
Evaluating Real-Time Java Features and Performance
for Real-time Embedded Systems

Angelo Corsaro, Douglas C. Schmidt
Electrical and Computer Engineering Department

University of California, Irvine, CA 92697�

fcorsaro, schmidtg@ece.uci.edu

Abstract

This paper provides two contributions to the study of
programming languages and middleware for real-time and
embedded applications. First, we present the empirical re-
sults from applying the RTJPerf benchmarking suite to eval-
uate the efficiency and predictability of several implementa-
tions of the Real-time Specification for Java (RTSJ). Second,
we describe the techniques used to develop jRate, which is
an open-source ahead-of-time-compiled implementation of
RTSJ we are developing. Our results indicate that RTSJ im-
plementations are maturing to the point where they can be
applied to a variety of real-time embedded applications.

1 Introduction

Until recently, there was no implementation of the Real-
Time Specification for Java (RTSJ), which hampered the
adoption of Java in real-time embedded systems. It also
hampered systematic empirical analysis of the pros and
cons of the RTSJ programming model. Several implemen-
tations of RTSJ are now available, however, including the
RTSJ Reference Implementation (RI) from TimeSys [11].

Two quality dimensions should be considered when as-
sessing the effectiveness of the RTSJ as a technology for
developing real-time embedded systems:
� Quality of the RTSJ API , i.e., how consistent, intu-

itive, and easy is it to write RTSJ programs. If signifi-
cantaccidental complexityis introduced by the RTSJ,
it may provide little benefit compared to using C/C++.
This quality dimension is clearly independent from any
particular RTSJ implementation.

� Quality of the RTSJ implementations, i.e., how well
do RTSJ implementations perform on critical real-time
embedded system metrics, such as event dispatch la-
tency, context switch latency, and memory allocator

�This work was supported in part by Siemens MED, SAIC, and ATD.

performance. If the overhead incurred by RTSJ im-
plementations are beyond a certain threshold, it may
not matter how easy or intuitive it is to program real-
time embedded software since it will not be usable in
practice.

This paper focuses on the latter quality dimension and sys-
tematically measures various performance criteria that are
critical to real-time embedded applications. To codify these
measurements, we use an open-source1 benchmarking suite
calledRTJPerf that we are developing at UC Irvine. In this
paper, we empirically analyze most of the RTSJ features and
compare the performance of the RTSJ RI with other popular
and emerging real-time Java implementations.

The remainder of the paper is organized as follows: Sec-
tion 2 describesRTJPerf; Section 3 presents the results ob-
tained by applyingRTJPerf to measure the performance
of the RTSJ RI and compare/contrast these results with the
performance of JDK 1.4.0 andjRate (which is an ahead-of-
time compiled implementation of RTSJ we are developing);
and Section 4 presents concluding remarks.

2 Overview ofRTJPerf

RTJPerf provide benchmarks for most of the RTSJ
features that are critical to real-time embedded systems.
A complete description of the tests currently available in
RTJPerf can be found in [2]. Below, we describe a subset
of these benchmark tests and reference where we present
the results of the tests in subsequent sections of this paper.
In addition to describing what RTSJ featuresRTJPerf mea-
sures, we summarize the key RTSJ features themselves.

2.1 Memory

The RTSJ extends the Java memory model by provid-
ing memory areas other than the heap. These memory

1RTJPerf is freely available athttp://tao.doc.wustl.edu/
˜corsaro/periscope.html .

1



areas are characterized by the lifetime the objects cre-
ated in the given memory area and/or by their allocation
time. Scoped memory areasprovide guarantees on allo-
cation time. Each real-time thread is associated with a
scope stackthat defines its allocation context and thehis-
tory of the memory areas it has entered. The RTSJ speci-
fication provides scoped memories with linear and variable
allocation times (LTMemory, LTPhysicalMemory and
VTMemory, VTPhysicalMemory , respectively). For
linear allocation time scoped memory, the RTSJ requires
that the time needed to allocate then > 0 bytes to hold the
class instance must be bounded by a polynomial function
f(n) � Cn for some constantC > 0.2

RTJPerf provides the following test that measures key
performance properties of RTSJ memory area implementa-
tions.

Allocation Time Test. To minimize memory leaks, la-
tency, and non-determinism, the use of dynamic memory al-
location is forbidden or strongly discouraged in many real-
time embedded systems. The scoped memory specified by
the RTSJ is designed to provide a relatively fast and safe
way to allocate memory that has much of the flexibility of
dynamic memory allocation, but much of the efficiency of
stack allocation. The measure of the allocation time and its
dependency on the size of the allocated memory is a good
measure of thetime efficiencyof the various types of scoped
memory implementations.

To measure the allocation time and its dependency on
the size of the memory allocation request,RTJPerf pro-
vides a test that allocates fixed-sized objects repeatedly
from a scoped memory region whose type is specified by
a command-line argument. To control the size of the ob-
ject allocated, the test allocates an array of bytes. By run-
ning this test with different allocation sizes, it is possible to
determine the allocation time associated with each type of
scoped memory. Section 3.3.1 present the results of this test
for several Java implementations.

2.2 Asynchrony

The RTSJ defines mechanisms to bind the execution of
program logic to the occurrence of internal and/or external
events. In particular, the RTSJ provides a way to associate
anAsyncEventHandler to some application-specific or
external events. There are two types of asynchronous event
handlers defined in RTSJ:

� The AsyncEventHandler class, which does not
have a thread permanently bound to it, nor is it guar-
anteed that there will be a separate thread for each
AsyncEventHandler . The RTSJ simply requires

2This bound does not include the time taken by an object’s constructor
or a class’s static initializers.

that after an event is fired the execution of all its asso-
ciatedAsyncEventHandler s will be dispatched.

� TheBoundAsyncEventHandler class, which has
a real-time thread associated with it permanently. An
BoundAsyncEventHandler ’s real-time thread is
used throughout its lifetime to handle event firings.

