Software Architectures for Reducing Priority Inversion
and Non-determinism in Real-time Object Request Brokers

Douglas C. Schmidt Sumedh Mungee, Sergio Flores-Gaitan, and Aniruddha Gokhale
schmidt@uci.edu {sumedh,sergio,gokhgi@cs.wustl.edu
Electrical & Computer Engineering Department of Computer Science
University of California, Irvine Washington University, St.Louis

This paper was published in the Kluwer Journal of Redtom developing real-time applications from scratchite

time Systems, Volume 21, Number 2, 2001. tegrating applications using reusable components based on
object-oriented (OO) middleware [3]. The objective of mid-
Abstract dleware is to increase quality and decrease the cycle-time and

effort required to develop software by supporting the integra-
There is increasing demand to extend Object Request Bfon of reusable components implemented by different suppli-
ker (ORB) middleware to support distributed applications witdrs.
stringent real-time requirements. However, conventional ORB
implementations, such as CORBA ORBs, exhibit substaniiiedreased focus on QoS-enabled components and open sys-
priority inversion and non-determinism, which makes them uems: There is increasing demand for remote method invo-
suitable for applications with deterministic real-time requirecation and messaging technology to simplify the collaboration
ments. This paper provides two contributions to the study asfdopen distributed application components [4] that possess
design of real-time ORB middleware. First, it illustrates enaleterministic and statistical QoS requirements. These compo-
pirically why conventional ORBs do not yet support real-tinreents must be customizable to meet the functionality and QoS
quality of service. Second, it evaluates connection and conaaguirements of applications developed in diverse contexts.
rency software architectures to identify strategies that reduce
priority inversion and non-determinism in real-time CORBMcreased focus on standardizing and leveraging real-time
ORBs. The results presented in this paper demonstrate @@TS hardware and software: To leverage development
feasibility of using standard OO middleware like CORBA ®ffort and reduce training, porting, and maintenance costs,
support certain types of real-time applications over the InteiRere is increasing demand to exploit the rapidly advancing
net. capabilities of standard common-off-the-shelf (COTS) hard-
Keywords: Real-time CORBA Object Request Broker, Qogvare and COTS operating systems. Several international stan-
enabled OO Middleware, Performance Measurements dard|z.at|on efforts are currently addressing QoS-related issues
associated with COTS hardware and software.
. One particularly noteworthy standardization effort has
1 Introduction yielded the Object Management Group’s (OMG) Common
Object Request Broker Architecture (CORBA) specifica-
Next-generation distributed real-time applications, such @sn [5]. CORBA is OO middleware software that allows
video conferencing, avionics mission computing, and proce§gnts to invoke operations on objects without concern for
control, require endsystems that can provide statistical and @fere the objects reside, what language the objects are writ-
terministic quality of service (QoS) guarantees for latency [¥bn in, what OS/hardware platform they run on, or what com-
bandwidth, and reliability [2]. The following trends are shagnunication protocols and networks are used to interconnect
ing the evolution of software development techniques for thesigtributed objects [6].
distributed real-time applications and endsystems: There has been recent progress towards standardizing
Increased focus on middleware and integration frame- CORBA for real-time [7] and embedded [8] systems. Sev-
works: There is a trend in real-time R&D projects awagral OMG groups, most notably the Real-Time Special Interest
“This work was supported in part by AFOSR grant F49620-00-1-0335 CUP (RT SIG), are defining standard extensions to CORBA

Boeing, CDI/GDIS, DARPA contract 9701516, Lucent, Motorola, NSF gral®@ su.pport diStr?bUted real'time applications. The goal'Of S.tan'
NCR-9628218, Siemens, and Sprint. dardizing real-time CORBA is to enable real-time applications

to interwork throughout embedded systems and heterogeneoiegratedDRB endsystearchitecture that can deliver end-to-
distributed environments, such as the Internet. end QoS guarantees at multiple levels throughout a distributed
However, developing, standardizing, and leveraging diystem [10]. The key levels in an ORB endsystem include the
tributed real-time Object Request Broker (ORB) middlewaretwork adapters, OS I/O subsystems, communication pro-
remains hard, notwithstanding the significant efforts of tiiecols, ORB middleware, and higher-level services shown in
OMG RT SIG. There are few successful examples of stdrigure 1.
dard, widely deployed distributed real-time ORB middle-
ware running on COTS operating systems and COTS harg
ware. Conventional CORBA ORBs are generally unsuited fo
performance-sensitive, distributed real-time applications due
to their (1) lack of QoS specification interfaces, (2) lack of

QoS enforcement, (3) lack of real-time programming features, -
IDL
STUBS

in args

O—.>
Operatlon() OBJECT
out args + return (SERVANT)
IDL J

ORB RUN-TIME

and (4) overall lack of performance and predictability [9]. CCHEDOLER

Although some operating systems, networks, and protocols
now support real-time scheduling, they do not provide inte
grated end-to-end solutions [10]. Moreover, relatively littl
systems research has focused on strategies and tactics for r —
time ORB endsystems. For instance, QoS research at the OS KERNEL OS KERNEL

work and OS layers is only beginning to address key requirg REAL-TIME 1/0

. . SUBSYSTEM
ments aﬁd programming models of QRB middleware [11].
Historically, research on QoS for high-speed networks, SUGNETWORK INTERFACE NETWORK INTERFACE

as ATM, has focused largely on policies for allocating virtual
circuit bandwidth [12]. Likewise, research on real-time op-. . .

erating systems h[as]focused largely on avoiding priority %l_gure 1: Components in the TAO Real-time ORB Endsystem
vers?ons in synchrqnizgtion and dispatching mechanisms foﬁ'he main focus of this paper is on software architectures
multi-threaded applications [13]. An important open researﬁ{bt are suitable for real-time ORB Cores. The ORB Core
topic, therefore, is to determine how best to map the resqgs[he component in the CORBA reference model that man-
from QoS work at the network and OS layers onto the OQ o transport connections, delivers client requests to an Ob-

programming model familiar to many real-time applicationg.t agapter, and returns responses (if any) to clients. The

developers who use ORB m|ddleware.. _ _ ORB Core also typically implements the transport endpoint
This paper is organized as follows: Section 2 outlines thgmtiplexing and concurrency architecture used by applica-
general factors that impact real-time ORB endsystem perfggns Figure 1 illustrates how an ORB Core interacts with

mance and predictability; Section 3 describes software gfrer CORBA components. Appendix A describes the stan-
chitectures for real-time ORB Cores, focusing on alternatiyg,q coreA components in more detail.

