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1 Introduction
Abstract

. . hallenges for next-generation real-time systems: Due to
To be an effective platform for performance-sensitive real- . . .
. : o e need to handle stringent constraints on efficiency, pre-
time systems, commodity-off-the-shelf (COTS) distributed gb= _, =~ . . :
: ) 4 .. dictability, memory footprint, and weight/power consumption,
ject computing (DOC) middleware must support application . .
) . : software techniques used to develop real-time systems have
quality of service (QoS) requirements end-to-end. However,, . ; i
X . , historically lagged behind those used to develop mainstream
conventional COTS DOC middleware does not provide this .
. . . - . . desktop and server software. As a result, real-time software
support, which makes it unsuited for applications with strin-_".""". e T
applications are difficult to evolve and maintain. Moreover,

gent latency, determinism, and priority preservation requir _gy are often so specialized that it is not cost effective to adapt

ments. Itis es;enﬂal, therefore, tp develop s't'and'ards-ba%ﬁem to leverage new technology innovations or to meet new
COTS DOC middleware that permits the specification, alloca-

X S ; rHarket opportunities.
tion, and enforcement of application QoS requirements end- . -
to-end. To exacerbate matters, a growing class of distributed real-

L . e . time systems require end-to-end support for various quality
The Real-time CORBA and Messaging specifications in %3 Service (QoS) aspects, such as latency, jitter, and through-

CORBA 2.4 standard are important steps towards definin S i i
standards-based, COTS DOC middleware that can deli\rpﬁgrt' These applications include the control and manage

. RN nt of telecommunication systems, commercial and militar
end-to-end QoS support at multiple levels in distributed anae yste C y
aerospace systems, and streaming audio/video over the Inter-

embedded real-time systems. These specifications still lac o o ) )
- . . net. In addition to requiring support for stringent QoS require-
sufficient detail, however, to portably configure and contrg
10CesSor. communication. and memory resources for a rr|1ents, these types of systems are often targeted for markets
pros Ny : ’ . Y PRhere deregulation, global competition, and/or R&D budget
cations with stringent QoS requirements.

Thi ides f ibut h (I:onstraints necessitate increased software productivity.
IS paper provides four contributions to research on real- Requirements for increased software productivity motivate

time DOC middleware. First, we illustrate how the CORB(he use of distributed object computing (DO@dleward1],

2.4 Real-time and Messaging specifications provide a starti&gch as CORBA [2] and Java RMI [3]. DOC middleware re-

pomt tq addr'ess the negds of an'|mportant class of appl'cs?aes between applications and the underlying operating sys-
tions with stringent real-time requirements. Second, we ill ms, protocol stacks, and hardware in complex distributed

trate how the CORBA 2.4 specifications are not sufficient I, - 1104 reotime systems. Téehnical goabf DOC

solve all the issues within this application domain. Third, iddleware is to simplify software development by shield-

describe how we have implemented portions of these Speﬁ{h'applications from component location, programming lan-

icatlo?s, asr,] wellras fevlet:?ri eggg%i‘mggt; llilsr:nﬁ TC\VO, v\v/% ge, OS platform, communication protocols and intercon-
S our oOpen-source rea € - Hinally, we € ects, and hardware dependencies [4]. Bhsiness goabf

uate the performance of TAO empirically to iIIustrgte how iEOC middleware is to decrease the cycle-time and effort re-
features address the QoS requirements for certain classealﬂed to develop real-time applications and services.

real-time applications. . L . .
PP In theory, middleware can simplify the creation, composi-

“This work was funded in part by AFOSR grant F49620-00-1-0330, BogOM'» @nd configuration of real-time applications without in-

ing, NSF grant NCR-9628218, DARPA contract 9701516, Motorola, Nort&Ur1ing significant time and Space overhead. In practice, how-
SAIC, Siemens, and Sprint. ever, technical challenges have impeded the development and




deployment of efficient, predictable, and scalable middlewaescy and throughput. Moreover, the OMG has recently ap-
for real-time systems. In particular, commodity-off-the-shgifoved the Real-time [18] and Messaging [19] specifications,
(COTS) DOC middleware generally lacks (1) support for Qaghich give application developers greater control over end-to-
specification and enforcement, (2) integration with high-speesd priority preservation and ORB predictability. Therefore,

networking technology, and (3) efficiency, predictability, and this paper, we evaluate these specifications to illustrate the
scalability optimizations [5]. These omissions have limited tlextent to which they do and do not satisfy the requirements
rate at which performance-sensitive applications, such as telean important class of real-time applications. For situations
conferencing and avionics mission computing, have been alisleere CORBA 2.4 is under-specified, we demonstrate how the
to leverage advances in DOC middleware. specification can be enhanced to allow greater application con-

Candidate solution — CORBA: First-generation DOC 1ol and portability.

middleware was not targeted for high-performance and reghper organization: The remainder of this paper is or-
time systems. Thus, it was not appropriate for systems Wifhnized as follows: Section 2 presents an overview of the
stringent deterministic and statistical real-time QoS requi®MG CORBA specifications relevant to this paper; Section 3
ments [5]. Over the past two years, however, the useksents standard CORBA 2.4 features as well as TAO exten-
CORBA-based DOC middleware for real-time applicationgons, and describes how they address the needs of an avionics
has increased significantly in aerospace [6], telecommunigg@ission computing system, a representative of a class of hard
tions [7], medical systems [8], and distributed interactive sirffeal-time applications;

ulation [9] domains. The increased adoption of CORBA stemssection 4 evaluates the results of benchmarks that measure
from the following factors: efficiency, predictability, and scalability of key CORBA real-

1. The maturation of patternsin recent years, asubstantiali'me anq messaging features in TAQ; and Section 5 presents
oncluding remarks.

amount of R&D effort has focused on patterns [10, 11?.
For instance, research conducted as part of the DARPA

Quorum project [12, 7, 5, 13] has identified key pa ; _
terns [14] and optimization principles [15] for high-2 SynopS|s of CORBA 2.3 and 2.4 Fea
performance and real-time systems. tures

2. The maturation of frameworks Recent progress in pat-_ ) ) ,
terns R&D has enabled the creation of higher-quaIiU“S sectlo'n describes the CORBA reference mod.el and high-
frameworks [16], such as ACE [17], that support the d]éghts the difference between CORBA 2.3 (and earlier CORBA

p%c_)ecifications) and CORBA 2.4, focusing on features pertain-

velopment of QoS-enabled DOC middleware and app X X
ing to quality of service (QoS).

cations.

3. The maturation of standardsDuring the past decade, the
OMG’s suite of CORBA standards has matured considé-1  The CORBA 2.3 Reference Model
ably, particularly the Real-time [18] and Messaging [1%
specifications that define components and QoS featu\;
for high-performance and real-time systems.

