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Abstract1

Recent trends in distributed real-time and embed-
ded (DRE) systems motivate the development of infor-
mation management capabilities that ensure the right 
information is delivered to the right place at the right 
time to satisfy quality of service (QoS) requirements in 
heterogeneous environments. A promising approach to 
building and evolving large-scale and long-lived DRE 
information management systems are standards-based 
QoS-enabled publish/subscribe (pub/sub) platforms 
that enable participants to communicate by publishing 
information they have and subscribing to information 
they need in a timely manner. Since there is little exist-
ing evaluation of how well these platforms meet the 
performance needs of DRE information management, 
this paper provides two contributions: (1) it describes 
three common architectures for the OMG Data Distri-
bution Service (DDS), which is a QoS-enabled pub/sub 
platform standard, and (2) it evaluates implementa-
tions of these architectures to investigate their design 
tradeoffs and compare their performance with each 
other and with other pub/sub middleware. Our results 
show that DDS implementations perform significantly 
better than non-DDS alternatives and are well-suited 
for certain classes of data-critical DRE information 
management systems. 
 
Keywords: DRE Information Management; QoS-en-
abled Pub/Sub Platforms; Data Distribution Service; 

1 Introduction 
The OMG Data Distribution Service (DDS) [6] 

specification is a standard for QoS-enabled pub/sub 
communication aimed at mission-critical distributed 
real-time and embedded (DRE) systems. It is designed 
to provide (1) location independence via anonymous 
pub/sub protocols that enable communication between 
collocated or remote publishers and subscribers, (2) 
scalability by supporting large numbers of topics, data 
readers, and data writers, and (3) platform portability 
and interoperability via standard interfaces and trans-
port protocols. Multiple implementations of DDS are 
now available, ranging from high-end COTS products 
to open-source community-supported projects. DDS is 
used in a wide range of DRE systems, including traffic 
monitoring [14], control of unmanned vehicle commu-
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nication with ground stations [16], and semiconductor 
fabrication devices [15].  

Although DDS is designed to be scalable, efficient, 
and predictable, few researchers have evaluated and 
compared the performance of DDS implementations 
empirically for common DRE information management 
scenarios. Likewise, little published work has system-
atically compared DDS with alternative non-DDS 
pub/sub middleware platforms. This paper addresses 
this gap in the R&D literature by describing the results 
of the Pollux project, which is evaluating a range of 
pub/sub platforms to compare how their architecture 
and design features affect their performance and suit-
ability of DRE information management. This paper 
also describes the design and application of an open-
source DDS benchmarking environment we developed 
as part of Pollux to automate the comparison of 
pub/sub latency, jitter, throughput, and scalability. 

The remainder of this paper is organized as fol-
lows: Section 2 summarizes the DDS specification and 
the architectural differences of three popular DDS im-
plementations; Section 3 describes our ISISlab hard-
ware testbed and open-source DDS Benchmark Envi-
ronment (DBE); Section 4 analyzes the results of 
benchmarks conducted using DBE in ISISlab; Section 
5 presents the lessons learned from our experiments; 
Section 6 compares our work with related research on 
pub/sub platforms; and Section 7 presents concluding 
remarks and outlines our future R&D directions.  

2 Overview of DDS 
2.1 Core Features and Benefits of DDS 
The OMG Data Distribution Service (DDS) specifica-
tion provides a data-centric communication stan-
dard for a range of DRE computing environments, 
from small networked embedded systems up to large-
scale information backbones. At the core of DDS is the 
Data-Centric Publish-Subscribe (DCPS) model, whose 
specification defines standard interfaces that enable 
applications running on heterogeneous platforms to 
write/read data to/from a global data space in a DRE 
system. Applications that want to share information 
with others can use this global data space to declare 
their intent to publish data that is categorized into one 
or more topics of interest to participants. Similarly, 
applications can use this data space to declare their 
intent to become subscribers and access topics of inter-
est. The underlying DCPS middleware propagates data 
samples written by publishers into the global data space, 
where it is disseminated to interested subscribers [6]. 



The DCPS model decouples the declaration of informa-
tion access intent from the information access itself, 
thereby enabling the DDS middleware to support and 
optimize QoS-enabled communication.  
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Figure 1: Architecture of DDS 

The following DDS entities are involved in a 
DCPS-based application, as shown in Figure 1: 
• Domains. DDS applications send and receive data 

within a domain. Only participants within the same 
domain can communicate, which helps isolate and 
optimize communication within a community that 
shares common interests. 

