Evaluating Real-Time Java Features and Performance
for Real-time Embedded Systems

Angelo Corsaro, Douglas C. Schmidt
Electrical and Computer Engineering Department
University of California, Irvine, CA 92697
{corsaro, schmidi@ece.uci.edu

Abstract performance. If the overhead incurred by RTSJ im-
plementations are beyond a certain threshold, it may
This paper provides two contributions to the study of not matter how easy or intuitive it is to program real-
programming languages and middleware for real-time and time embedded software since it will not be usable in
embedded applications. First, we present the empirical re- practice.

sults from applying the RTJPerf benchmarking suite to eval- Thjs paper focuses on the latter quality dimension and sys-
uate the efficiency and predictability of several implementa- tematically measures various performance criteria that are
tions of the Real-time Specification for Java (RTSJ). Secondcritical to real-time embedded applications. To codify these
we describe the techniques used to develop jRate, which isneasurements, we use an open-sdtseachmarking suite
an open-source ahead-of-time-compiled implementation ofcalledRTJPerf that we are developing at UC Irvine. In this
RTSJ we are developing. Our results indicate that RTSJ im'paper, we empirically analyze most of the RTSJ features and
plementations are maturing to the point where they can be compare the performance of the RTSJ RI with other popular
applied to a variety of real-time embedded applications.  and emerging real-time Java implementations.
The remainder of the paper is organized as follows: Sec-
tion 2 describeRTJPerf; Section 3 presents the results ob-
1 Introduction tained by applyingRTJPerf to measure the performance
of the RTSJ RI and compare/contrast these results with the
Until recently, there was no implementation of the Real- performance of JDK 1.4.0 ajRate (which is an ahead-of-
Time Specification for Java (RTSJ), which hampered the time compiled implementation of RTSJ we are developing);
adoption of Java in real-time embedded systems. It alsoand Section 4 presents concluding remarks.
hampered systematic empirical analysis of the pros and
cons of the RTSJ programming model. Several implemen-2  Qverview of RTJPerf
tations of RTSJ are now available, however, including the
RTSJ Reference Implementation (RI) from TimeSys [11]. RTJPerf provide benchmarks for most of the RTSJ
Two quality dimensions should be considered when as-tgaqres that are critical to real-time embedded systems.
sessing the effectiveness of the RTSJ as a technology foly complete description of the tests currently available in
developing real-time embedded systems: _ RTJPerf can be found in [2]. Below, we describe a subset
* Quality of the RTSJ API, i.e, how consistent, intu-  f these benchmark tests and reference where we present
itive, and easy is it to write RTSJ programs. If signifi- {he results of the tests in subsequent sections of this paper.
cantaccidental complexitis introduced by the RTSJ, | aqdition to describing what RTSJ featuREJPerf mea-

it may provide little benefit compared to using C/C++.  gyres, we summarize the key RTSJ features themselves.
This quality dimension s clearly independent from any

particular RTSJ implementation. 2.1 Memory

e Quality of the RTSJ implementations i.e., how well
do RTSJ implementations perform on critical real-time  The RTSJ extends the Java memory model by provid-
embedded system metrics, such as event dispatch laing memory areas other than the heap. These memory
tency, context switch latency, and memory allocator

IRTJPerf is freely available ahttp://tao.doc.wustl.edu/
*This work was supported in part by Siemens MED, SAIC, and ATD. “corsaro/periscope.html|




areas are characterized by the lifetime the objects cre- that after an event is fired the execution of all its asso-

ated in the given memory area and/or by their allocation ciatedAsyncEventHandler s will be dispatched.
time. Scoped memory areggovide guarantees on allo- o TheBoundAsyncEventHandler  class, which has
cation time. Each real-time thread is associated with a a real-time thread associated with it permanently. An
scope staclthat defines its allocation context and this- BoundAsyncEventHandler s real-time thread is
tory of the memory areas it has entered. The RTSJ speci-  ged throughoutits lifetime to handle event firings.

fication provides scoped memories with linear and variable g\ant handlers can also be specified tanbeheap which

allocation times KTMemory, LTPhysicalMemory —and  means that the thread used to handle the event must be a
VTMemory, VTPhysicalMemory , respectively). For NoHeapRealtimeThread

linear aII_ocation time scoped memory, the RTSJ requires  gjnce event handling mechanisms are commonly used
that th_e time needed to allocate the> 0 bytes to hold the _ to develop real-time embedded systems [4], a robust and
class instance must be bounded by a polynomial functionge|apie implementation is essentiRTJPerf provide the

2
f(n) < Cn for some constar’ > 0. following tests that measure the performance and scalability
RTJPerf provides the following test that measures key 5t RTSJ event dispatching mechanisms:

Egrr]fsrmance properties of RTSJ memory area Implementa'Asynchronous Event Handler Dispatch Delay Test.

Several performance parameters are associated with asyn-
Allocation Time Test. To minimize memory leaks, la- chronous event handlers. One of the most important is the
tency, and non-determinism, the use of dynamic memory al-dispatch latencywhich is the time from when an event is
location is forbidden or strongly discouraged in many real- fired to when its handler is invoked. Events are often asso-
time embedded systems. The scoped memory specified byiated with alarms or other critical actions that must be han-
the RTSJ is designed to provide a relatively fast and safedled within a short time and with high predictability. This
way to allocate memory that has much of the flexibility of RTJPerf test measures the dispatch latency for the differ-
dynamic memory allocation, but much of the efficiency of ent types of asynchronous event handlers prescribed by the
stack allocation. The measure of the allocation time and itsRTSJ. The results of this test are reported in Section 3.3.2.
dependency on the size of the allocated memory is a goodasynchronous Event Handler Priority Inversion Test.
measure of théme efficiencyf the various types of scoped | the right data structure is not used to maintain the list
memory implementations. of event handlers associated with an event, an unbounded
To measure the allocation time and its dependency onpriority inversion can occur during the dispatching of the
the size of the memory allocation requeRTJPerf pro-  event. This test therefore measures the degree of priority
vides a test that allocates fixed-sized objects repeatedlyinversjon that occurs when multiple handlers with different
from a scoped memory region whose type is specified by schedulingParameters ~ are registered for the same
a command-line argument. To control the size of the ob- event. This test registers handlers with an event in order
ject allocated, the test allocates an array of bytes. By run-of increasing importance. The time between the firing and
ning this test with different allocation sizes, it is possible to the handling of the event is then measured for the highest
determine the allocation time associated with each type ofpriority event handler.