ORB Core concurrency and connection software architecturesz, completeness, Section 2.1 briefly outlines the general

Section 4 presents empirical results from systematically mggirces of performance overhead in ORB endsystems. Sec-
suring the efficiency and predictability of alternative ORBy 2 2 describes the key sources of priority inversion and
Core architectures in four contemporary CORBA implemepg_qgeterminism that affect the predictability and utilization
tations: CORBAplus, miniCOOL, MT-Orbix, and TAO; SeCy real-time ORB endsystems. After this overview, Section 3

tion 5 compares our research with related work; and Sectio,§|ores alternative ORB Core concurrency and connection ar-
presents concluding remarks. For completeness, AppendiXiyectures.

provides an overview of the CORBA reference model.

BJECT
APTER

ACE
COMPONENTS

NETWORK

2.1 General Sources of ORB Endsystem Per-

2 Factors Impacting Real-time ORB formance Overhead

Endsystem Performance Our experience [14, 15, 16, 17] measuring the throughput
and latency of CORBA implementations indicates that perfor-
Meeting the QoS needs of next-generation distributed appjance overheads in real-ime ORB endsystems arise from in-
cations requires much more than defining Interface Defifiificiencies in the following components:
tion Language (IDL) interfaces or adding preemptive real-tifdle Network connections and network adapters: These
scheduling into an OS. It requires a vertically and horizontaliyndsystem components handle heterogeneous network con-

nections and bandwidths, which can significantly increase 2 Sources of Priority Inversion and Non-
tency and cause variability in performance. Inefficient design determinism in ORB Endsystems
of network adapters can cause queueing delays and lost pack-

ets [18], which are unacceptable for certain types of real-tiffénimizing priority inversion and non-determinism is impor-
systems. tant for real-time operating systems and ORB middleware in

order to bound application execution times. In ORB endsys-

tems, priority inversion and non-determinism generally stem
2. Communication protocol implementations and integra- from resources that are shared between multiple threads or
tion with the I/O subsystem and network adapters: In- processes. Common examples of shared ORB endsystem re-
efficient protocol implementations and improper integrati@durces include (1) TCP connections used by a CORBA [IOP
with 1/O subsystems can adversely affect endsystem perigfiotocol engine, (2) threads used to transfer requests through
mance. Specific factors that cause inefficiencies include #li@nt and server transport endpoints, (3) process-wide dy-
protocol overhead caused by flow control, congestion contighmic memory managers, and (4) internal ORB data struc-
retransmission strategies, and connection management. Lilges like connection tables for transport endpoints and de-
wise, lack of proper I/O subsystem integration yields excesspgiltiplexing maps for client requests. Below, we describe key

data copying, fragmentation, reassembly, context switchiRgurces of priority inversion and non-determinism in conven-
synchronization, checksumming, demultiplexing, marshalingnal ORB endsystems.

and demarshaling overhead [19].

2.2.1 The OS I/O Subsystem
3. ORB transport protocol implementations: Inefficient , . .
implementations of ORB transport protocols, such as /O subsystem is the component in an OS responsible

CORBA Internet Inter-ORB protocol (IIOP) [5] and Simpléor mediating ORB and application access to 'Iow-level net-
Flow Protocol (SFP) [20], can cause significant performang/@rk and OS resources, such as device drivers, protocol
@cks, and the CPU(s). Key challenges in building a high-

overhead and priority inversion. Specific factors responsitt Li / b L2
for these inversions include improper connection managemfformance, real-time I/O subsystem are (1) to minimize con-

strategies, inefficient sharing of endsystem resources, andt&t Switching and synchronization overhead and (2) to enforce
0S guarantees while minimizing priority inversion and non-

cessive synchronization overhead in ORB protocol implemé?l _
tations. determinism [22].
A context switch is triggered when an executing thread re-
linquishes the CPU it is running on voluntarily or involuntar-
4. ORB core implementations and integration with OS ily. Depending on the underlying OS and hardware platform,
services: An improperly designed ORB Core can yielch context switch may require hundreds of instructions to flush
excessive memory accesses, cache misses, heap allegfster windows, memory caches, instruction pipelines, and
tions/deallocations, and context switches [21]. In turn, thegenslation look-aside buffers [23]. Synchronization overhead
factors can increase latency and jitter, which is unacceptadutizes from locking mechanisms that serialize access to shared
for distributed applications with deterministic real-time raesources like I/O buffers, message queues, protocol connec-
quirements. Specific ORB Core factors that cause inefficigion records, and demultiplexing maps used during protocol
cies include data copying, fragmentation/reassembly, contericessing in the OS and ORB.
switching, synchronization, checksumming, socket demul-The I/O subsystems of general-purpose operating systems,
tiplexing, timer handling, request demultiplexing, marshaluch as Solaris and Windows NT, do not perform preemptive,
ing/demarshaling, framing, error checking, connection apgoritized protocol processing [24]. Therefore, the protocol
concurrency architectures. Many of these inefficiencies @i@cessing of lower priority packetsi®tdeferred due to the
similar to those listed in bullet 2 above. Since they occur @trival of higher priority packets. Instead, incoming packets
the user-level rather than at the kernel-level, however, ORR processed by their arrival order, rather than by their prior-
implementers can often address them more readily. ity.
For instance, in Solaris if a low-priority request arrives im-

Figure 2 pinpoints where the various factors outlined abowveediately before a high priority request, the I/O subsystem
impact ORB performance and where optimizations can be &yl process the lower priority packet and pass it to an applica-
plied to reduce key sources of ORB endsystem overhead, tion servant before the higher priority packet. The time spent
ority inversion, and non-determinism. Below, we describe tfrethe low-priority servant represents the degree of priority in-
components in an ORB endsystem that are chiefly responsitdesion incurred by the ORB endsystem and application.
for priority inversion and non-determinism. [22] examines key issues that cause priority inversion in I/O

in args

operation PRESENTATION
P O SERVANT LAYER
out args + return value
[_ DATA
[— coryiINnG
N
IDL
SKELETON | _ scuEpULING,
IDL ORB OBJECT [— DEMUXING, &
STUBS INTERFACE ADAPTER T DISPATCHING
CONCURRENCY
GIOP [~ MODELS
TRANSPORT
PROTOCOLS
0S 1/0 SUBSYSTEM 0S 1/0 SUBSYSTEM M2 o
o
NETWORK ADAPTER

Figure 2: Optimizing Real-time ORB Endsystem Performance

subsystems and describes how TAO's real-time I/O subsisr instance, a high-priority client may need to wait for the

tem avoids many forms of priority inversion by co-schedulingpnnection establishment of a lower-priority client. In ad-

pools of user-level and kernel-level real-time threads. Interedition, the time required to establish connections can vary
ingly, the results in Section 4 illustrate that much of the ovexidely, ranging from microseconds to milliseconds, depend-
head, priority inversion, and non-determinism in ORB endsysg on endsystem load and network congestion.

tems doesiot stem from protocol implementations in the I/O Connection establishment overhead is difficult to bound.
subsystem, but arises instead from the software architecturEaf instance, if an ORB needs to dynamically establish con-

the ORB Core. nections between a client and a server, it is hard to provide
a reasonable guarantee of the worst-case execution time since
222 The ORB Core this time must include the (often variable) connection estab-

lishment time. Moreover, connection establishment often oc-

An ORB Core is the component in CORBA that implementsirs outside the scope of general end-to-end OS QoS proto-
the General Inter-ORB Protocol (GIOP) [5], which definesal enforcement mechanisms, such as retransmission timers
standard format for interoperating between (potentially hetef@5]. To support applications with deterministic real-time
geneous) ORBs. The ORB Core establishes connections @us requirements, therefore, ORB endsystems often must pre-
implements concurrency architectures that process GIOPakecate connectiors priori.

guests. The following discussion outlines common sources of
priority inversion and non-determinism in conventional ORF °
Core implementations. YP!

