the RTC2 specification, the dynamic scheduler is in-
stalled in the ORB and can be queried with the standard
CORBA ORB: : r esol ve_i ni t i al _r ef er ences()
factory operation using the string “ RTSchedul er ” . The
RTSchedul i ng: : Manager interface shown below al-

lows the application to install custom dynamic schedulers
and obtain a reference to the one currently installed.

i nt er f ace RTSchedul i ng: : Manager {
 Schedul er schedul er () ;
 voi d schedul er (Schedul er) ;
} ;

The RTSchedul er _Manager object can be obtained via
an ORB: r esol ve_i ni t i al _r ef er ence() call using
the string “ RTSchedul er _Manager ” . The application
then interacts with the installed RTC2 dynamic scheduler
(e.g., passing its scheduling requirements) using operations
defined in the RTSchedul i ng: : Schedul er interface
that is listed under Scheduler Upcalls in Table 1.

Table 1: Summary of Scheduler Upcalls for User Invoked
Scheduling Points

USER INVOKES SCHEDULER UPCALL

Current::spawn Scheduler::
Begin_new_scheduling_segment

Current::
begin_scheduling_segment

Scheduler::

Begin_new_scheduling_segment

Current::
begin_scheduling_segment

Scheduler::

Begin_nested_scheduling_segment

Current::
update_scheduling_segment

Scheduler::
Update_scheduling_segment

Current::
end_scheduling_segment

Scheduler::

end_nested_scheduling_segment

Current::
end_scheduling_segment

Scheduler::

end_scheduling_segment

DistributableThread::
cancel Scheduler::cancel

Similarly, the ORB interacts with the RTC2 dynamic
scheduler at the specific scheduling points described in Sec-
tion 2.3 to ensure proper dispatching and sharing of sched-
uling information across hosts. This is done through dy-
namic scheduler operations listed under scheduler upcalls
in Table 2.

Table 2: Summary of Scheduler Upcalls for ORB Invoked
Scheduling Points

ORB INTERCEPTS SCHEDULER UPCALL

Outgoing request Scheduler::send_request

Incoming request Scheduler::receive_request

Outgoing reply Scheduler::send_reply

Incoming reply Scheduler::receive_reply

2.3 Scheduling Points

An application and ORB interact with the RTC2 dynamic
scheduler at well-defined points to schedule distributable
threads in a DRE system. These points can be defined a
priori in more static systems, while in adaptive systems, the
traversal of these points can be placed under adaptive con-
trol by the distributable threads, as Section 2.1 described.

 6

These scheduling points allow an application and ORB to
provide the RTC2 dynamic scheduler up-to-the-instant in-
formation about the competing tasks in the system, so it can
make scheduling decisions in a consistent and predictable
but also adaptive manner. We now describe these schedul-
ing points, which are illustrated in Figure 4.

Object
(Servant)

IDL
Stubs

IDL
Skeletons

ORB Core

Dynamic
Scheduler

in args

out args + return value

Operation ()

BSS or Spawn

ESS

USS

Client

Service Context

1
2

3

4

1. BSS - RTScheduling::Current::begin_scheduling_segment() or
 RTScheduling::Current::spawn()
2. USS - RTScheduling::Current::update_scheduling_segment()
3. ESS - RTScheduling::Current::end_scheduling_segment()
4. send_request() interceptor call
5. receive_request() interceptor call
6. send_reply() interceptor call
7. receive_reply() interceptor call

7

5

6 Object
Adapter

Figure 4: RTC2 Scheduling Points [9]

Scheduling points 1-3 in Figure 4 are points where an ap-
plication interacts with the RTC2 dynamic scheduler, as
summarized in Table 1. The key application-level schedul-
ing points and their characteristics are described below.

New distr ibutable threads and segments. When a new
scheduling segment or new distributable thread is created,
the RTC2 dynamic scheduler must be informed so that it
can schedule the new segment. The RTC2 dynamic sched-
uler schedules the new scheduling segment based on its
parameters and those of the active scheduling segments for
other distributable threads in the system. This occurs
whenever application code outside a distributable thread
calls the begi n_new_schedul i ng_segment () op-
eration to create a new distributable thread, or when code
within a distributable thread makes a call to
begi n_nest ed_schedul i ng_segment () to create
a nested scheduling segment.

Changes to scheduling segment parameters. When the
Cur r ent : : updat e_schedul i ng_segment () op-
eration is invoked by a distributable thread to adapt its
scheduling parameters, it updates scheduling parameters of
the corresponding scheduling segment by making a call to
Schedul er : : updat e_schedul i ng_segment () .

Termination of a scheduling segment or distr ibutable
thread. The RTC2 dynamic scheduler should be informed
when Cur r ent : : end_schedul i ng_segment () is
invoked by a distributable thread to end a scheduling seg-

ment or when a distributable thread is cancelled, so it can
reschedule the system accordingly. Hence, the
Cur r ent : : end_schedul i ng_segment () operation
invokes the end_schedul i ng_segment () operation
on the RTC2 dynamic scheduler to indicate when the out-
ermost scheduling segment is terminated. The dynamic
scheduler then reverts the thread to its original scheduling
parameters. If a nested scheduling segment is terminated the
dynamic scheduler invokes the Schedul er : : end_
nest ed_schedul i ng_segment () operation. The
RTC2 dynamic scheduler then ends the scheduling segment
and resets the distributable thread to the scheduling parame-
ters of the enclosing scheduling segment scope.

As described in Section 2.4.2, a distributable thread
can also be terminated from the application or another dis-
tributable thread by calling the cancel () operation on
the distributable thread. When the distributable thread is
cancelled, the Schedul er : : cancel () operation is
called automatically by the RTC2 framework, which allows
the application to inform the RTC2 dynamic scheduler that
a distributable thread has been cancelled.