scoped memory. Section 3.3.1 present the results of this test By comparing the results for this test with the result of

for several Java implementations. the test described above, we can determine the degree of
priority inversion present in the underlying RTSJ event dis-
2.2 Asynchrony patching implementation. Section 3.3.2, provides an analy-

sis of the implementation of the current Rl and presents an

The RTSJ defines mechanisms to bind the execution ofimplementation that overcomes some shortcomings of the
program logic to the occurrence of internal and/or external RI-
events. In particular, the RTSJ provides a way to associate
anAsyncEventHandler  to some application-specificor 2.3 Threads

external events. There are two types of asynchronous event ) )
handlers defined in RTSJ: The RTSJ extends the Java threading model with two

new types of real-time thread®ealtimeThread and
NoHeapRealtimeThread

Since theNoHeapRealtimeThread can have execu-
tion eligibility higher than the garbage collecfyiit cannot

e The AsyncEventHandler  class, which does not
have a thread permanently bound to it, nor is it guar-
anteed that there will be a separate thread for each
AsyncEventHandler . The RTSJ simply requires

3The RTSJ v1.0 specification states that the
2This bound does not include the time taken by an object’s constructor NoHeapRealtimeThread  have always execution eligibility higher
or a class’s static initializers. than the Garbage Collector (GC), but this has been changed in the v1.01




allocate nor reference any heap objects. The scheduler conPeriodicParameters ). The accuracy with which suc-
trols theexecution eligibility[3] # of the instances of this  cessive periodic computation are executed is important
class by using th&chedulingParameters associated  since excessive jitter is detrimental to most real-time sys-
with it. tems.

RTJPerf provides the following benchmarks that mea- RTJPerf provides a test that measures the precision at
sure important performance parameters associated withwhich the periodic execution of real-time thread logic is
threading for real-time embedded systems. managed. This test measures the actual time that elapses
from one execution period to the next. These test results are

ntext Switch Test. High levels of thr ntex . .
Context Switch Test gh levels of thread context reported in Section 3.3.3,

switching overhead can significantly degrade application
responsiveness and determinism. Minimizing this over- .
head is therefore an important goal of any runtime environ- 2.4 Timers
ment for real-time embedded systems. To measure context

switching overheadRTJPerf provides two tests that con- Real-time embedded systems often use timers to perform
tains two real-time threads—configurable to be either either C€"ain actions at a given time in the future, as well as at
RealtimeThread or NoHeapRealtimeThread — periodic future intervals. For example, timers can be used

which can cause a context switch in one of the following 0 Sample data, play music, transmit video frames, etc. The
two ways: RTSJ provides two types of timers:
e OneShotTimer , which generates an event at the ex-

1. Yielding—In this case, there are two real-time threads o ) . o
piration of its associated time interval and

characterized by the same execution eligibility that
yield to each other. Since there are just two real-time e PeriodicTimer , which generates events periodi-
threads, whenever one thread yields, the other thread cally.

will have the highest execution eligibility, so it will be

chosen to run. OneShotTimer sandPeriodicTimer seventsare han-

dled byAsyncEventHandler s. Since real-time embed-
2. Synchronizing—In this case, there are two real-time ded systems often require predictable and precise timers,
threads— andT,—whereT'y has higher execution  RTJPerf provides the following tests that measure the pre-
eligibility than T, T, enters a monitof/ and then  ¢isjon of the timers supported by an RTSJ implementation:

yvaits on a conditiorC that is set byl'y jg_st before it One Shot Timer Test. Different RTSJ timer implemen-
|§_about to tfy to enteM.. Afterthe conditiorC’ is no- tations can trade off complexity and accuradyTJPerf
tified, T, exits the monitor, ‘.Nh'Ch allow#}, to enter therefore provides a test that fires a timer after a given time
M. The test measures'the' time from WiﬁpexﬂsM T has elapsed and measures the actual time elapsed. By
to whenTy; enters. Th's time minus the time needgd running this test for different value df, it is possible to
to enter/leave the monitor represents the context SW'tChdetermine the resolution at which timers can be used pre-
time. dictably. Performances results for these tests are reportedin
The results for the first of these tests is presented in SecSection 3.3.4. In[2] results for periodic timers are presented
tion 3.3.3, while the reader interested in the results for the as well.
second type of test is remanded to [2].

Periodic Thread Test. Real-time embedded systems of- 3 Performance Results

ten have activities, such as data sampling and control

law evaluation, that must be performed periodically. The  This section first describes our real-time Java testbed and
RTSJ provides programmatic support for these activities via outlines the various Java implementations used for the tests.
the ability to schedule the execution of real-time threads we then present and analyze the results obtained running
periodically. To program this RTSJ feature, an appli- theRTJPerftest cases discussed in Section 2 in our testbed.
cation specifies the proper release parameters and uses

thewaitForNextPeriod() method to schedule thread 3.1 Overview of the Hardware and Software
execution at the beginning of the next period (the pe- Testbed

riod of the thread is specified at thread creation time via

4Execution eligibility is defined as the position of a schedulable en- The test “?S”“S reported In t!’]IS section were Obtalr_]ed il
tity in a total ordering established by a scheduler over the available @n Intel Pentium Il 733 MHz with 256 MB RAM, running
entities [3]. The total order depends on the scheduling policy. The Linux RedHat 7.2 with the TimeSys Linux/RT 3.0 GPL
only scheduler required by the RTSJ is a priority scheduler, which uses
the PriorityParameters to determine the execution eligibility of a 5This OS is the freely available version of TimeSys Linux/RT and is
Schedulable entity, such as threads or event handlers. available under the GNU Public License (GPL).




