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Abstract

To be an effective platform for performance-sensitive real-
time systems, commodity-off-the-shelf (COTS) distributed ob-
ject computing (DOC) middleware must support application
quality of service (QoS) requirements end-to-end. However,
conventional COTS DOC middleware does not provide this
support, which makes it unsuited for applications with strin-
gent latency, determinism, and priority preservation require-
ments. It is essential, therefore, to develop standards-based,
COTS DOC middleware that permits the specification, alloca-
tion, and enforcement of application QoS requirements end-
to-end.

The Real-time CORBA and Messaging specifications in the
CORBA 2.4 standard are important steps towards defining
standards-based, COTS DOC middleware that can deliver
end-to-end QoS support at multiple levels in distributed and
embedded real-time systems. These specifications still lack
sufficient detail, however, to portably configure and control
processor, communication, and memory resources for appli-
cations with stringent QoS requirements.

This paper provides four contributions to research on real-
time DOC middleware. First, we illustrate how the CORBA
2.4 Real-time and Messaging specifications provide a starting
point to address the needs of an important class of applica-
tions with stringent real-time requirements. Second, we illus-
trate how the CORBA 2.4 specifications are not sufficient to
solve all the issues within this application domain. Third, we
describe how we have implemented portions of these specifi-
cations, as well as several enhancements, using TAO, which
is our open-source real-time CORBA ORB. Finally, we eval-
uate the performance of TAO empirically to illustrate how its
features address the QoS requirements for certain classes of
real-time applications.

�This work was funded in part by AFOSR grant F49620-00-1-0330, Boe-
ing, NSF grant NCR-9628218, DARPA contract 9701516, Motorola, Nortel,
SAIC, Siemens, and Sprint.

Subject Areas: Real-time CORBA; Patterns and Frame-
works; Distributed and Real-Time Middleware

1 Introduction

Challenges for next-generation real-time systems: Due to
the need to handle stringent constraints on efficiency, pre-
dictability, memory footprint, and weight/power consumption,
software techniques used to develop real-time systems have
historically lagged behind those used to develop mainstream
desktop and server software. As a result, real-time software
applications are difficult to evolve and maintain. Moreover,
they are often so specialized that it is not cost effective to adapt
them to leverage new technology innovations or to meet new
market opportunities.

To exacerbate matters, a growing class of distributed real-
time systems require end-to-end support for various quality
of service (QoS) aspects, such as latency, jitter, and through-
put. These applications include the control and manage-
ment of telecommunication systems, commercial and military
aerospace systems, and streaming audio/video over the Inter-
net. In addition to requiring support for stringent QoS require-
ments, these types of systems are often targeted for markets
where deregulation, global competition, and/or R&D budget
constraints necessitate increased software productivity.

Requirements for increased software productivity motivate
the use of distributed object computing (DOC)middleware[1],
such as CORBA [2] and Java RMI [3]. DOC middleware re-
sides between applications and the underlying operating sys-
tems, protocol stacks, and hardware in complex distributed
and embedded real-time systems. Thetechnical goalof DOC
middleware is to simplify software development by shield-
ing applications from component location, programming lan-
guage, OS platform, communication protocols and intercon-
nects, and hardware dependencies [4]. Thebusiness goalof
DOC middleware is to decrease the cycle-time and effort re-
quired to develop real-time applications and services.

In theory, middleware can simplify the creation, composi-
tion, and configuration of real-time applications without in-
curring significant time and space overhead. In practice, how-
ever, technical challenges have impeded the development and
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deployment of efficient, predictable, and scalable middleware
for real-time systems. In particular, commodity-off-the-shelf
(COTS) DOC middleware generally lacks (1) support for QoS
specification and enforcement, (2) integration with high-speed
networking technology, and (3) efficiency, predictability, and
scalability optimizations [5]. These omissions have limited the
rate at which performance-sensitive applications, such as tele-
conferencing and avionics mission computing, have been able
to leverage advances in DOC middleware.

Candidate solution ! CORBA: First-generation DOC
middleware was not targeted for high-performance and real-
time systems. Thus, it was not appropriate for systems with
stringent deterministic and statistical real-time QoS require-
ments [5]. Over the past two years, however, the use of
CORBA-based DOC middleware for real-time applications
has increased significantly in aerospace [6], telecommunica-
tions [7], medical systems [8], and distributed interactive sim-
ulation [9] domains. The increased adoption of CORBA stems
from the following factors:

1. The maturation of patterns– In recent years, a substantial
amount of R&D effort has focused on patterns [10, 11].
For instance, research conducted as part of the DARPA
Quorum project [12, 7, 5, 13] has identified key pat-
terns [14] and optimization principles [15] for high-
performance and real-time systems.

2. The maturation of frameworks– Recent progress in pat-
terns R&D has enabled the creation of higher-quality
frameworks [16], such as ACE [17], that support the de-
velopment of QoS-enabled DOC middleware and appli-
cations.

3. The maturation of standards– During the past decade, the
OMG’s suite of CORBA standards has matured consider-
ably, particularly the Real-time [18] and Messaging [19]
specifications that define components and QoS features
for high-performance and real-time systems.

4. The maturation of COTS CORBA products– An increas-
ing number of COTS ORBs [20] are applying patterns
and frameworks to implement the CORBA Real-time [5]
and Messaging [21] specifications.

The vehicle for our research on DOC middleware for high-
performance and real-time applications is TAO [5]. TAO is
an open-source CORBA-compliant ORB designed to support
applications with stringent end-to-end QoS requirements. In
our prior work on TAO, we have shown that it is possible to
achieve high efficiency, predictability, and scalability in ORB
middleware by applying appropriate concurrency [14], con-
nection [22] and demultiplexing [15] patterns [1].

Our earlier work, however, has not addressed techniques for
balancing competing real-time application requirements for la-

tency and throughput. Moreover, the OMG has recently ap-
proved the Real-time [18] and Messaging [19] specifications,
which give application developers greater control over end-to-
end priority preservation and ORB predictability. Therefore,
in this paper, we evaluate these specifications to illustrate the
extent to which they do and do not satisfy the requirements
of an important class of real-time applications. For situations
where CORBA 2.4 is under-specified, we demonstrate how the
specification can be enhanced to allow greater application con-
trol and portability.

Paper organization: The remainder of this paper is or-
ganized as follows: Section 2 presents an overview of the
OMG CORBA specifications relevant to this paper; Section 3
presents standard CORBA 2.4 features as well as TAO exten-
sions, and describes how they address the needs of an avionics
mission computing system, a representative of a class of hard
real-time applications;

Section 4 evaluates the results of benchmarks that measure
efficiency, predictability, and scalability of key CORBA real-
time and messaging features in TAO; and Section 5 presents
concluding remarks.