• Data Writers/Readers and Publishers/Subscribers. 
Applications use data writers to publish data values 
to the global data space of a domain and data readers 
to receive data. A publisher is a factory that creates 
and manages a group of data writers with similar be-
havior or QoS policies. A subscriber is a factory that 
creates and manages data readers.  

• Topics. A topic connects a data writer with a data 
reader. Communication happens only if the topic 
published by a data writer matches a topic subscribed 
to by a data reader. Communication via topics is 
anonymous and transparent, i.e., publishers and sub-
scribers need not be concerned with how topics are 
created nor who is writing/reading them since the 
DDS DCPS middleware manages these issues.  

The remainder of this subsection describes the benefits 
of DDS relative to conventional pub/sub middleware 
and client/server-based Service Oriented Architecture 
(SOA) platforms. 

Figures 2 and 3 show DDS capabilities that make 
it better suited than other standard middleware plat-
forms as the basis of DRE information management. 
Figure 2(A) shows that DDS has fewer layers than con-
ventional SOA standards, such as CORBA, .NET, and 
J2EE, which can reduce latency and jitter significantly, 
as shown in Section 4. Figure 2(B) shows that DDS 
supports many QoS policies, such as the lifetime of 
each data sample, the degree and scope of coherency 
for information updates, the frequency of information 
updates, the maximum latency of data delivery, the 
priority of data delivery, the reliability of data delivery, 
how to arbitrate simultaneous modifications to shared 

data by multiple writers, mechanisms to assert and de-
termine liveliness, parameters for filtering by data re-
ceivers, the duration of data validity, and the depth of 
the ‘history’ included in updates. 
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Figure 2: DDS Optimizations & QoS Capabilities  

These QoS policies can be configured at various 
levels of granularity (i.e., topics, publishers, data writ-
ers, subscribers, and data readers) thereby allowing 
application developers to construct customized con-
tracts based on the specific QoS requirements of indi-
vidual entities. Since the identity of publishers and sub-
scribers are unknown to each other, the DCPS middle-
ware is responsible for determining whether QoS poli-
cies offered by a publisher are compatible with those 
required by a subscriber, allowing data distribution 
only when compatibility is satisfied.  
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Figure 3: DDS Filtering & Meta-event Capabilities  

Figure 3(A) shows how DDS can migrate process-
ing closer to the data source, which reduces bandwidth 
in resource-constrained network links. Figure 3(B) 
shows how DDS enables clients to subscribe to meta-
events that they can use to detect dynamic changes in 
network topology, membership, and QoS levels. This 
mechanism helps DRE information management sys-
tems adapt to environments that change continuously. 

2.2 Alternative DDS Implementations 
The DDS specification defines a wide range of 

QoS policies (outlined in Section 2.1) and interfaces 
used to exchange topic instances between participants. 
The specification intentionally does not address how to 
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implement the services or manage DDS resources in-
ternally, so DDS providers are free to innovate. Natu-
rally, the communication models, distribution architec-
tures, and implementation techniques used by DDS 
providers significantly impact application behaviour 
and QoS, i.e., different choices affect the suitability of 
DDS implementations and configurations for various 
types of DRE information management applications. 

Table 1: Supported DDS Communication Models  

Impl Unicast Multicast Broadcast 
DDS1 Yes (default) Yes No 
DDS2 No Yes Yes (default) 
DDS3 Yes (default) No No 

By design, the DDS specification allows DCPS 
implementations and applications to take advantage of 
various communication models, such as unicast, multi-
cast, and broadcast transports. The communication 
models supported for the three most popular DDS im-
plementations we evaluated are shown in Table 1.2 
DDS1 supports unicast and multicast, DDS2 supports 
multicast and broadcast, whereas DDS3 supports only 
unicast. These DDS implementations all use layer 3 
network interfaces, i.e., IP multicast and broadcast, to 
handle the network traffic for different communication 
models, rather than more scalable multicast protocols, 
such as Richocet [5], which combine native IP group 
communication with proactive forward error correction 
to achieve high levels of consistency with stable and 
tunable overhead. Our evaluation also found that these 
three DDS implementations have different architectural 
designs, as described in the remainder of this section. 

