
Integrated Adaptive QoS Management in Middleware: A Case Study1 
 

Christopher D. Gill Jeanna M. Gossett and David Corman 
Washington University, St. Louis, MO The Boeing Company, St. Louis, MO 

cdgill@cse.wustl.edu 
 

{jeanna.m.gossett,david.e.corman}@boeing.com 

Joseph P. Loyall, Richard E. Schantz, and 
Michael Atighetchi 

Douglas C. Schmidt 

BBN Technologies, Cambridge, MA Vanderbilt University, Nashville, TN 
{jloyall,schantz,matighet}@bbn.com schmidt@dre.vanderbilt.edu 

 

                                                           
1 Approved for public release, distribution unlimited.  This work was supported in part by AFRL, NSF ITR CCR-
0312859, Siemens, and DARPA/AFRL contracts F33615-03-C-4112, F30602-98-C-0187 and F33615-00-C-1694. 

Abstract 
 

Distributed real-time and embedded (DRE) systems in 
which application requirements and environmental 
conditions may not be known a priori—or which may vary at 
run-time—can benefit from an adaptive approach to 
management of quality-of-service (QoS) to meet key 
constraints, such as end-to-end timeliness. Moreover, 
coordinated management of multiple QoS capabilities across 
multiple layers of applications and their supporting 
middleware can help to achieve necessary assurances of 
meeting these constraints. This paper offers two 
contributions to the study of adaptive DRE computing 
systems: (1) a case study of our integration of multiple 
middleware QoS management technologies to manage 
quality and timeliness of imagery adaptively within a 
representative DRE avionics system and (2) empirical results 
and analysis of the impact of that integration on key trade-
offs between timeliness and image quality in that system. 

Index terms – Empirical Case Studies, Distributed Real-
Time and Embedded (DRE) Systems, Adaptive Middleware 
  

1. Introduction 
 
Distributed Object Computing (DOC) middleware has 
become a widely accepted paradigm for developing 
numerous applications in a wide variety of 
environments, including distributed real-time and 
embedded (DRE) systems and applications. As DOC 
middleware has matured and been applied to a variety 
of use cases, there has been a natural growth in 
extensions, features, and services to support these use 
cases. For example, the Minimum CORBA [1] and 
Real-time CORBA [2] specifications, as well as the 
Real-Time Specification for Java (RTSJ) [3], are 
examples of standards that have emerged from research 

and experience supporting the quality of service (QoS) 
needs of DRE applications.  
Although previous research has shown the benefits of 
integrating multiple QoS management techniques in 
standards-based middleware [4] and applying single-
layer adaptive resource management techniques real-
world DRE systems [5], only limited practical 
experience is available, however, with integrating 
resource management techniques across multiple layers 
of standards-based DRE systems. As a step towards 
filling this gap, this paper presents a case study of the 
vertical integration of three layers of middleware QoS 
management technologies within Boeing’s Bold Stroke 
[6], which is a standards-based DRE avionics platform. 
Bold Stroke is representative of a broader class of 
applications (including, e.g., mission-critical 
distributed audio/video processing [7] and real-time 
robotic systems [8]) that require both static and 
dynamic support for QoS.  In this paper, we describe 
the integration of our three layered QoS management 
technologies, show results of their use in the Bold 
Stroke avionics system, and analyze each technology’s 
contribution to adaptive QoS management. 

This paper is organized as follows: Section 2 
describes the Bold Stroke avionics system’s application 
context; Section 3 describes each of the three QoS 
management technologies and examines the issues and 
optimizations we discovered while in integrating them 
within the avionics system; Section 4 describes the 
methodology and overall design of our experiments; 
Section 5 reports our results, and analyzes trade-offs 
under different adaptation approaches; and Section 6 
presents concluding remarks.  
 



2. Application Overview 
 
We conducted our experiments using the Weapons 
Systems Open Architecture (WSOA) open 
experimentation platform (OEP) shown in Figure 1, 
which consisted of two airborne server and client nodes 
(a command and control aircraft and an F-15 fighter 
aircraft respectively) that collaborated over a very low-
bandwidth radio data link to re-plan the client’s 
mission parameters in real-time. Collaborative re-
planning enables responding more rapidly to situational 
changes in-flight, e.g., the server (C2 node) sends links 
to downloadable imagery to the client (F-15 node), 
which it then uses for re-planning. In the example 
scenario we used to evaluate the WSOA OEP, an off-
board sensor detects time-sensitive information that 
initiates re-planning and provides this information to 
the server node. The server node has authority to 
initiate re-planning with the client node and sends an 
alert to the client node, along with a “virtual folder”  
that contains thumbnails of relevant images and the 
associated links to the complete images. Personnel on 
the client and server nodes collaborate to develop a 
new plan, which the client then performs.  

The research described in this paper applies multi-
layer adaptive middleware techniques to alleviate key 
limitations that impede successful mission re-planning:  
1. Limits on radio data link bandwidth that constrain 

the operational utility of existing systems to 
collaboratively re-plan missions of airborne nodes.  