Connection multiplexing: Conventional ORB Cores
cally share a single multiplexed TCP connection for all ob-
ject references to servants in a server process that are accessed
Connection architecture: The ORB Core’'sconnection ar- by threads in a client process. This connection multiplexing
chitecture which defines how requests are mapped onto nistshown in Figure 3. The goal of connection multiplexing is
work connections, has a major impact on real-time ORB be-

havior. Therefore, a key challenge for developers of real-til APPLICATION] [SERVANTS]

ORBs is to select a connection architecture that can utilize *i *i >

transport mechanisms of an ORB endsystem efficiently SERVER
predictably. The following discussion outlines the key sourg CLIENT ORB CORE
of priority inversion and non-determinism exhibited by coll = (0)t3:516{0)t1) ONE TCP

ventional ORB Core connection architectures: S CONNFCTION
RS /0 SUBSYSTEM
e Dynamic connection management; Conventional

ORBs create connections dynamically in response to client
requests. Dynamic connection management can incur sig- _ _ _
nificant run-time overhead and priority inversion, however. ~ Figure 3: A Multiplexed Connection Architecture

COMMUNICATION LINK |

to minimize the number of connections open to each server,
e.g, to improve server scalability over TCP. However, con-
nection multiplexing can yield substantial packet-level prior-
ity inversions and synchronization overhead, as shown in S¢2

. 6: DISPATCH
tions 4.2.1 and 4.2.2. e

SERVANT

OPERATIONK

OPERATION1
OPERATION2

Concurrency architecture: The ORB Core’sconcurrency 5: pEMUX TO
architecture which defines how requests are mapped on SKELETON |
threads, also has a substantial impact on its real-time behavior. [SERVANTD (SERVANTz) eee
Therefgre, another key challenge for Qevelopers of real-ting. pevux o | |
ORBs is to select a concurrency architecture that can effe ggrvant I
tively share the aggregate processing capacity of an ORB end- (POAO (POAZJ eoe (POAN)
system and its application operations in one or more threagc — I]

: H . H H :DEMUX TO
The following ou.tll.nes the.k.ey sources of p.rlorlty inversior OBIECT (ROOT POA) ORB
and non-determinism exhibited by conventional ORB Coi

. ADAPTER LAYER
concurrency architectures: ()
2: DEMUX TO
o Two-way operation reply processing: On the client- I/O HANDLE os
side, conventional ORB Core concurrency architectures for KERNEL
two-way operations can incur significant priority inversionl:PEMUX THRU LAYER

For instance, multi-threaded ORB Cores that use conne JROTOCOL STACK

tion multiplexing incur priority inversions when low-priority
threads awaiting replies from a server block out higher prior-
ity threads awaiting replies from the same server.

Figure 4: CORBA 2.2 Logical Server Architecture

e Thread pools: On the server-side, ORB Core conSteps 3, and 4: The ORB Core uses the addressing informa-
currency architectures often usleread pools[26] to select tion in the client's object key to locate the appropriate POA
a thread in which to process an incoming request. Hownd servant. POAs can be organized hierarchically. There-
ever, conventional ORBs do not provide programming intefere, locating the POA that contains the designated servant can
faces that allow real-time applications to assign the priorityolve a number of demultiplexing steps through the nested
of threads in this pool. Therefore, the priority of a thread POA hierarchy.

the pool is often inappropriate for the priority of the serva%t p5and 6: The POA uses the operation name to find the

that ultimately executes the request. An improperly design . ;

ORB Core increases the potential for, and duration of prior@fpmp”ate IDL skeleton, which demarshals the request buffer

inversion and non-determinism [27] ' ' Into operation parameters and performs the upcall to code sup-
' plied by servant developers to implement the object’s opera-

tion.

2.2.3 The Object Adapter The conventional deeply-layered ORB endsystem demulti-
. . . . lexing implementation shown in Figure 4 is generally inap-
An Ob.JeCt Adapter IS th? co_mpongnt in CORBA that is r‘g—ropriate for high-performance and real-time applications for
sponsible for demultiplexing incoming requests to servant Ra following reasons [28]:
erations that handle the request. A standard GIOP-compliant '
client request contains the identity of its object and operatid?ecreased efficiency: Layered demultiplexing reduces per-
An object is identified by an object key, which is aotet ~ formance by increasing the number of internal tables that
sequence . An operation is represented astaing . As must be searched as incoming client requests ascend through
shown in Figure 4, the ORB endsystem must perform the fi#e processing layers in an ORB endsystem. Demultiplexing
lowing demultiplexing tasks: client requests through all these layers can be expensive, par-
ticularly when a large number of operations appear in an IDL
Steps 1 and 2: The OS protocol stack demultiplexes the irinterface and/or a large number of servants are managed by an

coming client request multiple times, starting from the ne®bject Adapter.

work interface, through the data link, network, and transp@gt.-aased priority inversion and non-determinism: Lay-

layers up to the user/kernel boundagyq, the socket layer), graq demultiplexing can cause priority inversions because
where the data is passed to the ORB Core in a server process.

5

servant-level quality of service (QoS) information is inacce®hen multiplexing is used, however, a key challenge is to de-
sible to the lowest-level device drivers and protocol stackssign an efficient ORB Core connection architecture that sup-
the I/O subsystem of an ORB endsystem. Therefore, an @brts concurrertead andwrite operations.

ject Adapter may demultiplex packets according to their FIFOTCP provides untyped bytestream data transfer semantics.
order of arrival. FIFO demultiplexing can cause higher prioFherefore, multiple threads canmetad or write from the

ity packets to wait for a non-deterministic period of time whilsame socket concurrently. Likewiseyite s to a socket
lower priority packets are demultiplexed and dispatched [23hared within an ORB process must be serialized. Serializa-

. tion is typically implemented by having a client thread acquire
Conventional implementations of CORBA incur significant lock before writing to a shared socket.

demultiplexing overhead. For instance, [15, 17] show that cons

. . For one-way operations, there is no need for additional lock-
0 - . . .
ventional ORBs spend 17% of the total server time process, . o processing once a request is sent. Implementing two-

N9 demultplexmg rgquests. Unless th!s overhead is redu% y operations over a shared connection is more complicated,
and demultiplexing is performed predictably, ORBs canilwever. In this case, the ORB Core must allow multiple