ORBA Object Request Brokers (ORBs) allow clients to in-
6Re operations on distributed objects without concern for ob-
ject location, programming language, OS platform, commu-
4. The maturation of COTS CORBA produetén increas- nication protocols and interconnects, and hardware [4]. Fig-
ing number of COTS ORBs [20] are applying patternge 1 illustrates the key components in the CORBA reference
and frameworks to implement the CORBA Real-time [Jhodel upto and including CORBA 2.3 [23] that collaborate to
and Messaging [21] specifications. provide this degree of portability, interoperability, and trans-
parency: Each component in the CORBA reference model is
The vehicle for our research on DOC middleware for higbutlined below:
performance and real-time applications is TAO [5]. TAO is..

an open-source CORBA-compliant ORB designed to suppéhem: An application plays the cliemble if it obtains refer-

applications with stringent end-to-end QoS requirements. qﬁces to objects and invokes operations on them to perform ap-
our prior work on TAO, we have shown that it is possible ication tasks. Objects can be remote or collocated relative to
achieve high eﬁicienC);, predictability, and scalability in OR € cIieqt. Idgally, aplient canaccess a remote objeptjust like a
middleware by applying appropriate concurrency [14], co cal objecti.e, object . —operation(args) ' F|gure L
nection [22] and demultiplexing [15] patterns [1]. shows how the underlying ORB components described below

Our ?ar“er WOI’K, hOWGV?ry has th agdresseq techniques fofrhis overview only focuses on the CORBA components relevant to this
balancing competing real-time application requirements for faper. For a complete synopsis of CORBA's components see [2].
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IDL Compiler: An IDL compiler transforms OMG IDL
definitions into stubs and skeletons that are generated automat-
ically in an application programming language, such as C++
or Java. In addition to providing programming language trans-
( % ] parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated
O STANDARD INTERFACE OSTAN])ARD LANGUAGE MAPPING compiler optimizations [24]_
O ORB-SPECIFIC INTERFACE OSTANDARD PROTOCOL

Object Adapter:  An Object Adapter is a composite compo-
Figure 1: Key Components in the CORBA 2.3 Referencoent that associates servants with objects, creates object refer-
Model ences, demultiplexes incoming requests to servants, and col-

laborates with the IDL skeleton to dispatch the appropriate
eration upcall on a servant. Object Adapters enable ORBs

. . )
transmit remote operation requests transparently from Cl'enfcfosupport various types of servants that possess similar re-

object. Applications can play both the client and server rOIe&uirements. This design results in a smaller and simpler ORB
Object: In CORBA, an object is an instance of an OM@hat can support a wide range of object granularities, lifetimes,
Interface Definition Language (IDL) interface. Each objegplicies, implementation styles, and other properties.

is identified by anobject referencewhich associates one or

more paths through which a client can access an object on a

server. Anobject ID associates an object with its implemen?.2  QoS-related Enhancements to CORBA 2.4

tation, called a servant. Over its lifetime, an object has one or

more servants associated with it that implement its interfac&ORBA specifications upto and including CORBA 2.3 [23]
lacked features that allow applications to allocate, schedule,

Servant: This component implements the operations dgnd control key CPU, memory, and networking resources nec-
fined by an OMG IDL interface. In object-oriented (OO) laressary to ensure end-to-end quality of service. The CORBA
guages, such as C++ and Java, servants are implementeg Usstandard [2] includes the Messaging [19] and Real-time
ing one or more class instances. In non-OO languages, SBERBA specifications [18] that support many of these fea-
as C, servants are typically implemented using functions aoges. The Messaging specification defines asynchronous op-
struct  s. A client never interacts with servants directly, bration models [21] and a QoS framework that allows appli-
always through objects identified by object references.  cations to control many end-to-end ORB policies. The Real-
lSi_me CORBA specification defines interfaces and policies for
ég?naging QRB propessing, communication,' and memory re-
to the object and returning a response, if any, to the clie purces. Figure 2 illustrates how these various CORBA 2.4
An ORB Core is usually implemented as a run-time libra §atures mtelract.. i

linked into client and server applications. For objects executS Shown in Figure 2 an ORB endsystem [S] consists of net-
ing remotely, a CORBA interoperability compliant ORB Cor@/0rk interfaces, operating system I/O subsystems and commu-
communicates via a version of the General Inter-ORB Profjcation protocols, and CORBA-compliant middleware com-
col (GIOP), such as the Internet Inter-ORB Protocol (Il0PPnents and services. The CORBA 2.4 specification identi-
that runs atop the TCP transport protocol. In addition, custdigs capabilities that must hertically (i.e., network interface

Environment-Specific Inter-ORB protocols (ESIOPs) can als aPplication layer) antiorizontally(i.e., peer-to-peer) inte-
be defined. grated and managed by ORB endsystems to ensure end-to-end

predictable behavior factivities that flow between CORBA
OMG IDL Stubs and Skeletons: IDL stubs and skeletonsclients and servers.
serve as a “glue” between the client and servants, respectivelgelow, we outline these capabilities, starting from the low-
and the ORB. Stubs implement tifgoxy pattern [10] and est level abstraction and building up to higher-level services
provide a strongly-typedstatic invocation interfac€Sll) that gnq applications.
marshals application parameters into a common message_leV§An activity represents the end-to-end flow of information between a client

representation. Conversely, skeletons implemenii@pter and its server that includes the request when it is in memory, within the trans-
pattern [10] and demarshal the message-level representati@ias well as one or more threads.

ORB Core: When a client invokes an operation on an o
ject, the ORB Core is responsible for delivering the requ




END-TO-END PRIORITY provides a partial solution. Real-time CORBA ORBs must

PROPAGATION also preserve efficient, scalable, and predictable behavior end-
in args to-end for higher-level services and application components.
operation() For example, a global scheduling service [5, 28] can be used

out args + return value
+— O

to manage and schedule distributed resources. Such a schedul-
ing service can interact with an ORB to provide mechanisms
that support the specification and enforcement of end-to-end
operation timing behavior. Application developers can then
structure their programs to exploit the features exported by the
real-time ORB and its associated higher-level services.

[“ §§ A To manage the ORB endsystem capabilities outlined above,

STANDARD
EXPLICIT SYNCHRONIZERS

BINDING

=

PROTOCOL CORBA 2.4 defines standard interfaces and QoS policies that
PROPERTIES allow applications to configure and control the following re-
0S KERNEL 0OS KERNEL sources:

0S 1/0 SUBSYSTEM 0S 1/0 SUBSYSTEM

NETWORK ADAPTERS

e Processor resourcesia thread pools, priority mecha-
nisms, intra-process mutexes, and a global scheduling
service;

NETWORK ADAPTERS,

NETWORK

e Communication resourcesa protocol properties and ex-

Figure 2: CORBA 2.4 QoS Support for Real-Time Applica- plicit bindings; and

tions
e Memory resourcesia buffering requests in queues and

S bounding the size of thread pools.
1. Communication infrastructure resource management:

A CORBA 2.4 endsystem must leverage policies and mechApplications can specify these CORBA 2.4 QoS policies
anisms in the underlying communication infrastructure thalpong with other policies when they call standard ORB oper-
support resource guarantees. This support can range frona{ions, such agalidate _connection orcreate _POA
managing the choice of the connection used for a particufar instance, when an object reference is created using a QoS-
invocation to (2) exploiting advanced QoS features, suchemmabled portable object adapter (POA), the POA ensures that
controlling the ATM virtual circuit cell pacing rate [25]. any server-side policies that affect client-side requests are em-
bedded within atagged cormonentin the object reference.
agged components are name/value pairs that can be used to
port attributes, such as security or QoS values, from a server
iés clients within object references [2]. Clients who invoke
rations on such object references implicitly use the tagged
mponents to honor the policies required by the target object.