2 Synopsis of CORBA 2.3 and 2.4 Fea-
tures

This section describes the CORBA reference model and high-
lights the difference between CORBA 2.3 (and earlier CORBA
specifications) and CORBA 2.4, focusing on features pertain-
ing to quality of service (QoS).

2.1 The CORBA 2.3 Reference Model

CORBA Object Request Brokers (ORBs) allow clients to in-
voke operations on distributed objects without concern for ob-
ject location, programming language, OS platform, commu-
nication protocols and interconnects, and hardware [4]. Fig-
ure 1 illustrates the key components in the CORBA reference
model upto and including CORBA 2.3 [23] that collaborate to
provide this degree of portability, interoperability, and trans-
parency.1 Each component in the CORBA reference model is
outlined below:

Client: An application plays the clientrole if it obtains refer-
ences to objects and invokes operations on them to perform ap-
plication tasks. Objects can be remote or collocated relative to
the client. Ideally, a client can access a remote object just like a
local object,i.e., object !operation(args) . Figure 1
shows how the underlying ORB components described below

1This overview only focuses on the CORBA components relevant to this
paper. For a complete synopsis of CORBA’s components see [2].
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Figure 1: Key Components in the CORBA 2.3 Reference
Model

transmit remote operation requests transparently from client to
object. Applications can play both the client and server roles.

Object: In CORBA, an object is an instance of an OMG
Interface Definition Language (IDL) interface. Each object
is identified by anobject reference, which associates one or
more paths through which a client can access an object on a
server. Anobject ID associates an object with its implemen-
tation, called a servant. Over its lifetime, an object has one or
more servants associated with it that implement its interface.

Servant: This component implements the operations de-
fined by an OMG IDL interface. In object-oriented (OO) lan-
guages, such as C++ and Java, servants are implemented us-
ing one or more class instances. In non-OO languages, such
as C, servants are typically implemented using functions and
struct s. A client never interacts with servants directly, but
always through objects identified by object references.

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request
to the object and returning a response, if any, to the client.
An ORB Core is usually implemented as a run-time library
linked into client and server applications. For objects execut-
ing remotely, a CORBA interoperability compliant ORB Core
communicates via a version of the General Inter-ORB Proto-
col (GIOP), such as the Internet Inter-ORB Protocol (IIOP)
that runs atop the TCP transport protocol. In addition, custom
Environment-Specific Inter-ORB protocols (ESIOPs) can also
be defined.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs implement theProxy pattern [10] and
provide a strongly-typed,static invocation interface(SII) that
marshals application parameters into a common message-level
representation. Conversely, skeletons implement theAdapter
pattern [10] and demarshal the message-level representation

back into typed parameters that are meaningful to an applica-
tion.

IDL Compiler: An IDL compiler transforms OMG IDL
definitions into stubs and skeletons that are generated automat-
ically in an application programming language, such as C++
or Java. In addition to providing programming language trans-
parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated
compiler optimizations [24].

Object Adapter: An Object Adapter is a composite compo-
nent that associates servants with objects, creates object refer-
ences, demultiplexes incoming requests to servants, and col-
laborates with the IDL skeleton to dispatch the appropriate
operation upcall on a servant. Object Adapters enable ORBs
to support various types of servants that possess similar re-
quirements. This design results in a smaller and simpler ORB
that can support a wide range of object granularities, lifetimes,
policies, implementation styles, and other properties.

2.2 QoS-related Enhancements to CORBA 2.4

CORBA specifications upto and including CORBA 2.3 [23]
lacked features that allow applications to allocate, schedule,
and control key CPU, memory, and networking resources nec-
essary to ensure end-to-end quality of service. The CORBA
2.4 standard [2] includes the Messaging [19] and Real-time
CORBA specifications [18] that support many of these fea-
tures. The Messaging specification defines asynchronous op-
eration models [21] and a QoS framework that allows appli-
cations to control many end-to-end ORB policies. The Real-
time CORBA specification defines interfaces and policies for
managing ORB processing, communication, and memory re-
sources. Figure 2 illustrates how these various CORBA 2.4
features interact.

As shown in Figure 2 an ORB endsystem [5] consists of net-
work interfaces, operating system I/O subsystems and commu-
nication protocols, and CORBA-compliant middleware com-
ponents and services. The CORBA 2.4 specification identi-
fies capabilities that must bevertically (i.e., network interface
$ application layer) andhorizontally(i.e., peer-to-peer) inte-
grated and managed by ORB endsystems to ensure end-to-end
predictable behavior foractivities2 that flow between CORBA
clients and servers.

Below, we outline these capabilities, starting from the low-
est level abstraction and building up to higher-level services
and applications.

2An activity represents the end-to-end flow of information between a client
and its server that includes the request when it is in memory, within the trans-
port, as well as one or more threads.

3



OS  KERNEL

OS  I/O  SUBSYSTEM

NETWORK  ADAPTERS

STANDARD

SYNCHRONIZERS

END-TO-END PRIORITY

PROPAGATION

ORB  CORE

OBJECT  ADAPTER

CLIENT

GIOP

PROTOCOL

PROPERTIES

THREAD

POOLS
EXPLICIT

BINDING

NETWORK

OS  KERNEL

OS  I/O  SUBSYSTEM

NETWORK  ADAPTERS

operation()

out  args + return  value

in  args

OBJECT

REF

OBJECT

(SERVANT)

STUBS
SKELETON

Figure 2: CORBA 2.4 QoS Support for Real-Time Applica-
tions

1. Communication infrastructure resource management:
A CORBA 2.4 endsystem must leverage policies and mech-
anisms in the underlying communication infrastructure that
support resource guarantees. This support can range from (1)
managing the choice of the connection used for a particular
invocation to (2) exploiting advanced QoS features, such as
controlling the ATM virtual circuit cell pacing rate [25].

2. OS scheduling mechanisms: ORBs exploit OS mecha-
nisms to schedule application-level activities end-to-end. The
real-time CORBA features in CORBA 2.4 target fixed-priority
real-time systems [26]. Thus, these mechanisms correspond
to managing OS thread scheduling priorities. The Real-time
CORBA specification in CORBA 2.4 focuses on operating
systems that allow applications to specify scheduling priorities
and policies. For example, the real-time extensions in IEEE
POSIX 1003.1c [27] define a static priority FIFO scheduling
policy that meets this requirement.

3. Real-Time ORB endsystem: ORBs are responsible for
communicating requests between clients and servers transpar-
ently. A real-time ORB endsystem must provide standard in-
terfaces that allow applications to specify their resource re-
quirements to the ORB. The QoS policy framework defined by
the OMG Messaging specification [19] allows applications to
configure ORB endsystem resources, such as thread priorities,
buffers for message queueing, transport-level connections, and
network signaling, in order to control ORB behavior.