Scheduling points 4-7 in Figure 4 are points where an
ORB interacts with the RTC2 dynamic scheduler, i.e., when
remote invocations are made between different hosts, and
are summarized in Table 2. Collocated invocations occur
when the client and server are located in the same process.
In collocated twoway invocations, the thread making the
request also services the request. Unless a scheduling seg-
ment begins or ends at that point, therefore, the distribut-
able thread does not have to be rescheduled by the RTC2
dynamic scheduler. Collocated oneway invocations do not
result in creation of a new distributable thread in TAO’s
RTC2 implementation due to (1) the overhead of distribut-
able thread creation for collocated oneways, (2) scheduling
overhead and complexity, (3) lack of interceptor support for
collocated oneways, and (4) lack of support for executing
collocated calls in separate threads.

The ORB interacts with the RTC2 dynamic scheduler
at points where the remote operation invocations are sent
and received. Client-side and server-side interceptors are
therefore installed to allow interception requests as they are
sent and received. These interceptors are required (a) to
intercept where a new distributable thread is spawned in
oneway operation invocations and create a new GUID for
that thread on the server, (b) to populate the service con-
texts, sent with the invocation, with the GUID and required
scheduling parameters of the distributable thread, (c) to re-
create distributable threads on the server, (d) to perform
cleanup operations for the distributable thread on the server
when replies are sent back to a client for twoway opera-
tions, and (e) to perform cleanup operations on the client
when the replies from twoway operations are received.
These interception points interact with the RTC2 dynamic
scheduler so it can make appropriate scheduling decisions.

 7

The key RTC2 ORB-level scheduling points and their char-
acteristics are described below.

Send request. When a remote operation invocation is
made, the RTC2 dynamic scheduler must be informed to
ensure that it can (1) populate the service context of the
request to embed the appropriate scheduling parameters of
the distributable thread and (2) potentially re-map the local
thread associated with the distributable thread to service
another distributable thread. As discussed in Section 2.4,
when the distributable thread returns to that same ORB, it
may be mapped to a different local thread than the one with
which it was associated previously. The client request
interceptor’s send_r equest () operation is invoked
automatically just before a request is sent. This operation in
turn invokes Schedul er : : send_r equest () with the
schedul-ing parameters of the distributable thread that is
making the request. The scheduling information in the
service context of the invocation enables the RTC2
dynamic scheduler on the remote host to schedule the
incoming request appropriately.

Receive request. When a request is received, the server
request interceptor’s r ecei ve_r equest () operation is
invoked automatically by the RTC2 framework before the
upcall to the servant is made. This operation in turn invokes
Schedul er : : r ecei ve_r equest () , passing it the
received service context that contains the GUID and
scheduling parameters for the corresponding distributable
thread. It is the responsibility of the RTC2 dynamic
scheduler to unmarshal the scheduling information in the
service context that is received. The RTC2 dynamic
scheduler uses this information to schedule the thread
servicing the request, and the ORB requires it to reconstruct
a RTSchedul i ng: : Cur r ent , and hence a distributable
thread, on the server.

Send reply – When the distributable thread returns via a
twoway reply to a host from which it migrated, the
send_r epl y() operation on the server request intercep-
tor is called automatically by the RTC2 framework just
before the reply is sent. This operation in turn calls the
Schedul er : : send_r epl y() operation on the server-
side RTC2 dynamic scheduler so it can perform any sched-
uling of the thread making the upcall as required by the
scheduling discipline used so the next eligible distributable
thread in the system is executed.

Receive reply. Distributable threads migrate across hosts
through twoway calls. The distributable thread returns to
the previous host, from where it migrated, through the reply
of the two-request. When the reply is received the client
request interceptor’s r ecei ve_r epl y() operation is
invoked. This operation in turn invokes Schedul er : :
r ecei ve_r epl y() on the client-side RTC2 dynamic
scheduler, which then performs any scheduling related deci-

sions required by the scheduling discipline, as a distribut-
able thread re-enters the system.

2.4 Challenges of Implementing an RTC2
Framework

To manage adaptive behavior of distributable threads effi-
ciently, predictably, and correctly, an RTC2 framework
must resolve a number of design challenges. Specifically,
when distributable threads are involved, two key adaptation
strategies are problematic:

• Transferring ownership of storage, locks and other
reserved system resources, and

• Truncating the execution of tasks that are no longer
relevant or that risk interfering with system correctness.

Below we examine two technical challenges we faced when
implementing RTC2 distributable threads in TAO: (1) man-
aging distributable vs. OS thread identities and (2) cancel-
ing distributable threads. For each challenge, we describe
the context in which the challenge arises, identify the spe-
cific problem that must be addressed, describe our solution
for resolving the challenge, and explain how this solution
was applied to TAO’s RTC2 framework.

2.4.1 Managing Distributable vs. OS Thread Identity
Context. A key design issue with the RTC2 specification is
that in modern ORB middleware with alternative concur-
rency strategies [14], a distributable thread may be mapped
on each endsystem to several different OS threads over its
lifetime.

Host 1 Host 2

OS
Thread

1

DT 1

tss_write

tss_read

OS
Thread

2

OS
Thread

1

DT 2

Figure 5: TSS with Distr ibutable Threads

Figure 5 illustrates how a distributable thread can use
thread-specific storage (TSS), lock resources recursively so
that they can be re-acquired later by that same distributable
thread, or perform any number of other operations that are
sensitive to the identity of the distributable thread perform-
ing them. In Figure 5, distributable thread DT1 associated
with OS thread 1 writes information into TSS on endsystem
A and then migrates to endsystem B. Before DT1 migrates

 8

back to endsystem A, DT2 migrates from endsystem B to
endsystem A. For efficiency, flexible concurrency strate-
gies such as thread pools [15] may map distributable
threads to whatever local threads are available. For exam-
ple, Figure 5 shows DT2 mapped to OS thread 1 and when
DT1 migrates back to endsystem A it is mapped to OS
thread 2.

Problem. Problems can arise when DT1 wants to obtain the
information it previously stored in TSS. If native OS-level
TSS was used, OS thread 2 cannot access the TSS for OS
thread 1, so DT1’s call to t ss_r ead() in Figure 5 will
fail. Moreover, the OS-level TSS mechanism does not offer
a way to substitute the OS thread identity used for a TSS
call, even temporarily.