2.2.1 Federated Architecture 
The federated DDS architecture shown in Figure 4 

uses a separate DCPS daemon process for each net-
work interface. This daemon must be started on each 
node before domain participants can communicate. 
Once started, it communicates with DCPS daemons 
running on other nodes and establishes data channels 
based on reliability requirements (e.g., reliable or best-
effort) and transport addresses (e.g., unicast or multi-
cast). Each channel handles communication and QoS 
for all the participants requiring its particular properties. 
Using a daemon process decouples the applications 
(which run in a separate user process) from DCPS con-
figuration and communication-related details. For ex-
ample, the daemon process can use a configuration file 
to store common system parameters shared by com-
munication endpoints associated with a network inter-
face, so that changing the configuration does not affect 
application code or processing.  

In general, a federated architecture allows applica-
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tions to scale to a larger number of DDS participants on 
the same node, e.g., by bundling messages that origi-
nate from different DDS participants. Moreover, using 
a separate daemon process to mediate access to the 
network can (1) simplify application configuration of 
policies for a group of participants associated with the 
same network interface and (2) prioritize messages 
from different communication channels.  

 
Figure 4: Federated DDS Architecture 

A disadvantage of the daemon-based approach, 
however, is that it introduces an extra configuration 
step—and possibly another point of failure. Moreover, 
applications must cross extra process boundaries to 
communicate, which can increase latency and jitter, as 
shown in Section 4.  

2.2.2 Decentralized Architecture 
The decentralized DDS architecture shown in Fig-

ure 5 places the communication- and configuration-
related capabilities into the same user process as the 
application itself. These capabilities execute in separate 
threads (rather than in a separate daemon process) that 
the DCPS middleware library uses to handle communi-
cation and QoS. 

 
Figure 5: Decentralized DDS Architecture 

The advantage of a decentralized architecture is 
that each application is self-contained, without needing 
a separate daemon. As a result, latency and jitter are 
reduced, and there is one less configuration and failure 
point. A disadvantage, however, is that specific con-
figuration details, such as multicast address, port num-
ber, reliability model, and parameters associated with 
different transports, must be defined at the application 
level, which is tedious and error-prone. This architec-
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ture also makes it hard to buffer data sent between mul-
tiple DDS applications on a node, and thus does not 
provide the same scalability benefits as the federated 
architecture described in Section 2.2.1. 

2.2.3 Centralized Architecture 
The centralized architecture shown in Figure 6 

uses a single daemon server running on a designated 
node to store the information needed to create and 
manage connections between DDS participants in a 
domain. The data itself passes directly from publishers 
to subscribers, whereas the control and initialization 
activities (such as data type registration, topic creation, 
and QoS value assignment, modification and matching) 
require communication with this daemon server. 

 
Figure 6: Centralized DDS Architecture 

The advantage of the centralized approach is its 
simplicity of implementation and configuration since 
all control information resides in a single location. The 
disadvantage, of course, is that the daemon is a single 
point of failure, as well as a potential performance bot-
tleneck in a highly loaded system. 

The remainder of this paper investigates how the 
architecture differences described above can affect the 
performance experienced by DRE information manage-
ment applications. 

3 Methodology for Pub/Sub Platform 
Evaluation 

This section describes our methodology for 
evaluating pub/sub platforms to determine how well 
they support various classes of DRE information 
management applications, including systems that 
generate small amounts of data periodically (which 
require low latency and jitter), systems that send larger 
amount of data in bursts (which require high 
throughput), and systems that generate alarms (which 
require asynchronous, prioritized delivery). 

3.1 Evaluated Pub/Sub Platforms 
In our evaluations, we compare the performance of the 
C++ implementations of DDS shown in Table 2 against 
each other. We also compare these three DDS imple-
mentations against three other pub/sub middleware 
platforms, which are shown in Table 3. 

Table 2: DDS Versions Used in Experiments 

Impl Version Distribution Architecture 
DDS1 4.1c Decentralized Architecture 
DDS2 2.0 Beta Federated Architecture 
DDS3 8.0 Centralized Architecture 

Table 3: Other Pub/Sub Platforms in Experiments 

Platform Version Summary 
CORBA 
Notification 
Service 

TAO 1.5 OMG data interoperability 
standard that enables events 
to be sent & received be-
tween objects in a decoupled 
fashion 

SOAP gSOAP 
2.7.8 

W3C standard for an XML-
based Web Service 

JMS J2EE 1.4 
SDK/ 
JMS 1.1 

Enterprise messaging stan-
dards that enable J2EE com-
ponents to communicate 
asynchronously & reliably 

We compare the performance of these pub/sub 
mechanisms by using the following metrics: 
• Latency, which is defined as the roundtrip time be-

tween the sending of a message and reception of an 
acknowledgment from the subscriber. In our test, the 
roundtrip latency is calculated as the average value 
of 10,000 round trip measurements.  