4. Real-time services and applications: Having a real-time
ORB manage endsystem and communication resources only

provides a partial solution. Real-time CORBA ORBs must
also preserve efficient, scalable, and predictable behavior end-
to-end for higher-level services and application components.
For example, a global scheduling service [5, 28] can be used
to manage and schedule distributed resources. Such a schedul-
ing service can interact with an ORB to provide mechanisms
that support the specification and enforcement of end-to-end
operation timing behavior. Application developers can then
structure their programs to exploit the features exported by the
real-time ORB and its associated higher-level services.

To manage the ORB endsystem capabilities outlined above,
CORBA 2.4 defines standard interfaces and QoS policies that
allow applications to configure and control the following re-
sources:

� Processor resourcesvia thread pools, priority mecha-
nisms, intra-process mutexes, and a global scheduling
service;

� Communication resourcesvia protocol properties and ex-
plicit bindings; and

� Memory resourcesvia buffering requests in queues and
bounding the size of thread pools.

Applications can specify these CORBA 2.4 QoS policies
along with other policies when they call standard ORB oper-
ations, such asvalidate connection or create POA.
For instance, when an object reference is created using a QoS-
enabled portable object adapter (POA), the POA ensures that
any server-side policies that affect client-side requests are em-
bedded within atagged componentin the object reference.
Tagged components are name/value pairs that can be used to
export attributes, such as security or QoS values, from a server
to its clients within object references [2]. Clients who invoke
operations on such object references implicitly use the tagged
components to honor the policies required by the target object.

2.2.1 Evaluating Avionics Application Software Architec-
tures

Overview: Figure 3 shows a conventional non-CORBA ar-
chitecture for distributing periodic I/O events throughout an
avionics application. This example has the following partici-
pants:

� Aircraft sensors: Aircraft-specific devices generate
sensor data at regular intervals,e.g., 30 Hz, 15 Hz, 5 Hz,etc.
The arrival of sensor data generates interrupts that notify the
mission computing applications to receive the incoming data.

� Sensor proxies: Mission computing systems must pro-
cess data to and from many types of aircraft sensors, including
global position system (GPS), inertial navigation set (INS),
and forward looking infrared radar. To decouple the details
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Figure 3: Example Avionics Mission Control Application

of sensor communication from the applications, sensor proxy
objects are created for each sensor on the aircraft. When I/O
interrupts occur, data from a sensor is given to an appropri-
ate sensor proxy. Each sensor proxy object demarshals the
incoming data and notifies I/O facade objects that depend on
the sensor’s data. Since modern aircraft can be equipped with
hundreds of sensors, a large number of sensor proxy objects
may exist in the system.

� I/O facades: I/O facades represent objects that depend
on data from one or more sensor proxies. I/O facade objects
use data from sensor proxies to provide higher-level views
to other application objects. For instance, the aircraft posi-
tion computed by an I/O facade is used by the navigation and
weapons release subsystems.

Thepush-driven model described above is commonly used
in many real-time environments [29], such as industrial pro-
cess control systems and military command/control systems.
One positive consequence of this push-driven model is its ef-
ficient and predictable execution of operations. For instance,
I/O facades only execute when their event dependencies are
satisfied,i.e., when they are called by sensor proxies.

In contrast, using apull-driven model to design mission ap-
plications would require I/O facades that actively acquire data
from sensor proxies. If data were not available to be pulled,
the calling I/O facade must block awaiting a result. Thus,
for I/O facades to pull, the system must allocate additional
threads to allow the application to progress while I/O facade
tasks block. Adding threads to the system has many negative
consequences, however, such as increased context switching
overhead, synchronization complexity, and complex real-time
thread scheduling policies [22]. Conversely, by using the push
model, blocking is largely alleviated, which reduces the need
for additional threads. Therefore, this paper focuses on the

push model.

Drawbacks with conventional avionics architectures: A
disadvantage to the architecture shown in Figure 3 is the
strong coupling between suppliers (sensor proxies) and con-
sumers (I/O facades). For instance, to call back to I/O facades,
each sensor proxy must know which I/O facades depend on
its data. As a result, changes to the I/O facade layer, such
as adding/removing consumers, require sensor proxy modifi-
cations. Likewise, consumers that register for callbacks are
tightly coupled with suppliers. If the availability of new hard-
ware, such as forward looking infrared radar, requires a new
sensor proxy, the I/O facades must be altered to take advantage
of the new technology.

Alleviating drawbacks with the CORBA Event Service:
Figure 4 shows how the CORBA Event Service [30] can help

Consumers

I/O Facade

Sensor
Proxy

Sensor
Proxy

Sensor
Proxy

Sensor
Proxy

1: I/O via interrupts

I/O Facade I/O Facade

Event
Channel
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Sensors

3: push (demarshaled data)
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Figure 4: Example Avionics Application with CORBA Event
Channel

alleviate the disadvantages of the tightly coupled consumers
and suppliers shown in Figure 3. The CORBA Event Service
definessupplier, consumer, and event channelparticipants
so that distributed applications can exchange requests asyn-
chronously via anevent-basedexecution model [29]. Suppli-
ers generate events, consumers process events sent by suppli-
ers, and event channels propagate events to consumers on be-
half of suppliers.
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The architecture of our example avionics mission comput-
ing application [6] centers on the Publish/Subscribe [11] pat-
tern shown in Figure 4. As shown in this figure, sensors gen-
erate an interrupt to indicate data availability. Sensor prox-
ies then push the event to an event channel, which dispatches
events to application-level consumers on behalf of the sen-
sors generating the events. When consumers subscribe with
an event channel, they indicate what types of events they are
interested in receiving by supplying the filtering criteria. The
benefit of using an event channel is that sensor proxies are un-
affected when I/O facades are added or removed.

Before running production mission computing applications,
the system is analyzed and events are assigned priorities by
a real-time (RT) scheduling service [5]. Since the same con-
sumer can receive events at different priorities, the DOC mid-
dleware must support this use-case, thereby allowing applica-
tions to use the same object reference to access a service at
different priority levels.

Another benefit of a CORBA event channel-based architec-
ture is that an I/O facade need not know which sensor prox-
ies supply its data. Since the channel mediates on behalf of
the sensor proxies, I/O facades can register for certain types
of events (e.g., GPS and/or INS data arrival) without know-
ing which sensor proxies actually supply these types of events.
Once again, the use of an event channel makes it possible to
add or remove sensor proxies without changing I/O facades.

3 Evaluating CORBA for Real-time
Applications

3.1 Overview

During the past three years, we developed two versions of a
real-time avionics mission computing application, each using
a different version of TAO. The first version, described in [6],
is based on CORBA 2.3 and uses multiple instances of the
ORB, one for each priority level. This approach results in min-
imal priority inversion, as no resources are shared between dif-
ferent priority levels. However, it is hard to program to, since
the servers must activate each servant multiple times, once un-
der each ORB, and the client must manually select the right
object reference for each priority level.