2. Static resource management schemes that often 
rely on over-allocation strategies and reduce and 
sometimes eliminate the amount of processor and 
network resources available for mission re-
planning and rehearsal.   

virtual
folder

Adaptation

P
ro

ce
ss

or
R

M

TAO

QuO

Soft RT tasks

Hard RT tasks

Server

Client

Decompress

Navigationvirtual
folder

Adaptation

P
ro

ce
ss

or
R

M

TAO

QuOQuO

Soft RT tasks

Hard RT tasks

Server

Client

Decompress

Navigation

 
Figure 1: Collaborative Re-planning in WSOA 

A key goal of the WSOA OEP evaluation system 
illustrated in Figure 1 is to use adaptation to provide 
the client the same level of confidence in the re-
directed plan as in the original pre-planned version, 
even in the face of dynamic environmental factors such 
as variations in network bandwidth and unannounced 
mission re-planning alerts. Therefore, in addition to 
providing the client up-to-date information detected by 

remote sensors (e.g., fresh images of the new 
destination) and about the environment it will 
encounter en-route to and from the new destination, the 
OEP must manage key trade-offs between transmission 
quality and latency for that information. Our solution is 
to implement QoS-managed browser-like collaboration 
capabilities to (1) enable the client and server nodes to 
view the same displays and information and (2) ensure 
image quality and transmission latency stay within 
acceptable bounds, in a manner that is as independent 
as possible of the available resources (obviously there 
is a minimum, below which nothing useful can be 
accomplished).  This common browser view also 
allows server-side personnel to decorate imagery with 
annotations that will be visible on the client node 
rapidly, i.e., within one second. The advantage of this 
approach is that features can be located on an image 
via an icon placed at a precise location relative to an 
easily identified reference point.  This capability in turn 
allows personnel at the client and server nodes to 
establish a common frame of reference of the plan 
update and the new destination environment while the 
client is en-route to that destination, which is far better 
than the voice-only radio communications previously 
available in conventional re-planning systems.  

Our solution is readily extensible to scenarios 
encompassing multiple client and server nodes, as well 
as other applications (such as coordination within 
teams of autonomous agents in rapidly changing 
environments or circumventing cascades of failures in 
distributed critical infrastructure) that require adaptive 
run-time support for collaborative re-planning. 
 
2.1. Design and Implementation Overview 
 
In the WSOA OEP application, a server-side operator 
first uses a user interface to send an alert to the client 
along with a virtual target folder containing a set of 
thumbnail images to the client. The collaboration client 
application (on the fighter aircraft) also contains a 
virtual folder manager component, which provides it 
access to and storage of virtual folders and their 
images. If sufficient memory is available, the virtual 
folder manager can hold more than one virtual folder, 
though only a single virtual folder was downloaded for 
our OEP evaluation. The client node determines which 
page of the virtual folder is displayed. Personnel on the 
client node can navigate the virtual folder both forward 
and backward using “next”  and “previous”  buttons on 
their cockpit display. The virtual folder can also be 
reset to a home page by touching another button. A 
thumbnail page in the virtual folder allows the operator 
to select images to download and view without the 



overhead of downloading each complete image. A bar 
next to each thumbnail indicates whether its 
corresponding image has been downloaded: the bar is 
green if so and if not is red.  
Server and client node personnel can then draw 
annotations and move commonly viewed individual 
cursors during the collaboration. To avoid problems 
with having both the server and client manipulate the 
image simultaneously, the client is given control of 
image download and manipulation during the 
collaboration, including panning side-to-side, rotation, 
and zooming. Server and client node personnel can 
move their respective cursors to indicate a specific 
location on the image. They are also able to draw 
circle, line, rectangle, and triangle annotations to 
designate larger regions on the image. Update 
messages are sent between the collaboration server and 
client to update cursor positions and annotations. The 
server to client update message contains server cursor 
movements and annotations drawn on the server. The 
client to server update message contains image 
manipulation information in addition to client cursor 
movements and client-drawn annotations. Update 
messages are only sent as needed and only contain 
updates since the last such message. Displays on both 
client and server are updated with the update 
information to maintain a common synchronized view 
of the virtual folder. 
 
2.2. Improvements in the State of the Ar t 
 
Our DOC middleware approach provides an open 
systems “bridge”  between legacy on-board embedded 
avionics systems and off-board information sources and 
systems. The foundation of this bridge is a Real-time 
CORBA Object Request Broker (ORB) [2] using a 
pluggable protocol to communicate over a very low 
bandwidth (approximately 2,400 baud in each 
direction) Link-16 tactical data network. Link-16 time 
slots were allocated asymmetrically in the OEP so that 
the image tiles were downloaded at close to 4,800 baud 
with a small fraction of the bandwidth allocated to 
carry tile requests and update messages from the client 
to the server. We have applied middleware 
technologies at several architectural layers to manage 
key resources and ensure the timely exchange and 
processing of mission critical information. In 
combination, these techniques support Internet-like 
connectivity between server and client nodes, with the 
added assurance of real-time performance in a highly 
resource-constrained environment.  

The WSOA OEP evaluation system leverages 
existing open systems client and server platforms. On 

the client side, we used an Operational Flight Program 
(OFP) system architecture based upon commercial 
hardware, software, standards, and practices [9] that 
supports re-use of application components across 
multiple client platforms. The OFP architecture 
includes the Bold Stroke avionics domain-specific 
middleware layer [10] built upon The ACE ORB 
(TAO) [11], a widely-used, open-source C++ 
implementation of Real-time CORBA that is available 
at deuce.doc.wustl.edu/Download.html. This 
middleware isolates applications from the underlying 
hardware and operating system (OS), enabling 
hardware or OS advances from the commercial 
marketplace to be integrated more easily with the 
avionics application. This architecture uses the 
adaptive middleware technologies described in Section 
3 to address the limitations with time-sensitive mission 
re-planning noted at the beginning of this section. 
 