• Jitter, which is the standard deviation of the latency. 
• Throughput, which is defined as the total number of 

bytes received per unit time in different 1-to-n (i.e., 
1-to-4, 1-to-8, and 1-to-12) publisher/subscriber con-
figurations.  

We also compare the performance of the DDS asyn-
chronous listener-based and synchronous waitset-based 
subscriber notification mechanisms. The listener-based 
mechanism uses a callback routine (the listener) that 
the DDS service invokes when data is available. The 
waitset-based mechanism sets up a sequence (the wait-
set) containing user-defined conditions. A designated 
application thread will sleep on the waitset until these 
conditions are met.  

3.2 Benchmarking Environment 

3.2.1 Hardware and Software Infrastructure 
The computing nodes we used to run our experi-

ments are hosted on ISISlab [19], which is a testbed of 
computers and network switches that can be arranged 
in many configurations. ISISlab consists of 6 Cisco 
3750G-24TS switches, 1 Cisco 3750G-48TS switch, 4 
IBM Blade Centers each consisting of 14 blades (for a 
total of 56 blades), 4 gigabit network IO modules and 1 
management modules. Each blade has two 2.8 GHz 
Xeon CPUs, 1GB of ram, 40GB HDD, and 4 independ-
ent Gbps network interfaces. In our tests, we used up to 
14 nodes (1 pub, 12 subs, and a centralized server in 
the case of DDS3). Each blade ran Fedora Core 4 
Linux, version 2.6.16-1.2108_FC4smp. The DDS ap-
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plications were run in the Linux real-time scheduling 
class to minimize extraneous sources of memory, CPU, 
and network load. 

3.2.2 DDS Benchmark Environment (DBE) 
To facilitate the growth of our tests both in variety 

and complexity, we created the DDS Benchmarking 
Environment (DBE), which is an open-source frame-
work for automating our DDS testing. The DBE con-
sists of (1) a repository that contains scripts, configura-
tion files, test ids, and test results, (2) a hierarchy of 
Perl scripts to automate test setup and execution, (3) a 
tool for automated graph generation, and (4) a shared 
library for gathering results and calculating statistics. 

The DBE has three levels of execution designed to 
enhance flexibility, performance, and portability, while 
incurring low overhead. Each level of execution has a 
specific purpose: the top level is the user interface, the 
second level manipulates the node itself, and the bot-
tom level is comprised of the actual executables (e.g., 
publishers and subscribers for each DDS 
implementation). DBE runs all test executables locally, 
and if Ethernet saturation is reached during our testing, 
the saturation is due to DDS data transmissions, not to 
DBE test artifacts. 

4 Empirical Results 
This section analyzes the results of benchmarks 

conducted using DBE in ISISlab. We first evaluate 1-
to-1 roundtrip latency performance of DDS pub/sub 
implementations within a single blade and compare 
them with the performance of non-DDS pub/sub im-
plementations in the same configuration. We then ana-
lyze the results of 1-to-n scalability throughput tests for 
each DDS implementations, where n is 4, 8, or 12 
blades on ISISlab. All graphs of empirical results use 
logarithmic axes since the latency/throughput of some 
pub/sub implementations cover such a large range of 
values that linear axes display unreadably small values 
over part of the range of payload sizes. 

4.1 Latency and Jitter results 
Benchmark design. Latency is an important 

measurement to evaluate DRE information manage-
ment performance. Our test code measures roundtrip 
latency for each pub/sub middleware platform de-
scribed in Section 3.1. We ran the tests on both simple 
and complex data types to see how well each platform 
handles the extra (de)marshaling overhead introduced 
by the latter. The IDL structure for the simple and com-
plex data types are shown below.  
// Simple Sequence Type 
Struct data  
{ long index; sequence<octet> data; } 
 
// Complex Sequence Type 
struct Inner { string info; long index; }; 
typedef sequence<Inner> InnerSeq; 

struct Outer  
{ long length; InnerSeq nested_member; }; 
typedef sequence<Outer> ComplexSeq; 

The publisher writes a simple or complex data se-
quence of a certain payload size. When the subscriber 
receives the topic data it replies with a 4-byte acknowl-
edgement. The payload length for both simple and 
complex data ranges from 4 to 16,384 by powers of 2.  

The basic building blocks of the JMS test codes 
consist of administrative objects used by J2EE Appli-
cation server, a message publisher, and a message sub-
scriber. JMS supports both point-to-point and pub-
lish/subscribe message domains. Since we are measur-
ing the latency of one publisher to one subscriber, we 
chose a point-to-point message domain that uses a syn-
chronous message queues to send and receive data.  