E;(:i\(l)lgs uniform, scalable QoS guarantees to real-time ap'ﬂjl'Feads to concurrentlyréad ” from a shared socket end-
' point.
[14] presents alternative ORB demultiplexing techmqugs” server replies are multiplexed through a single TCP con-

and describes how TAO's real-time Object Adapter prOVidﬁgction then multiple threads cann@tad simultaneously

optimal demultiplexing strategies that execute determini:%%m that socket endpoint. Instead, the ORB Core must de-
cally in constant time. The demultiplexing strategies used '

Mlitiplex incomi lies to th iate client thread b
TAO also avoid priority inversion vide-layered demultiplex- Ip ex incoming repliies fo the appropria’e Cient tread by

. . . o } ._using the GIOP sequence number sent with the original client
ing, which removes unnecessary layering within TAO's Obje%quest and returned with the servant's reply
Adapter. '

Several common ways of implementing connection multi-
plexing to allow concurrentead andwrite operations are

3 Alternative ORB Core Concurrency described below.

. . Active connection architecture:
and Connection Architectures

e Overview: One approach is thective connectioarchi-

This section descnbes' a ”“mper of common ORB Qore C?@_éture shown in Figure 5. An application thredl ihvokes
currency and connection architectures. Each architecture is

used by one or more commerugl or research CORBA imple- (APPLICATION)

mentations. Below, we qualitatively evaluate how each ar- 1: invok

chitecture manages the aggregate processing capacity of ORB .,i : invoke_twoway()

endsystem components and application operations. Section 4 N :7: dequeue())

then presents quantitative results that illustrate how efficiently 2: enqueue(y & return

and predictably these alternatives perform in practice. E REQUEST E

QUEUES

3.1 Alternative ORB Core Connection Archi- 3: dequeue() 0: enqueue()
tectures & writeQ % 5:iread)

There are two general strategies for structuring the connec- 4: select()

tion architecture of an ORB Coremultiplexedand non- \ = J

multiplexed We describe and evaluate various design alter- —

natives for each approach below, focusing on client-side con- I/O SUBSYSTEM

nection architectures in our examples. ,] i)
Figure 5: Active Connection Architecture

3.1.1 Multiplexed Connection Architectures a two-way operation, which enqueues the request in the ORB

Most conventional ORBs multiplex all client requests emané)- A separate thread in the ORB Core services this qugue (
ing from threads in a single process through one TCP conn@@d performs avrite operation on the multiplexed socket.
tion to their corresponding server process. This multiplexé§€ ORB threacelect s' (4) on the socket waiting for the
popnectlon architecture is used to bU."d scalable ORBs by MiNiTheselect callis typically used since a client may have multiple mul-
imizing the number of TCP connections open to each serufexed connections to multiple servers.

server to replyread s the reply from the sockeb), and en- To avoid corrupting the socket bytestream, only the leader
gueues the reply in a message que)e Finally, the applica- thread carselect on the socket(s). Thus, all client threads
tion thread retrieves the reply from this queug &nd returns that “follow the leader” taead replies from the shared socket
back to its caller. will block on semaphores managed by the ORB Core. If

q . Thead fth) . replies return from the server in FIFO order this strategy is
e Advantages: The advantage of the active CONNection aima| since there is no unnecessary processing or context

chitecture is that it simplifies ORB implementations by us"@ﬁ/itching. Since replies may arrive in non-FIFO order, how-

a uniform queueing mechanism. In addition, if every sockglo | ‘the next reply from a server could be for any one of the
handles packets of the same priority leved, packets of dif- .ont threads blocked on semaphores.

ferentpr'iorities are not received on the same socket, the'actlvgvhen the next reply arrives from the server, the leader
conn_ectlon can handle .‘h?se. packets in FIFO order W'th?éf'gtd s the reply 4). It uses the sequence number returned
causing request-level priority inversion [22]. in the GIOP reply header to identify the correct thread to re-

o Disadvantages: The disadvantage with this architecceive the reply. If the reply is for the leader’s own request, the
ture, however, is that the active connection forces an extra ct§igder thread releases the semaphore of the next foll@yer (
text switch on all two-way operations. Therefore, to minimiZ&nd returns to its calle6f. The next follower thread becomes
this overhead, many ORBs use a variant of the active connid: new leader and blocks select

tion architecture described next. If the reply isnotfor the leader thread, however, the leader
_ _ must signal the semaphore of the appropriate thread. This sig-
Leader/Followers connection architecture: naled thread then wakes upad s its reply, and returns to its

caller. Meanwhile, the leader thread continuesdtect for

e Overview: An alternative to the active connectiod® nextreply.
model is theleader/followersarchitecture shown in Figure 6. e Advantages: Compared with active connections, the
As before, an application thread invokes a two-way operatigéivantage of the leader/follower connection architecture is
that it minimizes the number of context switches incurifed

APPLICATION replies arrive in FIFO order
->2 1: invoke_twoway() e Advantages: The disadvantage of the leader/follower
g model is that the complex implementation logic can yield sig-
% nificant locking overhead and priority inversion. The locking
2 g overhead stems from the need to acquire mutexes when send-
g z ing requests and to block on the semaphores while waiting for
S LEADER FOLLOWERS E replies. The priority inversion occurs if the priorities of the
g f% waiting threads are not respected by the leader thread when it
g 4: read() - demultiplexes replies to client threads.
2 ()
SEMAPHORES 3.1.2 Non-multiplexed Connection Architectures
g e Overview: One technique for minimizing ORB Core
2: writeQ priority inversion is to use a non-multiplexed connection ar-
chitecture, such as the one shown in Figure 7. In this connec-
/O SUBSYSTEM tion architecture, each client thread maintains a table of pre-

established connections to servers in thread-specific storage
[30]. A separate connection is maintained in each thread for

call (1). Rather than enqueueing the request in an ORB mB¥ery priority Ieyel,g.g, P, Py, .P3’ etc. As a result, wheq a
sage queue, however, the request is sent across the socketW jway operation is invoked] it shgres ho socket endpoints
mediately R), using the application thread that invoked thit dOtTr thrgads. Therefore,.thmte (2, sele'c:]),

operation to perform therrite . Moreover, no single thread'©@ (4), and return §) operations can occur without con-

in the ORB Core is dedicated to handling all the socket I/O ﬁﬂnding for ORB Core resources with other threads in the pro-

the leader/follower architecture. Instead, the first thread tif&t™:

attempts to wait for a reply on the multiplexed connection will ¢ Advantages: The primary advantages of a non-
block inselect waiting for a reply 8). This thread is called multiplexed connection architecture is that it preserves end-to-
theleader end priorities and minimizes priority inversion while sending

Figure 6: Leader/Follower Connection Architecture

APPLICATION (SERVANTS

—| 1: invoke_twoway()

5 _»2 _»2 5: dispatch upcall()

g 5: return()

a ORB CORE

% 4: dequeue() VLU ENEIHYN Y
Py P, Py P4|(P{ P, P3 P : enqueue

: 5 enguenc)

S L read(

v

I/0 SUBSYSTEM I/0 SUBSYSTEM

Figure 7: Non-multiplexed Connection Architecture ~ Figure 8: Server-side Worker Thread Pool Concurrency Ar-
chitecture

requests through ORB endsystems. In addition, since connec-
tions are not shared, this design incurs low synchronizatirfhe Pool dequeued)the next request from the head of the
overhead because no additional locks are required in the Ofé¢{gue and dispatches §)(

Core when sending and receiving two-way requests [31]. | Aqyantages: The chief advantage of the worker thread

Disadvantages: The disadvantage with a nonP0ool concurrency architecture is its ease of implementation. In
é)&rticular, the request queue provides a straightforward pro-
er/consumer design.