kernel [12]. The Java platforms used to test the RTSJ fea-The C Virtual Machine (CVM). CVM [10] is a J2ME
tures described in Section 2 are described below: platform targeted for embedded and consumer electronic
devices. CVM has relatively small footprint and is designed
, = to be portable, RTOS-aware, deterministic, and space-
RTSJ Reference Implementation (RI) [11], whichis a fully - eficiant 1t has a precise—as opposed to conservative—
compliant |mplementat|qn of Java [1] that |mplements all generational garbage collector.
the mandatory features in the RTSJ. The Rl is based on a
Java 2 Micro Edition (J2ME) Java Virtual Machine (JVvM) JDK 1.4 JVM. Where appropriate, we compare the per-
and supports an interpreted execution moelethere isno ~ formance of the real-time Java implementations against the
just-in-time (JIT) compilation. Run-time performance was JVM shipped with the Sun’s JDK 1.4, which is the latest
intentionally not optimized since the main goal of the Rl version of Java that provides many performance improve-
was predictable real-time behavior and RTSJ-compliance.ments over previous JDK versions. Although JDK 1.4 was
The RI runs on all Linux platforms, but the priority inver- clearly not designed for real-time embedded systems, it pro-
sion control mechanisms are available to the RI only when vides a baseline to measure the real-time Java implementa-
running under TimeSys Linux/RT [12]ge., the commercial ~ tion improvements in predictability and efficiency.
version.

Figure 1b shows the structure of the resulting platform. 3.2  Compiler and Runtime Options
As the figure shows, this is the classical Java approach in

which bytecode is interpreted b.y a JVM that was yvritten The following options were used when compiling and
for the given host system. The TimeSys RI was designed as, nning the tests for different real-time Java platforms:

a proof of concept for the RTSJ, rather than as a production

JVM. The production-quality TimeSydime that will be CVMand JDK 1.4. The Java code for the tests was com-
released later this year should therefore have much bettepiled with jikes [5] using the-O option. These JVM were
performance. always run using thexXverify:none option.

TimeSys RTSJ RI. TimeSys has developed the official

UCI jRate. jRate is an open-source RTSJ-based exten- TimeSys RTSJ RI. The settings used were the same as
sion of the GNU Compiler for Java (GCJ) runtime systems the one for CVM and JDK 1.4, additionally the environment
that we are developing at the University of California, Irvine Variable that controls the size of the immortal memory was
(UCI). By relying on GCJjRate provides an ahead-of-time  set adMMORTALSIZE=6000000 .

compiled platform for the development of RTSJ-compliant UCI jRate. The Java code for the test was compiled with

applications. The research goaljB&ate is to explore the o 3yith the O flag and statically linked with the GCJ and
use of Aspect-Oriented Programming (AOP) [6] techniques jp e rntime libraries. The immortal memory size was set
to proc.iuce a hlgh-_performance, scalable, and predictabl o the same value as the RI.

RTSJ implementation. AOP enables developers to select

only the RTSAhspectshey use, thereby reducing tfiRate
runtime memory footprint.

The jRate model shown in Figure 1a is different than
the JVM model depicted in Figure 1b since there is no  This section presents the results obtained when running
JVM interpreting Java bytecode. Instead, the Java appli-the tests discussed in Section 2 in the testbed described
cation is ahead-of-time compiled into native code. The above. We analyze the results and explain why the various
Java and RTSJ services, such as garbage collection, realava implementations performed differerftly.
time threads, scheduling etc., are accessible via the GCJ Average and worst-case behavior, along with dispersion
andjRate runtime systems, respectively. One downside of indices, are provided for all the real-time Java features we
measured. The standard deviation indicates the dispersion
of the values of features we measured. For certain tests,

3.3 RTJPerf Benchmarking Results

? e | | RT-Java Application we provide sample traces that are representative of all the
[ ocrumime || RT-IVM measured data. The measurements performed in the tests
— - " reported in this section are based sieady stat@bserva-

(+86, PPC, ARMS) (88, PPC. ARMS) tions, where the system is run to a point at which the tran-

sitory behavior effects ofold startsare negligible before

. @ ®
Figure 1. The jRate and RI Architectures. executing the tests.

ahead-of-time compiled RTSJ implementations |iRate,
however, is that they can hinder portablllty since appllca- 8Explaining certain behaviors requires inspection of the source code of

tions_ must be recompiled each time they are ported to a NeW, particular JVM feature, which is not always feasible for Java implemen-
architecture. tations that are not open-source.




3.3.1 Memory Benchmark Results

Below, we present and analyze the results of the allocation
time test that was described in Section 2.1.

Allocation Time Test. This test measures the allocation
time for different types of scoped memory. The results we
obtained are presented and analyzed below.

Test Settings. To measure the average allocation time
incurred by the RI implementation dfTMemory and
VTMemory, we ran theRTJPerf allocation time test for
allocation sizes ranging from 32 to 16,384 bytes. Each test
samples 1,000 values of the allocation time for the given
allocation size. This test also measured the average alloca-
tion time ofjRate’s CTMemoryimplementation. jRate’s
CTMemory implements an RTSJ scoped memory such as
theLTMemory or theVTMemory.