Solution. To resolve these problems, some notion of distri-
butable thread identity is needed that is separate from the
identities of operating system threads. Likewise, mecha-
nisms are needed that use distributable thread GUIDs rather
than OS thread IDs, which results in an emulation of OS-
level mechanisms in middleware that can incur additional
overhead. We quantify the cost of this approach in our ex-
perimental results presented in Section 3.1.

2.4.2 Canceling a Distributable Thread
Context. DRE applications may need to cancel distribut-
able threads that become useless due to deadline failure or
to changing application requirements at run-time, or that
might interfere with other distributable threads that have
become more important. In the RTC2 specification, a dis-
tributable thread’s interface provides a cancel () opera-
tion that can be invoked to stop the corresponding distribut-
able thread. The Di st r i but abl eThr ead instance is
created when the outer most scheduling segment is created.
All nested scheduling segments are associated with the
same distributable thread that they constitute.

Problem. Safe and effective cancellation of a distributable
thread requires that two conditions are satisfied: (1) can-
cellation must only be invoked on a distributable thread that
in fact exists in the system and multiple cancellation of a
distributable thread must not occur and (2) because a distri-
butable thread may have locked resources or performed
other operations with side effects outside that distributable
thread, the effects of those operations must be reversed be-
fore the distributable thread is destroyed.

Solution. To cancel a distributable thread, the application
can only call the cancel () operation on the instance of
the distributable thread that is to be cancelled. Moreover,
once cancellation is successful that instance becomes inva-
lid for further cancellation. In the TAO RTC2 framework,
this operation causes the CORBA: : THREAD_CANCELLED
exception to be (1) raised in the context of the distributable
thread at the next scheduling point for the distributable
thread and (2) propagated to where the distributable thread
started, as illustrated in Figure 6. A distributable thread can

be cancelled any time on any host that it currently spans. As
shown in Figure 6, the distributable thread was cancelled on
Host 2, even though it is currently executing on Host 3.

When the cancel () operation is called, a thread
cancelled exception is propagated to the start of the distri-
butable thread. As shown in Figure 6, the CORBA: :
THREAD_CANCELLED exception is propagated from Host
2 to Host 1 where the distributable thread started. Since the
cancellation is not forwarded to the head of the distributable
thread if it is not on the same host, the cancellation will
only be processed after the distributable thread returns to
Host 2 from Host 3.

BSS - A

cancel DT

Process the
cancel at next

scheduling point

Propagate
cancel

Head of DT

Host 1 Host 2 Host 3

DT cancelled

Figure 6: Distr ibutable Thread Cancellation [9]

Note that while the distributable thread is a local interface,
the head of the distributable thread may not be executing
within the same address space as the thread calling
cancel () . Hence, cancel () is implemented by setting
a flag in the Di st r i but abl eThr ead interface to mark
it as cancelled. At the next local scheduling point of the
distributable thread a check for cancellation of the dis-
tributable thread will be performed. If the flag is set the
distributable thread is cancelled, the CORBA: : THREAD_
CANCELLED exception is raised, and the relevant resources
are released. After CORBA: : THREAD_CANCELLED is
raised and the distributable thread is cancelled, the local
thread that the distributable thread was mapped is released,
possibly to be used by another distributable thread.

3. Empir ical Evaluation of Real-Time
CORBA 2.0 Dynamic Scheduling in TAO

This section presents the results of micro-benchmarks of
our RTC2 implementation in TAO described in Section 2.
Section 4 then present the results of a two broader case
studies based on a production DRE application. The studies
in this section serve primarily to quantify the overhead in-
curred by TAO’s RTC2 dynamic scheduling framework.
We first describe experiments that quantify the cost to sup-
port a representative thread-identity-aware mechanism
based on thread specific storage (TSS) from the OS to the
middleware. We then describe experiments that evaluated
alternative mechanisms for scheduling distributable threads
according to their importance.

 9

3.1 Performance Overhead of Thread ID
Management

Exper iment overview and configuration. Section 2.4.1
describes the challenges associated with emulating distri-
butable thread identity via thread-specific storage in mid-
dleware, rather than using OS-level TSS support. To quan-
tify the additional overhead of TSS support in middleware,
we conducted several experiments to compare and contrast
the cost of creating TSS keys, and writing and reading TSS
data on a single endsystem.

The experiments were conducted on a single-CPU 2.8
GHz Pentium 4 machine with 512KB cache and 512Mb
RAM, running Red Hat Linux 9.0 (2.4.18 Kernel) with the
KURT-Linux patches and using ACE version 5.3.2. The
experiments were run as root, in the real-time scheduling
class, and the experimental data were collected using the
ACE high resolution timer. Experiments to assess the cost
of TSS key creation were run by iteratively creating 500
different keys and measuring the time it took to create each
one. Experiments to assess the cost of TSS write and read
operations were run by repeatedly writing and then reading
from one storage location associated with a single TSS key.

Empir ical results. Figure 7 shows that the cost of creating
the TSS keys in middleware was noticeably higher than the
cost of creating TSS keys in the OS. Moreover, the slope at

TSS Key Create:

0

500

1000

1500

2000

2500

3000

3500

4000

1 51 101 151 201 251 301 351 401 451 501
Number of Keys Created

T
im

e
(n

se
c)

Emulated
Native OS

Figure 7: TSS Key Creation Latency

which the cost of key creation in middleware increased with
each additional key was higher than the slope at which the
cost of each additional key increased with OS-level TSS
support. Similarly, Figure 8 shows that the cost of
r ead() and wr i t e() operations in middleware TSS
emulation were noticeably higher than in OS-level TSS.