2. OS scheduling mechanisms: ORBs exploit OS mecha-
nisms to schedule application-level activities end-to-end. T
real-time CORBA features in CORBA 2.4 target ﬁxed-priori%
real-time systems [26]. Thus, these mechanisms correspg

to managing OS thread scheduling priorities. The Real—tirg

CORBA specification in CORBA 2.4 focuses on operating
systems that allow applications to specify scheduling priorities . o L )
and policies. For example, the real-time extensions in IEBE2-1 Evaluating Avionics Application Software Architec-

POSIX 1003.1c [27] define a static priority FIFO scheduling tures
policy that meets this requirement. Overview: Figure 3 shows a conventional non-CORBA ar-

3. Real-Time ORB endsystem: ORBs are responsible forchitecture for distributing periodic I/O events throughout an

communicating requests between clients and servers transpApnics application. This example has the following partici-

ently. A real-time ORB endsystem must provide standard RNt

terfaces that allow applications to specify their resource re-s Aircraft sensors: Aircraft-specific devices generate
quirements to the ORB. The QoS policy framework defined Bgnsor data at regular intervaésg, 30 Hz, 15 Hz, 5 Hzetc

the OMG Messaging specification [19] allows applications tthe arrival of sensor data generates interrupts that notify the

configure ORB endsystem resources, such as thread prioritigission computing applications to receive the incoming data.

buffers for message queueing, transport-level connections, anodSensor roxies: Mission computing svstems must pro-
network signaling, in order to control ORB behavior. P ' puting sy P

cess data to and from many types of aircraft sensors, including
4. Real-time services and applications: Having a real-time global position system (GPS), inertial navigation set (INS),
ORB manage endsystem and communication resources @mg forward looking infrared radar. To decouple the details



push model.

High Level

VO Facade /O Facade ) { /O Facade ) Apstraction

Drawbacks with conventional avionics architectures: A

disadvantage to the architecture shown in Figure 3 is the
strong coupling between suppliers (sensor proxies) and con-
sumers (I/O facades). For instance, to call back to I/O facades,
each sensor proxy must know which 1/O facades depend on
its data. As a result, changes to the 1/O facade layer, such
as adding/removing consumers, require sensor proxy modifi-
cations. Likewise, consumers that register for callbacks are

1:1/0 via Intefrupt ] tightly coupled with suppliers. If the availability of new hard-
L\ \ _Ir Low Level ware, such as forward looking infrared radar, requires a new
Aircraft T\; L ow eye sensor proxy, the 1/0 facades must be altered to take advantage
Sensors — Abstraction

of the new technology.

Figure 3: Example Avionics Mission Control Application Alleviating drawbacks with the CORBA Event Service:
Figure 4 shows how the CORBA Event Service [30] can help

of sensor communication from the applications, sensor pro;~-
objects are created for each sensor on the aircraft. When | Consumers

interrupts occur, data from a sensor is given to an approp
ate sensor proxy. Each sensor proxy object demarshals - I/O Facade I/O Facade I/O Facade
incoming data and notifies 1/0O facade objects that depend «

’ haN )\ .

the sensor’s data. Since modern aircraft can be equipped w
hundreds of sensors, a large number of sensor proxy obje
may exist in the system.

¢ |/O facades: 1/0O facades represent objects that depen %
on data from one or more sensor proxies. 1/0O facade objec
use data from sensor proxies to provide higher-level view
to other application objects. For instance, the aircraft pos

tion computed by an I/O facade is used by the navigation ar
weapons release subsystems.

3: push (delmarshaled data)

2: push (demarshaled data)
\
The pushdriven model described above is commonly use:
in many real-time environments [29], such as industrial prc
cess control systems and military command/control systerr
One positive consequence of this push-driven model is its €

Sensor
Proxy
ficient and predictable execution of operations. For instanc

I/O facades only execute when their event dependencies i T EDT%%E
satisfiedj.e., when they are called by sensor proxies. S -

In contrast, using aull-driven model to design mission ap-
plications would require 1/O facades that actively acquire ddteure 4: Example Avionics Application with CORBA Event
from sensor proxies. If data were not available to be pulleghannel
the calling 1/0 facade must block awaiting a result. Thus,
for 1/0 facades to pull, the system must allocate additioralleviate the disadvantages of the tightly coupled consumers
threads to allow the application to progress while I/O facadad suppliers shown in Figure 3. The CORBA Event Service
tasks block. Adding threads to the system has many negatleéinessupplier, consumer and event channeparticipants
consequences, however, such as increased context switchinghat distributed applications can exchange requests asyn-
overhead, synchronization complexity, and complex real-tirderonously via arevent-baseéxecution model [29]. Suppli-
thread scheduling policies [22]. Conversely, by using the pusts generate events, consumers process events sent by suppli-
model, blocking is largely alleviated, which reduces the neetb, and event channels propagate events to consumers on be-
for additional threads. Therefore, this paper focuses on tradf of suppliers.




The architecture of our example avionics mission comp@®:2 Preserving Priorities End-to-End
ing application [6] centers on the Publish/Subscribe [11] pat- . . )
tern shown in Figure 4. As shown in this figure, sensors gérntext:  Systems with stringent QoS requirements, such as
erate an interrupt to indicate data availability. Sensor prdddf avionics mission computing application, often must exe-
ies then push the event to an event channel, which dispatcH&§ @ request at the same priority, end-to-end, as described in
events to application-level consumers on behalf of the s&igction??. In the following paragraphs we outline the Real-
sors generating the events. When consumers subscribe ¢ CORBA mechanismsin CORBA 2.4 intended to preserve
an event channel, they indicate what types of events they @uest priorities end-to-end.
interested in receiving by supplying the filtering criteria. The e Priority mapping: The specification defines a univer-

benefit of using an event channel is that sensor proxies arelly-' |- itorm-independent priority representation called the
affected when 1/O facades are added or removed. » P P X y rep

] ) o ] ~_ CORBA Priority This feature allows applications to make pri-
Before running production mission computing applicationgyitized CORBA invocations in a consistent fashion between
the system is analyzed and events are assigned prioritie$,8es running on operating systems with different priority
a real-time (RT) scheduling service [5]. Since the same CQRhemes.Priority mapping functionsre used to map prior-

sumer can receive events at different priorities, the DOC mig; yajyes specified in terms @ORBA priorityinto native OS
dleware must support this use-case, thereby allowing appllﬁﬁority_

tions to use the same object reference to access a service at

different priority levels. e CORBA priority models: The Real-time CORBA
Another benefit of a CORBA event channel-based archité@ecification defines RriorityModel policy that determines

ture is that an 1/0O facade need not know which sensor pré&e priority at which server handles requests from clients. The

ies supply its data. Since the channel mediates on behalP8licy can have one of the two valueSERVERDECLARED

the sensor proxies, 1/0 facades can register for certain tyfe§LIENT-PROPAGATED In the SERVERDECLARED model

of events €.g, GPS and/or INS data arrival) without knowshown in Figure 5 (A), the server handles requests at the pri-

ing which sensor proxies actually supply these types of events.