This test only examingRate and the RI since the other
Java platforms do not support scoped memories. We felt
that comparing platforms with scoped memory against plat-
form that lack them would be unfair since the latter would
perform so poorly

Test Results. The data obtained by running the allo-
cation time tests were processed to obtain an average, dis-
persion, and worst-case measure of the allocation time. We
compute both the average and dispersion indices since they

indicate the following information:
e How predictable the behavior of an implementation is

e How much variation in allocation time can occur and

¢ How the worst-case behavior compares to the average-
case and to the case that provides a 99% upper bbund.

Figure 2 shows the resulting average allocation time for
the different test runs and Figure 3 shows the standard de-
viation of the allocation time measured in the various test
settings.  Figure 4 shows the performance ratio between
jRate’s CTMemory, and the RLTMemory. This ratio in-
dicates how many times smaller t8& Memoryaverage al-
location time is compared to the average allocation time for
the RILTMemory.

Results Analysis. We now analyze the results of the
tests that measured the average- and worst-case allocation
times, along with the dispersion for the different test set-
tings:

e Average Measures—As shown in Figure 2, both
LTMemory and VTMemory provide linear time al-
location with respect to the allocated memory size.
Matching results were found for the other measured
statistical parameter, based on this, we infer that the
Rl implementation of TMemory andVTMemory are
similar, so we mostly focus on tHeTMemory since
our results also apply t«TMemory. jRate has an

average allocation time that is independent of the al-
located chunk, which helps analyze the timing of real-
time Java code, even without knowing the amount of
memory that will be needed. Figure 4 shows that for
small memory chunks thgRate memory allocator is
nearly ten times faster than RESTMemory. For the
biggest chunk we testegRate’s CTMemory is ~95
times faster RI't TMemory.

e Dispersion Measures—The standard deviation of the

different allocation time cases is shown in Figure 3.
This deviation increases with the chunk size allocated
for both LTMemory andVTMemory until it reaches

4 Kbytes, where it suddenly drops and then it starts
growing again. On Linux, a virtual memory page

is exactly 4 Kbytes, but when an array of 4 Kbytes

is allocated the actual memory is slightly larger to

store freelist management information. In contrast, the
CTMemoryimplementation has the smallest variance
and the flattest trend.

The plots in Figure 5 show the cumulative relative fre-
guency distribution of the allocation time for some of
the different cases discussed above. These graphs il-
lustrate how the allocation time is distributed for dif-
ferent types of memory and different allocation sizes.
For any given point on thez axis, the value on thg
axis indicates the relative frequency of allocation time
for which AllocationTime < t. This graph, along
with Figure 3 that shows the standard deviation, pro-
vides insights on how the measured allocation time is
dispersed and distributed.

Worst-case Measures-Figure 6 and Figure 7 show
the bounds on the allocation time fgRate’s
CTMemory and the RILTMemory. Each of these
graphs depicts the worst, best, and average allocation
times, along with the 99% upper bound of the allo-
cation time. Figure 6 illustrates how the worst-case
execution time fojRate’s CTMemoryis at most~1.4
times larger than its average execution time.

Figure 7 shows how the maximum, average, and the
99% case, for the RLTMemory, converge as the
size of the allocated chunk increases. The minimum
ratio between the worst-case allocation time and the
average-case is1.6 for a chunk size of 16K. Figure 6,
Figure 7 and Figure 5 also characterize the distribu-
tion of the allocation time. Figure 5 shows how for
some allocation sizes, the allocation time for the RI
LTMemory is centered around two points.

3.3.2 Asynchrony Benchmark Results

7By “99% upper bound” we mean that value that represents an upper BEIOW we present and analyze the results of the asyn-

bound for the measured values in the 99th percentile of the cases.

chronous event handler dispatch delay and asynchronous



@—# jRate CTMemor
- RI LTMemory
RI VTMemory

Average Allocation Time (micro-seconds)

2 1K 2K

4K 8K 16K
Chunk Size (Bytes)

Figure 2. Average Allocation Time.

T — T

E — 4
2 4 >l
§ [ o \‘/
¢ o
S ®
5
2 F
T 1
§ L
g [
Z o
a
s [
g o2
2
g
a [
2 oy
£ ‘e jRate CTMemo
§o @-@ RI LTMemory ]
g RI VTMemory
s f ]
<o

"\/"0\‘—0_&‘_’__7

o.
| | | I I I I I
32 64 128 256 512 1K 2K K 8K 16K

Chunk Size (Bytes)

Figure 3. Allocation Time Standard Deviation.

100

9[-

W _RILTMemory AAT /jRate CTMemory AAT

80[-

70[-

60[-

50[-

40

Average Allocation Time Ratio

30[-

20[-

10}

125

74 Bll i5 I

or 3Iz !4 128 256 512 1K 2K 4K 8K 16K
Chunk Size (Bytes)
Figure 4. CTMemory AAT vs. LTMemory AAT
Speedup
AsycnEventHandler BoundAsycnEventHandler
Avg. 36.57us 34.00us
Std. Dev. 0.11us 0.14 s
Max 39.4015 3555115
99% 36.9415 344715

Table 1. jRate Event Handler's Dispatch La-
tency Statistics Parameters

AsycnEventHandler BoundAsycnEventHandler

Avg. 2373.0us 56.10us
Std. Dev. 909.9us 0.84us
Max 39508115 70.4625
99% 38925115 56.69/45

Table 2. RI Event Handler's Dispatch Latency
Statistical Indexes

event handler priority inversion tests, which were described
in Section 2.2.

Asynchronous Event Handler Dispatch Delay Test.
This test measures the dispatch latency of the two types of
asynchronous event handlers defined in the RTSJ. The re-
sults we obtained are presented and analyzed below.

Test Settings. To measure the dispatch latency pro-
vided by different types of asynchronous event handlers de-
fined by the RTSJ, we ran the test described in Section 2.2
with a fire count of 2,000 for both RI arjRate. To ensure
that each event firing causes a complete execution cycle,
we ran the test in “lockstep mode,” where one thread fires
an event and only after the thread that handles the event is
done is the event fired again. To avoid the interference of
the GC while performing the test, the real-time thread that
fires and handles the event uses scoped memory as its cur-
rent memory area.