Analysis of the results. Although the costs of middleware
TSS emulation was higher (as is to be expected), these re-
sults also show that the cost of middleware emulation of
TSS falls within reasonable limits. For key creation, both
OS and middleware TSS support show linear cost increases
with additional keys, and for read and write operations the
cost of each read or write remains essentially constant over

multiple iterations. Moreover, the total cost of create, read,
and write operations is very small (< 4 usec even to create
the 500th key) compared to the time-scales on which distri-
butable threads operate (on the order of seconds) in the
empirical studies described next in Section 3.2.

TSS Write/Read:

0

500

1000

1500

2000

2500

3000

1 101 201 301 401 501 601 701 801 901 1001
Number of Successive Iterations

T
im

e
(n

se
c)

Emulated Write
Emulated Read
Native OS Write
Native OS Read

Figure 8: TSS Write and Read Latency

3.2 Dynamic Scheduling Performance

Exper iment overview and configuration. To examine the
ability of different scheduling mechanisms to respond adap-
tively to changes in parameters like task importance, we
plugged two different implementations of the Schedul er
interface – an OS Thread Priority Scheduler and a Most
Important First Scheduler – into the TAO ORB version
1.3.2 to test the behavior of its RTC2 dynamic scheduling
framework with different scheduling strategies. Both im-
plementations of the Schedul er interface use a schedul-
ing strategy that prioritizes distributable threads according
to their importance.

The OS Thread Priority (TP) Scheduler is an RTC2
dynamic scheduler implementation that schedules the dis-
tributable threads by mapping each one’s dynamic impor-
tance to native OS priorities. The onus of dispatching the
distributable threads is thus delegated to the OS-level
thread scheduler, according to the native OS priorities as-
signed to the local threads to which the distributable threads
are mapped. The GUID of a migrating distributable thread
is propagated in the GIOP service context. The importance
of a migrating distributable thread is carried across the
endsystems it traverses using the RTC1 CLI ENT_
PROPAGATED priority propagation model. It is possible for
the application to change a distributable thread’s impor-
tance dynamically. However, the resolution with which the
TP Scheduler can enforce the ordering of distributable
threads by their importance parameters is limited by the
number of available OS priorities.

The Most Important First (MIF) Scheduler illustrated
in Figure 9 is our RTC2 dynamic scheduler implementation
that schedules distributable threads by their importance,
with the most important thread scheduled to execute at any

 10

given time. The application again specifies the importance
of the thread as a scheduling parameter to the MIF Sched-
uler. The MIF Scheduler maintains a ready queue that
stores distributable threads in order of their importance,
with the most important distributable thread that is ready for
execution at head of the queue. The local thread to which
each distributable thread in the queue is mapped waits on a
condition variable. When a distributable thread reaches the
head of the queue (which implies that it is the next to be
executed), the MIF Scheduler signals the corresponding
condition variable on which the local thread is waiting, and
hence awakens it. With the MIF Scheduler, both the impor-
tance and GUID of the distributable thread are propagated
in the GIOP service context.

C
V

C
V

1510

Ready Queue of Distributable Threads

+ 8

1510 8

New Distributable Thread

Ready Queue of Distributable Threads

C
V

C
V

C
V

C
V

C
V

CV - Condition Variable
Importance

- Distributable Thread

Figure 9: MIF Scheduler - Inser tion into Ready Queue

The experimental configuration we used to examine
both the TP and MIF schedulers is identical. The test con-
sisted of a set of local and distributed (spanning two hosts)
distributable threads. The hosts were both running RedHat
Linux 7.1 in the real-time scheduling class. The local distri-
butable threads consisted of threads performing CPU bound
work on the local host for a given execution time. The dis-
tributed distributable threads (1) performed the specified
local CPU bound work on the local host, (2) then made the
remote invocation performing CPU bound work on the re-
mote host for a given execution time, and (3) came back to
the local host to perform the specified local CPU bound
work. Tables 3 and 4 show the scheduling parameters of
distributable threads on host 1 and host 2 respectively: the
execution times for local work before and after the remote
invocation are separated by a ‘+’ .

Empir ical results. Figure 10 and Figure 11 show how
distributable threads are scheduled dynamically as they
enter and leave the system across multiple hosts by the TP
Scheduler and the MIF Scheduler respectively. The start
times of the distributable threads in both graphs are offset
from T=0 by less than 1 sec, which is the time taken to ini-
tialize the experiments and start the distributable threads.
Since both the TP and MIF schedulers use the same sched-

uling policy based on the importance of the distributable
threads, the graphs are nearly identical. The graphs show
the run-time distributable thread schedules on both the
hosts. On host 1, DT1 and DT2 start at time (T) = 0 and
DT3 starts at T=12. Since DT1 is of higher importance than
DT2 it is scheduled to run first. On host 2, DT4 starts at
T=0 and is scheduled for execution as DT5 is not ready to
run till T=9.

Table 3: Distr ibutable Thread Schedule on Host 1

GUID
Start
Time

(secs)

Importance
Execution Time

(secs) Span

 Local Remote

1 0 9 3+3 3 Dist

2 0 3 6+6 3 Dist

3 12 1 6 N/A Local

Table 4: Distr ibutable Thread Schedule on Host 2

Execution
Time

GUID

Start Time

(secs)
Importance

Local Dist

Span

4 0 5 9 N/A Local

5 9 7 3 N/A Local

Figure 10: OS Thread Pr ior ity Scheduler Graph

 11

Figure 11: MIF Scheduler Graph

After executing for 3 secs DT1 makes a two-way op-
eration invocation on host 2 and waits for a reply. DT4 is
suspended to allow DT1 to execute on host 2 as DT1 is of
higher importance. When DT1 is executing on host 2 the
respective RTC2 dynamic scheduler on host 1 continues to
schedule DT2 on host 1 as it has the highest importance on
host1. DT1 completes execution on host 2 after T=3 and
returns to host 1 and resumes execution, for T=3, after pre-
empting DT2. DT4 resumes on host 2. DT1 completes its
execution cycle of T=9 on host 1. Hence, DT2 is scheduled
on host 1 for the next 3 secs. On host 2 DT5 enters the sys-
tem at T=9. DT5 pre-empts DT4 as it is of higher im-
portance and executes for 3 secs.