Event handlers can also be specified to beno-heap, which
means that the thread used to handle the event must be a
NoHeapRealtimeThread .

Since event handling mechanisms are commonly used
to develop real-time embedded systems [4], a robust and
scalable implementation is essential.RTJPerf provide the
following tests that measure the performance and scalability
of RTSJ event dispatching mechanisms:
Asynchronous Event Handler Dispatch Delay Test.
Several performance parameters are associated with asyn-
chronous event handlers. One of the most important is the
dispatch latency, which is the time from when an event is
fired to when its handler is invoked. Events are often asso-
ciated with alarms or other critical actions that must be han-
dled within a short time and with high predictability. This
RTJPerf test measures the dispatch latency for the differ-
ent types of asynchronous event handlers prescribed by the
RTSJ. The results of this test are reported in Section 3.3.2.

Asynchronous Event Handler Priority Inversion Test.
If the right data structure is not used to maintain the list
of event handlers associated with an event, an unbounded
priority inversion can occur during the dispatching of the
event. This test therefore measures the degree of priority
inversion that occurs when multiple handlers with different
SchedulingParameters are registered for the same
event. This test registersN handlers with an event in order
of increasing importance. The time between the firing and
the handling of the event is then measured for the highest
priority event handler.

By comparing the results for this test with the result of
the test described above, we can determine the degree of
priority inversion present in the underlying RTSJ event dis-
patching implementation. Section 3.3.2, provides an analy-
sis of the implementation of the current RI and presents an
implementation that overcomes some shortcomings of the
RI.

2.3 Threads

The RTSJ extends the Java threading model with two
new types of real-time threads:RealtimeThread and
NoHeapRealtimeThread .

Since theNoHeapRealtimeThread can have execu-
tion eligibility higher than the garbage collector3, it cannot

3The RTSJ v1.0 specification states that the
NoHeapRealtimeThread have always execution eligibility higher
than the Garbage Collector (GC), but this has been changed in the v1.01

2



allocate nor reference any heap objects. The scheduler con-
trols theexecution eligibility[3] 4 of the instances of this
class by using theSchedulingParameters associated
with it.

RTJPerf provides the following benchmarks that mea-
sure important performance parameters associated with
threading for real-time embedded systems.

Context Switch Test. High levels of thread context
switching overhead can significantly degrade application
responsiveness and determinism. Minimizing this over-
head is therefore an important goal of any runtime environ-
ment for real-time embedded systems. To measure context
switching overhead,RTJPerf provides two tests that con-
tains two real-time threads—configurable to be either either
RealtimeThread or NoHeapRealtimeThread —
which can cause a context switch in one of the following
two ways:

1. Yielding—In this case, there are two real-time threads
characterized by the same execution eligibility that
yield to each other. Since there are just two real-time
threads, whenever one thread yields, the other thread
will have the highest execution eligibility, so it will be
chosen to run.

2. Synchronizing—In this case, there are two real-time
threads—TH andTL—whereTH has higher execution
eligibility than TL. TL, enters a monitorM and then
waits on a conditionC that is set byTH just before it
is about to try to enterM . After the conditionC is no-
tified, TL exits the monitor, which allowsTH to enter
M . The test measures the time from whenTL exitsM
to whenTH enters. This time minus the time needed
to enter/leave the monitor represents the context switch
time.

The results for the first of these tests is presented in Sec-
tion 3.3.3, while the reader interested in the results for the
second type of test is remanded to [2].

Periodic Thread Test. Real-time embedded systems of-
ten have activities, such as data sampling and control
law evaluation, that must be performed periodically. The
RTSJ provides programmatic support for these activities via
the ability to schedule the execution of real-time threads
periodically. To program this RTSJ feature, an appli-
cation specifies the proper release parameters and uses
thewaitForNextPeriod() method to schedule thread
execution at the beginning of the next period (the pe-
riod of the thread is specified at thread creation time via

4Execution eligibility is defined as the position of a schedulable en-
tity in a total ordering established by a scheduler over the available
entities [3]. The total order depends on the scheduling policy. The
only scheduler required by the RTSJ is a priority scheduler, which uses
the PriorityParameters to determine the execution eligibility of a
Schedulable entity, such as threads or event handlers.

PeriodicParameters ). The accuracy with which suc-
cessive periodic computation are executed is important
since excessive jitter is detrimental to most real-time sys-
tems.

RTJPerf provides a test that measures the precision at
which the periodic execution of real-time thread logic is
managed. This test measures the actual time that elapses
from one execution period to the next. These test results are
reported in Section 3.3.3.

2.4 Timers

Real-time embedded systems often use timers to perform
certain actions at a given time in the future, as well as at
periodic future intervals. For example, timers can be used
to sample data, play music, transmit video frames, etc. The
RTSJ provides two types of timers:

� OneShotTimer , which generates an event at the ex-
piration of its associated time interval and

� PeriodicTimer , which generates events periodi-
cally.

OneShotTimer s andPeriodicTimer s events are han-
dled byAsyncEventHandler s. Since real-time embed-
ded systems often require predictable and precise timers,
RTJPerf provides the following tests that measure the pre-
cision of the timers supported by an RTSJ implementation:

One Shot Timer Test. Different RTSJ timer implemen-
tations can trade off complexity and accuracy.RTJPerf
therefore provides a test that fires a timer after a given time
T has elapsed and measures the actual time elapsed. By
running this test for different value ofT , it is possible to
determine the resolution at which timers can be used pre-
dictably. Performances results for these tests are reported in
Section 3.3.4. In [2] results for periodic timers are presented
as well.

3 Performance Results

This section first describes our real-time Java testbed and
outlines the various Java implementations used for the tests.
We then present and analyze the results obtained running
theRTJPerf test cases discussed in Section 2 in our testbed.

3.1 Overview of the Hardware and Software
Testbed

The test results reported in this section were obtained on
an Intel Pentium III 733 MHz with 256 MB RAM, running
Linux RedHat 7.2 with the TimeSys Linux/RT 3.0 GPL5

5This OS is the freely available version of TimeSys Linux/RT and is
available under the GNU Public License (GPL).