2.3. System Resource Management Model 
 
The resource management model for the WSOA OEP 
evaluation system is illustrated in Figure 2. When client 
personnel request an image, that request is sent from 
the browser application to a QuO  application delegate 
[9], which then sends a series of requests for individual 
tiles via TAO over a low-bandwidth Link-16 
connection to the server. The delegate initially sends a 
burst of requests to fill the server request queue; after 
that it sends a new request each time a tile is received. 
For each request, the delegate sends the tile’s desired 
compression ratio, determined by the progress of the 
overall image download when the request is made.  
On the server, the ORBExpress Ada ORB [18] receives 
each request from the Link-16 connection, and from 
there each tile goes into a queue of pending tile 
requests. A collaboration server pulls each request 
from that queue, fetches the tile from the server’s 
virtual target folder containing the image, and 
compresses the tile at the ratio specified in the request. 
The collaboration server then sends the compressed tile 
back through ORBExpress and across Link-16 to the 
client. Server-side environmental simulation services 
emulate additional workloads that would be seen on the 
command and control (C2) server under realistic 
operating conditions. Back on the client, each 
compressed tile is received from Link-16 by TAO and 
delivered to a servant that places the tile in a queue 
where it waits to be decompressed. The tile is removed 
from the queue, decompressed, and then delivered by 
client-side operations to Image Presentation Module 
(IPM) hardware which renders the tile on the cockpit 
display. The decompression and IPM delivery 



operations are dispatched by the TAO Event Channel 
[10] at rates selected in concert by the RT-ARM [13] 
and the TAO Reconfigurable Scheduler [5][15], as 
described in Sections 3.2 and 3.3, respectively.  
 

Environment
Simulation

Collaboration
Server

Virtual 
Folder

Decompression 
and IPM

Browser
Application

Progress
Contract

Application
Delegate

TAO ORB

Link-16 Software Link-16 Software

TAO
Scheduler

RT-ARM
QoS 

Management

ORBExpress

Server
Side

Client
Side

TAO
Event Channel

Key:
QoS adaptation
request/tile path

tile request 
queue

compressed
tile queue

Cockpit
Display

threads/timers

low bandwidth

link

coarsest 
adaptation

finest 
adaptation

2nd finest 
adaptation

2nd

coarsest 
adaptation

Environment
Simulation

Collaboration
Server

Virtual 
Folder

Decompression 
and IPM

Browser
Application

Progress
Contract

Application
Delegate

TAO ORB

Link-16 Software Link-16 Software

TAO
Scheduler

RT-ARM
QoS 

Management

ORBExpress

Server
Side

Client
Side

TAO
Event Channel

Key:
QoS adaptation
request/tile path

tile request 
queue

compressed
tile queue

Cockpit
Display

threads/timers

low bandwidth

link

coarsest 
adaptation

finest 
adaptation

2nd finest 
adaptation

2nd

coarsest 
adaptation

 
Figure 2: Resource Management Model 

3. Overview of Adaptive Middleware 
 
To address the challenges described in Section 2, we 
have designed, implemented, and flight-tested an 
integrated multi-layered QoS enforcement architecture 
based on the Real-time CORBA standard. A key theme 
in this architecture is that coarser-grain adaptation is 
performed by higher layers of the architecture (i.e., 
closer to the application), with finer grained adaptation 
at each lower layer (i.e., closer to the OS and 
hardware). To enhance performance, our architecture 
tries to handle adaptation at the lowest layer possible, 
moving up to higher layers only if QoS requirements 
cannot be met via adaptation in the current layer.   
Figure 2 illustrates the resource adaptation architecture 
of the WSOA OEP evaluation platforms and 
middleware. The finest granularity of adaptation in the 
WSOA system architecture is the lowest priority 
dynamic scheduling of non-critical operations [5] by 
the dispatcher of the TAO Real-Time Event Channel, 
which we developed in previous research [12]. The 
second finest level of adaptation granularity is achieved 
by a Real Time Adaptive Resource Manager (RT-
ARM) [13] and the TAO Reconfigurable Scheduler 
[5][15], which re-schedule rates of invocation of 
application components while maintaining deadline-
feasible scheduling of critical operations. The second 
coarsest level of adaptation is performed by the Quality 
Objects (QuO) framework [7], which monitors progress 
downloading and processing image tiles toward the 
desired deadline for the entire image. While QuO 

represents the highest middleware layer in the OEP 
system architecture, the highest layer at which 
adaptation can be performed is the application layer, 
where the client personnel can specify coarsest grain 
requirements for image quality and timeliness. The 
remainder of this section describes each middleware 
layer outlined above in detail, from coarsest to finest 
grained. The remainder of this section describes the 
middleware in our multi-layered architecture, ranging 
from the coarsest to the finest granularity of adaptation. 
 
3.1. QuO: 2nd Coarsest Grain Adaptation 
 

 
QuO is an aspect-oriented middleware framework 
designed by BBN Technologies to support the 
development of QoS behavior of a system separate 
from – but complementary to – the development of its 
functional behavior. We used the following QuO 
components in the WSOA OEP testbed: 
1. Contracts specify desired and available QoS, 

along with the policies for controlling QoS and 
adapting to changes. 

2. Delegates are remote object proxies, with well-
defined points to insert adaptive behaviors into 
end-to-end paths. 

3. System condition objects provide interfaces to 
parts of the system that must be measured or 
controlled by contracts. 

Since QuO is general-purpose framework that can 
support a variety of adaptation strategies, we developed 
a reactive QoS adaptation policy [17] for the OEP 
evaluation system that manages the overall trade-offs of 
timeliness versus image quality. When the client node 
requests an image from the server node, a QuO 
delegate breaks the image request up into a sequence of 
separate tile requests—each tile is a smaller-sized piece 
of the entire image for which a separate compression 
ratio can be assigned. The number of tiles requested by 
the delegate is based upon the image size, while the 
compression level of an individual tile can be adjusted 
dynamically based upon the deadline for receiving the 
full image and the expected download time for the tile. 
The image is tiled from the point of interest first, with 
the early tiles containing the most important data, so 
that decreased quality of later tiles will have minimal 
impact on the overall mission re-planning capabilities. 
In the OEP evaluation system, a QuO delegate adapts 
the compression level of the next tile requested. A QuO 
contract monitors progress of the image download 
through system condition objects and influences the 
compression level of subsequent tiles based upon 
whether the image is behind schedule, on schedule, or 
ahead of schedule. If the processing of the image tiles 