At T=12 DT2 has completed 6 secs of local execution
and makes a twoway invocation to host 2. DT3 enters the
system at T=12 and is scheduled for execution for 3secs.
On host 2, DT5 completes its cycle of execution and DT4 is
scheduled. DT2 does not get to execute immediately on
host 2 as DT5 is of higher importance. After DT4 com-
pletes execution on host 2, DT2 is scheduled on host 2 for
the next 3 secs. DT3 continues execution on host 1. DT2
completes execution on host 2 and returns to host 1. DT3
completes its cycle of execution and DT2 is scheduled till
its cycle of local execution is complete.

Analysis of the results. The experimental results of the TP
and MIF schedulers demonstrate that system-wide dynamic
scheduling can be achieved with TAO’s RTC2 framework
when tasks (represented by the distributable threads) enter
and leave the system dynamically. Since both the TP and
MIF schedulers schedule the distributable threads based on
their importance, both the graphs are nearly identical. The
one small but important difference is in the times at which
the threads are suspended and resumed, due to the context
switch time for the MIF scheduler (which is at the applica-
tion level) compared to the TP scheduler (which is at the
OS level). These results validate our hypothesis that dy-

namic schedulers implementing different scheduling disci-
plines and even using different scheduling mechanisms can
be plugged into TAO’s RTC2 framework to schedule the
distributable threads in the system according to a variety of
requirements, while maintaining reasonable efficiency.

4. Empir ical Case Studies of Adaptive Sched-
uling in Real-Time Avionics Systems

Although the micro-benchmarks in Section 3 help to quan-
tify the behavior of TAO’s RTC2 dynamic scheduling
framework in a controlled environment, to truly evaluate
how to apply adaptive dynamic scheduling techniques ef-
fectively in complex DRE systems requires case studies of
actual systems. This section therefore describes two case
studies that apply our dynamic scheduling middleware in
the context of real-time avionics computing systems devel-
oped by The Boeing Company, running on production com-
puting, communication, and avionics hardware. The first
case study examines the effects of applying the cancellation
mechanisms described in Section 2.4.2 to non-critical real-
time operations. The second case study examines the per-
formance of adaptive operation rate re-scheduling within a
multi-layered resource management architecture for real-
time image transfer.

4.1 Case Study 1
�� ��

 Effects of Cancellation of
non-Cr itical Operations

Case study overview and configuration. Many complex
DRE systems perform a mixture of critical and non-critical
real-time operations, for which it is desirable to maximize
the ability of non-critical operations to meet their deadlines,
while ensuring that all critical operations also meet their
deadlines. When the CPU is overloaded (which can happen
all too readily in open systems in dynamic operating envi-
ronments), canceling some operations so that others are
more likely to meet their deadlines is an important strategy
for ensuring best use of the CPU resource. In this case
study, we used an Operational Flight Program (OFP) sys-
tem architecture based upon commercial hardware, soft-
ware, standards, and practices that supports re-use of appli-
cation components across multiple client platforms. The
OFP is primarily concerned with integrating remote sensor
and actuator systems throughout the aircraft with the cock-
pit information displays and controls used by the pilot and
other aircraft personnel.

The system architecture for our first case study in-
cluded an OFP consisting of approximately 70 operations,
the Bold Stroke avionics domain-specific middleware layer
[16] built upon TAO, the TAO Dynamic Scheduling Ser-
vice, and the TAO Real-Time Event Service [17], config-
ured for various scheduling strategies described in Sections
2 and 3. This middleware isolates applications from the
underlying hardware and OS, enabling hardware or OS ad-
vances from the commercial marketplace to be integrated

 12

more easily with the avionics application. We conducted
measurements of two key areas of resource management:
cancellation of non-critical operations that are at risk of
missing their deadlines, and protecting critical operations.
The analysis below features a comparison of two canonical
scheduling strategies, the hybrid static/dynamic Maximum
Urgency First (MUF) [4] strategy (which assigns operations
to strict priority lanes according to their criticality and the
schedules them dynamically within each lane according to
laxity) and the static Rate Monotonic Scheduling (RMS)
[12] strategy (which assigns operations to strict priority
lanes according to their rates of invocation, and schedules
each lane in FIFO order). Measurements were made on 200
MHz Power PC Single Board Computers running the
VxWorks 5.3 operating system.

Figure 12: Effects of non-Cr itical Operation Cancellation

Operation cancellation. Figure 12 shows the effects of
cancelling non-critical operations in the MUF hybrid
static/dynamic scheduling strategy in conditions of CPU
overload. Operation cancellation can potentially help re-
duce the amount of wasted work performed in operations
that miss their deadlines. Assuming there is no residual
value of an operation that completes past its deadline, this
wasted time increases the amount of unusable overhead. We
observed that while the MUF strategy with operation can-
cellation was more effective in limiting the number of op-
erations that were dispatched and then missed their dead-
lines, the number of operations that made their deadlines in
each case was comparable. We attribute this to the short
execution times of several of the non-critical operations. In
fact, the variation with cancellation had slightly lower num-
bers of non-critical operations that were successfully dis-
patched, as operation cancellation is necessarily pessimistic.

Protecting cr itical operations. We also compared the ef-
fects of non-critical operation cancellation on critical and
non-critical operations in overload, in the hybrid
static/dynamic MUF scheduling strategy and the static RMS

strategy. Figure 13 shows the number of deadlines made
and missed for each strategy.

Figure 13: Effects of Cancellation under Over load Conditions

With no operation cancellation, MUF met all of its dead-
lines, while RMS missed between 2 and 6 critical opera-
tions per sample. Furthermore, MUF successfully dis-
patched additional non-critical operations. We investigated
whether adding operation cancellation might have reduced
the number of missed deadlines for critical operations with
RMS, by reducing the amount of wasted work. However, it
appears that the overhead of operation cancellation in fact
makes matters worse, with between 6 and 7 misses per
sample. We interpret this to mean that there were few op-
portunities for effective non-critical operation cancellation
in RMS under the experimental conditions.