3



kernel [12]. The Java platforms used to test the RTSJ fea-
tures described in Section 2 are described below:

TimeSys RTSJ RI. TimeSys has developed the official
RTSJ Reference Implementation (RI) [11], which is a fully
compliant implementation of Java [1] that implements all
the mandatory features in the RTSJ. The RI is based on a
Java 2 Micro Edition (J2ME) Java Virtual Machine (JVM)
and supports an interpreted execution modei.e., there is no
just-in-time (JIT) compilation. Run-time performance was
intentionally not optimized since the main goal of the RI
was predictable real-time behavior and RTSJ-compliance.
The RI runs on all Linux platforms, but the priority inver-
sion control mechanisms are available to the RI only when
running under TimeSys Linux/RT [12],i.e., the commercial
version.

Figure 1b shows the structure of the resulting platform.
As the figure shows, this is the classical Java approach in
which bytecode is interpreted by a JVM that was written
for the given host system. The TimeSys RI was designed as
a proof of concept for the RTSJ, rather than as a production
JVM. The production-quality TimeSysjTime that will be
released later this year should therefore have much better
performance.

UCI jRate. jRate is an open-source RTSJ-based exten-
sion of the GNU Compiler for Java (GCJ) runtime systems
that we are developing at the University of California, Irvine
(UCI). By relying on GCJ,jRate provides an ahead-of-time
compiled platform for the development of RTSJ-compliant
applications. The research goal ofjRate is to explore the
use of Aspect-Oriented Programming (AOP) [6] techniques
to produce a high-performance, scalable, and predictable
RTSJ implementation. AOP enables developers to select
only the RTSJaspectsthey use, thereby reducing thejRate
runtime memory footprint.

The jRate model shown in Figure 1a is different than
the JVM model depicted in Figure 1b since there is no
JVM interpreting Java bytecode. Instead, the Java appli-
cation is ahead-of-time compiled into native code. The
Java and RTSJ services, such as garbage collection, real-
time threads, scheduling etc., are accessible via the GCJ
andjRate runtime systems, respectively. One downside of

(x86, PPC, ARMS)
Host

GCJ Runtime

Application
RT−Java

jRate

(x86, PPC, ARMS)
Host

RT−JVM

RT−Java Application

(b)(a)

Figure 1. The jRate and RI Architectures.
ahead-of-time compiled RTSJ implementations likejRate,
however, is that they can hinder portability since applica-
tions must be recompiled each time they are ported to a new
architecture.

The C Virtual Machine (CVM). CVM [10] is a J2ME
platform targeted for embedded and consumer electronic
devices. CVM has relatively small footprint and is designed
to be portable, RTOS-aware, deterministic, and space-
efficient. It has a precise—as opposed to conservative—
generational garbage collector.

JDK 1.4 JVM. Where appropriate, we compare the per-
formance of the real-time Java implementations against the
JVM shipped with the Sun’s JDK 1.4, which is the latest
version of Java that provides many performance improve-
ments over previous JDK versions. Although JDK 1.4 was
clearly not designed for real-time embedded systems, it pro-
vides a baseline to measure the real-time Java implementa-
tion improvements in predictability and efficiency.

3.2 Compiler and Runtime Options

The following options were used when compiling and
running the tests for different real-time Java platforms:

CVM and JDK 1.4. The Java code for the tests was com-
piled with jikes [5] using the-O option. These JVM were
always run using the-Xverify:none option.

TimeSys RTSJ RI. The settings used were the same as
the one for CVM and JDK 1.4, additionally the environment
variable that controls the size of the immortal memory was
set asIMMORTALSIZE=6000000 .

UCI jRate. The Java code for the test was compiled with
GCJ with the-O flag and statically linked with the GCJ and
jRate runtime libraries. The immortal memory size was set
to the same value as the RI.

3.3 RTJPerf Benchmarking Results

This section presents the results obtained when running
the tests discussed in Section 2 in the testbed described
above. We analyze the results and explain why the various
Java implementations performed differently.6

Average and worst-case behavior, along with dispersion
indices, are provided for all the real-time Java features we
measured. The standard deviation indicates the dispersion
of the values of features we measured. For certain tests,
we provide sample traces that are representative of all the
measured data. The measurements performed in the tests
reported in this section are based onsteady stateobserva-
tions, where the system is run to a point at which the tran-
sitory behavior effects ofcold startsare negligible before
executing the tests.

6Explaining certain behaviors requires inspection of the source code of
a particular JVM feature, which is not always feasible for Java implemen-
tations that are not open-source.

4



3.3.1 Memory Benchmark Results

Below, we present and analyze the results of the allocation
time test that was described in Section 2.1.

Allocation Time Test. This test measures the allocation
time for different types of scoped memory. The results we
obtained are presented and analyzed below.

Test Settings. To measure the average allocation time
incurred by the RI implementation ofLTMemory and
VTMemory, we ran theRTJPerf allocation time test for
allocation sizes ranging from 32 to 16,384 bytes. Each test
samples 1,000 values of the allocation time for the given
allocation size. This test also measured the average alloca-
tion time of jRate’s CTMemory implementation. jRate’s
CTMemory implements an RTSJ scoped memory such as
theLTMemory or theVTMemory.

This test only examinesjRate and the RI since the other
Java platforms do not support scoped memories. We felt
that comparing platforms with scoped memory against plat-
form that lack them would be unfair since the latter would
perform so poorly

Test Results. The data obtained by running the allo-
cation time tests were processed to obtain an average, dis-
persion, and worst-case measure of the allocation time. We
compute both the average and dispersion indices since they
indicate the following information:
� How predictable the behavior of an implementation is

� How much variation in allocation time can occur and

� How the worst-case behavior compares to the average-
case and to the case that provides a 99% upper bound.7

Figure 2 shows the resulting average allocation time for
the different test runs and Figure 3 shows the standard de-
viation of the allocation time measured in the various test
settings. Figure 4 shows the performance ratio between
jRate’s CTMemory, and the RILTMemory. This ratio in-
dicates how many times smaller theCTMemoryaverage al-
location time is compared to the average allocation time for
the RILTMemory.