In the following sections we describe real-time policies and
mechanisms used in our second implementation, where TAO
is based on the Real-time [18] and Messaging [19] specifica-
tions. We also motivate several enhancements we developed to
provide more precise control over CORBA 2.4 real-time and
messaging features.

3.2 Preserving Priorities End-to-End

Context: Systems with stringent QoS requirements, such as
our avionics mission computing application, often must exe-
cute a request at the same priority, end-to-end, as described in
Section??. In the following paragraphs we outline the Real-
time CORBA mechanisms in CORBA 2.4 intended to preserve
request priorities end-to-end.

� Priority mapping: The specification defines a univer-
sal, platform-independent priority representation called the
CORBA Priority. This feature allows applications to make pri-
oritized CORBA invocations in a consistent fashion between
nodes running on operating systems with different priority
schemes.Priority mapping functionsare used to map prior-
ity values specified in terms ofCORBA priorityinto native OS
priority.

� CORBA priority models: The Real-time CORBA
specification defines aPriorityModel policy that determines
the priority at which server handles requests from clients. The
policy can have one of the two values:SERVER DECLARED

or CLIENT PROPAGATED. In the SERVER DECLARED model
shown in Figure 5 (A), the server handles requests at the pri-
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Figure 5: Real-time CORBA Priority Models

ority declared on the server side at object creation time. This
priority is communicated to the client in an object reference.

The Real-time CORBA specification also defines the
CLIENT PROPAGATEDmodel shown in Figure 5 (B). In this
model, the client encapsulates its priority in the service context
list of the operation invocation and the server then honors the
priority of the invocation. When a server ORB parses the re-
quest, it extracts the priority from the service context and sets
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the priority of the processing thread to match the requested
priority.

� Thread pools: A Real-time CORBA server can asso-
ciate each POA with a pool of pre-allocated threads running at
appropriate priorities. A pool can optionally be pre-configured
for a maximum buffer size or number of requests, as shown in
Figure 6. If buffering is enabled for the pool, the request will

SERVER  ORB  COREI/O
THREADS

Thead Pool A

PRIORITY 10 PRIORITY 35 PRIORITY 20

Thead Pool B

Figure 6: Buffering Requests in Real-time CORBA Thread
Pools

be queued until a thread is available to process it. If no queue
space is available or request buffering was not specified the
ORB should raise aTRANSIENT exception, which indicates
a temporary resource shortage. When the client receives this
exception it can reissue the request at a later point.

� Priority banded connections: This feature allows a
client to communicate with the server via multiple transport
connections. Each connection is dedicated to carrying invo-
cations of distinct CORBA priority or range of priorities, as
shown in Figure 7. A client ORB establishes a priority banded

CLIENT
ORB  CORE

P1-5 P10-20 P21-100

SERVER
ORB  CORE

          PRIORITY-BANDED
CONNECTIONS

P1-5 P10-20 P21-100

Figure 7: Priority Banded Connections

connection by sending a server thebind priority band
request, which specifies the range of priorities the connection
will be used for. This feature allows the server to allocate the
necessary resources for the connection and to configure these
resources to provide service for the specified priority range.
The selection of the appropriate connection for each invoca-
tion is transparent to the application, and is done by the ORB
based on the value of thePriorityModelpolicy.

Problems: As outlined above, the mechanisms defined in
the Real-time CORBA chapter of the CORBA 2.4 specifica-
tion provide application developers with greater control over
ORB endsystem resources than earlier CORBA 2.3 specifi-
cations. For many real-time applications these mechanisms
are sufficient to provide the necessary QoS guarantees. For
real-time applications with stringent QoS requirements such
as those outlined in Section??, however, this lack of speci-
ficity can lead to ineffective ornon-portableimplementations,
as discussed below:

� Priority mapping problems: Although Real-time
CORBA mandates each ORB to provide default priority map-
ping functions, as well as a mechanism to allow users to over-
ride these defaults, it does not state how those mappings func-
tions are accessed and set. Thus, application developers are
forced to use proprietary interfaces.

� CORBA priority model problems: The Real-time
CORBA CLIENT PROPAGATED model can be inappropriate
for applications with hard real-time requirements due to op-
portunities for priority inversion [31]. In particular, it is pos-
sible that the initial priority of the thread reading the request
is too high or too low, relative to the priority of the thread that
processes the servant in an upcall.

Likewise, theSERVER DECLARED priority model is not ap-
propriate for applications that invoke thesameoperation on
thesameobject, but atdifferentpriorities fromdifferentclient
threads. For example, if our avionics mission computing ap-
plication were to use theSERVER DECLARED priority model,
it would have to activate the same servant multiple times, us-
ing a different priority for each activation. The client appli-
cation would then choose the object reference based on the
client thread’s priority, and invoke the operation on the right
object. However, this solution is unnecessarily complicated
for the following reasons:

� It would interact poorly with CORBA location services,
such as Naming or Trading, because each object must be
registered multiple times.

� An application-specific client convention would be re-
quired to (1) fetch all the object references for the same
object and (2) map priorities to the corresponding object
references.

In our CORBA 2.3-based implementation, we faced similar
challenges in managing multiple object references correspond-
ing to multiple server ORBs. Our experiences indicated that
such an approach yielded complex code that was hard to main-
tain, thereby negating several advantages of DOC middleware.

� Thread pool problems: The Real-time CORBA spec-
ification does not provide any policies to ensure that threads
in a pool receive requests directly from connections. Thus,
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a compliant implementation may choose to separate threads
that perform all the I/O, parse the request to identify the tar-
get POA and priority, and hand off the request to the appro-
priate thread in the POA thread pool, as shown in Figure 8.
Such an implementation can increase average and worst-case
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Figure 8: An Inappropriate CORBA Thread Pool Architecture
for Hard Real-time Applications

latency and create opportunities for unbounded priority inver-
sions [15], however. For instance, even under a light load,
the server ORB incurs a dynamic memory allocation, multi-
ple synchronization operations, and a context switch to pass a
request between a network I/O thread and a POA thread.

� Priority banded connection problems: There is no
standard API in Real-time CORBA that allows server appli-
cations to control how thread pools are associated with prior-
ity banded connections. For instance, a server application can
not control whether its ORB assigns each connection a sepa-
rate thread, or whether a pool of threads can be pre-allocated to
service multiple connections that have the same priority range.
Unfortunately, this lack of detail in the specification makes
it hard to write real-time applications that behave predictably
across different ORB platforms.