Once again, the use of an event channel makes it possibie) teERVER ORB QLML  ORB (DseRvEr
add or remove sensor proxies without changing I/0 facades. PECLAREDEEESISIEY ENDSYSTEM i
MODEL (3) CLIENT's PRIORITY
IS NOT PROPAGATED
BY INVOCATION
3 Evaluating CORBA for Real-time
Appl|cat|0ns (B) CLIENT CLIENT PROPAGATED CORBA PRIORITY = 100
PROPAGATED SERVICE SERVICE
MODEL CONTEXT CONTEXT

PRIORITY = PRIORITY =

3.1 Overview

During the past three years, we developed two versions of a, yos

real-time avionics mission computing application, each usingeriorITY

a different version of TAO. The first version, described in [6], =100

is based on CORBA 2.3 and uses multiple instances of the

ORB, one for each priority level. This approach results in mii  PriorityMapping:: PriorityMapping::

imal priority inversion, as no resources are shared between (. 10-"atve(100) => 100 to_native(100) =>5  to_native(100) => 135

ferent priority levels. However, it is hard to program to, since Figure 5: Real-time CORBA Priority Models

the servers must activate each servant multiple times, once un-

der each ORB, and the client must manually select the righity declared on the server side at object creation time. This

object reference for each priority level. priority is communicated to the client in an object reference.
In the following sections we describe real-time policies andThe Real-time CORBA specification also defines the

mechanisms used in our second implementation, where TBOENT_PROPAGATED model shown in Figure 5 (B). In this

is based on the Real-time [18] and Messaging [19] specificaedel, the client encapsulates its priority in the service context

tions. We also motivate several enhancements we developdistmf the operation invocation and the server then honors the

provide more precise control over CORBA 2.4 real-time aniority of the invocation. When a server ORB parses the re-

messaging features. quest, it extracts the priority from the service context and sets

SOLARIS
PRIORITY
=135

PRIORITY
=5

PriorityMapping



the priority of the processing thread to match the requestmblems: As outlined above, the mechanisms defined in
priority. the Real-time CORBA chapter of the CORBA 2.4 specifica-
tion provide application developers with greater control over

* Thread pools: A Real-time CORBA server can assoHrB endsystem resources than earlier CORBA 2.3 specifi-

ciate each POA with a pool of pre-allocated threads runningcgiions_ For many real-time applications these mechanisms

appropriate priorities. A pool can optionally be pre-configurea e sufficient to provide the necessary QoS guarantees. For

for a maximum buffer size or number of requests, as showrpii ;e applications with stringent QoS requirements such

Figure 6. If buffering is enabled for the pool, the request W'és those outlined in Sectid??, however, this lack of speci-
ficity can lead to ineffective anon-portablemplementations,
as discussed below:

["2_)2] i_)é')é_)éi i_)é"é-)é] e Priority mapping problems: Although Real-time

Thead Pool A Thead Pool B

PRIORITY 10 PRIORITY 35 PRIORITY 20 CORBA mandates each ORB to provide default priority map-

- ~ ping functions, as well as a mechanism to allow users to over-
ride these defaults, it does not state how those mappings func-
tions are accessed and set. Thus, application developers are
forced to use proprietary interfaces.

e CORBA priority model problems: The Real-time
CORBA CLIENT_PROPAGATED model can be inappropriate
mhreaps  SERVER ORB CORE for applications with hard real-time requirements due to op-
eﬁprtunities for priority inversion [31]. In particular, it is pos-
sible that the initial priority of the thread reading the request
is too high or too low, relative to the priority of the thread that

be queued until a thread is available to process it. If no qudlf@cesses the servantin an upcall. _

space is available or request buffering was not specified théikewise, theSERVER DECLARED priority model is not ap-

ORB should raise aRANSIENT exception, which indicatesPropriate for applications that invoke tisameoperation on

a temporary resource shortage. When the client receives thgsameobject, but adifferentpriorities fromdifferentclient

exception it can reissue the request at a later point. threads. For example, if our avionics mission computing ap-
plication were to use theERVERDECLARED priority model,

e Priority banded connections: This feature allows a it would have to activate the same servant multiple times, us-
Client to Communicate W|th the server Via. multlple tranquﬁg a different priority for each activation_ The Ciient app“_
connections. Each connection is dedicated to carrying in¢@tion would then choose the object reference based on the
cations of distinct CORBA priority or range of priorities, agjient thread's priority, and invoke the operation on the right
shown in Figure 7. A client ORB establishes a priority bande@ject. However, this solution is unnecessarily complicated

for the following reasons:

Figure 6: Buffering Requests in Real-time CORBA Thre
Pools

CLIENT
ORB CORE

SERVER
ORB CORE ¢ It would interact poorly with CORBA location services,

such as Naming or Trading, because each object must be
registered multiple times.

I31-5 I310-20 |321-10 g

P15 P10-20 P21-109

e An application-specific client convention would be re-
quired to (1) fetch all the object references for the same
object and (2) map priorities to the corresponding object
references.

PRIORITY-BANDED
CONNECTIONS

Figure 7: Priority Banded Connections

In our CORBA 2.3-based implementation, we faced similar
connection by sending a server tiénd _priority ~ _band challenges in managing multiple object references correspond-
request, which specifies the range of priorities the connectibg to multiple server ORBs. Our experiences indicated that
will be used for. This feature allows the server to allocate tBgch an approach yielded complex code that was hard to main-
necessary resources for the connection and to configure th@ise thereby negating several advantages of DOC middleware.

resources to provide service for the specified priority range,, Thread pool problems: The Real-time CORBA spec-

The selection of the appropriate connection for each inVog@saiion does not provide any policies to ensure that threads

tion is transparent to the application, and is done by the OB, o) receive requests directly from connections. Thus,
based on the value of th&riorityModel policy.



a compliant implementation may choose to separate threSdtution — Prioritized connection endpoints: To allevi-

that perform all the I/O, parse the request to identify the tate the problems listed above, we defined mechanisms in TAO

get POA and priority, and hand off the request to the appto-explicitty map thread pools and thread priorities to con-

priate thread in the POA thread pool, as shown in Figurerction endpoints. These mechanisms extend the Real-time

Such an implementation can increase average and worst-€O&BA specification to give TAO applications greater control
over the mapping of connections to thread priorities within the