Results Analysis. We now analyze the results of the
tests that measured the average- and worst-case allocation
times, along with the dispersion for the different test set-
tings:

� Average Measures—As shown in Figure 2, both
LTMemory and VTMemory provide linear time al-
location with respect to the allocated memory size.
Matching results were found for the other measured
statistical parameter, based on this, we infer that the
RI implementation ofLTMemory andVTMemoryare
similar, so we mostly focus on theLTMemory since
our results also apply toVTMemory. jRate has an

7By “99% upper bound” we mean that value that represents an upper
bound for the measured values in the 99th percentile of the cases.

average allocation time that is independent of the al-
located chunk, which helps analyze the timing of real-
time Java code, even without knowing the amount of
memory that will be needed. Figure 4 shows that for
small memory chunks thejRate memory allocator is
nearly ten times faster than RI’sLTMemory. For the
biggest chunk we tested,jRate’s CTMemory is �95
times faster RI’sLTMemory.

� Dispersion Measures—The standard deviation of the
different allocation time cases is shown in Figure 3.
This deviation increases with the chunk size allocated
for both LTMemory andVTMemory until it reaches
4 Kbytes, where it suddenly drops and then it starts
growing again. On Linux, a virtual memory page
is exactly 4 Kbytes, but when an array of 4 Kbytes
is allocated the actual memory is slightly larger to
store freelist management information. In contrast, the
CTMemory implementation has the smallest variance
and the flattest trend.

The plots in Figure 5 show the cumulative relative fre-
quency distribution of the allocation time for some of
the different cases discussed above. These graphs il-
lustrate how the allocation time is distributed for dif-
ferent types of memory and different allocation sizes.
For any given pointt on thex axis, the value on they
axis indicates the relative frequency of allocation time
for which AllocationT ime � t. This graph, along
with Figure 3 that shows the standard deviation, pro-
vides insights on how the measured allocation time is
dispersed and distributed.

� Worst-case Measures—Figure 6 and Figure 7 show
the bounds on the allocation time forjRate’s
CTMemory and the RILTMemory. Each of these
graphs depicts the worst, best, and average allocation
times, along with the 99% upper bound of the allo-
cation time. Figure 6 illustrates how the worst-case
execution time forjRate’s CTMemoryis at most�1.4
times larger than its average execution time.

Figure 7 shows how the maximum, average, and the
99% case, for the RILTMemory, converge as the
size of the allocated chunk increases. The minimum
ratio between the worst-case allocation time and the
average-case is�1.6 for a chunk size of 16K. Figure 6,
Figure 7 and Figure 5 also characterize the distribu-
tion of the allocation time. Figure 5 shows how for
some allocation sizes, the allocation time for the RI
LTMemory is centered around two points.

3.3.2 Asynchrony Benchmark Results

Below we present and analyze the results of the asyn-
chronous event handler dispatch delay and asynchronous

5



32 1K 2K 4K 8K 16K

Chunk Size (Bytes)

10

20

30

40

50

60

70

80
A

ve
ra

ge
 A

llo
ca

tio
n 

T
im

e 
(m

ic
ro

-s
ec

on
ds

)
jRate CTMemory
RI LTMemory
RI VTMemory

Figure 2. Average Allocation Time.

32 64 128 256 512 1K 2K 4K 8K 16K

Chunk Size (Bytes)

0.02

0.03

0.06

0.1

0.2

0.5

1

2

4

8

A
llo

ca
tio

n 
T

im
e 

S
ta

nd
ar

d 
D

ev
ia

tio
n 

(m
ic

ro
-s

ec
on

ds
)

jRate CTMemory
RI LTMemory
RI VTMemory

Figure 3. Allocation Time Standard Deviation.

7.1 7.3 7.4 8.1 9.5
12.5

18.4

30.0

51.5

95.4

32 64 128 256 512 1K 2K 4K 8K 16K

Chunk Size (Bytes)

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 A
llo

ca
tio

n 
T

im
e 

R
at

io

RI LTMemory AAT / jRate CTMemory AAT

Figure 4. CTMemory AAT vs. LTMemory AAT
Speedup

AsycnEventHandler BoundAsycnEventHandler
Avg. 36.57�s 34.00�s

Std. Dev. 0.11�s 0.14�s
Max 39.40�s 35.55�s
99% 36.94�s 34.47�s

Table 1. jRate Event Handler’s Dispatch La-
tency Statistics Parameters

AsycnEventHandler BoundAsycnEventHandler
Avg. 2373.0�s 56.10�s

Std. Dev. 909.9�s 0.84�s
Max 3950.8�s 70.46�s
99% 3892.5�s 56.69�s

Table 2. RI Event Handler’s Dispatch Latency
Statistical Indexes

event handler priority inversion tests, which were described
in Section 2.2.

Asynchronous Event Handler Dispatch Delay Test.
This test measures the dispatch latency of the two types of
asynchronous event handlers defined in the RTSJ. The re-
sults we obtained are presented and analyzed below.

Test Settings. To measure the dispatch latency pro-
vided by different types of asynchronous event handlers de-
fined by the RTSJ, we ran the test described in Section 2.2
with a fire count of 2,000 for both RI andjRate. To ensure
that each event firing causes a complete execution cycle,
we ran the test in “lockstep mode,” where one thread fires
an event and only after the thread that handles the event is
done is the event fired again. To avoid the interference of
the GC while performing the test, the real-time thread that
fires and handles the event uses scoped memory as its cur-
rent memory area.

Test Results. Figure 8 shows the trend of the dispatch
latency for successive event firings.8 The data obtained by
running the dispatch delay tests were processed to obtain
average worst-case and dispersion measure of the dispatch
latency. Table 1 and Table 2 shows the results found for
jRate and the RI respectively.