Test Results. Figure 8 shows the trend of the dispatch
latency for successive event firin§sThe data obtained by
running the dispatch delay tests were processed to obtain
average worst-case and dispersion measure of the dispatch
latency. Table 1 and Table 2 shows the results found for
jRate and the RI respectively.

Results Analysis. Below we analyze the results of the
tests that measure the average-case and worst-case dispatch
latency, as well as its dispersion, for the different test set-
tings:

e Average Measures—Table 2 illustrates the large av-
erage dispatch latency incurred by the RTSJ RI
AsyncEventHandler . The results in Figure 9
show how the actual dispatch latency increases as the
event count increases. By tracing the memory used
when running the test using heap memory, we found
that not only did memory usage increased steadily, but

8Since The RI'sAsyncEventHandler  trend is completely off the
scale, it is omitted in this figure and depicted separately in Figure 9.

1E [Jr == E 1%u

o
©

o
>

=-m 32Bytes| ©-0 32 Bytes
A—A 1KBytes| ] 0.4 B 64 Bytes.
8 KBytes| | +—¢ 128 Bytes|

1 256 Bytes|

512 Bytes|
1 KBytes
Jo2F 2 KBytes
j +—+ 4 KBytes
8 KBytes
#— 16 KByte:

I
S

Allocation Time Cumulative Relative Frequency

o
N

1] 4
’H‘HHMHHH\HFOJ P PN L
08 1 12 16 64
jRate CTMemory - Alloc. Time (usec) RI LTMemory - Alloc. Time (usec)

Figure 5. Allocation Time Cumulative Relative
Frequency Distribution.




-

Allocation Time (micro-seconds)

B8 Average Allocation Tim

B8 Max Allocation Time
Min Allocation Time

'¥—¥ 99% Allocation Time

o
o
N
@
b

12

3
iy 3
T T

Allocation Time (micro-seconds)
©
8

-
>

99% All

I |
128 256 512

L
1K 2K 4K 8K

Chunk Size (Bytes)
Figure 6. CTMemory Worst, Best, Average
and 99% Allocation Time.

W@ RI LTMemory Avg. Alloc. Time|
A—A RI LTMemory Max Alloc. Time

RI LTMemory Min Alloc. Time
4— RI LTMemory 99% Allocation Tim:

I I I
32 64 128 256 512

I
1K 2K 4K 8K

Chunk Size (Bytes)

Figure 7. LTMemory Worst, Best, Average and

ocation Time.

70 ! : 3
7 60 5
O] E|
& 3
] Bosiin » A
& E|
£ E
Z 50 A—A Rate kel
8 #—# jRate AsyncEventHandler E|
5 B RI BoundAsyncEventHandler | 3
g E|
8 E
40 1
" o &ty 1 IS e
T AN i, AT R o S g | S |
EY L 3
0 500
Event Count

H
5
8
5

Figure 8. Dispatch Latency Trend for Succes-
sive Event Firing.

400(

3501

— RI AsyncEventHandief

@
g
8

n
R
8

N
5]
8

Dispatch Delay (micro-seconds)

e
I}
8

100

S

Figure 9. AsyncEventHandler

500

L
1000

L
1500

Event Count

tency Trend.

2000

Dispatch La-

0.9F

0.8

0.7

0.6

0.5

0.3

Dispatch Delay Cumulative Relative Frequency

W jRate BoundAsyncEventHandipr
—# jRate AsyncEventHandler
RI BoundAsyncEventHandler

tribution

40

45 50

55 60

Dispatch Delay (micro-seconds)

Figure 10. Cumulative Dispatch Latency Dis-

Average Dispatch Lantency (micro-seconds)

— ; T
L 5587
L B jRate]
31250 | R 826
F 609.9
5 3324
125F 1123
33,2 33,9 3.3 33 33.7]
1 1 1 1 1
10LPH 50 LPH 100 LPH 500 LPH 1000 LPH

H’s Average Dispatch Latency.

Dispatch Latency Standard Deviation (micro-seconds)
-

[ 1.
I 3.
0 2
= i
q 0.1
1
0.1 0.147]
I I I I I
OLPH 10 LPH 50 LPH 100 LPH 500 LPH 1000 LPH

Figure 12. H Dispatch Latency’s Standard De-

viation.

Avg. Std. Dev. Max 99%

oLP 33.37us 0.12ps | 34.87us | 341lus

10LP 33.15us 0.13us 34.90us 33.79us

50LP | 33.20us 0.16p5 | 36.06pus | 33.82us

100LP 33.26us 0.14us 35.95us 33.85us

500LP | 33.63us 0.18uus | 37.14ps | 34.28us

1000 LP 33.73us 0.19us 37.56us 34.45us

Table 3. jRate’s Dispatch Delay Statistical In-

dexes
Avg. Std. Dev. Max 99%
0LP 56.1012S 0.88125 7046715 56.7012S
10LP 112.33us 13455 133.90115 122.18us
50 LP 332.41115 2.39S 353.17145 3448615
100 LP 609.92/15 341us 631515 62496115
500 LP 2826.40us 12.00us 2884.00us 2862.10us
1000 LP 5587.00u.S 23.76uS 5672.70uS 5650.301.S

Table 4. RI's Dispatch Delay Statistical In-

dexes



even invoking the GC explicitly did not free any mem- tion time that is close to its average-case. The
ory. worst-case dispatch delay provided by the RI's

These results reveal a problem with how the Rl man- BoundA;yncEvgntHandler s notas QOOd as the
ages the resources associated to threads. The RI's one provided byRate, due to differences in how their

AsyncEventHandler  creates a new thread to han- event dispatching mechanisms are implemented. The
dle a new event, and the problem appears to be a 99% bound differs only on the first decimal digit for
memory leak in t’he underlying Rl memory manager bothjRate and the RI (clearly we do not consider the

associated with threads, rather than a limitation with RI's AsyncEvenFHandler since no bound can be
the model used to handle the events. In contrast, the puton its behavior).