Default Thread Pool A Thread Pool B ORB Core. Figure 9 provides an example of the avionics mis-
Thread Pool - = sion computing application shown in Figu?e revised to use
[-)2] [*2’2] [,2*2 2] [ % ] [-2’2 2] TAO’s prioritized connection endpoints mechanism.
DEFAULT PRIORITY PRIORITY PRIORITY| PRIORITY
PRIORITY, 1 35 50 20
(_cons( CONS(_ CONSUMER )
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Urpticamion ) | TR »r2 27ps =3
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Figure 8: An Inappropriate CORBA Thread Pool Architect
for Hard Real-time Applications
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latency and create opportunities for unbounded priority inver

sions [15], however. For instance, even under a light load, Figure 9: TAO’'s New CORBA 2.4-based Solution

the server ORB incurs a dynamic memory allocation, multi-

ple synchronization operations, and a context switch to pass s shown in this figure, the server application is an event
request between a network I/0 thread and a POA thread. -hannel consumer with four connection endpoitis, ...
EP,. Each endpoint is assigned a CORBA prioréyg, EP;

t. gr'%”zlp?fan%ed Ict(') nneé“(;’gBFch[ElimS": There is no Pas priorityP1, and is serviced by a thread of the correspond-
standar In kea-time at allows Server appil, naiive 0S priority. Object references for servants acti-

cations to control how thread pools are associated with pri ted in this server contain four profiles, one for each end-

ity banded connections. For instance, a server application B%ﬂn as shown in the object adapter portion of the server in
not control whether its ORB assigns each connection a s 'ur,e 9(A)

rate Fhreadi prlwhether a.poolﬁfthhreadshcan be pre.—al'located%he client application in Figure 9 (B) is an event channel
service multiple connections that have the same priority range, . : SR
Unfortunatel)rl), this lack of detail in the specificgtion ?/nake%]uppl!er. Ithas four threads with prioritiési. ... P4..When a
it hard to write real-time applications that behave predictabﬁ&ppIIer thread makes a call on the_: consumer objegt reference
across different ORB platforms. € pqrted by the server, the ORB flr_1ds a pre-established con-
. e nection for that endpoint and uses it to send the request. The
The Real-time CORBA specmca_tlon_ also lacks a Stand_aﬂﬂority is preserved end-to-end because on the server-side the
APl that wquld allow a server appllcatlc_)n to c.on'trol how it8,nnection is serviced by a thread at the same priority as the
ORB associates a thread at a pre-specified priority to read,fgz 4 making the request on the client-side.
guests from a priority banded connection. Thus, the actual
ORB thread that performs 1/O operations could be differdfiplementing prioritized connection endpoints in TAO:
from the thread processing the request, and could executBelew, we describe key mechanisms provided by TAO to im-
the wrong priority, thereby incurring priority inversion. Thiglement prioritized connection endpoints in client and server
lack of specificity in the Real-time CORBA priority bandeRBs:
connections mechanism can lead to implementations that suf; sapver ORB support for binding thread priorities to

fer from problems similar to those with POA thread poofgen-mode connection endpoints: TAO allows servers to
shown in Figure 8.




have multiple listen-mode [32] connection endpoints, each as- low-priority event, such as a display update. This high-
sociated with a CORBA priority. Each connection endpointis priority thread can post the message in a remote server at
also statically associated with a pool of threads running at na- a low-priority, to minimize the effect on more critical pro-
tive OS priority corresponding to the CORBA priority of the  cessing. However, it need not change its own priority to
endpoint. Pool threads are responsible for accepting and ser- perform this task, which avoids local priority inversions.
vicing connections on the associated endpoint.

When an object is activated in a server with multiple end- TAO’s prioritized connection endpoints ar@ientPrior-
points, the generated object reference contains multiple ptg-policy extend the standard Real-time CORBA priority
files, one for each endpoint. Each profile stores the CORBApdels and its priority banded connections mechanism to
priority of its endpointin a tagged component. This design achieve an effective balance betweentB®VERDECLARED
lows a client to receive service at its desired priority by simpnd CLIENT_PROPAGATED models. In particular, TAO pro-
selecting and using the profile containing that priority. vides the same degree of control to the server as the

TAO’s prioritized connection endpoints extension is partic&ERVERDECLARED model by restricting clients to use well-
larly attractive for applications, such as avionics mission coknown priorities. However, it also allows clients to select a
puting, that invoke operations on the same object at differ@niority published by the server that best meets their require-
priority levels. In particular, these applications can specifynaents. TAO's design avoids priority inversions and ensures
set of prioritized connection endpoints on the command-lif@RB endsystem resources are strictly controlled, while still
effectively defining the set of priorities supported on the servetaining a simple programming model.

a priori, thereby allowing the ORB to schedule and allocate Section 4.1 illustrates the performance of TAO's prioritized
resources more effectively end-to-end. Moreover, this pmennection endpoint architecture.

gramming model is much simpler than creating multiple ob-

jects and object references and trying to assign them different

thread priorities. 3.3 Achieving Reliable Asynchronous Commu-

¢ Client ORB support for connections with priorities: nication

When a client makes. an invocation,.the client-side ORB Mysfiaxt: Embedded real-time CORBA applications often
§elect one of the profiles from an object_ reference before sefds one-way operations to simulate message-passing via stan-
ing the request to the server. The profile is selected baseqigfy coRBA features. For example, avionic mission com-
the priority at which the client wants the request serviced. Iinq anplications [6] process periodic event messages, such
allow clients to specify this desired priority, TAO defines gq qensor ypdates and heartbeat messages from redundant sys-
ClientPriority pO|IC¥. Clients can set th€lientPriority policy tems. Typically, clients send these messages to servers via
to one of the following values: CORBA one-way operations, which require no response.

e USE.NO_PRIORITY —i.e, priority information is not used ) . .
when a client ORB selects a profile from an object refdproplems: - The semantics of conventional CORBA one-way
ence operations are often unacceptable because the CORBA 2.3

specification does not require an ORB to guarantee that one-
e USETHREAD_PRIORITY —i.e, the priority of the client way operations will be delivered [4].
thread sending a request is used to select the profile. This
option is used when the priority of request must be pr8elution - CORBA 2.4 reliable asynchronous features:
served end-to-end. For example, we use this optionTi alleviate the problem outlined above, the CORBA Messag-
Figure 9 (B), where th€lientPriority policy is checked ing specification defines a policy call&yncScopthat allows
before the client ORB selects a profile from the objeglients more control over the degree of reliability for one-way
reference. In that case, when a client thread with priorigperation invocations. Figure 10 illustrates the following four
P1 invokes an operation on a consumer object, the OR&els of reliability for one-way operations:
selects the profile corresponding to that prioritg, the
one that contains connection endpdif®; . e SYNC_NONE: With this policy value, the client ORB re-
e USEPRIORITY_RANGE — In this case, a range of prior-tums control to the client appli_cation bef_or_e passing the re-
fuest to the transport layer. This value minimizes the amount

ities to be used for profile selection is specified by t i ) . .
application inside the policy. This option allows appIiQf time a client spends blocking on the one-way operation,

cations to request services at a priority thatdigfer- PUt Provides the lowest level of delivery guarantee. The
entthan that of the client thread invoking an operatiofy.Y NC-NONE policy is useful for applications that require min-

For example, a high-priority client thread can generatérgal client operation latency, while tolerating reduced reliabil-
ity guarantees.



that checks th&yncScoppolicy value and sets the appropri-
ate bits in theresponse _flags field in the GIOP request
header.

oO—»
oneway op() ((s)lilvl?&(l\l:%

b (s
[3) o If the SyncScopeolicy is SYNC_NONE, the request is
buffered, as described in Section 3.4. If the policy value