Results Analysis. Below we analyze the results of the
tests that measure the average-case and worst-case dispatch
latency, as well as its dispersion, for the different test set-
tings:

� Average Measures—Table 2 illustrates the large av-
erage dispatch latency incurred by the RTSJ RI
AsyncEventHandler . The results in Figure 9
show how the actual dispatch latency increases as the
event count increases. By tracing the memory used
when running the test using heap memory, we found
that not only did memory usage increased steadily, but

8Since The RI’sAsyncEventHandler trend is completely off the
scale, it is omitted in this figure and depicted separately in Figure 9.

0.8 1 1.2

jRate CTMemory - Alloc. Time (usec)

0

0.2

0.4

0.6

0.8

1

A
llo

ca
tio

n 
T

im
e 

C
um

ul
at

iv
e 

R
el

at
iv

e 
F

re
qu

en
cy

32 Bytes
1 KBytes
8 KBytes

16 64

RI LTMemory - Alloc. Time (usec)

0

0.2

0.4

0.6

0.8

1

32 Bytes
64 Bytes
128 Bytes
256 Bytes
512 Bytes
1 KBytes
2 KBytes
4 KBytes
8 KBytes
16 KBytes

Figure 5. Allocation Time Cumulative Relative
Frequency Distribution.

6



32 128 256 512 1K 2K 4K 8K 16K64

Chunk Size (Bytes)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
A

llo
ca

tio
n 

T
im

e 
(m

ic
ro

-s
ec

on
ds

)

Average Allocation Time 
Max Allocation Time
Min Allocation Time
99% Allocation Time

Figure 6. CTMemory Worst, Best, Average
and 99% Allocation Time.

32 64 128 256 512 1K 2K 4K 8K 16K

Chunk Size (Bytes)

8

16

32

64

128

A
llo

ca
tio

n 
T

im
e 

(m
ic

ro
-s

ec
on

ds
)

RI LTMemory Avg. Alloc. Time
RI LTMemory Max Alloc. Time
RI LTMemory Min Alloc. Time
RI LTMemory 99% Allocation Time

Figure 7. LTMemory Worst, Best, Average and
99% Allocation Time.

0 500 1000

Event Count

30

35

40

45

50

55

60

65

70

D
is

pa
tc

h 
D

el
ay

 (
m

ic
ro

-s
ec

on
ds

)

jRate BoundAsyncEventHandler
jRate AsyncEventHandler
RI BoundAsyncEventHandler

Figure 8. Dispatch Latency Trend for Succes-
sive Event Firing.

0 500 1000 1500 2000

Event Count

500

1000

1500

2000

2500

3000

3500

4000

D
is

pa
tc

h 
D

el
ay

 (
m

ic
ro

-s
ec

on
ds

)

RI AsyncEventHandler

Figure 9. AsyncEventHandler Dispatch La-
tency Trend.

30 35 40 45 50 55 60 65 70

Dispatch Delay (micro-seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

pa
tc

h 
D

el
ay

 C
um

ul
at

iv
e 

R
el

at
iv

e 
F

re
qu

en
cy

jRate BoundAsyncEventHandler
jRate AsyncEventHandler
RI BoundAsyncEventHandler

Figure 10. Cumulative Dispatch Latency Dis-
tribution

33.4 33.2 33.2 33.3 33.6 33.7

56.11

112.3

332.4

609.9

2826

5587

0 LPH 10 LPH 50 LPH 100 LPH 500 LPH 1000 LPH

25

125

625

3125

A
ve

ra
ge

 D
is

pa
tc

h 
La

nt
en

cy
 (

m
ic

ro
-s

ec
on

ds
)

jRate
RI

Figure 11. H ’s Average Dispatch Latency.

0.124 0.134
0.161 0.147

0.18 0.199

0.888

1.35

2.4

3.41

12

23.8

0 LPH 10 LPH 50 LPH 100 LPH 500 LPH 1000 LPH

0.04

0.2

1

5

25

D
is

pa
tc

h 
La

te
nc

y 
S

ta
nd

ar
d 

D
ev

ia
tio

n 
(m

ic
ro

-s
ec

on
ds

)

jRate
RI

Figure 12. H Dispatch Latency’s Standard De-
viation.

Avg. Std. Dev. Max 99%
0 LP 33.37�s 0.12�s 34.87�s 34.11�s

10 LP 33.15�s 0.13�s 34.90�s 33.79�s
50 LP 33.20�s 0.16�s 36.06�s 33.82�s

100 LP 33.26�s 0.14�s 35.95�s 33.85�s
500 LP 33.63�s 0.18�s 37.14�s 34.28�s

1000 LP 33.73�s 0.19�s 37.56�s 34.45�s

Table 3. jRate’s Dispatch Delay Statistical In-
dexes

Avg. Std. Dev. Max 99%
0 LP 56.10�s 0.88�s 70.46�s 56.70�s

10 LP 112.33�s 1.34�s 133.90�s 122.18�s
50 LP 332.41�s 2.39�s 353.17�s 344.86�s

100 LP 609.92�s 3.41�s 631.51�s 624.96�s
500 LP 2826.40�s 12.00�s 2884.00�s 2862.10�s

1000 LP 5587.00�s 23.76�s 5672.70�s 5650.30�s

Table 4. RI’s Dispatch Delay Statistical In-
dexes

7



even invoking the GC explicitly did not free any mem-
ory.

These results reveal a problem with how the RI man-
ages the resources associated to threads. The RI’s
AsyncEventHandler creates a new thread to han-
dle a new event, and the problem appears to be a
memory leak in the underlying RI memory manager
associated with threads, rather than a limitation with
the model used to handle the events. In contrast, the
RI’s BoundAsyncEventHandler performs quite
well, i.e., its average dispatch latency is slightly less
than twice as large as the average dispatch latency for
jRate.