RI's BoundAsyncEventHandler performs quite
well, i.e, its average dispatch latency is slightly less
than twice as large as the average dispatch latency fo
jRate.

Asynchronous Event Handler Priority Inversion Test.

rThis test measures how the dispatch latency of an asyn-
chronous event handléf is influenced by the presence of

N others event handlers, characterized by a lower execution
Figure 8 and Table 1 show that the average dis- g|igibility than H. In the ideal caseH’s dispatch latency
patch latency ofjRate’s AsyncEventHandler should be independent &, and any delay introduced by

is the same order of magnitude as its the presence of other handlers represents some degree of

BoundAsyncEventHandler . The difference  priority inversion. The results we obtained are presented
between the two average dispatch latency stems fromand analyzed below.

jRate’s AsyncEventHandler implementation,

which uses arexecutor[7] thread from a pool of , i )

threads to perform the event firing, rather than having 1St Settings. This test uses the same settings as the

a thread permanently bound to the handler. asynchronous event handler dispatch delay tgst. Only
the BoundAsyncEventHandler performance is mea-

Dispersion Measures—The results in Table 2, Ta-  gyred, however, because the RisyncEventHandler s

ble 1, Figure 8, and Figure 10 illustrate hgiate’s are essentially unusable since their dispatch latency grows
BoundAsyncEventHandler  dispatch latency in-  |inearly with the number of event handled (see Fig-
curs the least jitter. The dispatch latency value disper- ;o 9), which masks any priority inversions. Moreover,
sion for the RTSJ RBoundAsyncEventHandler jRate’s AsyncEventHandler  performance is similar to

is also quite good, though its jitter is higher jisBoundAsyncEventHandler — performance, so the re-
than  jRate’s  AsyncEventHandler — and  gyjts obtained from testing one applies to the other. The cur-
BoundAsyncEventHandler . The higher jit-  yenttest uses the following two types of asynchronous event
ter in RI may stem from the fact that the RI stores the pandlers:

event handlers in @va.util.Vector . This data

e Thefirstisidentical to the one used in the previous test,
i.e, it gets a time stamp after the handler is called and

from it, which acquires and releases a lock associated measures the dispatch latency. This logic is associated

with the vector for each method. To avoid this locking with H.
overheadjRate uses a data structure that associates e The second does nothing and is used for the lower pri-
the event handler list with a given event and allows ority handlers.

the contents of the data structure to be read without
acquiring/releasing a lock. Only modifications to Test Results. Table 3 and Table 4 report how the av-

the data structure must be serialized. As a result, €rage, standard deviation, maximum and 99% bound of the
jRate’s AsyncEventHandler  dispatch latency is  dispatch delay changes féF as the number of low-priority
relatively predictable, even though the handler has no handlersincrease. Figure 11 and Figure 12 provide a graph-
thread bound to it permanently. TfRate thread pool ical representation for the average and dispersion measures.
implementation uses LIFO queues for its executor,

i.e., the last executor that has completed executing is  Results Analysis. Below, we analyze the results of the

the first one reused. This technique is often applied in tests that measure average-case and worst-case dispatch la-
thread pool implementations to leverage cache affinity tency, as well as its dispersion, figtate and the RI.

benefits [8].

structure achieves thread-safety by synchronizing all
method thaget() ,add() , orremove() elements

e Average Measures—Figure 11 and Tables 3 and 4 il-

Worst-case Measures-Table 1 illustrates how lustrate that the average dispatch latency experienced
the jRate’'s BoundAsyncEventHandler and by H is essentially constant fgRate, regardless of
AsyncEventHandler have worst-case execu- the number of low-priority handlers. It grows rapidly,



however, as the number of low-priority handlers in-

Test Results. Table 5 reports the average and standard

crease for the RI. The RI's event dispatching prior- deviation for the measured context switch in the various java
ity inversion is problematic for real-time systems and platforms.

stems from the fact that its queue of handlers is imple-
mented with gava.util.Vector , which is not
ordered by thesxecution eligibility In contrast, the
priority queues injRate’s event dispatching are or-
dered by the execution eligibility of the handlers.

Execution eligibility is the ordering mechanism used
throughoutRate. For example, it is used to achieve
total ordering of schedulable entities whose QoS are
expressed in different ways. This approach is an appli-
cation of the formalisms presented in [3].

¢ Dispersion Measures—Figure 12 and Tables 3 and 4
illustrate howH'’s dispatch latency dispersion grows
as the number of low-priority handlers increases in
the RI. The dispatch latency incurred By in the
RI therefore not only grows with the number of low-
priority handlers, but its variability increases., its
predictability decreases. In contrgate’s standard
deviation increases very little as the low-priority han-
dlers increase. As mentioned in the discussion of the
average measurements above, the difference in perfor-
mance stems from the proper choice of priority queue.