The Real-time CORBA specification also lacks a standard
API that would allow a server application to control how its
ORB associates a thread at a pre-specified priority to read re-
quests from a priority banded connection. Thus, the actual
ORB thread that performs I/O operations could be different
from the thread processing the request, and could execute at
the wrong priority, thereby incurring priority inversion. This
lack of specificity in the Real-time CORBA priority banded
connections mechanism can lead to implementations that suf-
fer from problems similar to those with POA thread pools
shown in Figure 8.

Solution ! Prioritized connection endpoints: To allevi-
ate the problems listed above, we defined mechanisms in TAO
to explicitly map thread pools and thread priorities to con-
nection endpoints. These mechanisms extend the Real-time
CORBA specification to give TAO applications greater control
over the mapping of connections to thread priorities within the
ORB Core. Figure 9 provides an example of the avionics mis-
sion computing application shown in Figure?? revised to use
TAO’s prioritized connection endpoints mechanism.
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Figure 9: TAO’s New CORBA 2.4-based Solution

As shown in this figure, the server application is an event
channel consumer with four connection endpoints,EP1 : : :

EP4. Each endpoint is assigned a CORBA priority,e.g., EP1

has priorityP1, and is serviced by a thread of the correspond-
ing native OS priority. Object references for servants acti-
vated in this server contain four profiles, one for each end-
point, as shown in the object adapter portion of the server in
Figure 9 (A).

The client application in Figure 9 (B) is an event channel
supplier. It has four threads with prioritiesP1 : : : P4. When a
supplier thread makes a call on the consumer object reference
exported by the server, the ORB finds a pre-established con-
nection for that endpoint and uses it to send the request. The
priority is preserved end-to-end because on the server-side the
connection is serviced by a thread at the same priority as the
thread making the request on the client-side.

Implementing prioritized connection endpoints in TAO:
Below, we describe key mechanisms provided by TAO to im-
plement prioritized connection endpoints in client and server
ORBs:

� Server ORB support for binding thread priorities to
listen-mode connection endpoints: TAO allows servers to
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have multiple listen-mode [32] connection endpoints, each as-
sociated with a CORBA priority. Each connection endpoint is
also statically associated with a pool of threads running at na-
tive OS priority corresponding to the CORBA priority of the
endpoint. Pool threads are responsible for accepting and ser-
vicing connections on the associated endpoint.

When an object is activated in a server with multiple end-
points, the generated object reference contains multiple pro-
files, one for each endpoint. Each profile stores the CORBA
priority of its endpoint in a tagged component. This design al-
lows a client to receive service at its desired priority by simply
selecting and using the profile containing that priority.

TAO’s prioritized connection endpoints extension is particu-
larly attractive for applications, such as avionics mission com-
puting, that invoke operations on the same object at different
priority levels. In particular, these applications can specify a
set of prioritized connection endpoints on the command-line,
effectively defining the set of priorities supported on the server
a priori, thereby allowing the ORB to schedule and allocate
resources more effectively end-to-end. Moreover, this pro-
gramming model is much simpler than creating multiple ob-
jects and object references and trying to assign them different
thread priorities.

� Client ORB support for connections with priorities:
When a client makes an invocation, the client-side ORB must
select one of the profiles from an object reference before send-
ing the request to the server. The profile is selected based on
the priority at which the client wants the request serviced. To
allow clients to specify this desired priority, TAO defines a
ClientPriority policy. Clients can set theClientPriority policy
to one of the following values:

� USE NO PRIORITY – i.e., priority information is not used
when a client ORB selects a profile from an object refer-
ence.

� USE THREAD PRIORITY – i.e., the priority of the client
thread sending a request is used to select the profile. This
option is used when the priority of request must be pre-
served end-to-end. For example, we use this option in
Figure 9 (B), where theClientPriority policy is checked
before the client ORB selects a profile from the object
reference. In that case, when a client thread with priority
P1 invokes an operation on a consumer object, the ORB
selects the profile corresponding to that priority,i.e. the
one that contains connection endpointEP1.

� USE PRIORITY RANGE – In this case, a range of prior-
ities to be used for profile selection is specified by the
application inside the policy. This option allows appli-
cations to request services at a priority that isdiffer-
ent than that of the client thread invoking an operation.
For example, a high-priority client thread can generate a

low-priority event, such as a display update. This high-
priority thread can post the message in a remote server at
a low-priority, to minimize the effect on more critical pro-
cessing. However, it need not change its own priority to
perform this task, which avoids local priority inversions.

TAO’s prioritized connection endpoints andClientPrior-
ity policy extend the standard Real-time CORBA priority
models and its priority banded connections mechanism to
achieve an effective balance between theSERVER DECLARED

and CLIENT PROPAGATED models. In particular, TAO pro-
vides the same degree of control to the server as the
SERVER DECLARED model by restricting clients to use well-
known priorities. However, it also allows clients to select a
priority published by the server that best meets their require-
ments. TAO’s design avoids priority inversions and ensures
ORB endsystem resources are strictly controlled, while still
retaining a simple programming model.

Section 4.1 illustrates the performance of TAO’s prioritized
connection endpoint architecture.

3.3 Achieving Reliable Asynchronous Commu-
nication

Context: Embedded real-time CORBA applications often
use one-way operations to simulate message-passing via stan-
dard CORBA features. For example, avionic mission com-
puting applications [6] process periodic event messages, such
as sensor updates and heartbeat messages from redundant sys-
tems. Typically, clients send these messages to servers via
CORBA one-way operations, which require no response.

Problems: The semantics of conventional CORBA one-way
operations are often unacceptable because the CORBA 2.3
specification does not require an ORB to guarantee that one-
way operations will be delivered [4].

Solution ! CORBA 2.4 reliable asynchronous features:
To alleviate the problem outlined above, the CORBA Messag-
ing specification defines a policy calledSyncScopethat allows
clients more control over the degree of reliability for one-way
operation invocations. Figure 10 illustrates the following four
levels of reliability for one-way operations:

� SYNC NONE: With this policy value, the client ORB re-
turns control to the client application before passing the re-
quest to the transport layer. This value minimizes the amount
of time a client spends blocking on the one-way operation,
but provides the lowest level of delivery guarantee. The
SYNC NONE policy is useful for applications that require min-
imal client operation latency, while tolerating reduced reliabil-
ity guarantees.
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� SYNC WITH TRANSPORT: With this policy value, the
ORB returns control to the client only after the request is
passed successfully to the transport layer,e.g., the client’s
TCP protocol stack. A client can incur unbounded latencies
if a connection endpoint flow controls due to a limited buffer
space. When used with a connection-oriented transport, such
as TCP,SYNC WITH TRANSPORTcan provide more assurance
than SYNC NONE. This policy is appropriate for clients that
require a compromise between low latency and reliable deliv-
ery.