TAO’s Notification Service uses a Real-time 
CORBA threadpool lane to create a priority path be-
tween publisher and subscriber. The publisher creates 
an event channel and specifies a lane with priority 0. 
The subscriber also chooses a lane with priority 0. The 
Notification Service then matches the lane for the sub-
scriber and sends the event to the subscriber using the 
CLIENT_PROPAGATED priority model. .  

The publisher test code measures latency by time-
stamping the data transmission and subtracting that 
from the timestamp value when it receives the sub-
scriber ack. This test is to evaluate how fast data gets 
transferred from one pub/sub node to another at differ-
ent payload sizes. To eliminate factors other than dif-
ferences among the middleware implementations that 
affect latency/jitter, we tested a single publisher send-
ing to a single subscriber running in separate processes 
on the same node. Since each node has two CPUs the 
publisher and subscriber can execute in parallel. 

Results. Figure 7 and Figure 8 compare la-
tency/jitter results for simple/complex data types for all 
pub/sub platforms. These figures show how DDS la-
tency/jitter is much lower than conventional pub/sub 
middleware for both simple and complex data types. In 
particular, DDS1 has much lower latency and jitter 
than the other pub/sub mechanisms.  

Analysis. There are several reasons for the results 
in Figures 7 and 8. As discussed in Section 2.1, DDS 
has fewer layers than other standard pub/sub platforms, 
so it incurs lower latency and jitter. Since in each test 
the publisher and subscriber reside on the same blade, 
DDS1 and DDS2 both switch to shared memory trans-
port to improve performance. The particularly low la-
tency of DDS1 stems largely from its mature imple-
mentation, as well as its decentralized architecture 
shown in Figure 5, in which publishers communicate to 
subscribers without going through a separate daemon 
process. In contrast, DDS2’s federated architecture 
involves an extra hop through a pair of daemon proc-
esses (one on the publisher and one on the subscriber), 
which helps explain why its latency is higher than 
DDS1’s when sending small simple data types. 
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Figure 7: Simple Latency Vs Complex Latency 

 
Figure 8: Simple Jitter Vs Complex Jitter 

Figures 7 and 8 also show that sending complex 
data types incurs more overhead for all pub/sub imple-
mentations, particularly as payload size increases. For 
complex data types we observe that although DDS1 
outperforms DDS2 for smaller payloads, DDS2 catches 
up at 512 bytes and performs better for payload sizes 
above 512 bytes. This behavior is explained by the fact 
that DDS1 performs (de)marshaling even in the local 
blade, whereas DDS2 optimizes local blade perform-
ance by making a simple C++ call and bypassing 
(de)marshaling. The benefits of this DDS2 optimiza-
tion, however, are apparent only for large data sizes on 

the same blade, as shown by the curve in Figure 7 
comparing DDS1 and DDS2. We have run the same 
latency tests on two different blades and the results 
shown in [19] indicate that DDS1 performs better for 
all payload sizes tested since remote communication 
obviates the DDS2 optimization. 

Simple Type

Interestingly, the latency increase rate of GSOAP 
is nearly linear as payload size increases, i.e., if the 
payload size doubles, the latency nearly doubles as 
well. GSOAP’s poor performance with large payloads 
stems largely from its XML representation for se-
quences, which (de)marshals each element of a se-
quence using a verbose text-based format rather than 
(de)marshaling the sequence in blocks as DDS and 
CORBA do.  

Complex Type

4.2 Throughput Results 
Benchmark design. Throughput is another impor-

tant performance metric for DRE information manage-
ment systems. The primary goals of our throughput 
tests were therefore to measure how each DDS imple-
mentation handles scalability of subscribers and how 
different communication models (e.g., unicast, multi-
cast, and broadcast) affect performance, and how the 
performance of synchronous (waitset-based) data de-
livery differs from that of asynchronous (listener-based) 
data delivery. To maximize scalability in our through-
put tests, the publisher and subscriber(s) reside in dif-
ferent processes on different blades.  

The remainder of this subsection first evaluates the 
performance results of three DDS implementations as 
we vary the communication models they support, as 
per the constraints outlined in Table 1. We then 
compare the multicast performance of DDS1 and 
DDS2, as well as the unicast performance of DDS1 and 
DDS3, which are the only common points of 
evaluation currently available. We focused our 
throughput tests on the DDS implementations and did 
not measure throughput for the other pub/sub platforms 
because our results in Section 4.1 show they were 
significantly outperformed by DDS.  