falls behind schedule, the contract prompts the RT-
ARM (described in Section 3.2) to attempt to adjust 
invocation rates to allocate more CPU cycles to tile 
decompression. The delegate first determines the 
number of tiles into which the image will be broken. 
Due to constraints on both the server tiling software 
and the client display software, in the OEP evaluation 
system the choices were limited to 1, 16, or 64 tiles. 
Our experiments (described in Section 4) revealed that 
breaking a 512 x 512 pixel image into 64 tiles 
introduced too much overhead, which increased the 
download time dramatically. We therefore always 
requested either 16 tiles or the entire image. 
The delegate also determines the initial compression 
ratio for the image. We used the lowest compression 
ratio available for the initial tiles, because tiles are 
requested starting from the region of interest first and 
subsequent tiles are not as valuable. It therefore is more 
important for the application to download image tiles at 
compression ratios greater than or equal to that of the 
region of interest. After the number and initial 
compression ratio of tiles have been set, the delegate 
makes several calls to the server to request the first set 
of tiles. The number of tiles requested initially is 
determined by the size of a tile request queue that 
holds outstanding tiles requested from the server, but 
not yet received by the client. This queue enables the 
QuO encoded policy to delay requesting tiles until 
necessary to provide the maximum impact of 
compression ratio adaptation, while ensuring that there 
is always a tile request ready for the server to process. 
Finally, the delegate initiates periodic callbacks to its 
methods, so that it can perform contract evaluation, 
adjust compression ratios, and request subsequent tiles 
as needed to fill the tile request queue. As tiles are 
received from the server node, QuO system conditions 
count tiles received, processed, and displayed.  
There are four operating regions specified by the QuO 
contract: inactive, early, on time, and late. The inactive 
operating region is entered when the entire image has 
been downloaded. The on time operating region 
indicates that the image is on pace to complete before – 
but close to – its deadline. Similarly, the early region 
indicates that the image is on pace to finish well before 
its deadline and the late operating region indicates that 
the image will finish after the deadline at the current 
rate of progress. There is no change in the compression 
ratio if the current operating region is on time. If the 
current region is early, then the compression ratio is 
lowered to the initial compression ratio, so that the 
remaining tiles can have the same quality as the initial 
tiles. If the current operating region is late, the 
compression ratio is increased in increments of 25:1 in 

the range [50:1, 75:1, 100:1]. After checking progress 
– and if necessary setting a new compression ratio and 
notifying the RT-ARM of any changes in the operating 
region – QuO checks the request queue’s depth and 
requests additional tiles until the tile request queue is 
full or the last tile has been requested. QuO can be 
downloaded in open-source format from 
quo.bbn.com. 
 
3.2. RT-ARM: 2nd Finest Grain Adaptation 
 
The RT-ARM is a reactive resource adaptation service 
developed by Honeywell Technologies and used in the 
WSOA OEP to manage the progress of the thread(s) 
for decompressing received tiles and delivering them to 
the application by the client of the OEP. When 
triggered to react, the RT-ARM manipulates the CPU 
usage of key operations on the request/tile path, such as 
tile decompression and delivery of tiles to the IPM 
processor in the cockpit. The RT-ARM does this by 
manipulating subsets of task invocation event rates 
from application-specified available rate sets. If image 
tile processing falls behind schedule, the QuO contract 
prompts the RT-ARM to adjust ranges of invocation 
rates to re-allocate more CPU cycles to decompressing 
remaining tiles. In response to changing environmental 
conditions, the RT-ARM can trigger such adaptation in 
two ways: (1) reactively when the QuO contract 
notifies the RT-ARM that the operating region 
boundary has changed or (2) proactively when it 
periodically checks the status of the system and notices 
a current or impending violation of the operating region 
limits. We distinguish the case where the RT-ARM 
simply evaluates its operating status and takes no 
action from the case where that evaluation triggers a 
change in rate ranges and a corresponding re-
computation of rates and priorities by the TAO 
Reconfigurable Scheduler described in Section 3.3.  
The RT-ARM attempts to keep operations within the 
on time QoS region by shrinking or expanding their 
respective ranges of selectable rates. This strategy was 
implemented by computing the average number of 
dispatches required by an operation at a given time, 
then discarding the rates that would cause the operation 
to complete too early or too late. As a result, rates of 
image processing operations that begin to veer towards 
the “early”  and “ late”  regions are forced to adapt. If 
this level of adaptation is insufficient to keep the 
overall image download on time, QuO steps in and 
adjusts both the RT-ARM operating region and the 
compression level of the next tile. 