� SYNC WITH SERVER: With this policy value, the client
invokes a one-way operation and then blocks until the server
ORB sends an acknowledgment. The server ORB sends
the acknowledgment after invoking any servant managers,
but before dispatching the request to the servant. The
SYNC WITH SERVERpolicy value provides clients with assur-
ance that the remote servant has been located. This feature is
particularly useful for real-time applications that require some
degree of reliability,e.g., because they run over backplanes
that lose packets occasionally, but need not wait for the entire
servant upcall to complete.

� SYNC WITH TARGET: This policy value is equivalent to
a synchronous two-way CORBA operation,i.e., the client will
block until the server ORB sends a reply after the target object
has processed the operation. If no exceptions are raised, the
client can assume that the target servant processed its request.
This synchronization level is appropriate for clients that need
assurance that the upcall was performed and can tolerate the
additional latency.

Implementing reliable one-ways in TAO: TheSyncScope
policy controls the reliability of one-way requests. It can be
set at the object-level, thread-level, or ORB-level. As with
any CORBA policy, the more specific levels can override
the more general levels. To implement reliable one-way re-
quests, TAO’s IDL compiler [33] generates client stub code

that checks theSyncScopepolicy value and sets the appropri-
ate bits in theresponse flags field in the GIOP request
header.

If the SyncScopepolicy is SYNC NONE, the request is
buffered, as described in Section 3.4. If the policy value
is SYNC WITH SERVER or SYNC WITH TARGET, the client
ORB must wait for a reply from the server and check for a
LOCATION FORWARD response or a CORBA system excep-
tion.

On the server, the ORB’s behavior is based solely on
the value of theresponse flags field of the request
header. If the flags are set to aSyncScopepolicy value of
SYNC WITH TARGET, the request is treated as a two-way re-
quest, whether it originated as a one-way or as a two-way. If
the flags are set to a value ofSYNC WITH SERVER, however, a
response will be initiated by the Object Adapter immediately
after it locates the servant, but before dispatching the upcall.

Section ?? presents benchmarks illustrating the perfor-
mance of TAO’s reliable one-way implementation.

3.4 Ensuring Adequate Operation Throughput

Context: Distributed real-time applications often have strin-
gent timing requirements, where critical operations must begin
and/or complete within specified time intervals. For example,
aircraft sensor devices, such as navigation devices and radar
sensors, generate data that must be processed at regular peri-
odic intervals [6]. Such applications often have a fixed time
period in which to invoke remote one-way operations. After
invoking each operation, the client must perform other pro-
cessing,i.e., it does not wait synchronously for the server to
process the operation and respond.

Problems: The following two problems can arise when ap-
plying ORB middleware to distributed real-time applications
with periodic processing requirements:

� Inadequate operation throughput: The time spent de-
livering a one-way or asynchronous operation to a server in-
cludes the overhead of invoking one or morewrite calls to
the client OS. In turn, this incurs protocol stack and network
interface processing, as well as the propagation delay across
the communication media. This per-operation overhead con-
stitutes a non-trivial amount of the total end-to-end latency,
particularly for small requests. As a result of this overhead,
real-time applications may be limited to a relatively low num-
ber of remote operations per time period.

�Blocking flow control: It is important that periodic real-
time applications not block indefinitely when ORB endsystem
and network resources are unavailable temporarily. However,
ORB transport protocols, such as IIOP, often implement reli-
able data delivery using a sliding window flow control algo-
rithm [32]. Thus, they may block the client from transmitting
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additional data when the communication channel is congested,
or if the server is slow. Although some transport protocols
buffer a limited number of bytes or requests, they will typi-
cally block client threads after this limit is reached.

One way to solve these problems is to revise the appli-
cation’s IDL interfaces and reimplement the clients so they
buffer data at the application-level. This solution works well
for certain periodic applications that can sacrifice some la-
tency for increased operation throughput. Buffering at the
application-level increases the burden on application develop-
ers, however, thereby increasing the implementation, valida-
tion, and maintenance effort. Moreover, if two or more appli-
cation IDL interfaces require buffering, code can be duplicated
unnecessarily, which increases application footprint.

Solution � ORB-level request buffering: Often, a more ef-
fective solution is to have the ORB buffer one-way and asyn-
chronous invocations transparently.3 At some later time, the
buffered requests can be delivereden masseto the server.
There are several benefits to ORB-level request buffering:

� By buffering requests, a client ORB amortizes the per-
operation processing overhead and increases effective
network utilization.

� The ORB can use OSgather writeoperations, such as
writev [32], to minimize the number of mode switches
needed to transmit the buffered requests.

� ORB-level buffering can increase application control
over the buffering of CORBA requests. This feature is
important when the buffering provided by the transport
protocol is inadequate, thereby forcing indefinite block-
ing of the client due to flow control.

Implementing ORB-level request buffering in TAO: The
CORBA 2.4 Messaging specification introduces several mech-
anisms to give application developers more control over QoS
parameters than in CORBA 2.3 specifications. In particular,
applications can use CORBA 2.4 features, such as theSync-
Scopepolicy, to control latency/reliability tradeoffs. For ex-
ample, applications can use theSYNC WITH SERVER policy
value to achieve reliable transport delivery, without waiting
for the entire servant’s computation to complete. Likewise,
the application can ensure non-blocking behavior by using the
SYNC NONE policy value, which TAO implements by buffer-
ing multiple requests before sending them to the server.

Unfortunately, neither the CORBA Messaging or the RT
CORBA specifications provide mechanisms to control the size
or duration of buffers, nor does it provide explicit interfaces to

3Synchronous two-way requests and reliable one-way operations should
not be buffered. The ORB must deliver these request immediately to the server
because the client waits for the server’s response before continuing.

flush buffers. These semantics are insufficient for applications
that require precise control over the ORB utilization of mem-
ory and network resources. Therefore, we have extended TAO
to allow applications to specify multiple strategies for deliver-
ing buffered requests via a newBufferingConstraintpolicy.

Figure 11 illustrates how TAO uses this policy to buffer one-
way invocations inside the ORB Core for subsequent delivery.
When application-specified buffering limits are reached, the
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Figure 11: One-way and Asynchronous Request Buffering

buffers are flushed and the queued requests are delivered to
the server.

A combination of the following conditions can be specified
simultaneously using TAO’sBufferingConstraintpolicy:

1. Message Count: When the number of buffered mes-
sages reaches an application-specified high-water mark, the
buffered requests are delivered to the server. This approach
allows applications to batchn requests together.

2. Message Bytes: When the number of bytes in the
buffered messages reaches an application-specified high-water
mark, the buffered requests are delivered to the server. This ap-
proach allows applications to buffern bytes at the ORB layer.