[]
multiplexed connection architecture is that it can use a lar
number of socket endpoints than the multiplexed connectfdiC

model, which may increase the ORB endsystem memory, p;qaqyantages: The disadvantages of this model stem

footprint. Moreover, this approach does not scale with &, the excessive context switching and synchronization re-

number of pr!onty Ievel§. Therefore,. itis m0§t effectlve whe ired to manage the request queue, as well as request-level
used for statically configured real-time applications, such

o N . X ority inversion caused by connection multiplexing. Since
avionics mission computing systems [22], which possesyigarent priority requests share the same transport connec-

small, fixeq number of connections and pri.oriFy levels, wheﬁ%n, a high-priority request may wait until a low-priority re-
each priority level maps to an OS thread priority. quest that arrived earlier is processed. Moreover, thread-level
priority inversions can occur if the priority of the thread that
originally read s the request is lower than the priority of the

3.2 Alternative ORB Core Concurrency Archi-
servant that processes the request.

tectures

There are a variety of strategies for structuring the concurreRc¥ o The Leader/Follower Thread Pool Architecture
architecture in an ORB [26]. Below, we describe a number of

alternative ORB Core concurrency architectures, focusing or» Overview: The leader/follower thread pool architecture
server-side concurrency. is an optimization of the worker thread pool model. It is sim-
ilar to the leader/follower connection architecture discussed
in Section 3.1.1. As shown in Figure 9, a pool of threads is
allocated and a leader thread is chosesdiect (1) on con-
nections for all servants in the server process. When a request
gves, this thread readg)(it into an internal buffer. If this

3.2.1 The Worker Thread Pool Architecture

e Overview: This ORB concurrency architecture uses

design similar to the active connection architecture descrif&

in Section 3.1.1. As shown in Figure 8, the components'ﬁ@ valid request for a servant, a follower thread in the pool

a worker thread pool include an 1/O thread, a request quei§d€leased to become the new leadyrand the leader thread

and a pool of worker threads. The 1/O thredect s (1) on dispatches the upcaltt). After the upcall is dispatched, the
the socket endpointseads (2) new client requests, an@)(original leader thread becomes a follower and returns to the

inserts them into the tail of the request queue. A worker thrdgead pool. New requests are queued in socket endpoints un-
til a thread in the pool is available to execute the requests.

(SERVANTS]
4: dispatch upcall()

SERVANT

RB RE 3: dequeue, SKELETONS |

o =0 filter - (yreap 4: dispatch

LEADER FOLLOWERS request, | gy oER upcall()
&enqueue

il (mm) (.5 OBJECT

() sEMAPHORE ADAPTER

1: select() 0 @ ¥

: enqueue(data) ORB CORE

CONNECTION THREADS

I/0 SUBSYSTEM

Figure 9: Server-side Leader/Follower Concurrency Architec- —

ture I/0 SUBSYSTEM

e Advantages: Compared with the worker thread pool deFigure 10: Server-side Thread Framework Concurrency Ar-
sign, the chief advantage of the leader/follower thread pabiitecture
architecture is that it minimizes context switching overhead
incurred by incoming requests. Overhead is minimized since
the request need not be transferred from the thread that regtﬂh
to another thread in the pool that processes it.

pr|or|ty This thread then passes control back to the ORB,
|ch performs operation demultiplexing and dispatches the
upcall @).

¢ Disadvantages: The leader/follower architecture’s dis- o Advant Th dvant f a threading f i
advantages are largely the same as with the worker thread gg.ravantages. € main advantage of a threading frame

sign. In addition, it is harder to implement the leader/followef York is its flexibility. The thread filter mechanism can be
model than the worker thread pool model. programmed by server developers to support various concur-

rency strategies. For instance, to implement a thread-per-
request [33] strategy, the filter can spawn a new thread and
3.2.3 Threading Framework Architecture pass the request to this new thread. Likewise, the MT-Orbix
threading framework can be configured to implement other

* Overview: A very flgxmle way to '”_‘p'e_me”t an ORBconcurrency architectures such as thread-per-object [34] and
concurrency architecture is to allow application developersth%ad pool [35].

customize hook methods provided byheeading framework

One way of structuring this framework is shown in Figure 10. ¢ Disadvantages: There are several disadvantages with

This design is based on the MT-Orbix thread filter frameworthe thread framework design, however. First, since there is

which implements a variant of the Chain of Responsibility padnly a single chain of filters, priority inversion can occur be-

tern [32]. cause each request must traverse the filter chain in FIFO or-
In MT-Orbix, an application can install a thread filter at théder. Second, there may be FIFO queueing at multiple levels

top of a chain of filters. Filters are application-programmablethe ORB endsystem. Therefore, a high priority request may

hooks that can perform a number of tasks. Common taskshe-processed only after several lower priority requests that ar-

clude intercepting, modifying, or examining each request sewed earlier. Third, the generality of the threading framework

to and from the ORB. can substantially increase locking overhead since locks must
In the thread framework architecture, a connection threfe acquired to insert requests into the queue of the appropriate

in the ORB Coreaead s (1) a request from a socket endpoirthread.

and enqueues the request on a request queue in the ORB Core

(2). Another thread then dequeues the requessalid passes 3 5 4 The Reactor-per-Thread-Priority Architecture

it through each filter in the chain successively. The topmost

filter, i.e., the thread filter, determines the thread to handle thise Overview: TheReactor -per-thread-priority architec-

request. In thehread-poolmodel, the thread filter enqueueture is based on the Reactor pattern [36], which integrates

the requestinto a queue serviced by a thread with the approjpansport endpoint demultiplexing and the dispatching of the

corresponding event handlers. This threading architecture@sests for eacliReactor within a single thread of control,
sociates a group dReactor s with a group of threads run-which can reduce parallelism. To alleviate this problem, a
ning at different priorities. As shown in Figure 11, the compeariant of this architecture can associafoal of threads with
each priority level. Though this will increase potential par-
(SERVANTS J allelism, it can incur greater context switching overhead and

non-determinism, which may be unacceptable for certain types
of real-time applications.