3.3. TAO Reconfigurable Scheduler : 2nd Finest 
Grain Adaptation 
 
The TAO Reconfigurable Scheduler is a CORBA 
scheduling service implementation designed for 
flexible support of hybrid static/dynamic scheduling 
[5], developed by Washington University, St. Louis. It 
selects a feasible set of rates of operation invocation 
and assigns priorities to the operations according to the 
scheduling strategy with which it was configured. 
When the RT-ARM modifies the ranges of invocation 
rates, the TAO Reconfigurable Scheduler first provides 
criticality assurance for the hard real-time operations 
by ensuring each operation is scheduled at a rate in its 
available range and that all critical operations can be 
feasibly scheduled at those rates. The TAO 
Reconfigurable Scheduler then adds non-critical 
processing and optimizes processor utilization for the 
image processing operations by maximizing their rates 
subject to schedule feasibility. In this application, 
operations associated with re-planning are non-critical. 
In the earlier Adaptive Software Test Demonstration 
(ASTD) program [14], we tried a simple integration of 
the TAO Reconfigurable Scheduler with the RT-ARM, 
in which the RT-ARM would propose a set of rates for 
operations and TAO’s Reconfigurable Scheduler would 
generate a schedule and then evaluate that schedule’s 
feasibility. Unfortunately, that approach proved 
computationally inefficient since RT-ARM and TAO’s 
scheduler operated too independently. Those results, 
however, pointed to the solution pursued in this work: 
closer integration of adaptation mechanisms. We 
evolved the TAO Reconfigurable Scheduler so that the 
rate selection mechanism was pushed down into it, 
while the policy for rate selection was supplied by the 
RT-ARM. Specifically, the RT-ARM provided a 
specific rate selection strategy to the TAO 
Reconfigurable Scheduler at system initialization time 
based upon operation criticality and available rates. 
The first revision we made to the TAO Reconfigurable 
Scheduler for the WSOA OEP case study was to 
refactor its implementation for greater re-
configurability, extending similar efforts started during 
the ASTD program. Our second revision incorporated 
rate selection into the schedule generation and 
feasibility analysis steps to determine an ordering of 
key operation characteristics used by a particular 
scheduling heuristic, assign both rates and priorities 
through different forms of sorting, and apply the most 
efficient sorting algorithm for each case. This strategy 
allows one scheduler to be used for efficient rate 
selection and priority assignment, all adaptively at run-
time. These revisions are released in TAO’s 

Reconfigurable Scheduler, which can be downloaded at 
deuce.doc.wustl.edu/Download.html in 
open-source format along with the rest of the TAO 
middleware.     
 

4. Methodology for  Empir ical Studies 
 
This section introduces the objectives and approach to 
a set of adaptive middleware experiments completed 
during post-flight ground tests of the WSOA OEP in 
January 2003, which followed the actual flight tests 
conducted in December 2002.  
The four primary goals of our experiments were to (1) 
quantify the ability of multiple layered QoS 
management mechanisms within the Bold Stroke 
middleware framework to maximize image fidelity 
while meeting download deadlines, (2) offer 
preliminary assessment of the relative contributions of 
the different QoS management mechanisms outlined 
above, (3) profile the temporal performance of those 
mechanisms, and (4) quantify the relative benefits of 
this approach compared to the same application 
running without adaptation. We note that perceivable 
image quality decreases monotonically as image 
compression increases over the range from 50:1 to 
100:1. Moreover, our assessment of the compression 
quality achieved for a given image is weighted by 
whether or not it met its deadline. These experiments 
also measure trade-offs between timeliness and image 
quality in a relatively sanitary system environment, to 
remove all influences outside the scope of the metrics 
considered here. In doing so, we established a baseline 
against which realistic parameters (e.g., network 
latency jitter, traffic loads, or other factors) can be 
varied in a managed way and their contributions to 
system behavior also quantified. 
Section 4.1 first introduces the metrics we used to 
evaluate the OEP architecture. Section 4.2 then 
describes the design of the experiments themselves, 
grouped into the following four distinct studies of 
adaptive QoS management: (1) the OEP system with no 
adaptation (which serves as an experimental baseline), 
(2) the QoS management approach described in Section 
3, with reactive adaptation of both image compression 
levels and scheduling (rates and priorities) of image tile 
processing operations, (3) the same approach but with 
scheduling adaptation turned off, and (4) a simple  
control-based approach to image compression 
adaptation that explored the system’s response to this 
kind of control. Finally, Section 4.3 describes the 
platform on which the experiments were run. The 
results of these experiments are presented in Section 5. 



4.1. Evaluation Metr ics 
 
The key metrics assessed by our experiments were: 
1. Timeliness of image download, i.e., whether the 

entire image was downloaded and displayed before 
an advertised deadline relative to the time of the 
image request from the application. 

2. Quality of the downloaded image in terms of the 
compression ratios of the image tiles, compared to 
the uncompressed version of each tile, and  

3. Scalability of the resource management approach, 
in terms of the overheads of specific mechanisms 
in the critical path of the resource management 
services, i.e., the QuO infrastructure, the RT-ARM 
service, and the TAO Reconfigurable Scheduler.   

The first two metrics assess the ability of the OEP to 
manage multiple QoS properties simultaneously, as 
perceived by the collaborative mission re-planning 
application, while the third metric assesses the 
underlying middleware infrastructure itself.  
In addition to studying our overall resource 
management approach, we also sought to examine the 
relative contributions of the individual mechanisms. In 
particular, we sought to isolate the impacts of 
mechanisms for (1) end-to-end reactive image 
compression management and (2) client-side reactive 
rescheduling of tile processing operation rates. 
  
4.2. Exper iment Design 
 
Our experiments were conducted using the server and 
client software systems developed for the WSOA OEP 
evaluations, including a representative Operational 
Flight Program (OFP) on the F-15 fighter airplane 
client and an imagery server on the command and 
control (C2) server. Resource management was 
conducted primarily on the client side, which is where 
we focused the bulk of our analysis. The experiments 
were run on realistic hardware in the Avionics 
Integration Center (AIC) laboratory at Boeing, St. 
Louis. We ran each experiment using the client and 
server system terminals in that laboratory and ran each 
set of trials over a range of download deadlines. Each 
experiment consisted of requesting a virtual folder 
containing compressed thumbnails of the actual images 
being downloaded from the server. When the virtual 
folder arrived at the client, it then immediately 
requested four images in succession from the server. 
Within each experiment, the same trial was then 
repeated with different deadlines, except for the case of 
experiments without adaptation where instead we set 
the compression ratio explicitly, and measured the 
download time at each of 3 fixed image compression 