3. Periodic Timeout: After an application-specified time
interval, the ORB delivers any buffered requests to the server.
This approach allows applications to pace the delivery of mes-
sages to the server even when the requests are produced at
irregular intervals.

4. Explicit Flushing: Applications can flush any queued
messages explicitly. This approach allows applications to de-
liver the batched messages to the server in response to some
external event.

5. Out-of-Band Requests: Applications can skip buffer-
ing for some requests. This approach allows applications to
deliver urgent requests to the server immediately, bypassing
the buffered requests.

Section 4.2 presents benchmarks illustrating the perfor-
mance of TAO’s buffered requests implementation.
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3.5 Evaluation of the CORBA 2.4-based Solu-
tion

Our CORBA 2.4-based avionics mission computing solution
has the following improvements over the original CORBA 2.3-
based design:

More standard programming model: The CORBA 2.4
Real-time specification defines a standard model for imple-
menting many features required for avionics mission comput-
ing using only a single ORB per CPU. This model supports the
mapping of priorities to particular invocations, objects, and
threads. As a result, application programming is simplified
and the portability of application software increases because
the system is based on a standard.

Reduced memory footprint: Our original CORBA 2.3-
based solution required multiple ORBs be created within each
client and server, once for each rate group. Moreover, servants
had multiple object references, one for each global priority.
This design resulted in a relatively large application footprint.
In contrast, our CORBA 2.4-based solution allows each client
and server application to create a single ORB. Thus, only one
object reference is created per servant, which further reduces
the overall memory footprint.

Efficient initialization: In addition to simplifying the pro-
gramming model and minimizing the required memory re-
sources, the use of one ORB per-process reduces the time re-
quired to initialize the avionics mission computing applica-
tions. Reducing this overhead is particularly important when
the system must recover from transient power cycles.

Simplified client threading model: Clients are greatly sim-
plified because they manage only one set of object references.
Policies and object references contain sufficient information
for the ORB to determine the appropriate connection to use on
each request.

Improved priority preservation: By supporting multiple
connection endpoints within server ORBs, the CORBA 2.4-
based implementation has several benefits. For example, the
destination service access point, such as the TCP port num-
ber, can be mapped to a global CORBA priority thereby en-
suring that all CORBA requests within a connection queues
have the same priority. This early demultiplexing [34] tech-
nique, combined with client and server ORBs’ respect of a
request’s priority, results invertically (i.e., network interface
$ application layer) andhorizontally (i.e., peer-to-peer) in-
tegrated ORB endsystems. The resulting DOC middleware
environment preserves invocation priorities end-to-end,i.e.,
throughout the ORB endsystems and inter-ORB connections.

Improved one-way invocation semantics: Real-time appli-
cations must often balance the competing needs of reliable
communications, network throughput, and invocation latency.

The improved semantics added by the CORBA 2.4 Messag-
ing specification [19] gives clients greater control over these
tradeoffs.

In addition to alleviating the drawbacks with our original
CORBA 2.3-based solution, the new CORBA 2.4-based ver-
sion of TAO also provides the following benefits:

Easier integration with CORBA common object services:
To use CORBA common object services, such as Naming and
Trading, in the CORBA 2.3-based approach, a server must ex-
port multiple object references to the same servant, one for
each priority. Then, to locate the object reference correspond-
ing to the desired priority, a client must use anad hocmecha-
nism to retrieve the desired object references at the appropri-
ate priorities. In contrast, in the CORBA 2.4-based approach
there is no need for multiple object references. Therefore, no
ad hocprotocol for mapping priorities to object references is
required.

With other services, CORBA 2.3-based approach may re-
quire modification to the service itself. For example, the Event
Service invokes operations on application-provided objects.
To invoke these operations at the appropriate priorities the ser-
vice must: (1) have access to multiple object references for
each application object and (2) select object references cor-
responding to desired priorities using the application defined
protocol. In contrast, in the CORBA 2.4-based approach these
tasks are all performed by the ORB transparently to applica-
tions and services.4

Easier integration with real-time scheduling services:
The CORBA 2.4 Real-time specification supports higher-level
CORBA scheduling services that allocate resources end-to-
end. For example, TAO’s static scheduling service [5] can
associate application activities with global CORBA priorities.
Such scheduling services can use the priority transformations
and the policy framework defined in the CORBA Messag-
ing [19] to create sophisticated and adaptive real-time appli-
cations.

4 The Performance of the TAO Real-
time CORBA ORB

4.1 Preserving Priorities End-to-End

Overview: The benchmarks in this section compare the per-
formance of TAO’s CORBA 2.3-based solution,i.e., using an
ORB-per-priority architecture, with TAO’s CORBA 2.4-based
solution,i.e., using the prioritized connection mechanism de-
scribed in Section 3.2. In particular, to determine how well

4It is still possible that implementations of these services are unsuitable for
real-time application,e.g., due to excessive priority inversion.
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each approach preserves priorities end-to-end, we compare the
latency and jitter of a high-priority client thread as it competes
with a variable number of low-priority client threads.

Hardware/OS Benchmarking Platforms: All benchmarks
in this section were performed between two 266 MHz Pow-
erPC boards with 32 MBytes of RAM, running the LynxOS
3.0.0 operating system and connected by a 100 Mbps Ethernet.
The tests were run with real-time, preemptive, FIFO thread
scheduling, which provides strict priority-based scheduling to
application threads.

Measurement techniques: Below we describe the client-
side and the server-side parts of the benchmark.

� Client-side: On the client, a single high-priority thread
and a variable number of low-priority threads run concur-
rently. Both CORBA 2.3-based solution and CORBA 2.4-
based solution were benchmarked with 1, 3, 6, 9, 12, and 15
low-priority client threads. Each low-priority thread has a dif-
ferent priority value. The range of LynxOS native priorities
used by these threads is 64 to 79. The high-priority thread
runs at priority 128.

When the test program creates the client threads, these
threads block on a barrier lock so that no client thread starts
until the others are created and are ready to run. When all
client threads are ready to send requests, the main thread un-
blocks them. Each client thread issues 20,000 requests to the
server at the fastest possible rate.

� Server-side: On the server, a servant is created and con-
figured to service client requests at the same priorities as those
of its client peers. In the original CORBA 2.3-based approach,
this is achieved by creating an ORB-per-thread for each test
priority. In the CORBA 2.4-based approach, this is achieved
by mapping connection endpoints to threads possessing the ap-
propriate priorities.

Regardless of the approach, each request is serviced at the
same priority as that of the invoking client thread. This map-
ping is achieved using different mechanisms in the two con-
figurations. In CORBA 2.3 configuration, each client thread
uses a different object reference,i.e., the one published by the
server ORB running in the thread with corresponding priority.
In CORBA 2.4 configuration, the client sets the value of the
ClientPriority policy to USE THREAD PRIORITY.