3.3 Integrating Connection and Concurrency
Architectures

a8 azz0n

P LEE TN
wHBmnZ2Z200
S
BOHTEAA>
~HamZzz0a
vHABZZO0A
w=_-AmZ2Z200
BOHTEAA>

g
&

The Reactor -per-thread-priority architecture can be inte-
grated seamlessly with the non-multiplexed connection model
described in Section 3.1.2 to provide end-to-end priority
preservation in real-time ORB endsystems, as shown in . Fig-
ure 12. In this diagram, thacceptor s listen on ports that

I/0 SUBSYSTEM

Figure 11: Server-side Reactor-per-Thread-Priority Concp=
Y . P Y CLIENT APPLICATION SERVER ORB CORE
rency Architecture
+i »i »i P, P
STUB STUB STUB

nents in theReactor -per-thread-priority architecture includ
multiple pre-allocate®Reactor s, each of which is associate(
with its own real-time thread of control for each priority leve
e.g, P, ...P;, in the ORB. For instance, avionics missio
computing systems [37] commonly execute their tasks in fix
priority threads corresponding to thetes e.g, 20 Hz, 10 Hz,
5 Hz', qnd 1 Hz, at which operations are cglled by clien.ts. /O SUBSYSTEM /O SUBSYSTEM

Within each thread, thReactor demultiplexes?) all in-
coming client requests to the appropriate connection handler,
i.e., connect, connect, etc. The connection handlezad s
(2) the request and dispatché {t to a servant that executedmigure 12: End-to-end Real-time ORB Core Software Archi-
the upcall at its thread priority. tecture

EachReactor in an ORB server thread is also associated

with an Acceptor [38]. The Acceptor is a factory that ¢, rrespond to the 20 Hz, 10 Hz, 5 Hz, and 1 Hz rate group
listens on a particular portnumberforcllents to connectto tr}ﬂpead priorities, respectively. Once a client connects, its
thread and creates a connection handler to process the GAQE’eptor creates a new socket queue and connection han-

requests. In the example in Figure 11, there is a listener Ry o service that queue. The 1/O subsystem uses the port
for each priority level. number contained in arriving requests as a demultiplexing key

e Advantages: The advantage of thdReactor -per- to associate requests with the appropriate socket queue. Each
thread-priority architecture is that it minimizes priority ingqueue is served by an ORB Core thread that runs at the appro-
version and non-determinism. Moreover, it reduces contg@xiate priority.
switching and synchronization.overhe.ad by requiring the staterne combination of theReactor -per-thread-priority ar-
of Servan.ts Fg be locked .o.nly if they interact across C_ilffereé}ﬁitecture and the non-multiplexed connection architecture
thread priorities. In addition, this concurrency architeCtUfginimizes priority inversion through the entire distributed
su_pports scheduling and analysis tec_hnlques th_at associateig endsystem by eagerly demultiplexing incoming requests
ority with rate, such as Rate Monotonic Scheduling (RMS) agd;q the appropriate real-time thread that services the priority
Rate Monotonic Analysis (RMA) [39, 40]. level of the target servant. As shown in Section 4.2, this de-

¢ Disadvantages: The disadvantage with tHeeactor - sign is well suited for real-time applications with deterministic
per-thread-priority architecture is that it serializes all client r&oS requirements.

CLIENT ORB CORE

CONNECTOR CONNECTOR CONNECTOR R 123
2010 5 1 2010 5 1 2010 51 REACTOR){ REACTOR }{ REACTOR
HZHZHZHZ HZHZHZHZ HZHZHZHZ (10 HZ) (5 HZ) (1 HZ)

~HAmZzZ0A
eHAmZZOA
wHAmZZ00

oRmmAA»
~=samzz0oA
vmHAaEmZZOA
w=sAmZz200
XOoHTEAA>
~=samzzon
vmHamZZOA
w=SAmZz200
XOoHTEAA>

>

COMMUNICATION LINK

10

4 Real-time ORB Core Performance
Experiments

[

This section describes the results of experiments that mea-
sure the real-time behavior of several commercial and researct
ORBs, including IONA MT-Orbix 2.2, Sun miniCOOL 43

Expersoft CORBAplus 2.1.1, and TAO 1.0. MT-Orbix and FORE SYSTEMS
CORBAplus are not real-time ORBE&eg., they were not ex- x Asx 2008x
plicitly designed to support applications with real-time QoS] ATM SWITCH
requirements. Sun miniCOOL is a subset of the COOL ORB (16 porT, OC3
that is specifically designed for embedded systems with small 155mBPS/PORT,
memory footprints. TAO was designed at Washington Univer- ULTRA 9,180 MTU)
sity to support real-time applications with deterministic and SPARC 2 ‘

statistical quality of service requirements, as well as best ef- (FORE ATM E= ‘

fort requirements. TAO has been used in a number of produc- ADAPTORS Eal

tion real-time systems at companies like Boeing [37], SAIC, AND ETHERNET)
Lockheed Martin, and Raytheon.

Figure 14: Hardware for the CORBA/ATM Testbed

4.1 Benchmarking Testbed

This section describes the experimental testbed we desigtr%vt:at[r SPARC-2 contains two 168 MHz Super SPARC CPUs

to systematically measure sources of latency and throughpu a 1 Megabyte cache per-CPU. The Solaris 2.5.1 TCP/IP

A : L otocol stack is implemented using the STREAMS commu-
overhead, priority inversion, and non-determinism in OR .
ication framework [41].

endsystems. The architecture of our testbed is depicted in IJ-:}g-

ure 13. The hardware and software components used in iEEaCh UltraSPARC-2 has 256 Mbytes of RAM and an ENI-

Bs-MF ATM adaptor card, which supports 155 Megabits
per-sec (Mbps) SONET multimode fiber. The Maximum

4 h /Servic&s =) feai : ;
= || Transmission Unit (MTU) on the ENI ATM adaptor is 9,180
. @ @ ' @ =" || bytes. Each ENI card has 512 Kbytes of on-board memory.
. — || A maximum of 32 Kbytes is allotted per ATM virtual circuit
Co Ci .o Cp g0 Object Adapter _=> || connection for receiving and transmitting frames (for a total of
o (= — ||= || 64Kb). This allows up to eight switched virtual connections
:i eIz ORB Core —. | | per card. The CORBA/ATM hardware platform is shown in
Client Server Figure 14.
E x \ Eb 4.1.2 Client/Server Configuration and Benchmarking
— : = Methodology
ATM Switch S Server benchmarking configuration: As shown in Fig-
Ultra2 Ultra2 ure 13, our testbed server consists of two servants within an

Figure 13: ORB Endsystem Benchmarking Testbed

experiments are outlined below.