\d
% iS SYNC_WITH_SERVER Or SYNC_WITH_TARGET, the client

ORB must wait for a reply from the server and check for a

LOCATION_FORWARD response or a CORBA system excep-
[ os kerver NN os kerneL RGN o
On the server, the ORB’s behavior is based solely on
© syNc_NONE © syYNC_WITH_SERVER  the value of theresponse _flags field of the request
@ sync_witH_TRANsPORT @ sync witH TARGer ~ header. If the flags are set toSyncScop@olicy value of
SYNC_WITH_TARGET, the request is treated as a two-way re-
Figure 10: Reliable One-way Synchronization Scopes quest, whether it originated as a one-way or as a two-way. If
the flags are set to a value®¥NC_WITH_SERVER however, a
_ _ _ response will be initiated by the Object Adapter immediately
* SYNC.WITH.TRANSPORT  With this policy value, the after it locates the servant, but before dispatching the upcall.
ORB returns Control to the Cl|ent Only after the request IS Section ?2? presents benchmarks i”ustrating the perfor-

passed successfully to the transport layeg, the client's mance of TAO's reliable one-way implementation.
TCP protocol stack. A client can incur unbounded latencies

if a connection endpoint flow controls due to a limited buff . .
space. When used with a connection-oriented transport, s cﬁ Ensuring Adequate Operation Throughput
as TCPSYNC_WITH_TRANSPORTcan provide more assuranc€ontext: Distributed real-time applications often have strin-
thansyNC_NONE. This policy is appropriate for clients thaigent timing requirements, where critical operations must begin
require a compromise between low latency and reliable delivd/or complete within specified time intervals. For example,
ery. aircraft sensor devices, such as navigation devices and radar
e SYNC_WITH_SERVER  With this policy value, the client S€NSOrs, generate data that must be processed at regular peri-
invokes a one-way operation and then blocks until the ser@&lic intervals [6]. Such applications often have a fixed time
ORB sends an acknowledgment. The server ORB seRgsgiod in which to invoke remote one-way operations. After
the acknowledgment after invoking any servant managdR¥oking each operation, the client must perform other pro-
but before dispatching the request to the servant. T#eSSIngi.e, it doeg not wait synchronously for the server to
SYNC_WITH_SERVERpolicy value provides clients with assurProcess the operation and respond.
ance that the remote servant has been located. This featurrd®lems: The following two problems can arise when ap-
particularly useful for real-time applications that require sonpgying ORB middleware to distributed real-time applications

degree of reliability,e.g, because they run over backplanegith periodic processing requirements:

that lose packets occasionally, but need not wait for the entire Inadequate operation throughput: The time spent de-
servant upcall to complete.

livering a one-way or asynchronous operation to a server in-
e SYNC_WITH_TARGET: This policy value is equivalent tocludes the overhead of invoking one or mavete calls to
a synchronous two-way CORBA operatid®,, the client will the client OS. In turn, this incurs protocol stack and network
block until the server ORB sends a reply after the target objatterface processing, as well as the propagation delay across
has processed the operation. If no exceptions are raised titfieecommunication media. This per-operation overhead con-
client can assume that the target servant processed its reqgésites a non-trivial amount of the total end-to-end latency,
This synchronization level is appropriate for clients that needrticularly for small requests. As a result of this overhead,
assurance that the upcall was performed and can toleratergfad-time applications may be limited to a relatively low num-
additional latency. ber of remote operations per time period.

Implementing reliable one-ways in TAO: The SyncScope e Blocking flow control:  Itis important that periodic real-
policy controls the reliability of one-way requests. It can ktéme applications not block indefinitely when ORB endsystem
set at the object-level, thread-level, or ORB-level. As witind network resources are unavailable temporarily. However,
any CORBA policy, the more specific levels can overrideRB transport protocols, such as IIOP, often implement reli-
the more general levels. To implement reliable one-way @sle data delivery using a sliding window flow control algo-
guests, TAO's IDL compiler [33] generates client stub codighm [32]. Thus, they may block the client from transmitting
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additional data when the communication channel is congestush buffers. These semantics are insufficient for applications
or if the server is slow. Although some transport protocalksat require precise control over the ORB utilization of mem-
buffer a limited number of bytes or requests, they will typery and network resources. Therefore, we have extended TAO
cally block client threads after this limit is reached. to allow applications to specify multiple strategies for deliver-
g buffered requests via a nd®ufferingConstrainpolicy.

. . i
caii):r?smll[a))ll_ t|cr)1 t:?fg/fe;hziz Feri(ﬁlelgnn?eﬁt tt%erec\:lllizi t;hgoat%%ﬂ'ﬁgure 11illustrates how TAO uses this policy to buffer one-
L P . . ay invocations inside the ORB Core for subsequent delivery.
buffer data at the application-level. This solution works w

. L . o hen application-specified buffering limits are reached, the
for certain periodic applications that can sacrifice some la- P P 9
]

tency for increased operation throughput. Buffering at the
application-level increases the burden on application develop—\

ers, however, thereby increasing the implementation, valid&- obi->0p (pa'i“‘s) DEMARSHAL —

tion, and maintenance effort. Moreover, if two or more appli- F] PS4 |ekereron [ l

cation IDL interfaces require buffering, code can be duplicate oiviiin DATACOPY DATACOPY | &

unnecessarily, which increases application footprint. e ; Z
° BUFFERED ORB MESSAGING 2

Solution ¢ ORB-level request buffering: Often, a more ef- E BEE z

fective solgtion is.to have the ORB buffer one-way and asyr|- gu— 0S KERNEL

chronous invocations transparentlyAt some later time, the \

buffered requests can be delivered masseo the server. EHE

There are several benefits to ORB-level request buffering: | NETWORK

e By buffering requests, a client ORB amortizes the perfigure 11: One-way and Asynchronous Request Buffering
operation processing overhead and increases effective
network utilization. buffers are flushed and the queued requests are delivered to

e The ORB can use O§ather write operations, such asthi\sfo%ebr:nat'on of the following conditions can be specified
writev  [32], to minimize the number of mode switches. inat wing - pectli

needed to transmit the buffered requests. simultaneously using TAO'BufferingConstrainpolicy:

e ORB-level buffering can increase application control 1. Message Count: When the number of buffered mes-
over the buffering of CORBA requests. This feature fdes reaches an application-specified high-water mark, the
important when the buffering provided by the transpdppﬁered requests are delivered to the server. This approach
protocol is inadequate, thereby forcing indefinite blocillows applications to batahrequests together.
ing of the client due to flow control. 2. Message Bytes: When the number of bytes in the

buffered messages reaches an application-specified high-water
Implementing ORB-level request buffering in TAO: The Mark, the buffered requests are delivered to the server. This ap-

CORBA 2.4 Messaging specification introduces several meBfoach allows applications to buffarbytes at the ORB layer.
anisms to give application developers more control over QoS
parameters than in CORBA 2.3 specifications. In particular,3. Periodic Timeout: After an application-specified time
applications can use CORBA 2.4 features, such asSge- interval, the ORB delivers any buffered requests to the server.
Scopepolicy, to control latency/reliability tradeoffs. For ex-This approach allows applications to pace the delivery of mes-
ample, applications can use tB@NC_wITH_SERVER policy Sages to the server even when the requests are produced at
value to achieve reliable transport delivery, without waitinigregular intervals.
for the entire servant’s computation to complete. Likewise,4. Explicit Flushing: Applications can flush any queued
the application can ensure non-blocking behavior by using thessages explicitly. This approach allows applications to de-
SYNC_NONE policy value, which TAO implements by buffer-liver the batched messages to the server in response to some
ing multiple requests before sending them to the server.  external event.