As was mentioned earlier, each low-priority thread has a
different priority value,e.g., 64, 65, etc. Such system configu-
ration is more demanding than simply having all low-priority
threads run at the same priority. By using different priority val-
ues for the low-priority threads, concurrency can be increased
on the server. Thus, this design provides more opportunities
for priority inversion to occur if the underlying ORB is not
designed and implemented properly.
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Figure 12: Jitter for High-Priority Client Thread

Results: Each solution was benchmarked with a different
number of low-priority client threads: 1, 3, 6, 9, 12, and 15.
For each solution and each number of client threads, the ex-
periment was repeated three times. Figure 12 shows the jitter
results. Figure 13 shows average latency (over three samples),
with average jitter shown as error bars. The results in these
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Figure 13: Latency for High-Priority Client Thread

figures illustrate that the CORBA 2.4-based latency is slightly
lower than the CORBA 2.3 version, though its jitter is slightly
higher. In general, therefore, the CORBA 2.4-based configura-
tion provides a simpler programming model, smaller footprint,
and faster initialization, with negligible impact on efficiency
and predictability.
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4.2 Buffered Request Benchmarks

Overview: We conducted benchmarks to compare the
throughput of various buffered one-way request configura-
tions. TheSyncScopepolicy value was set toSYNC NONE and
the maximum message count of the buffer was increased for
each test run.

Hardware/OS Benchmarking Platforms: We used two
Dell computers, each with four Pentium Xeon CPUs run-
ning at 400 MHz and connected by a 100 bps Ethernet.
The operating system of both machines was Windows NT
4.0. This OS, unlike most UNIX systems, does not limit the
value of IOV MAX , which is the maximum size of the vector
used ingather-writeoperations. Thus, Windows NT is bet-
ter equipped to demonstrate the full potential of performance
gains from buffering one-way requests in the ORB. The timer
used on both platforms was the high-resolution timer of the
Intel chip, accessed by the PentiumRDTSCinstruction.

Measurement techniques: A timestamp was obtained im-
mediately before and after the execution of the request it-
eration loop. Throughput values were then calculated in
calls/second for each test run of 2,000 requests. To closely
emulate a real-time transport mechanism, such as VME, cer-
tain configuration policies were followed when conducting the
one-way request benchmarks. In particular, Nagle’s algorithm
was disabled and the TCP window size was set to 8 kilobytes,
which was the minimum supported on Windows NT. The size
of each request was set to a larger value (9 kilobytes plus the
header size) so that TCP would flow-control on each request
and not buffer additional requests.

Results: In Figure 14, the throughput of unbuffered one-way
requests is shown in the leftmost bar and is used as a baseline
for comparison with the throughput of buffered one-way re-
quests. To measure the effect of the buffer size, we set it to
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Figure 14: Throughput for Buffered One-way Requests

a different value in each test run. The other variables remain

unchanged,i.e., in all test runs the same number of messages
is sent, and all the messages are identical. The figure shows
that significant throughput gains (over 100% in the rightmost
bar) can be realized by TAO’s request buffering mechanism.
However, tuning the queue size for each use-case is crucial to
maximize performance.

5 Concluding Remarks

Real-time distributed object computing (DOC) middleware is
a promising solution for key challenges facing researchers
and developers of real-time applications. Designing and opti-
mizing standards-based and commodity-off-the-shelf (COTS)
DOC middleware that can meet the QoS requirements of real-
time applications requires an integrated architecture that can
deliver end-to-end QoS support at multiple levels in real-time
and embedded systems. The Real-time CORBA [18] and Mes-
saging [19] specifications in CORBA 2.4 are an important step
in this direction.

Unfortunately, the CORBA 2.4 specification lacks sufficient
specificity toportablymanage processor, communication, and
memory resources for applications with stringent QoS require-
ments. For example, Section 3.2 describes outlines a num-
ber of problems with the standard Real-time CORBAprior-
ity mapping, priority model, thread pool, andpriority banded
connectionmechanisms intended to preserve request priori-
ties end-to-end. The following discussion summarizes our
lessons learned developing and deploying an implementation
of CORBA and representative applications that are based on
the CORBA 2.4 specifications.

Control over thread priority must be end-to-end: Ensur-
ing appropriate end-to-end QoS for real-time applications re-
quires more than just the implementation of the Real-time
CORBA specification and the mapping of global priorities be-
tween ORBs. It also requires control over end-to-end thread
priorities, connection$ thread pool associations, and other
ORB endsystem resources used to process a request. More-
over, applications must be able to control these resources at
each layer of an DOC middleware. The Real-time CORBA
specification [18] adopted for CORBA 2.4 allows implementa-
tions to provide end-to-end guarantees, but it does not require
them. Moreover, it does not provide explicit mechanisms to
control how I/O threads in an ORB Core map to thread priori-
ties and connections.

Section 3.2 describes the policies and mechanisms we used
in TAO’s prioritized connection endpoints extension to pre-
cisely define these associations and ORB configurations. Ap-
plication developers can use this extension to ensure that the
client and server ORBs process the request at the appropriate
priority end-to-end. In previous work [34], we described how
TAO can be integrated with anearly demultiplexingfeature in
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the operating system’s I/O subsystem to ensure that the OS
kernel and network interfaces also preserve the priority of the
request.

One-way semantics must be specified precisely:The
CORBA 2.3 specification defines the semantics of one-way
operations to receive best-effort service. However, it pro-
vides no further end-to-end delivery guarantees to applica-
tions. Thus, a CORBA 2.3-compliant ORB can simply drop
every request, deliver it at some arbitrary future time (but out
of order with subsequent requests), or send it immediately.
The CORBA 2.4 Messaging specification provides better con-
trol over the semantics of oneway operations, but it falls short
in the SYNC NONE case, where it does not provide mecha-
nisms to control buffering limits and/or flushing policies. Sec-
tion 3.4 describe the policies and mechanisms we used in TAO
to define one-way buffering semantics precisely and ensure ad-
equate throughput for certain types of real-time applications.

The open-source code, benchmarks, and documentation for
TAO is freely available and can be downloaded from URL
www.cs.wustl.edu/ �schmidt/TAO.html . Our fo-
cus on the TAO project has been to research, develop, and op-
timize policies and mechanisms that allow CORBA to support
applications with hard real-time requirements. These require-
ments motivate many of the optimizations and design strate-
gies presented in this paper.

TAO has been used on a wide range of distributed real-
time and embedded systems, including an avionics mission
computing architecture for Boeing [6], the next-generation
Run Time Infrastructure (RTI) implementation for the De-
fense Modeling and Simulation Organization’s (DMSO) High
Level Architecture (HLA) [35], and high-energy physics ex-
periments at SLAC [36] and CERN [37].
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