Analysis of the case study. The results from this case study
offer the following insights about the use of adaptive mid-
dleware to support DRE systems more effectively. First,
operation cancellation can be an effective way to shed tasks
that cannot meet their deadlines during resource overload.
Second, these results indicate that hybrid static/dynamic
scheduling strategies are more likely to benefit from opera-
tion cancellation than purely static ones – because hybrid
static-dynamic scheduling strategies prioritize critical tasks
as a whole over non-critical ones, the availability of the
CPU to non-critical tasks is more variable and more sparse
so that more non-critical tasks are likely potential candi-
dates for cancellation. Moreover, because operation can-
cellation is necessarily pessimistic, it is essential to avoid
overestimating the risk of operations missing their dead-
lines, which can result in overly aggressive cancellation
degrading rather than improving the overall performance of
the system. As is true for many adaptive resource manage-
ment techniques, the more accurate the information that the
cancellation mechanism has about deadline failure risks, the
more accurate its cancellation decisions and the better its
effect on overall system performance.

 13

4.2 Case Study 2
�� ��

 Adaptive Scheduling Be-
havior in Multi-level Resource Management

Case study overview and configuration. Our second case
study examines the performance of adaptive rescheduling of
operation rates within the context of layered multi-level
resource management [20]. We have applied the layered
resource management architecture shown in Figure 14 to
provide an open systems “bridge” between legacy on-board
embedded avionics systems and off-board information
sources and systems. The foundation of this bridge is the
interaction of two Real-time CORBA [1] ORBs (TAO and
ORBExpress) using a pluggable protocol to communicate
over a very low (and variable) bandwidth Link-16 data net-
work. We then applied several middleware technologies in
higher architectural layers to manage key resources and
ensure the timely exchange and processing of mission criti-
cal information. In combination, these techniques support
browser-like connectivity between server and client nodes,
with the added assurance of real-time performance in a
highly resource-constrained and dynamic environment. The
evaluation system described in this section leverages exist-
ing open middleware platforms similar to those described in
Section 4.1.

Environment
Simulation

Collaboration
Server

Virtual
Folder

Decompression
and IPM

Browser
Application

Progress
Contract

Application
Delegate

TAO ORB

Link-16 Software Link-16 Software

TAO
Scheduler

RT-ARM
QoS

Management

ORBExpress

Server
Side

Client
Side

TAO
Event Channel

Key:
QoS adaptation
request/tile path

tile request
queue

compressed
tile queue

Cockpit
Display

threads/timers

low bandwidth

link

coarsest
adaptation

finest
adaptation

2nd finest
adaptation

2nd

coarsest
adaptation

Environment
Simulation

Collaboration
Server

Virtual
Folder

Decompression
and IPM

Browser
Application

Progress
Contract

Application
Delegate

TAO ORB

Link-16 Software Link-16 Software

TAO
Scheduler

RT-ARM
QoS

Management

ORBExpress

Server
Side

Client
Side

TAO
Event Channel

Key:
QoS adaptation
request/tile path

tile request
queue

compressed
tile queue

Cockpit
Display

threads/timers

low bandwidth

link

coarsest
adaptation

finest
adaptation

2nd finest
adaptation

2nd

coarsest
adaptation

Figure 14: Multi-Level Resource Management Model

System resource management model. The resource man-
agement model for the evaluation system in this case study
is illustrated in Figure 14. When a client-side operator re-
quests an image, that request is sent from the browser ap-
plication to an application delegate [20], which then sends
a series of requests for individual tiles via TAO over a vari-
able low-bandwidth Link-16 connection to the server. The
delegate initially sends a burst of requests to fill the server
request queue; it then sends a new request each time a tile is

received. For each request, the delegate sends the tile’s de-
sired compression ratio, determined by the progress of the
overall image download when the request is made.

On the server, an ORBExpress/RT Ada ORB [22] receives
each request from the Link-16 connection, and from there
each tile goes into a queue of pending tile requests. A col-
laboration server pulls each request from that queue, fetches
the tile from the server’s virtual folder containing the im-
age, and compresses the tile at the ratio specified in the
request. The collaboration server then sends the compressed
tile back through ORBExpress and across Link-16 to the
client. Server-side environmental simulation services emu-
late additional workloads that would be seen on the com-
mand and control (C2) server under realistic operating con-
ditions. Back on the client, each compressed tile is received
from Link-16 by TAO and delivered to a servant that places
the tile in a queue where it waits to be processed. The tile is
removed from the queue, decompressed, and then delivered
by client-side operations to Image Presentation Module
(IPM) hardware which renders the tile on the cockpit dis-
play. The decompression and IPM delivery operations are
dispatched by a TAO Event Service [17] at rates selected
by the TAO Dynamic Scheduling Service.

0

50000

100000

150000

200000

250000
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

number of re-scheduling computations performed

co
m

p
u

ta
tio

n
la

te
n

cy
 (

us
ec

)

QuO+RTARM 48 QuO+RTARM 42 QuO+RTARM 38

Figure 15: Adaptive Schedule Computation Latency

Schedule re-computation latency. We measured schedule
re-computation overhead resulting from priority and rate re-
assignment by the TAO Dynamic Scheduling Service. Fig-
ure 15 plots schedule re-computations while the system is
performing adaptation of both image tile compression and
decompression and IPM operation rates, at deadlines for
downloading the entire image of 48, 42, and 38 seconds.
The key insight from these results is that the number and
duration of re-scheduling computations is both (1) reduced
overall compared to our earlier results [19] and (2) propor-
tional to the degree of rate adaptation that is useful and nec-
essary for each deadline.

The main feature of interest in Figure 15 is the down-
ward settling of schedule computation times, as the ranges
of available rates is narrowed toward a steady-state solution

 14

and the input set over which the scheduler performs its
computation is thus reduced. We also observed an interest-
ing phase transition in the number of re-computations be-
tween the infeasible and barely feasible deadlines. If we
arrange trials in descending order according to the number
of re-computations in each, we get 42, 46, 48, 50, 52, 54,
and then 58 seconds, and then finally 38 second and 1 sec-
ond deadlines showed the same minimal number of compu-
tations. The duration of the experiment for the 42 second
deadline was comparable to that for other deadlines.