ratios, i.e., 50:1, 75:1, and 100:1. Compression ratios 
of 50:1 and 100:1 were selected by Boeing system 
engineers as upper and lower boundaries of image 
quality for the experiment. There was no noticeable 
degradation in image quality below 50:1 compression 
(thus making it a baseline calibration point for 
adaptation), while degradation was significant at 100:1. 
Due to time and cost constraints, we did not seek to 
examine the effects of different characteristics of the 
images themselves, but instead experimented with an 
assortment of images so that we could (1) quantify 
performance of the adaptation techniques over a range 
of image effects and (2) give preliminary indications of 
sensitivity to image makeup for future study. 
In the experiments, processing is initiated by 
transmission of an Alert from the server to the client, 
followed by a virtual folder with two thumbnail images. 
Each thumbnail serves as an additional icon to 
distinguish that image from the others in the virtual 
folder. For evaluating the performance of the WSOA 
adaptation architecture we confine our attention to the 
images themselves, though for completeness we also 
measured thumbnail download latencies and present 
them in Section 5. 
To assess the viability of the individual QoS adaptation 
technologies and the overall WSOA architecture, we 
ran the four experiment trials described below. In each 
trial the image was divided into 16 tiles, which were 
sent from the region of interest outward. For each tile, a 
message was sent from the client to the server with a 
request for the tile to be sent at a given compression 
ratio. The server selected the closest achievable 
compression ratio to that requested, transmitted the tile 
to the client, and recorded the ratio actually used. 
When a tile was received by the client, it was queued 
pending processing by an operation which 
decompressed the tile then delivered it via an image 
transfer operation to the IPM for display on the client. 
For these experiments, we found that 38, 42, 46, 50, 
54, and 58 seconds represented a covering set of image 
download deadlines for the trials with both 
compression and scheduling adaptation, and ran only 
those deadlines for the two remaining trials with 
compression adaptation but not scheduling adaptation.  
Tr ial 1: No Adaptation of Compression or  
Scheduling. We first benchmarked the OEP 
application performance without adaptation to establish 
a baseline against which we measure improvement for 
the three other experiment trials. We measured the 
download time of each of the 4 images at each of three 
compression ratios (50:1, 75:1, and 100:1).  
Tr ial 2: Reactive Compression + Scheduling 
Adaptation. We then measured the OEP system with 



adaptation of both image compression parameters and 
operation scheduling parameters. We instrumented the 
system to record the (1) end-to-end performance of the 
application, (2) performance of particular segments of 
the data and computation paths affecting end-to-end 
performance, and (3) overhead for key adaptation 
mechanisms in the infrastructure. 
Tr ial 3: Reactive Compression Adaptation Only. To 
assess the relative contributions of compression vs. 
scheduling adaptation, we ran the same set of 
experiments used in the second set of trials, but with 
scheduling adaptation turned off. The need for this set 
of experiments was reinforced late in the system 
development phase when Boeing engineers noticed the 
contribution of scheduling adaptation to end-to-end 
performance was not evident in the Boeing Windows 
NT-based Desktop Test Environment (DTE). As the 
results in Section 5 reveal, this was solely an artifact of 
the non-real-time performance of the DTE, i.e., when 
the VxWorks real-time OS was used in the ground and 
flight environments, the contribution of scheduling 
adaptation to end-to-end timeliness became clear. 
Tr ial 4: L inear  Control Law Exper iments.  We 
noticed that the reactive style of compression 
adaptation used in the system design resulted in very 
coarse-grained transitions in the image tile compression 
ratios, albeit with the resulting performance being 
suitable to the specific collaboration application. To 
further explore applicability of our approach outside 
the particular application studied, we conducted a 
narrowly focused set of experiments to examine the 
responsiveness of the OEP evaluation system to finer-
grained image tile compression management. 
Since imagery tiling was done from the point of interest 
and radiating outward, the net effect of the reactive 
adaptation policy was to show the largest possible area 
around the point of interest at highest quality and then 
degrade the remaining tiles as a step function to a lower 
resolution. While this approach is suitable for our 
avionics application, it is reasonable that other 
applications (such as opportunistic recognition of 
features from real-time imagery) might show less bias 
toward a particular single location in an image, and 
thus could benefit from maximizing the quality of all 
tiles. We therefore experimented with replacing the 
reactive tile compression adaptation strategy encoded 
in the QuO contract with a simple controller that sought 
to minimize image tile compression while still meeting 
the image download deadline.  When each tile was 
received, the controller calculated a new minimum 
feasible compression ratio based on the image deadline 
and the download progress to that point. 
 

4.3. Exper imental Platform 
 
In the WSOA experiments, the client platform was a 
400 MHz Dy-4 PPC 750 processor with 128 MB of 
memory, running the VxWorks real-time OS, version 
5.3.1, with TAO version 1.0.7. The server was hosted 
on a flight-ready chassis with multiple Alpha 
processors running the DEC Unix OS and ORB-
express/RT Ada version 2.0.2. A Boeing-owned 
console with dual Digital Alpha 480 MHz single board 
computers was used by the server-side operator. The 
majority of server functionality was inherited from a 
legacy Boeing project, whose software was tested on 
Digital Alpha and Sun Solaris variants of the UNIX 
OS. At the time of system design, only the Alpha 
platform was available in a ruggedized, flight-worthy 
package. Alpha UNIX represents a high-performance, 
soft real-time OS. System components were distributed 
across both computers, using a simulated Link-16 
network over 100Base-T Ethernet cabling. 
 