Results Analysis. Below, we analyze the results of the

tests that measure the average context switch time, its dis-
persion, and its worst-case behavior for the different test
settings:

¢ Average Measures—Table 5 shows how the RI and
CVM perform fairly well in this test,.e., their con-
text switch time is only~2 us larger thanRate’s.
The main reason fgRate’s better performance stems
from its use of ahead-of-time compilation. The last
row of Table 5 reports the results of a C++-based con-
text switch test described in [9]. The table shows
how the context switch time measured for the RI and
jRate is similar to that for C++ programs on TimeSys
Linux/RT. The context switching time for the RI is
less than three times larger than that found for C++,
whereas the times fgRate are roughly the same as
those for C++.

e Dispersion Measures—The third column of Table 5
reports the standard deviation for the context switch
time. BothjRate, the RI, and CVM exhibit tight dis-
persion indexes, indicating that context switch over-

head is predictable for these implementations. In gen-
eral, the context switch time fgRate, the RI and
CVM is as predictable as C++ on our Linux testbed
platform. Conversely, JDK 1.4 exhibits less pre-
dictability, i.e., due to the fact that it is not designed
to have real-time behavior.

e Worst-Case Measures—Tables 3 and 4 illustrate how
the worst-case dispatch delay is largely independent of
the number of low-priority handlers fgRate. In con-
trast, worst-case dispatch delay for the Rl increases as
the number of low-priority handlers grows. The 99%
bound is close to the average f&ate and relatively
close for the RI. e Worst-case Measures-The fourth and fifth column
of Table 5, represent respectively the maximum and
the 99% bound for the context switch tinjRate, the
RI, and CVM have 99% bound and worst-case context
switch that is close to their average values. The JDK
1.4 worst-case context switch time is very high, though
its 99% bound is fairly good,e., JDK 1.4 has fairly
good context switch time most of the time, but not all
the time.

3.3.3 Thread Benchmark Results

Below, we present and analyze the results from the yield
and synchronized context switch test, periodic thread test,
and thread creation latency test, which were described in
Section 2.3.

Yield Context Switch Test. This test measures the time
incurred for a thread context switch. The results we ob- Periodic Thread Test. This test measures the accuracy
tained are presented and analyzed below. with which thewaitForNextPeriod() method in the

Test Settings. For each Java platform in our test suite, RealtimeThread class schedules the thread’s execution
we collected 1,000 samples of the the context switch time, periodically. The results we obtained are presented and an-
which we forced by explicitly yielding the CPU. Real-time alyzed below.
threads were used for the RI ajiRlate, whereas regular Test Settings. This test runs aRealtimeThread
threads were used for JDK 1.4 and CVM. To avoid GC over- that does nothing but reschedule its execution for the next
head on platforms that do not support memory areas, we enperiod. The actual time between each activation was mea-
sured the heap was large enough so that the GC would nevegured and 500 of these measurements were made. We just
be invoked. With Sun’s JDK 1.4 JVM, either the option ran this test on the RI since only it supports this feature. Al-
-verbose:gc , or the option-Xloggc:<filename> thoughjRate is based on the RTSJ it does not yet support
can be used to detect if the garbage collector is run. Weperiodic threads.
used this option to set the value of the heap size to prevent Test Results. Table 6 shows average and dispersion
the GC execution during the test. values that we measured for this test.

9



Results Analysis. Below we analyze the results of the
test that measure accuracy with which periodic thread’s
logic are activated:

e Average Measures—Table 6 shows that for periods

Avg. Std. Dev. Max 99%

T=1ms 0.93 ms 0.147 ms 0.95 ms 0.95 ms
T=5ms 3.94 ms 7.890 ms 19.75 ms 19.73 ms
T=10ms 9.95 ms 9.527 ms 19.48 ms 19.47 ms
T=30ms 29.95 ms 0.004 ms 29.96 ms 29.96 ms
T=50ms 49.95 ms 0.004 ms 49.96 ms 49.95 ms
T=100 ms 99.95 ms 0.004 ms 99.96 ms 99.96 ms
T=300 ms 299.95 ms 0.004 ms 299.96 ms 299.96 ms
T=500 ms 499.96 ms 0.004 ms 499.96 ms 499.96 ms

> 10 ms, the average actual period is close to the
nominal period, which is represented by the values Table 6. Periodic Thread Period Statistical In-

in the first column. For periodsc 10 ms, how- dexes

ever, the actual value is not always close to the de-

sired or nominal value. To understand the reason T T e e e
for this behavior, we inspected the Rl implementa- T0ms | avzme | 909ms | ooome | losims
tion of periodic threads,i.e., at the implementation o o e e bz
of waitForNextPeriod() ) and found that a INI o [t [ oot | o0 | oz

method call is used to wait for the next period.
Without the source for the RI's JVM, it is hard to tell
ys! ' ! a OneShotTimer can fire events, relative to the time in-
for periods< 10 ms does not result from the use of the L
. o terval for which it was programmed.
nanosleep()  system call. This observationis based _ .
on the output optrace  (described in Section 3.3.4), Test Settings. The test ran &OneShotTimer that

which indicated that the RI timer implementation uses generated an event for time intervals ranging from
nanosleep() . 5 ms to 500 ms. The event was handled by a
, . , BoundAsyncEventHandler  that was registered as the
Dispersion Measures—The third column of Table 6 yiner timeout handler. For each timeout interval we

shows t'hat for a period>:' 30 ms, the gctual period collected 500 samples. The time interval was speci-
with which the thread logic is activated is close to the fied by using RelativeTime We also tried using
nominal value and is quite predictabias,, it has low  ApsoiiteTime |, but it behaved so similarly that we only
jitter. In contrast, for periods of 5 and 10 ms the mean ,oqant theRelativeTime  results for brevity. We just

is close to the nominal value and the measured values,,, this test on the RI since only it supports this feature. Al-

are highly dispersed. Based on the results shown iny,q ghiRrate is based on the RTSJ it does not yet support
Table 6, the RI behaves unpredictably for periets timers.

to 10 ms.

Table 7. Aperiodic Timer Results

] Test Results. Table 7 shows the average and standard
Worst-case Measures-The forth and fifth columns  geyiation for the actual timeout interval produced by the

of Table 6 show the maximum period experienced and gpeShotTimer .

the 99% bound on the period experienced by the real-
time thread. The worst-case behavior is bad, however,
only in the case of T=5 ms and T=10 ms. In other

case behavior and provides a predictable and regula

period.
Average Std. Dev. Max 99%
CVM 2.90s 0.02 s 318us | 2.97us
JDK 1.4 3.74ps 12.63us | 402.02us | 3.40us
jRate 1.30us 0.01us 1.33us 1.32us
RI 2895 0.01ps 3.06pus | 2.97us
C++ 1.30 18 0.02us N/A N/A

Table 5. Yield Context Switch Statistical In-
dexes

3.3.4 Timer Benchmark Results

Below, we present and analyze the results from the one
shot and periodic timer tests, which were described in Sec-
tion 2.4.