Analysis of the case study. This second case study demon-
strates that adaptive rescheduling techniques can be applied
to adjust the rates of operation invocation at run-time in
response to dynamically varying environments. The con-
vergence of the scheduling behavior toward lower latencies
and smaller input sets is a good example of desirable adap-
tation performance in DRE systems. As future work, we
are investigating questions of convergence and stability
raised by this case study, by applying formal control theory
to guide the adaptation of operation rates, image tile com-
pression ratios, and other factors relevant to adaptive DRE
systems.

5. Related Work

The Quality Objects (QuO) distributed object middleware
is developed at BBN Technologies [20]. QuO is based on
CORBA and provides the following support for agile appli-
cations running in wide-area networks: (1) run-time per-
formance tuning and configuration through the specifica-
tion of QoS regions, behavior alternatives, and reconfigu-
ration strategies that allows the QuO run-time to adaptively
trigger reconfiguration as system conditions change (repre-
sented by transitions between operating regions) and (2)
feedback across software and distribution boundaries based
on a control loop in which client applications and server
objects request levels of service and are notified of changes
in service. We have integrated our earlier dynamic schedul-
ing service (Kokyu [23]) with the QuO framework and plan
future integration of our RTC2 framework with QuO.

The Realize project at UCSB has developed an ap-
proach based on object migration and replication, to im-
prove performance of soft real-time distributed systems
[24], [25]. This approach constitutes a higher level of adap-
tive control for soft real-time QoS management, and is
complementary to our RTC2 framework. In particular, a
system developer might apply Realize to provide soft real-
time load balancing across endsystems, using our RTC2
framework to integrate scheduling and dispatching of dis-
tributable threads that transit those endsystems.

The Time-triggered Message-triggered Objects (TMO)
project [26] at the University of California, Irvine, supports
the integrated design of distributed OO systems and real-
time simulators of their operating environments. The TMO
model provides structured timing semantics for distributed

real-time object-oriented applications by extending conven-
tional invocation semantics for object methods, i.e.,
CORBA operations, to include (1) invocation of time-
triggered operations based on system times and (2) invoca-
tion and time bounded execution of conventional message-
triggered operations. TMO is a compatible technology to
our RTC2 framework, particularly for the open area of re-
search of time-triggered management of distributable
threads.

The RTC2 specification allows pluggable dynamic
schedulers. However, this means that endsystems, or even
segments within an endsystem, along an end-to-end path
could be applying differing scheduling disciplines and
scheduling parameters. For example, one endsystem could
order the eligibility of distributable threads per the EDF
scheduling discipline using deadlines, and another per the
MUF scheduling discipline using criticality, deadlines, and
execution times. RTC2 does not address the issue of inter-
operability of schedulers on the endsystems that a distribut-
able thread spans. Juno [27], a meta-programming architec-
ture for heterogeneous middleware interoperability, ad-
dresses the above issues. It formalizes the above problems,
defines formalisms to express different instances of the
problem and maps the formalized abstractions to a software
architecture based on Real-time CORBA.

6. Concluding Remarks

The OMG Real-time CORBA 2.0 (RTC2) specification
defines a dynamic scheduling framework that enhances the
development of open distributed real-time and embedded
(DRE) systems that possess dynamic QoS requirements.
The RTC2 framework provides a distributable thread ca-
pability that can support execution sequences requiring dy-
namic scheduling and enforce their QoS requirements based
on scheduling parameters associated with them. The RTC2
distributable threads abstraction can extend over as many
hosts that the execution sequence may span. Flexible
scheduling is achieved by plugging in dynamic schedulers
that implement different scheduling strategies, such as EDF,
MLF, MUF, or RMS+MLF, as well as the TP and MIF
strategies described in Section 3.

TAO’s implementation of the RTC2 specification has
addressed a broader set of issues than the standard itself
covers, such as mapping distributable and local thread iden-
tities, supporting hybrid static and dynamic scheduling, and
defining efficient mechanisms for enforcing a variety of
scheduling policies. We learned the following lessons from
our experience developing and empirically evaluating
TAO’s RTC2 framework:

• RTC2 is a good beginning towards addressing the dy-
namic scheduling issue in DRE systems. To achieve
correctness, however, there is a need for a robust im-
plementation of a Scheduling Service that works in
conjunction with the RTC2 framework. By integrating

 15

our earlier work on middleware scheduling frameworks
[7] [8] [23] within the RTC2 standard, we have pro-
vided a wider range of scheduling policies and mecha-
nisms.

• Some features that are implemented for the efficiency
of thread and other resource management can hinder
the correct working of the RTC2 framework. For ex-
ample, managing distributable threads is more costly
and complicated due to sensitivity of key mechanisms
to their identities, as is discussed in Section 2.4.

• System-wide dynamic scheduling is not yet as perva-
sive as fixed-priority static scheduling in practice,
which has limited the scope of the RTC2 specification.
In particular, it does not yet address interoperability of
the dynamic schedulers on different hosts. Instead, it
only ensures propagation of timeliness requirements of
an execution sequence across the hosts it spans so it
can be scheduled on each host.

• Empirical case studies based on actual DRE systems
(such as those presented in Section 4) are essential to
(1) understand how techniques such as cancellation and
adaptive rescheduling can be applied effectively in
complex DRE systems and (2) determine the appropri-
ate role of RTC2 mechanisms with respect to other
middleware mechanisms that could be used alternately.

As future work, we are investigating what additional gains
in QoS assurance and efficiency of resource management in
open DRE systems can be achieved by integrating diverse
scheduling policies and mechanisms within our RTC2
framework, according to the semantics of each particular
open DRE system application. Our preliminary results [28]
indicate that even more customized forms of scheduling can
be achieved efficiently within the RTC2 framework.