Figure 8 and Table 1 show that the average dis-
patch latency of jRate’s AsyncEventHandler
is the same order of magnitude as its
BoundAsyncEventHandler . The difference
between the two average dispatch latency stems from
jRate’s AsyncEventHandler implementation,
which uses anexecutor [7] thread from a pool of
threads to perform the event firing, rather than having
a thread permanently bound to the handler.

� Dispersion Measures—The results in Table 2, Ta-
ble 1, Figure 8, and Figure 10 illustrate howjRate’s
BoundAsyncEventHandler dispatch latency in-
curs the least jitter. The dispatch latency value disper-
sion for the RTSJ RIBoundAsyncEventHandler
is also quite good, though its jitter is higher
than jRate’s AsyncEventHandler and
BoundAsyncEventHandler . The higher jit-
ter in RI may stem from the fact that the RI stores the
event handlers in ajava.util.Vector . This data
structure achieves thread-safety by synchronizing all
method thatget() , add() , or remove() elements
from it, which acquires and releases a lock associated
with the vector for each method. To avoid this locking
overhead,jRate uses a data structure that associates
the event handler list with a given event and allows
the contents of the data structure to be read without
acquiring/releasing a lock. Only modifications to
the data structure must be serialized. As a result,
jRate’s AsyncEventHandler dispatch latency is
relatively predictable, even though the handler has no
thread bound to it permanently. ThejRate thread pool
implementation uses LIFO queues for its executor,
i.e., the last executor that has completed executing is
the first one reused. This technique is often applied in
thread pool implementations to leverage cache affinity
benefits [8].

� Worst-case Measures—Table 1 illustrates how
the jRate’s BoundAsyncEventHandler and
AsyncEventHandler have worst-case execu-

tion time that is close to its average-case. The
worst-case dispatch delay provided by the RI’s
BoundAsyncEventHandler is not as good as the
one provided byjRate, due to differences in how their
event dispatching mechanisms are implemented. The
99% bound differs only on the first decimal digit for
both jRate and the RI (clearly we do not consider the
RI’s AsyncEventHandler since no bound can be
put on its behavior).

Asynchronous Event Handler Priority Inversion Test.
This test measures how the dispatch latency of an asyn-
chronous event handlerH is influenced by the presence of
N others event handlers, characterized by a lower execution
eligibility thanH . In the ideal case,H ’s dispatch latency
should be independent ofN , and any delay introduced by
the presence of other handlers represents some degree of
priority inversion. The results we obtained are presented
and analyzed below.

Test Settings. This test uses the same settings as the
asynchronous event handler dispatch delay test. Only
the BoundAsyncEventHandler performance is mea-
sured, however, because the RI’sAsyncEventHandler s
are essentially unusable since their dispatch latency grows
linearly with the number of event handled (see Fig-
ure 9), which masks any priority inversions. Moreover,
jRate’s AsyncEventHandler performance is similar to
its BoundAsyncEventHandler performance, so the re-
sults obtained from testing one applies to the other. The cur-
rent test uses the following two types of asynchronous event
handlers:

� The first is identical to the one used in the previous test,
i.e., it gets a time stamp after the handler is called and
measures the dispatch latency. This logic is associated
with H .

� The second does nothing and is used for the lower pri-
ority handlers.

Test Results. Table 3 and Table 4 report how the av-
erage, standard deviation, maximum and 99% bound of the
dispatch delay changes forH as the number of low-priority
handlers increase. Figure 11 and Figure 12 provide a graph-
ical representation for the average and dispersion measures.

Results Analysis. Below, we analyze the results of the
tests that measure average-case and worst-case dispatch la-
tency, as well as its dispersion, forjRate and the RI.

� Average Measures—Figure 11 and Tables 3 and 4 il-
lustrate that the average dispatch latency experienced
by H is essentially constant forjRate, regardless of
the number of low-priority handlers. It grows rapidly,

8



however, as the number of low-priority handlers in-
crease for the RI. The RI’s event dispatching prior-
ity inversion is problematic for real-time systems and
stems from the fact that its queue of handlers is imple-
mented with ajava.util.Vector , which is not
ordered by theexecution eligibility. In contrast, the
priority queues injRate’s event dispatching are or-
dered by the execution eligibility of the handlers.

Execution eligibility is the ordering mechanism used
throughoutjRate. For example, it is used to achieve
total ordering of schedulable entities whose QoS are
expressed in different ways. This approach is an appli-
cation of the formalisms presented in [3].

� Dispersion Measures—Figure 12 and Tables 3 and 4
illustrate howH ’s dispatch latency dispersion grows
as the number of low-priority handlers increases in
the RI. The dispatch latency incurred byH in the
RI therefore not only grows with the number of low-
priority handlers, but its variability increasesi.e., its
predictability decreases. In contrast,jRate’s standard
deviation increases very little as the low-priority han-
dlers increase. As mentioned in the discussion of the
average measurements above, the difference in perfor-
mance stems from the proper choice of priority queue.

� Worst-Case Measures—Tables 3 and 4 illustrate how
the worst-case dispatch delay is largely independent of
the number of low-priority handlers forjRate. In con-
trast, worst-case dispatch delay for the RI increases as
the number of low-priority handlers grows. The 99%
bound is close to the average forjRate and relatively
close for the RI.

3.3.3 Thread Benchmark Results

Below, we present and analyze the results from the yield
and synchronized context switch test, periodic thread test,
and thread creation latency test, which were described in
Section 2.3.

Yield Context Switch Test. This test measures the time
incurred for a thread context switch. The results we ob-
tained are presented and analyzed below.

Test Settings. For each Java platform in our test suite,
we collected 1,000 samples of the the context switch time,
which we forced by explicitly yielding the CPU. Real-time
threads were used for the RI andjRate, whereas regular
threads were used for JDK 1.4 and CVM. To avoid GC over-
head on platforms that do not support memory areas, we en-
sured the heap was large enough so that the GC would never
be invoked. With Sun’s JDK 1.4 JVM, either the option
-verbose:gc , or the option-Xloggc:<filename>
can be used to detect if the garbage collector is run. We
used this option to set the value of the heap size to prevent
the GC execution during the test.