5. Empir ical Results 
 
This section presents the results of the experiments 
described in Section 4. We first examine baseline end-
to-end image latencies for images compressed at the 
fixed ratios of 50:1, 75:1, and 100:1. We next present 
latencies when using the adaptation techniques 
described in Section 3. After this, we examine image 
tile compression adaptation response under different 
strategies and present image tile queueing latencies 
measured on the client node. We then explore the 
overhead of the adaptation techniques. Finally, we 
present overhead results for adaptive rescheduling of 
operation rates using the integrated RT-ARM and TAO 
Reconfigurable Scheduler described in Section 3.3.  
End-to-End Image Latency at Fixed Compression 
Ratios. We first examine the total time from initial 
request to receive and process each image. We use 
these points of reference to compare results of the other 
trials, to assess the effectiveness of adaptation in each 
case and to establish quantitative bounds on the image 
quality and download time trade-offs achievable by 
adaptation in the OEP evaluation system. Over the 
bandwidth-limited radio data link, in Trial 1 images 
compressed at the highest ratio (lowest image quality) 
of 100:1 took roughly 40 seconds to download (a lower 
bound on timeliness), and each factor of 25 reduction 
in the compression ratio (corresponding to improved 
image quality) cost another 6 to 7 seconds to download 
the image, thus establishing a baseline for the trade-off 
between timeliness and compression. We also note 



latency variations between the images themselves, 
which were also seen in the other trials.  
Image Latency with Adaptation to Specific 
Deadlines. We next compare end-to-end image 
download times to respective deadlines. From Trials 2 
and 3 respectively, we measured end-to-end image 
download latencies for deadlines of 38, 42, 46, 50, 54, 
and 58 seconds. In Trial 2, adaptation of operation 
invocation rates was also performed, while in Trial 3 it 
was not. We note that from Trial 1 the 38 second 
deadline is infeasible even at the highest compression 
ratio of 100:1, and the 58 second deadline can be bet at 
the lowest compression ratio of 50:1, and thus does not 
require any adaptation. For the rest of this paper we 
therefore confine our attention to the 42, 46, 50, 54 
second deadlines. The observed results showed that 
compression adaptation alone is insufficient to ensure 
key deadlines are met, with images 2, 3, and 4 missing 
both the 42 second and 54 second deadlines in Trial 3, 
but only image 4 missing the 42 second deadline in 
Trial 2. Even with adaptation of both image tile 
compression and operation invocation rates, however, 
the additional overhead of adaptation can make tight 
deadlines (e.g., 42 seconds) infeasible even though 
without adaptation they are (barely) achievable. 
Interestingly, the benefit of adaptation of operation 
invocation rates outweighs its cost even with tight 
deadlines, e.g., more images made the 42 second 
deadline with adaptation of operation invocation rates 
than without rate adaptation.   
Image Compression Adaptation Response. We now 
consider the recorded image tile compression levels in 
each of the trials. In the cases where the sequence of 
compression ratios was the same for more than one 
deadline in a given tile, we consider only the latest 
deadline of each such equivalent set.  In Trial 3, we 
confined our attention to image tile compression only. 
It is therefore most appropriate to compare the 
experiments with simple compression control in Trial 4 
to those in Trial 3. Since the scheduling adaptation 
mechanisms in the RT-ARM were deactivated in both 
experiments, the effects of scheduling adaptation are 
suppressed, letting us focus on the effects of 
compression in isolation. From Trials 3 and 4, the 
observed results show that although it is possible to 
adapt image download times effectively at coarse-
granularity in the compression ratios (100:1, 75:1, and 
50:1), the OEP is amenable to much finer-grained 
compression adaptation management. This is a 
particularly important result in light of excess laxity 
observed at the 46 and 50 second deadlines in Trial 2. 
I.e., some of the time by which each image arrived 
early might be traded for image quality in practice. 

Client-side Image Tile Queueing Latency. Upon 
receipt from the network, each tile sent by the server is 
stored in a queue on the client until it is retrieved from 
the queue by the tile decompression operation. The rate 
at which the decompression operation is invoked, and 
thus at which tiles are retrieved from the queue was 
fixed at 1 Hz in Trials 1, 3, and 4, and managed 
adaptively in Trial 2. The observed results showed 
much lower latencies in Trial 2, and thus identify the 
client-side tile receive queue as a crucial stage of the 
end-to-end QoS performance model for the WSOA 
OEP, and highlight the importance of adaptively 
managing tile processing operations. Adjusting the 
rates at which those operations are run significantly 
decreases the time image tiles spend idly in the queue.  
Scheduler  Re-computation Latency Under  RT-
ARM Management. Our next area of study was the 
measurement of schedule re-computation overhead 
resulting from a narrowing of rate ranges by the RT-
ARM and priority and rate re-assignment by the TAO 
Reconfigurable Scheduler. From the results of Trial 2, 
the key insight is that the number and duration of re-
scheduling computations is both (1) reduced overall 
compared to our earlier results in the ASTD program 
[14] and (2) proportional to the degree of rate 
adaptation that is useful and necessary for each 
deadline.  All trials showed an initial schedule 
computation time identical to the initial schedule 
computation times without rate adaptation.  
Overhead of QoS Management Mechanisms. In 
addition to examining the performance of the 
application as a whole, we quantify overhead of the 
individual adaptation services, for preliminary 
evaluation of scalability and possible optimization, and 
to guide further expansion of our resource management 
approach to both systems with constraints at smaller 
time scales and larger-scale systems of systems. Table 
1 summarizes these results. These results suggest 
scalability of our approach will be reasonably good 
overall. It is important to note that the timing 
capabilities of the VxWorks OS where these 
experiments ran was only accurate to within 5 ms, 
which is relevant to the overhead measurements in 
Table 1, many of which are in the range of 10’s of ms. 