References
[1] Real-Time CORBA Specification, Aug. 2002,

www.omg.org/docs/formal/02-08-02.pdf
[2] D. Karr, C. Rodrigues, Y. Krishnamurthy, I. Pyarali, and D.

Schmidt, “Application of the QuO Quality-of-Service Framework to
a Distributed Video Application,” DOA, Rome, Italy, Sept. 2001.

[3] D. Corman, J. Gossett, D. Noll, “Experiences in a Distributed, Real-
Time Avionics Domain - Weapons System Open Architecture,
ISORC, Washington DC, April 2002.

[4] D. Stewart and P. Khosla, “Real-Time Scheduling of Sensor-Based
Control Systems,” in Real-Time Programming (W. Halang and K.
Ramamritham, eds.), Tarrytown, NY: Pergamon Press, 1992.

[5] Real –Time CORBA 2.0: Dynamic Scheduling specification, OMG
Final Adopted Specification, September 2001,
www.omg.org/docs/ptc/01-08-34.pdf

[6] D. Schmidt, D. Levine, and S. Mungee. “The Design and Perform-
ance of the TAO Real-Time Object Request Broker” , Computer
Communications 21(4), April 1998.

[7] C. Gill, D. Levine, D. Schmidt, “The Design and Performance of a
Real-Time CORBA Scheduling Service,” The International Journal
of Time-Critical Computing Systems 20(2), Kluwer, March 2001.

[8] C. Gill, D. Schmidt, and R. Cytron, “Multi-Paradigm Scheduling for
Distributed Real-Time Embedded Computing” , IEEE Proceedings
91(1), Jan 2003.

[9] Y. Krishnamurthy, C. Gill, D. Schmidt, I. Pyarali, L. Mgeta, Y.
Zhang, and S. Torri, “The Design and Implementation of Real-Time
CORBA 2.0: Dynamic Scheduling in TAO”, RTAS 2004, Montreal,
Canada, May 2004.

[10] UUIDs and GUIDs Internet-Draft, Paul J. Leach, Rich Salz,
www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt

[11] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, "Pattern-
Oriented Software Architecture: Patterns for Concurrent and Net-
worked Objects, Volume 2", Wiley, NY, 2000.

[12] C. Liu, J. Layland, “Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment,” JACM, vol. 20, January 1973.

[13] Chung, Liu, Lin, “Scheduling Periodic Jobs that Allow Imprecise
Results,” IEEE Transactions on Computers, vol. 39, Sept 1990.

[14] I. Pyarali, C. O’Ryan, D. Schmidt, N. Wang, V. Kachroo, A. Gok-
hale, “Using Principle Patterns to Optimize Real-Time ORBs” , IEEE
Concurrency, Vol. 8, No. 1, Jan-Mar 2000.

[15] I. Pyarali, D. Schmidt, R. Cytron, “Techniques for Enhancing Real-
Time CORBA Quality of Service” , IEEE Proc., 91(7), July 2003.

[16] D. Sharp, “Reducing Avionics Software Cost Through Component
Based Product Line Development” , Software Technology Confer-
ence, April 1998.

[17] T. Harrison, D. Levine, and D. Schmidt, “The Design and Perform-
ance of a Real-time CORBA Event Service,” OOPSLA ’97, Atlanta,
GA, ACM, October, 1997.

[18] Huang, Jha, Heimerdinger, Muhammad, Lauzac, Kannikeswaran,
Schwan, Zhao, and Bettati, “RT-ARM: A Real-Time Adaptive Re-
source Management System for Distributed Mission-Critical Appli-
cations", Workshop on Middleware for Distributed Real-Time Sys-
tems, IEEE RTSS, San Francisco, California, 1997.

[19] B. Doerr, T. Venturella, R. Jha, C. Gill, and D. Schmidt, “Adaptive
Scheduling for Real-time, Embedded Information Systems,” 18th
IEEE/AIAA DASC, St. Louis, Oct. 1999.

[20] J. Gossett, C. Gill, J. Loyall, D. Schmidt, D. Corman, R. Schantz,
and M. Atighetchi, “ Integrated Adaptive QoS Management in Mid-
dleware: A Case Study” , RTAS 2004, Montreal, Canada, May 2004.

[21] J. Zinky, D. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA Objects,” Theory and Practice of
Object Systems, vol. 3, no. 1, pp. 1–20, 1997.

[22] Objective Interface, “ORBExpress” , www.ois.com
[23] J. Loyall, J. Gossett, C. Gill, R. Schantz, J. Zinky, P. Pal, R.

Shapiro, C. Rodrigues, M. Atighetchi, and D. Karr, “Comparing and
Contrasting Adaptive Middleware Support in Wide-Area and Em-
bedded Distributed Object Applications,” in Proceedings of the 21st
International Conference on Distributed Computing Systems
(ICDCS-21), pp. 625–634, IEEE, April 2001.

[24] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser, “Dynamic
Migration Algorithms for Distributed Object Systems, 21st IEEE In-
ternational Conference on Distributed Computing Systems (ICDCS),
Phoeniz, AZ, April 2001.

[25] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser, “Dynamic
Scheduling of Distributed Method Invocations,” in 21st IEEE Real-
Time Systems Symposium,(Orlando, FL), IEEE, November 2000.

[26] K. H. K. Kim, “Object Structures for Real-Time Systems and Simu-
lators,” IEEE Computer, pp. 62–70, Aug. 1997.

[27] A. Corsaro, D. Schmidt, C. Gill, and R. Cytron, “Formalizing Meta-
Programming Techniques to Reconcile Heterogeneous Scheduling
Policies in Open Distributed Real-Time Systems” , 3rd Int. Symp. on
Distributed Objects and Applications, September 2001, Rome, Italy.

[28] M. Frisbee, D. Niehaus, V. Subramonian, and C. Gill, “Group
Scheduling in Systems Software” , 12th Intl. Workshop on Parallel
and Distributed Real-Time Systems, April 2004, Santa Fe, NM