Unfortunately, neither the CORBA Messaging or the RT 5. Qut-of-Band Requests: Applications can skip buffer-
CORBA specifications provide mechanisms to control the sigg for some requests. This approach allows applications to
or duration of buffers, nor does it provide explicit interfaces eliver urgent requests to the server immediately, bypassing

3 4 _ thﬁ buffered requests.
Synchronous two-way requests and reliable one-way operations shou . . .
not be buffered. The ORB must deliver these request immediately to the serveP€Ction 4.2 presents benChma'rkS '”UStratmg the perfor-
because the client waits for the server's response before continuing. mance of TAO's buffered requests implementation.
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3.5 Evaluation of the CORBA 2.4-based Solu- The improved semantics added by the CORBA 2.4 Messag-
tion ing specification [19] gives clients greater control over these

o o ] _tradeoffs.
Our CORBA 2.4-based avionics mission computing solution

has the following improvements over the original CORBA 2.3- In addition to alleviating the drawbacks with our original
based design: CORBA 2.3-based solution, the new CORBA 2.4-based ver-

More standard programming model: The CORBA 2.4 sion of TAO also provides the following benefits:

Real-time specification defines a standard model for impkasier integration with CORBA common object services:
menting many features required for avionics mission compiit use CORBA common object services, such as Naming and
ing using only a single ORB per CPU. This model supports thigading, in the CORBA 2.3-based approach, a server must ex-
mapping of priorities to particular invocations, objects, ambrt multiple object references to the same servant, one for
threads. As a result, application programming is simplifi@@ch priority. Then, to locate the object reference correspond-
and the portability of application software increases becaisg to the desired priority, a client must useathhocmecha-

the system is based on a standard. nism to retrieve the desired object references at the appropri-
ate priorities. In contrast, in the CORBA 2.4-based approach
atgﬁre is no need for multiple object references. Therefore, no
aﬁﬂgwcprotocol for mapping priorities to object references is
quired.

With other services, CORBA 2.3-based approach may re-
ire modification to the service itself. For example, the Event

and server application to create a single ORB. Thus, only rvice invokes operations on application-provided objects.

object reference is created per servant, which further redu %nvoke these operations at the appropriate priorities the ser-
the overall memory footprint ' vice must: (1) have access to multiple object references for

o - o each application object and (2) select object references cor-
Efficient initialization:  In addition to simplifying the pro- responding to desired priorities using the application defined
gramming model and minimizing the required memory r@rotocol. In contrast, in the CORBA 2.4-based approach these

sources, the use of one ORB per-process reduces the timgggks are all performed by the ORB transparently to applica-
quired to initialize the avionics mission computing applicgpns and services.

tions. Reducing this overhead is particularly important when

the system must recover from transient power cycles. Easier integration with real-time scheduling services:
The CORBA 2.4 Real-time specification supports higher-level

Simplified client threading model: ~ Clients are greatly sim- corga scheduling services that allocate resources end-to-
plified because they manage only one set of object referenggg;  For example, TAO's static scheduling service [5] can
Policies and object references contain sufficient informatiglgqciate application activities with global CORBA priorities.
for the ORB to determine the appropriate connection to Use§fich scheduling services can use the priority transformations
each request. and the policy framework defined in the CORBA Messag-
Improved priority preservation: By supporting multiple ing [19] to create sophisticated and adaptive real-time appli-
connection endpoints within server ORBs, the CORBA 2.dations.

based implementation has several benefits. For example, the

destination service access point, such as the TCP port num-

ber, can be mapped to a global CORBA priority thereby e4n The Performance of the TAO Real-
suring that all CORBA requests within a connection queues time CORBA ORB

have the same priority. This early demultiplexing [34] tech-

nique, combined with client and server ORBs’ respect of24 Preserving Priorities End-to-End

request’s priority, results imertically (i.e., network interface
+ application layer) andhorizontally (i.e., peer-to-peer) in- Overview: The benchmarks in this section compare the per-
tegrated ORB endsystems. The resulting DOC middlew&emance of TAO's CORBA 2.3-based solutidre., using an
environment preserves invocation priorities end-to-ared, ORB-per-priority architecture, with TAO's CORBA 2.4-based
throughout the ORB endsystems and inter-ORB connectios®lution,i.e., using the prioritized connection mechanism de-
scribed in Section 3.2. In particular, to determine how well

Reduced memory footprint: Our original CORBA 2.3-
based solution required multiple ORBs be created within e
client and server, once for each rate group. Moreover, serv
had multiple object references, one for each global priori{ﬁ
This design resulted in a relatively large application footprint.
In contrast, our CORBA 2.4-based solution allows each cli

Improved one-way invocation semantics: Real-time appli-
cations mUS't often balance the competlng need$ of reliabley s still possible that implementations of these services are unsuitable for
communications, network throughput, and invocation latenesal-time applicatione.g, due to excessive priority inversion.
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each approach preserves priorities end-to-end, we compare |, _
latency and jitter of a high-priority client thread as it compete ..
with a variable number of low-priority client threads.

B e

o N

a o
!

Hardware/OS Benchmarking Platforms: All benchmarks
in this section were performed between two 266 MHz Pow
erPC boards with 32 MBytes of RAM, running the LynxOS
3.0.0 operating system and connected by a 100 Mbps Ethern
The tests were run with real-time, preemptive, FIFO threa
scheduling, which provides strict priority-based scheduling t
application threads.
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Measurement techniques: Below we describe the client- L o
oad, Low Priority Client

side and the server-side parts of the benchmark.

\ CORBA 3.0 based solution a CORBA 2.x based solution\

e Client-side: On the client, a single high-priority thread Figure 12: Jitter for High-Priority Client Thread
and a variable number of low-priority threads run concur-

rently. Both CORBA 2.3-based solution and CORBA 2.4-

based solution were benchmarked with 1, 3, 6, 9, 12, and 15

low-priority client threads. Each low-priority thread has a difResults: Each solution was benchmarked with a different

ferent priority value. The range of LynxOS native prioritieBUmber of low-priority client threads: 1, 3, 6, 9, 12, and 15.

used by these threads is 64 to 79. The high-priority threa@r €ach solution and each number of client threads, the ex-

runs at priority 128. periment was repeated three times. Figure 12 shows the jitter
When the test program creates the client threads, thE&HIts- Figure 13 shows average latency (over three samples),

threads block on a barrier lock so that no client thread sta#&h average jitter shown as error bars. The results in these

until the others are created and are ready to run. When all

client threads are ready to send requests, the main thread un-
blocks them. Each client thread issues 20,000 requests to tt 9%
server at the fastest possible rate. 900 1

800
e Server-side: On the server, a servantis created and con-

figured to service client requests at the same priorities as thos
of its client peers. In the original CORBA 2.3-based approach
this is achieved by creating an ORB-per-thread for each tes
priority. In the CORBA 2.4-based approach, this is achievec
by mapping connection endpoints to threads possessing the a
propriate priorities.