4.1.1 Hardware Configuration

ORB's Object Adapter. One servant runs in a higher priority
thread than the other. Each thread processes requests that are
sent to its servant by client threads on the other UltraSPARC-2.
Solaris real-time threads [42] are used to implement ser-
vant priorities. The high-priority servant thread has ltigh-
estreal-time priority available on Solaris and the low-priority
servant has théowestreal-time priority. The server bench-

The experiments in this section were conducted usingmarking configuration is implemented in the various ORBs as
FORE systems ASX-1000 ATM switch connected to twglows:

dual-processor UltraSPARC-2s running Solaris 2.5.1. The
ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Eac[h

e CORBAplus: which uses the worker thread pool archi-
ecture described in Section 3.2.1. In version 2.1.1 of COR-

2COO0L was previously developed by Chorus, which was acquired by SBAplus, multi-threaded applications have an event dispatcher

11

thread and a pool of worker threads. The dispatcher thread (SERVANTS
receives the requests and passes them to application worker 3: dispatch upcall()

threads, which process the requests. In the simplest configu-

ration, a server application can choose to create no additional ;l' 'l; 'gi ';

threads and rely upon the main thread to process all requests.

e MiNiCOOL: which uses the leader/follower thread pool

=
mzz00a
= °on
w Z2Z200
moHmmaAa>
~amzzoa
~amzzoa
Ham=zzoa
oOHmEAAO»
Ham=zzoa
Hem=zzoa
Ham=zzoa
cHmmaas
Ham=zzoa
Ham=zzoa
Hem=zzoa

monmmaas) N
. J

N
architecture described in Section 3.2.2. Version 4.3 of mini- LL
COOL allows application-level concurrency control. Appli- 2: read()
cation developers can choose between thread-per-request or Ln 2 123 R 123) 123
thread-pool. The thread-pool concurrency architecture was REACTOR] REACTOR] REACTOR] REACTOR]
used for our benchmarks because it is better suited for deter- ek) ki o

ministic real-time applications than thread-per-request. In the
thread-pool concurrency architecture, the application initially
spawns a fixed number of threads. In addition, when the initial
thread pool size is insufficient, miniCOOL can be configured
to handle requests on behalf of server applications by spawigure 15: TAO’sReactor -per-Thread-Priority Thread Pool
ing threads dynamically up to a maximum limit. Architecture

I/0 SUBSYSTEM

e MT-Orbix: which uses the thread pool framework ar-
chitecture based on the Chain of Responsibility pattern dleread they are ready to begin, the main thread unblocks all
scribed in Section 3.2.3. Version 2.2 of MT-Orbix is usedient threads. These threads execute in an order determined
to create two real-time servant threads at startup. The highithe Solaris real-time thread dispatcher. Each client invokes
priority thread is associated with the high-priority servant ade000 CORBA two-way requests at its prescribed rate.
the low-priority thread is associated with the low-priority ser-
vant. Incoming requests are assigned to these threads usingtpe pPerformance Results on Solaris
Orbix thread filter mechanism, as shown in Figure 10. Each
priority has its own queue of requests to avoid priority invefWo categories of tests were used in our benchmarking exper-
sion within the queue. This inversion could otherwise occtipents:blackboxandwhitebox

if a high-priority servant and a low-priority servant dequeuglackbox benchmarks: We computed the average two-way

requests from the same queue. response time incurred by various clients. In addition, we
computed two-way operation jitter, which is the standard de-
}gﬂtion from the average two-way response time. High levels

1.0 of TAO integrates thReactor -per-thread-priority con- of latency and jitter are undesirable for real-time applications
currency architecture with a non-multiplexed connection aince they degrade worst-case execution time and reduce CPU

chitecture, as shown in Figure 15. In contrast, the other thiilization. Section 4.2.1 explains the blackbox results.

ORBs multiplex all requests from client threads in each prd¢hitebox benchmarks: To precisely pinpoint th&sources
cess over a single connection to the server process. of priority inversion and performance non-determinism, we
employed whitebox benchmarks. These benchmarks used
Figure 13 shows how profiling tools, such as UNIXruss andQuantify [43].
These tools trace and log the activities of the ORBs and mea-
low-priority clients,C, ... C,,. The high-priority client runs sure the time spent on various tasks, as explained in Sec-

in a high-priority real-time OS thread and invokes operatingn 4.2.2.
at 20 Hz,j.e,, it invokes 20 CORBA two-way calls per second. Together, the blackbox and whitebox benchmarks indicate
All low-priority clients have the same lower priority OS threathe end-to-end latency/jitter incurred by CORBA clients and
priority and invoke operations at 10 Hize., they invoke 10 help explain the reason for these results. In general, the re-
CORBA two-way calls per second. In each call, the cliestilts reveal why ORBs like MT-Orbix, CORBAplus, and mini-
sends a value of typEORBA::Octet to the servant. The COOL are not yet suited for applications with real-time per-
servant cubes the number and returns it to the client. formance requirements. Likewise, the results illustrate empir-
When the test program creates the client threads, they blaakly how and why the non-multiplexed, priority-based ORB
on a barrier lock so that no client begins work until the othe@ore architecture used by TAO is more suited for many types
are created and ready to run. When all threads inform the m@fineal-time applications.

e TAO: which uses theReactor -per-thread-priority
concurrency architecture described in Section 3.2.4. Vers

Client benchmarking configuration:
the benchmarking test used one high-priority cli€ptandn

12

4.2.1 Blackbox Results \
As the number of low-priority clients increases, the numb \C

low-priority requests sent to the server also increases. Id

a real-time ORB endsystem should exhibit no variance i 3001 |
latency observed by the high-priority client, irrespective o oo
number of low-priority clients. Our measurements of enc g B
end two-way ORB latency yielded the results in Figure 1¢ g |
2
§ 150
52 1S -
£
48 +—| —#— CORBAplus High Priority =~ —#— CORBAplus Low Priority f 5 100
—A— MT-ORBIX High Priority —%— MT-ORBIX Low Priority 3 cg;’;‘;:‘.‘:’;“:,;:i:;',‘.’;‘y
44 +—| 507 MT-ORBIX Low Priority
=®—miniCOOL High Priority =>¢=miniCOOL Low Priority MT-ORBIX High Priority
»n miniCOOL Low Priority
S 40 77 —e—TAO High Priority TAO Low Priority . miniCOOL High Priority
o TAO Low Priority
g 36 TAO High Priority
% / /. Number of Low Priority Clients 0w g
=
=32 Figure 17: Comparative Jitter for CORBAplus, MT-Orbix,
8 miniCOOL and TAO
% 28 //
o
% 24
z A /;/ CORBAplus results: CORBAplus incurs priority inversion
£ 20 at various points in the graph shown in Figure 16. After dis-
[. .
26 playing a high amount of latency for a small number of low-
5

/N //\/ P priority clients, the latency drops suddenly at 10 clients, then

12 / W eventually rises again. This erratic behavior is not suitable for
8 2 deterministic real-time applications. Section 4.2.2 reveals how
\ M X the poor performance and priority inversions stem largely from