The remainder of this section presents our 
throughput results. For each figure, we include a small 
text box with a brief description of the DDS QoS used 
for that particular test. Any parameter that is not 
mentioned in the box has the default value specified in 
the DDS specification [6]. Note that we have chosen 
the best-effort QoS policy for data delivery reliability, 
as mentioned in Section 1. The reason we focus on 
best-effort is that we are evaluating DRE information 
management scenarios where (1) information is 
updated frequently and (2) the overhead of 
retransmitting lost data samples is acceptable. 

Simple Type

Complex Type

4.2.1 DDS1 Unicast/Multicast 
Results. Figure 9 shows the results of our scalability 
tests for DDS1 unicast/multicast with 1 publisher and 
multiple subscribers. This figure shows that unicast 
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performance degrades when scaling up the number of 
subscribers, whereas multicast throughput scales up 
more gracefully.  

Analysis. Figure 9 shows that the overhead of uni-
cast degrades performance as the number of subscrib-
ers increases, since the middleware sends a copy to 
each subscriber. It also indicates how multicast im-
proves scalability, since only one copy of the data is 
delivered, regardless of the number of subscribers in 
the domain. 

 
Figure 9: DDS1 Unicast vs Multicast 

 

4.2.2 DDS2 Broadcast/Multicast 
Results. Figure 10 shows the scalability test re-

sults for DDS2 broadcast/multicast with 1 publisher 
and multiple subscribers (i.e., 4 and 12 blades). The 
figure shows that both multicast and broadcast scales 
well as the number of subscribers increases and multi-
cast performs slightly better than broadcast. 

Analysis. Figure 10 shows that sending messages 
to a specific group address rather than every subnet 
node is slightly more efficient. Moreover, using broad-
cast instead of multicast may be risky since sending 
messages to all blades can saturate network bandwidth 
and blade processors. 

 
Figure 10: DDS2 Multicast vs Broadcast 

4.2.3 Comparing DDS Implementation Per-
formance 

Results. Figure 11 shows multicast performance 
comparison of DDS1 and DDS2 with 1 publisher and 
12 subscriber blades. Since DDS3 does not support 
multicast, we omit it from the comparison. Figure 12 
shows unicast performance comparison of DDS1 and 
DDS3. Since DDS2 does not support unicast, we omit 
it from this comparison.  

 
Figure 11: 1-12 DDS1 Multicast vs. DDS2 Multicast 

Analysis. Figures 11 and 12 indicate that DDS1 
outperforms DDS2 for smaller payload sizes. As the 
size of the payload increases, however, DDS2 performs 
better. It appears that the difference in the results stems 
from the different distribution architectures (decentral-
ized and federated, respectively) used to implement 
DDS1 and DDS2. 

 

 
Figure 12: 1-12 DDS1 Unicast vs. DDS3 Unicast 

5 Key Challenges and Lessons Learned 
This section describes the challenges we encountered 
when conducting the experiments presented in Section 
4 and summarizes the lessons learned from our efforts. 
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5.1 Resolving DBE Design and Execution 
Challenges 

Challenge 1: Synchronizing Distributed Clocks  
Problem. It is hard to precisely synchronize clocks 

among applications running on blades distributed 
throughout ISISlab. Even when using the Network 
Time Protocol (NTP), we still experienced differences 
in time that led to inconsistent results and forced us to 
constantly repeat the synchronization routines to ensure 
the time on different nodes was in sync. We therefore 
needed to avoid relying on synchronized clocks to 
measure latency, jitter, and throughput. 

Solution. For our latency experiments, we have 
the subscriber send a minimal reply to the publisher, 
and use on the clock on the publisher side to calculate 
the roundtrip time. For throughput, we use the sub-
scriber’s clock to measure the time required to receive 
a designated number of samples. Both methods provide 
us with common reference points and minimize timing 
errors through the usage of effective latency and 
throughput calculations based on a single clock. 

Challenge 2: Automating Test Execution 
Problem. Achieving good coverage of a test space 

where parameters can vary in several orthogonal di-
mensions leads to a combinatorial explosion of test 
types and configurations. Manually running tests for 
each configuration and each middleware implementa-
tion on each node is tedious, error-prone, and time-con-
suming. The task of managing and organizing test re-
sults also grows exponentially along with the number 
of distinct test configuration combinations. 

Solution. The DBE described in Section 3.2.2 
stemmed from our efforts to manage the large number 
of tests and the associated volume of result data. Our 
efforts to streamline test creation, execution and analy-
sis are ongoing, and include work on several fronts, 
including a hierarchy of scripts, several types of con-
figuration files, and test code refactoring. 