Test Results. Table 5 reports the average and standard
deviation for the measured context switch in the various java
platforms.

Results Analysis. Below, we analyze the results of the
tests that measure the average context switch time, its dis-
persion, and its worst-case behavior for the different test
settings:

� Average Measures—Table 5 shows how the RI and
CVM perform fairly well in this test,i.e., their con-
text switch time is only�2 �s larger thanjRate’s.
The main reason forjRate’s better performance stems
from its use of ahead-of-time compilation. The last
row of Table 5 reports the results of a C++-based con-
text switch test described in [9]. The table shows
how the context switch time measured for the RI and
jRate is similar to that for C++ programs on TimeSys
Linux/RT. The context switching time for the RI is
less than three times larger than that found for C++,
whereas the times forjRate are roughly the same as
those for C++.

� Dispersion Measures—The third column of Table 5
reports the standard deviation for the context switch
time. BothjRate, the RI, and CVM exhibit tight dis-
persion indexes, indicating that context switch over-
head is predictable for these implementations. In gen-
eral, the context switch time forjRate, the RI and
CVM is as predictable as C++ on our Linux testbed
platform. Conversely, JDK 1.4 exhibits less pre-
dictability, i.e., due to the fact that it is not designed
to have real-time behavior.

� Worst-case Measures—The fourth and fifth column
of Table 5, represent respectively the maximum and
the 99% bound for the context switch time.jRate, the
RI, and CVM have 99% bound and worst-case context
switch that is close to their average values. The JDK
1.4 worst-case context switch time is very high, though
its 99% bound is fairly good,i.e., JDK 1.4 has fairly
good context switch time most of the time, but not all
the time.

Periodic Thread Test. This test measures the accuracy
with which thewaitForNextPeriod() method in the
RealtimeThread class schedules the thread’s execution
periodically. The results we obtained are presented and an-
alyzed below.

Test Settings. This test runs aRealtimeThread
that does nothing but reschedule its execution for the next
period. The actual time between each activation was mea-
sured and 500 of these measurements were made. We just
ran this test on the RI since only it supports this feature. Al-
thoughjRate is based on the RTSJ it does not yet support
periodic threads.

Test Results. Table 6 shows average and dispersion
values that we measured for this test.

9



Results Analysis. Below we analyze the results of the
test that measure accuracy with which periodic thread’s
logic are activated:

� Average Measures—Table 6 shows that for periods
> 10 ms, the average actual period is close to the
nominal period, which is represented by the values
in the first column. For periods< 10 ms, how-
ever, the actual value is not always close to the de-
sired or nominal value. To understand the reason
for this behavior, we inspected the RI implementa-
tion of periodic threads, (i.e., at the implementation
of waitForNextPeriod() ) and found that a JNI
method call is used to wait for the next period.

Without the source for the RI’s JVM, it is hard to tell
exactly how the native method is implemented. Our
analysis indicates, however, that the behavior observed
for periods� 10 ms does not result from the use of the
nanosleep() system call. This observation is based
on the output ofptrace (described in Section 3.3.4),
which indicated that the RI timer implementation uses
nanosleep() .

� Dispersion Measures—The third column of Table 6
shows that for a period>= 30 ms, the actual period
with which the thread logic is activated is close to the
nominal value and is quite predictable,i.e., it has low
jitter. In contrast, for periods of 5 and 10 ms the mean
is close to the nominal value and the measured values
are highly dispersed. Based on the results shown in
Table 6, the RI behaves unpredictably for periods<=

to 10 ms.

� Worst-case Measures—The forth and fifth columns
of Table 6 show the maximum period experienced and
the 99% bound on the period experienced by the real-
time thread. The worst-case behavior is bad, however,
only in the case of T=5 ms and T=10 ms. In other
cases, the worst-case behavior is close to the average-
case behavior and provides a predictable and regular
period.

Average Std. Dev. Max 99%
CVM 2.90�s 0.02�s 3.18�s 2.97�s

JDK 1.4 3.74�s 12.63�s 402.02�s 3.40�s
jRate 1.30�s 0.01�s 1.33�s 1.32�s

RI 2.89�s 0.01�s 3.06�s 2.97�s
C++ 1.30�s 0.02�s N/A N/A

Table 5. Yield Context Switch Statistical In-
dexes

3.3.4 Timer Benchmark Results

Below, we present and analyze the results from the one
shot and periodic timer tests, which were described in Sec-
tion 2.4.

Avg. Std. Dev. Max 99%
T=1 ms 0.93 ms 0.147 ms 0.95 ms 0.95 ms
T=5 ms 3.94 ms 7.890 ms 19.75 ms 19.73 ms
T=10 ms 9.95 ms 9.527 ms 19.48 ms 19.47 ms
T=30 ms 29.95 ms 0.004 ms 29.96 ms 29.96 ms
T=50 ms 49.95 ms 0.004 ms 49.96 ms 49.95 ms
T=100 ms 99.95 ms 0.004 ms 99.96 ms 99.96 ms
T=300 ms 299.95 ms 0.004 ms 299.96 ms 299.96 ms
T=500 ms 499.96 ms 0.004 ms 499.96 ms 499.96 ms

Table 6. Periodic Thread Period Statistical In-
dexes

Avg. Std. Dev. Max 99%
T=5 ms 19.81 ms 0.07 ms 19.90 ms 19.83 ms
T=10 ms 19.82 ms 0.00 ms 19.90 ms 19.83 ms
T=30 ms 39.81 ms 0.01 ms 39.93 ms 39.82 ms
T=50 ms 59.81 ms 0.02 ms 59.92 ms 59.82 ms
T=100 ms 109.81 ms 0.07 ms 109.94 ms 109.83 ms
T=300 ms 309.81 ms 0.06 ms 309.93 ms 309.92 ms
T=500 ms 509.81 ms 0.03 ms 509.92 ms 509.92 ms

Table 7. Aperiodic Timer Results

One Shot Timer Test. This test measures how precisely
a OneShotTimer can fire events, relative to the time in-
terval for which it was programmed.