Table 1.  QoS Management Latency 

Mechanism Trial 2  Trials 1, 3, 4 

QuO Contract 0 – 30 msec 0 – 10 msec 
Region Transition 0 – 10 msec < 5 msec 
QuO Delegate 0 –20 msec 0 – 5 msec 
RT-ARM 0 – 10 msec N/A 
Initial Schedule 185 msec N/A 



6. Concluding Remarks 
 
This paper described and quantified the integration of 
several adaptive middleware technologies, including 
QuO, RT-ARM, and several layers of The ACE ORB 
(TAO) (e.g., its Scheduling and Event Services). The 
paper’s R&D contributions involved (1) presenting an 
architecture for multi-layer adaptive middleware that is 
applicable to QoS-managed DRE systems and (2) 
conducting and analyzing empirical results showing the 
benefits and costs of this architecture for a 
representative DRE application, i.e., the WSOA OEP 
mission re-planning and real-time avionics mission 
computing environment.     
The main conclusion we draw from the results in this 
paper is that our integrated QoS-management 
middleware infrastructure showed successful 
adaptation of multiple QoS parameters, with a 
quantitative improvement in management of the trade-
off between image quality and download times in 
comparison to the same approach without adaptation. 
Factors in the actual DRE system environment are 
important, and can have a significant impact on the 
behavior of the system. It is therefore an important 
achievement to have flown and measured the WSOA 
OEP evaluation system in a representative avionics 
mission-computing context. 
Our future work will expand these studies to examine 
the effects of influences such as image contrast and size 
(e.g., to determine why image 3 took longer to 
download at a compression ratio of 50:1 than any of the 
other images, and yet took less time to download at a 
compression ratio of 100:1 than either image 2 or 4), 
network latency, and traffic loads on WSOA OEP 
performance. We have recently been investigating 
implementing various control strategies within the QuO 
adaptive framework [20] and ORB middleware [16]. 
We are grateful to all the program managers involved 
with the WSOA project, especially K. Littlejohn, G. 
Koob, Lt. Col. G. Logan, and Lt. Col. G. Palmer. 
 

References 
 
[1] Object Mgmt. Group. “Minimum CORBA - Joint 

Revised Submission,”  OMG Document orbos/98-08-04. 
[2] Object Mgmt. Group. “Realtime CORBA Joint Revised 

Submission,”  OMG Document orbos/99-02-12. 
[3] Bollella, et al., The Real-Time Specification for Java, 

Addison Wesley Longman, 2000. 
[4] DARPA, "The Quorum Program”, 1999. 
[5] Gill, Schmidt, and Cytron, “Multi-Paradigm Scheduling 

for Distributed Real-Time Embedded Computing” , 
IEEE Proceedings 91(1), Jan 2003. 

[6] D. Corman, J. Gossett, D. Noll, “Experiences in a 
Distributed, Real-Time Avionics Domain - Weapons 
System Open Architecture, ISORC, Washington DC, 
USA, April 2002. 

[7] Karr, Rodrigues, Krishnamurthy, Pyarali, and Schmidt, 
“Application of the QuO Quality-of-Service Framework 
to a Distributed Video Application,”  3rd International 
Symposium on Distributed Objects and Applications, 
Rome, Italy, September 2001. 

[8] D.B. Stewart and P.K. Khosla, “Real-Time Scheduling 
of Sensor-Based Control Systems,”  in Real-Time 
Programming (W. Halang and K. Ramamritham, eds.), 
Tarrytown, NY: Pergamon Press, 1992. 

[9] Loyall, Gossett, Gill, Schantz, Zinky, Pal, Shapiro, 
Rodrigues, Atighetchi and Karr, "Comparing and 
Contrasting Adaptive Middleware Support in Wide-
Area and Embedded Distributed Object Applications", 
21st ICDCS, April, 2001. 

[10] Sharp, “Reducing Avionics Software Cost Through 
Component Based Product Line Development” , 
Software Technology Conference, April 1998.  

[11] Schmidt, Levine, and Mungee. “The Design and 
Performance of the TAO Real-Time Object Request 
Broker” , Computer Communications 21(4), April 1998. 

[12] Harrison., Levine, and Schmidt, “The Design and 
Performance of a Real-time CORBA Event Service,”  
OOPSLA '97, October 1997. 

[13] Huang, Jha, Heimerdinger, Muhammad, Lauzac, 
Kannikeswaran, Schwan, Zhao, and Bettati, “RT-ARM: 
A Real-Time Adaptive Resource Management System 
for Distributed Mission-Critical Applications", 
Workshop on Middleware for Distributed Real-Time 
Systems, IEEE RTSS, San Francisco, California, 1997. 

[14] Doerr, Venturella, Jha, Gill, and Schmidt, “Adaptive 
Scheduling for Real-time, Embedded Information 
Systems,”  18th IEEE/AIAA DASC, St. Louis, Oct. 1999. 

[15] Gill, Levine, and Schmidt, “The Design and 
Performance of a Real-Time CORBA Scheduling 
Service,”  The International Journal of Time-Critical 
Computing Systems 20(2), Kluwer, March 2001. 

[16] Wang, Lu, and Gill, “Feedback Control Real-Time 
Scheduling in ORB Middleware” , 9th IEEE RTAS, 
Washington, D.C., May 2003. 

[17] Cross and Lardieri, “Proactive and Reactive Resource 
Allocation,”  Pattern Lang. of Prog. Conf. (PLoP ‘02), 
Allerton Park, IL, September 2002 

[18] Objective Interface, “ORBExpress” , www.ois.com 
[19] Gill, Schmidt, and Cytron, “Middleware Scheduling 

Optimization Techniques for Distributed Real-Time and 
Embedded Systems”, 7th IEEE Workshop on Object-
oriented Real-time Dependable Systems (WORDS 
2002), January 7-9, 2002 San Diego,CA. 

[20] Abdelwahed, Neema, Loyall, and Shapiro. “Multilevel 
Online Hybrid Control Design for QoS Management,”  
Real-time Systems Symposium (RTSS), Cancun, 
Mexico, December 2003. 

 

 