Challenge 3: Handling Packet Loss 
Problem. Since our DDS implementations use the 

UDP transport, packets can be dropped at the publisher 
and/or subscriber side. We therefore needed to ensure 
that the subscribers get the designated number of sam-
ples despite packet loss. 

Solution. One way to solve this problem is to have 
the publisher send the number of messages subscribers 
expect to receive and then to stop the timer when the 
publisher is done. The subscriber could then use only 
the number of messages that were actually received to 
calculate the throughput. However, this method has 
two drawbacks: (1) the publisher must send extra noti-
fication messages to stop the subscribers, but since 
subscribers may not to receive this notification mes-
sage, the measurement may never happen and (2) the 
publisher stops the timer, creating a distributed clock 

synchronization problem discussed in Challenge 1 that 
could affect the accuracy of the evaluation. To address 
these drawbacks we therefore adopted an alternative 
that ensures subscribers a deterministic number of mes-
sages by having the publishers “oversend” an appropri-
ate amount of extra data.. With this method, we avoid 
extra “pingpong” communication between publishers 
and subscribers. More importantly, we can measure the 
time interval entirely at the subscriber side without 
relying on the publisher’s clock. The downside of this 
method is that we had to conduct experiments to deter-
mine the appropriate amount of data to oversend.  

Challenge 4: Ensuring Steady Communication 
State 

Problem. Our benchmark applications must be in 
a steady state when collecting statistical data. 

Solution. We send primer samples to “warm up” 
the applications before actually measuring the data. 
This warmup period allows time for possible discovery 
activity related to other subscribers to finish, and for 
any other first-time actions, on-demand actions, or lazy 
evaluations to be completed, so that their extra over-
head does not affect the statistics calculations. 

5.2 Summary of Lessons Learned 

Based on our test results, experience developing 
the DBE, and numerous DDS experiments, we learned 
the following: 
• DDS Performs significantly better than other 

pub/sub implementations. Figure 7 in Section 4.1 
shows that even the slowest DDS was about twice 
as fast as non-DDS pub/sub services. Figure 7 and 
Figure 8 show that DDS pub/sub middleware 
scales better to larger payloads compared to non-
DDS pub/sub middleware. This performance mar-
gin is due in part to the fact that DDS decouples the 
information intent from information exchange. In 
particular, XML-based pub/sub mechanisms, such 
as SOAP, are optimized for transmitting strings, 
whereas the data types we used for testing were se-
quences. GSOAP’s poor performance with large 
payloads is due to the fact that GSOAP 
(de)marshals each element of a sequence, which 
may be as small as a single byte, while DDS im-
plementations send and receive these data types as 
blocks. 

• Individual DDS architectures and implementa-
tions are optimized for different use cases. Fig-
ures 7 and 11 show that DDS1’s decentralized ar-
chitecture is optimized for smaller payload sizes 
compared to DDS2’s federated architecture. As 
payload size increases, especially for the complex 
date type in Figure 7, DDS2 catches up and sur-
passes DDS1 in performance on the same blade. 
When the publisher and subscriber run on different 
blades, however, DDS1 outperforms DDS2 for all 
tested payload sizes.  
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• Apples-to-apples comparisons of DDS im-
plementations are hard. The reasons for this dif-
ficulty fall into the following categories: (1) no 
common transport protocol – the DDS imple-
mentations that we investigated share no common 
application protocol, e.g., DDS1 uses a RTPS-like 
protocol on top of UDP, DDS2 will add RTPS 
support soon, and DDS3 simply uses raw TCP and 
UDP, (2) no universal support for uni-
cast/broadcast/multicast – Table 1 shows the dif-
ferent mechanisms supported by each DDS im-
plementations, from which we can see DDS3 does 
not support any group communication transport, 
making it hard to maintain performance as the 
number of subscribers increases, (3) DDS applica-
tions are not yet portable, which stem partially 
from the fact that the specification is still evolving 
and vendors use proprietary techniques to fill the 
gaps (a portability wrapper façade would be a great 
help to any DDS application developer, and a huge 
help to our efforts in writing and running large 
numbers of benchmark tests), and (4) arbitrary de-
fault settings for DDS implementations, which in-
cludes network-specific parameters, not covered by 
the DDS specification, that can significantly impact 
performance.  