Test Settings. The test ran aOneShotTimer that
generated an event for time intervals ranging from
5 ms to 500 ms. The event was handled by a
BoundAsyncEventHandler that was registered as the
timer timeout handler. For each timeout interval we
collected 500 samples. The time interval was speci-
fied by using RelativeTime . We also tried using
AbsoluteTime , but it behaved so similarly that we only
present theRelativeTime results for brevity. We just
ran this test on the RI since only it supports this feature. Al-
thoughjRate is based on the RTSJ it does not yet support
timers.

Test Results. Table 7 shows the average and standard
deviation for the actual timeout interval produced by the
OneShotTimer .

Results Analysis. Below we analyze the results
of the test that measures the accuracy with which
OneShotTimer fire their events with respect to the re-
quested interval:

� Average Measures—The second column of Table 7
reports the average value of the time interval after
which theOneShotTimer generates an event, while
the first column represents the desired time interval.
As shown in Section 3.3.3’s analysis of the periodic
thread test results, the average firing interval performs
poorly for time intervals< 10 ms. Conversely, for time
interval> 10 ms, the results in Table 7 show a strange,
yet consistent behavior, where the average time inter-
val generated by the timer is exactly equal to the de-
sired one plus 9.82 ms.

By inspecting the implementation of the RI timer,
we found that the time interval after which the timer
is fired is generated by having a thread associated

10



with the timer that waits on a dummy Java ob-
ject for the specified amount of time. The res-
olution of timer is therefore essentially the same
as the one provided by theObject.wait(long
msec, int nsec) method in the RI implementa-
tion. By usingptrace we traced the system call
made by the RI when theObject.wait(long
msec, int nsec) method in invoked. We found
thatnanosleep() is used to implement this method.
The result shown on Table 7 are also consistent with
the resolution provided bynanosleep() on the
tested platform.

� Dispersion Measures—The third column of Table 7
shows the standard deviation of the measured time in-
tervals generated by the firing of the timer. The stan-
dard deviation is small, which indicates that the gen-
erated interval is quite predictable. These results are
inconsistent with the periodic thread results (see Ta-
ble 6 in Section 3.3.3), where the standard deviation
was quite large for periods<= 10 ms. This difference
in the dispersion of the value for periods<= 10 ms
is ascribable to the different mechanism by periodic
threads and timers.

� Worst-case Measures—The forth and fifth columns
of Table 7 show the maximum period experienced and
the 99% bound on the period experienced by the real-
time thread. Both of these values are close to the av-
erage behavior, which demonstrates good worst-case
behavior.

4 Concluding Remarks

This paper presented an empirical evaluation of the per-
formance of RTSJ features that are crucial to the develop-
ment of real-time embedded applications.RTJPerf is one
of the first open-source benchmarking suites designed to
evaluate RTSJ-compliant Java implementations empirically.
We believe it is important to have an open benchmarking
suite to measure the quality of service of RTSJ implementa-
tions.RTJPerf not only helps guide application developers
to select RTSJ features that are suited to their requirements,
but also helps developers of RTSJ implementations evaluate
and improve the performance of their products.

This paper appliesRTJPerf to measure the perfor-
mance of the RTSJ RI,jRate, CVM, and JDK 1.4. Al-
though much work remains to ensure predictable and ef-
ficient performance under heavy workloads and high con-
tention, our test results indicate that real-time Java is ma-
turing to the point where it can be applied to certain types
of real-time applications. In particular, the performance
and predictability ofjRate is approaching C++ for some
tests. The TimeSys RTSJ RI also performed relatively

well in many aspects, though it has several problems with
AsyncEventHandler dispatching delays and priority
inversion. While CVM is not an RTSJ-compliant imple-
mentation, it performed well for many tests.

References

[1] K. Arnold, J. Gosling, and D. Holmes.The Java
Programming Language. Addison-Wesley, Boston, 2000.

[2] A. Corsaro and D. C. Schmidt. Evaluating Real-Time Java
Features and Performance for Real-time Embedded
Systems. Technical Report 2002-001, University of
Califoria, Irvine, 2002.

[3] A. Corsaro, D. C. Schmidt, R. K. Cytron, and C. Gill.
Formalizing Meta-Programming Techniques to Reconcile
Heterogeneous Scheduling Disciplines in Open Distributed
Real-Time Systems. InProceedings of the 3rd International
Symposium on Distributed Objects and Applications., pages
289–299, Rome, Italy, September 2001. OMG.

[4] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The
Design and Performance of a Real-time CORBA Event
Service. InProceedings of OOPSLA ’97, pages 184–199,
Atlanta, GA, October 1997. ACM.

[5] IBM. Jikes 1.14.
http://www.research.ibm.com/jikes/ , 2001.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. InProceedings of the 11th European
Conference on Object-Oriented Programming, June 1997.

[7] D. Lea. Concurrent Java: Design Principles and Patterns,
Second Edition. Addison-Wesley, Reading, Massachusetts,
1999.

[8] J. D. Salehi, J. F. Kurose, and D. Towsley. The
Effectiveness of Affinity-Based Scheduling in
Multiprocessor Networking. InIEEE INFOCOM, San
Francisco, USA, Mar. 1996. IEEE Computer Society Press.

[9] D. C. Schmidt, M. Deshpande, and C. O’Ryan. Operating
System Performance in Support of Real-time Middleware.
In Proceedings of the7th Workshop on Object-oriented
Real-time Dependable Systems, San Diego, CA, Jan. 2002.
IEEE.

[10] Sun. The C Virtual Machine (CVM).
http://java.sun.com/products/cdc/cvm/ ,
2001.

[11] TimeSys. Real-Time Specification for Java Reference
Implementation.www.timesys.com/rtj , 2001.

[12] TimeSys. TimeSys Linux/RT 3.0.www.timesys.com ,
2001.

11