10

Results Analysis. Below we analyze the results
of the test that measures the accuracy with which
OneShotTimer fire their events with respect to the re-

cases, the worst-case behavior is close to the average- X
Iquested interval:

¢ Average Measures—The second column of Table 7

reports the average value of the time interval after
which theOneShotTimer generates an event, while
the first column represents the desired time interval.
As shown in Section 3.3.3’s analysis of the periodic
thread test results, the average firing interval performs
poorly for time intervals< 10 ms. Conversely, for time
interval> 10 ms, the results in Table 7 show a strange,
yet consistent behavior, where the average time inter-
val generated by the timer is exactly equal to the de-
sired one plus 9.82 ms.

By inspecting the implementation of the RI timer,
we found that the time interval after which the timer
is fired is generated by having a thread associated



with the timer that waits on a dummy Java ob- well in many aspects, though it has several problems with

ject for the specified amount of time.

The res- AsyncEventHandler

dispatching delays and priority

olution of timer is therefore essentially the same inversion. While CVM is not an RTSJ-compliant imple-

as the one provided by th®bject.wait(long
msec, int nsec) method in the Rl implementa-

mentation, it performed well for many tests.

tion. By usingptrace we traced the system call References
made by the RI when th®bject.wait(long
msec, int nsec) method in invoked. We found [1] K. Arnold, J. Gosling, and D. Holmesthe Java

thatnanosleep()  is used to implementthis method.

Programming LanguageAddison-Wesley, Boston, 2000.

The result shown on Table 7 are also consistent with [2] A. Corsaro and D. C. Schmidt. Evaluating Real-Time Java

the resolution provided byanosleep() on the

tested platform.

e Dispersion Measures—The third column of Table 7
shows the standard deviation of the measured time in-
tervals generated by the firing of the timer. The stan-
dard deviation is small, which indicates that the gen-
erated interval is quite predictable. These results are
inconsistent with the periodic thread results (see Ta-
ble 6 in Section 3.3.3), where the standard deviation
was quite large for periods= 10 ms. This difference
in the dispersion of the value for periogds= 10 ms
is ascribable to the different mechanism by periodic
threads and timers.

e Worst-case Measures-The forth and fifth columns
of Table 7 show the maximum period experienced and
the 99% bound on the period experienced by the real-
time thread. Both of these values are close to the av-
erage behavior, which demonstrates good worst-case
behavior.

Concluding Remarks

This paper presented an empirical evaluation of the per-
formance of RTSJ features that are crucial to the develop-
ment of real-time embedded applicatio&T JPerf is one
of the first open-source benchmarking suites designed to
evaluate RTSJ-compliant Java implementations empirically.
We believe it is important to have an open benchmarking

10

Features and Performance for Real-time Embedded
Systems. Technical Report 2002-001, University of
Califoria, Irvine, 2002.

[3] A. Corsaro, D. C. Schmidt, R. K. Cytron, and C. Gill.

(4]

(5]
(6]

(7]

Formalizing Meta-Programming Techniques to Reconcile
Heterogeneous Scheduling Disciplines in Open Distributed
Real-Time Systems. IRroceedings of the 3rd International
Symposium on Distributed Objects and Applicatippages

289-299, Rome, Italy, September 2001. OMG.
T. H. Harrison, D. L. Levine, and D. C. Schmidt. The

Design and Performance of a Real-time CORBA Event
Service. InProceedings of OOPSLA '9pages 184-199,

Atlanta, GA, October 1997. ACM.
IBM. Jikes 1.14.

http://www.research.ibm.com/jikes/ ,2001.
G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. IrProceedings of the 11th European

Conference on Object-Oriented Programmidgne 1997.
D. Lea. Concurrent Java: Design Principles and Patterns,

Second EditionAddison-Wesley, Reading, Massachusetts,
1999.

[8] J.D. Salehi, J. F. Kurose, and D. Towsley. The

(9]

]

suite to measure the quality of service of RTSJ implementa-[11]

tions. RTJPerf not only helps guide application developers
to select RTSJ features that are suited to their requirements[,
but also helps developers of RTSJ implementations evaluate
and improve the performance of their products.

This paper applieRTJPerf to measure the perfor-
mance of the RTSJ RjRate, CVM, and JDK 1.4. Al-
though much work remains to ensure predictable and ef-
ficient performance under heavy workloads and high con-
tention, our test results indicate that real-time Java is ma-
turing to the point where it can be applied to certain types
of real-time applications. In particular, the performance
and predictability ofjRate is approaching C++ for some
tests. The TimeSys RTSJ RI also performed relatively

11

Effectiveness of Affinity-Based Scheduling in
Multiprocessor Networking. IlEEE INFOCOM San

Francisco, USA, Mar. 1996. IEEE Computer Society Press.
D. C. Schmidt, M. Deshpande, and C. O’'Ryan. Operating

System Performance in Support of Real-time Middleware.
In Proceedings of th&!" Workshop on Object-oriented
Real-time Dependable Syster8an Diego, CA, Jan. 2002.
IEEE.

Sun. The C Virtual Machine (CVM).

http://java.sun.com/products/cdc/cvm/ ,

2001.
TimeSys. Real-Time Specification for Java Reference

Implementationwww.timesys.com/rtj ,2001.

12] TimeSys. TimeSys Linux/RT 3.@vww.timesys.com ,

2001.