6 Related Work 
To support emerging DRE information manage-

ment systems, pub/sub middleware in general, and 
DDS in particular, have attracted an increasing number 
of research efforts (such as COBEA [20] and Siena 
[12]) and commercial products and standards (such as 
JMS [10], WS_NOTIFICATION [13], and the CORBA 
Event and Notification services [17]). This section de-
scribes several projects that are related to the work pre-
sented in this paper. 

Open Architecture Benchmark. Open Architec-
ture Benchmark (OAB) [8] is a DDS benchmark effort 
along with Open Architecture Computing Environment, 
an open architecture initiated by the US Navy. Joint 
efforts have been conducted in OAB to evaluate DDS 
products, in particular RTI’s NDDS and PrismTech’s 
OpenSplice, to understand the ability of these DDS 
products to support the bounded latencies required by 
Naval systems. Their results indicate that both products 
perform quite well and meet the requirements of typical 
Naval systems. Our DDS work extends that effort by (1) 
comparing DDS with other pub/sub middleware and (2) 
examining DDS throughput performance.  

S-ToPSS. There has been an increasing demand for 
content-based pub/sub applications, where subscribers 
can use a query language to filter the available infor-
mation and receive only a subset of the data that is of 
interest. Most solutions support only syntactic filtering, 
i.e., matching based on syntax, which greatly limits the 
selectivity of the information. In [7] the authors inves-

tigated how current pub/sub systems can be extended 
with semantic capabilities, and proposed a prototype of 
such middleware called the Semantic - Toronto Pub-
lish/Subscribe System (S-ToPSS). For a highly intelli-
gent semantic-aware system, simple synonym trans-
formation is not sufficient. S-ToPSS extends this model 
by adding another two layers to the semantic matching 
process, concept hierarchy and matching functions. 
Concept hierarchy makes sure that events (data mes-
sages, in the context of this paper) that contain general-
ized filtering information do not match the subscrip-
tions with specialized filtering information, and that 
events containing more specialized filtering than the 
subscriptions will match. Matching functions provide a 
many-to-many structure to specify more detailed 
matching relations, and can be extended to heterogene-
ous systems. DDS also provides QoS policies that sup-
port content-based filters for selective information sub-
scription, but they are currently limited to syntactic 
match. Our future work will explore the possibility of 
introducing semantic architectures into DDS and evalu-
ate their performance.  
    PADRES. The Publish/subscribe Applied to Dis-
tributed Resource Scheduling (PADRES) [1] is a dis-
tributed, content-based publish/subscribe messaging 
system. A PADRES system consists of a set of brokers 
connected by an overlay network. Each broker in the 
system employs a rule-based engine to route and match 
publish/subscribe messages, and is used for composite 
event detection. PADRES is intended for business 
process execution and business activity monitoring, 
rather than for DRE systems. While not conforming to 
the DDS API, its publish/subscribe model is close to 
that of DDS, so we plan to explore how a DDS imple-
mentation might be based on PADRES. 

7 Concluding Remarks 
This paper first evaluated the architectures of three 

implementations of the OMG Data Distribution Service 
(DDS). We then presented the DDS Benchmarking 
Environment (DBE) and showed how we use the DBE 
to compare the performance of these DDS implementa-
tions, as well as non-DDS pub/sub platforms. Our re-
sults indicate that DDS performs significantly better 
than other pub/sub implementations for the following 
reasons: (1) DDS’s communication model provides a 
range of QoS parameters that allow applications to 
control many aspects of data delivery in a network, (2) 
implementations can be optimized heavily, (3) DDS 
can be configured to leverage fast transports, e.g., using 
shared memory to minimize data copies within a single 
node, and to improve scalability, e.g., by using multi-
cast to communicate between nodes.  

As part of the ongoing Pollux project, we will con-
tinue to evaluate other interesting features of DDS 
needed by large-scale DRE information management 
systems. Our future work will include (1) tailoring our 
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DBE benchmarks to explore key classes of applications 
in DRE information management systems, (2) devising 
generators that can emulate various workloads and use 
cases, (3) empirically evaluating a wider range of QoS 
configurations, e.g. durability, reliable vs. best-effort, 
and integration of durability, reliability and history 
depth, (4) designing mechanisms for migrating proc-
essing toward data sources, (5) measuring participant 
discovery time for various entities, (6) identifying sce-
narios that distinguish performance of QoS policies and 
features (e.g., collocation of applications), and (7) 
evaluating the suitability of DDS in heterogeneous dy-
namic environments, e.g., mobile ad hoc networks, 
where system resources are limited and dynamic topol-
ogy and domain participant changes are common. 
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