Regardless of the approach, each request is serviced at t
same priority as that of the invoking client thread. This map-
ping is achieved using different mechanisms in the two con
figurations. In CORBA 2.3 configuration, each client thread
uses a different object reference,, the one published by the
server ORB running in the thread with corresponding priority. [E.CORBA 3.0 based solution B CORBA 2. based solution]
In CORBA 2.4 configuration, the client sets the value of the
ClientPriority policy to USE THREAD_PRIORITY.

As was mentioned earlier, each low-priority thread has a

different priority valueg.g, 64, 65, etc. Such system configugq,res jllustrate that the CORBA 2.4-based latency is slightly

ration is more demanding than simply having all low-prioritiy, e than the CORBA 2.3 version, though its jitter is slightly
threads run at the same priority. By using different priority val;

> ) E)&her. In general, therefore, the CORBA 2.4-based configura-
ues for the low-priority threads, concurrency can be increag provides a simpler programming model, smaller footprint,

on the server. Thus, this design provides more opportuniligs, taster initialization, with negligible impact on efficiency
for priority inversion to occur if the underlying ORB is not, predictability.

designed and implemented properly.
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Figure 13: Latency for High-Priority Client Thread
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4.2 Buffered Request Benchmarks unchangedi,e., in all test runs the same number of messages
0 ow: Wi d d benchmark is sent, and all the messages are identical. The figure shows
VErview. e conducte enchmarks to compare tri.'lffat significant throughput gains (over 100% in the rightmost

throughput of various 'buffered one-way request configur@ér) can be realized by TAO's request buffering mechanism.
tions. TheSyncScoppollcy value was set teYNC‘N.ONEand However, tuning the queue size for each use-case is crucial to
the maximum message count of the buffer was mcreasedr;péximize performance

each test run.

Hardware/OS Benchmarking Platforms: We used two C ludi R K
Dell computers, each with four Pentium Xeon CPUs ru:5— oncluding Remarks

ning at 400 MHz and connected by a 100 bps Ethernet. = . . . . . .
Theg operating system of both mach)i/nes was VF\)Iindows N al-time distributed object computing (DOC) middleware is

4.0. This OS, unlike most UNIX systems, does not limit trfd promising solution fo'r key ch.alle.nges faci.ng.researcher.s
alue oflov_MAX , which is the maximum size of the ectopr.ld.developers of real-time appllcatlons. Designing and opti-
valu whicn | ximum stz v mizing standards-based and commaodity-off-the-shelf (COTS)

used ingather-write operations. Thus, Windows NT is bet: C midd| that tth 3 . s of real
ter equipped to demonstrate the full potential of performan%) midaieware that can meet tne Qo requirements of real-
e applications requires an integrated architecture that can

gains from buffering one-way requests in the ORB. The timl%r;n

: o liver end-to-end QoS support at multiple levels in real-time
used on both platforms was the high-resolution timer of t & )
Intel chip, accessed by the PentimnTscinstruction. and embedded systems. The Real-time CORBA [18] and Mes-

saging [19] specifications in CORBA 2.4 are an important step
Measurement techniques: A timestamp was obtained im-in this direction.

mediately before and after the execution of the request it-Unfortunately, the CORBA 2.4 specification lacks sufficient
eration loop. Throughput values were then calculated gpecificity toportablymanage processor, communication, and
calls/second for each test run of 2,000 requests. To closelgmory resources for applications with stringent QoS require-
emulate a real-time transport mechanism, such as VME, a@ents. For example, Section 3.2 describes outlines a num-
tain configuration policies were followed when conducting thger of problems with the standard Real-time CORp#or-
one-way request benchmarks. In particular, Nagle’s algorititgnmapping priority mode| thread pooj andpriority banded

was disabled and the TCP window size was set to 8 kilobytesnnectionmechanisms intended to preserve request priori-
which was the minimum supported on Windows NT. The sizies end-to-end. The following discussion summarizes our
of each request was set to a larger value (9 kilobytes plus Ksssons learned developing and deploying an implementation
header size) so that TCP would flow-control on each requesiCORBA and representative applications that are based on
and not buffer additional requests. the CORBA 2.4 specifications.

Results: In Figure 14, the throughput of unbuffered one-wagontrol over thread priority must be end-to-end: Ensur-
requests is shown in the leftmost bar and is used as a basetigeappropriate end-to-end QoS for real-time applications re-
for comparison with the throughput of buffered one-way reguires more than just the implementation of the Real-time
guests. To measure the effect of the buffer size, we set itGORBA specification and the mapping of global priorities be-
tween ORBs. It also requires control over end-to-end thread

250 priorities, connectior— thread pool associations, and other
ORB endsystem resources used to process a request. More-
5 200 | over, applications must be able to control these resources at
c‘; each layer of an DOC middleware. The Real-time CORBA
3w —  specification [18] adopted for CORBA 2.4 allows implementa-
£ tions to provide end-to-end guarantees, but it does not require
EREE — — them. Moreover, it does not provide explicit mechanisms to
% control how I/O threads in an ORB Core map to thread priori-
@ oso — ties and connections.
Section 3.2 describes the policies and mechanisms we used
0.00

unbuffered 10 © 00 0 1000 2000 in TAO's prioritized connection endpoints extension to pre-
Buffer Size (requests) cisely define these associations and ORB configurations. Ap-
plication developers can use this extension to ensure that the
Figure 14: Throughput for Buffered One-way Requests client and server ORBs process the request at the appropriate
priority end-to-end. In previous work [34], we described how
a different value in each test run. The other variables rema#O can be integrated with agarly demultiplexindeature in
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the operating system’s 1/0 subsystem to ensure that the @ 1. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and Performance

kernel and network interfaces also preserve the priority of the
request.

One-way semantics must be specified precisely:The (9]
CORBA 2.3 specification defines the semantics of one-way
operations to receive best-effort service. However, it pro-
vides no further end-to-end delivery guarantees to appli([:]e{)J
tions. Thus, a CORBA 2.3-compliant ORB can simply drop

every request, deliver it at some arbitrary future time (but dut]
of order with subsequent requests), or send it immediately.
The CORBA 2.4 Messaging specification provides better ¢ M
trol over the semantics of oneway operations, but it falls short
in the SYNC_NONE case, where it does not provide mech#t3]
nisms to control buffering limits and/or flushing policies. Sec-

tion 3.4 describe the policies and mechanisms we used in TA!
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TAO is freely available and can be downloaded from URILE]
www.cs.wustl.edu/ ~schmidt/TAO.html Our fo-

cus on the TAO project has been to research, develop, and[pﬂ-

timize policies and mechanisms that allow CORBA to support
applications with hard real-time requirements. These require-
ments motivate many of the optimizations and design stra[tl%]
gies presented in this paper.

TAO has been used on a wide range of distributed regh)
time and embedded systems, including an avionics mission
computing architecture for Boeing [6], the next—generatié%?]
Run Time Infrastructure (RTI) implementation for the D 21]
fense Modeling and Simulation Organization’s (DMSO) Hig
Level Architecture (HLA) [35], and high-energy physics ex-
periments at SLAC [36] and CERN [37]. 22]
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