1 ' , e . CORBAplus’ concurrency architecture. Figure 17 shows that

, ———————% H—— ' . :
‘ ‘ ‘ ‘ ‘ ‘ : : : : CORBAplus generates high levels of jitter, particularly when
15 10 15 20 25 30 3 40 45 50 tested with 40, 45, and 50 low-priority clients. These results

Number of Low Priority Clients show an erratic and undesirable behavior for applications that

. . _require real-time guarantees.
Figure 16: Comparative Latency for CORBAplus, MT-Orbix,

miniCOOL, and TAO MT-Orbix results: MT-Orbix incurs substantial priority in-
version as the number of low-priority clients increase. After

Figure 16 shows that as the number of low-priority clientge number of clients exceeds 10, the high-priority client per-
increases, MT-Orbix and CORBAplus incur significantffprms increasingly worse than the low-priority clients. This
higher latencies for their high-priority client thread. Conbehavior is not conducive to deterministic real-time applica-
pared with TAO, MT-Orbix’s latency is 7 times higher an&ions. Section 4.2.2 reveals how these inversions stem largely
CORBAplus’ latency is 25 times higher. In addition, notfom the MT-Orbix’s concurrency architecture on the server.
the irregular behavior of the average latency that miniCO®n addition, MT-Orbix produces high levels of jitter, as shown
displays,i.e., from 10 msec latency running 20 low-priorityin Figure 17. This behavior is caused by priority inversions in
clients down to 2 msec with 25 low-priority clients. Such norits ORB Core, as explained in Section 4.2.2.

determinism is undesirable for real-time applications. o o)
The low-priority clients for MT-Orbix, CORBAplus andMiNICOOL results: As the number of low-priority clients
' ee’pcrease, the latency observed by the high-priority client also

miniCOOL also exhibit very high levels of jitter. Compar ; i . L
with TAO, CORBAplus incurs 300 times as much jitter an creases, reaching10 msec, at 20 clients, at which point it
' creases suddenly to 2.5 msec with 25 clients. This erratic

MT-Orbix 25 times as much jitter in the worst case, as sho bﬁh or b id | iority cl
in Figure 17. Likewise, miniCOOL's low-priority clients dis- ehavior Aeichomeﬁ T]mT evi entfashm?]rehow_-prllorlt?{ c |ents
play an erratic behavior with several high bursts of jitter, whid@{€ run. Although the latency of the high-priority client is

makes it undesirable for deterministic real-time application?.maller _than the Iow-p_rlqnty clients, the n_on—hnear behgvpr
of the clients makes miniCOOL problematic for deterministic

The blackbox results for each ORB are explained in maigal-time applications.
detail below.

13

The difference in latency between the high- and the low:2.2 Whitebox Results

priority client is also unpredictable. For instance, it ranges the whitebox test d f i fi
from 0.55 msec to 10 msec. Section 4.2.2 reveals how thf¥ € WNitebox tests, we used a configuration of ten con-

behavior stems largely from the connection architecture u%ﬁrenlt. cl|tents S|r|n|lar tp t.[]e oge descnbﬁdhm .Sef:tuolr; 4'hl'
by the miniCOOL client and server. ine clients were low-priority and one was high-priority. Eac

N) o))) client sent 4,000 two-way requests to the server, which had a
The jitter incurred by miniCOOL is also fairly high, aq_priority servant and high-priority servant thread.

shown in Figure 17. Th|§ jitter is similar to that'observed Our previous experience using CORBA for real-time avion-

by the CORBAplus ORB since both spend approximately (& mission computing [37] indicated that locks constitute a

same percentage of time executing locking operation. Sggificant source of overhead, non-determinism and potential

tion 4.2.2 evaluates ORB locking behavior. priority inversion for real-time ORBs. UsinQuantify ~and

truss , we measured the time the ORBs consumed perform-

- ing tasks like synchronization, I/O, and protocol processing.
TAO results: Figure 16 reveals that as the number of low- In addion. we computed a metric that records

priority clients increase from 1 to 50, the latency obserVﬁge number of calls made to userlevel locks

Zye-rm;ﬁs dh;f%?émzrgztdf:; {ngms byrvgrz 2:3%;. h-H?YX)-r' mutex _lock and mutex _unlock) and kernel-level
ver, ! W W-priorty 'gh-prioni¥ s (lwp _mutex _lock , _wp _mutex _unlock ,

clients starts at 0.05 msec and ends at 0.27 msec. In contrmgj semapost and Iwp semawait). This metric

in miniCOOL, it grows from 0.55 msec to 10 msec, and in .
N ' m he aver number of lock ration r-r .
CORBAplus it grows from 0.42 msec to 15 msec. Moreov computes the average number of lock operations per-request

I . .
Sh general, kernel-level locks are considerably more expensive

the rate of increase of latency with TAQO is significantly Iowesrince they incur kernel/user mode switching overhead.

than MT-Orbix, Sun miniCOOL, and CORBAplus. In partic- . .
o . . The whitebox results from our experiments are presented
ular, when there are 50 low-priority clients competing for the

CPU and network bandwidth, the low-priority client Iatencyelow'

observed with MT-Orbix is more than 7 times that of TAO, theéORBAplus whitebox results: Our whitebox analysis of
miniCOOL latency is~3 times that of TAO, and CORBAplusCORBAplus reveals high levels of synchronization overhead
is ~25 times that of TAO. from mutex and semaphore operations at the user-level for
ieach two-way request, as shown in Figure 22. Synchroniza-

ways performs better than its low-priority clients. This demofion 0verhead arises from locking operations that implement
strates that the connection and concurrency architecture£fy connection and concurrency architecture used by COR-
TAO's ORB Core are better suited to maintaining real-time rB~PIUS- L

quest priorities end-to-end. The key difference between TAQAS shown in Figure 18, CORBAplus exhibits high synchro-
and other ORBSs is that its GIOP protocol processing is pgrlzatlon overhgad (52%) using kernel-levell locks in the client
formed on a dedicated connection by a dedicated real-tiffl the server incurs high levels of processing overhead (45%)
thread with a suitable end-to-end real-time priority. Thudue to kernel-level lock operations.

TAO shares the minimal amount of ORB endsystem resourced, 0" €ach CORBA request/response, CORBAplus’s client

which substantially reduces opportunities for priority invefRB performs 199 lock operations, whereas the server per-

sion and locking overhead. forms 215 user-level lock operations, as shown in Figure 22.

The TAO ORB al hibi ow i | h 1Th|s locking overhead stems largely from excessive dynamic

€ also exhibits very low jitter (_ess than emory allocation, as described in Section 4.4. Each dynamic
msecs) for the low-priority requests and lower jitter (less th%ﬂocation causes two user-level lock operatidres, one ac-

1 msec) for the high-priority requests. The stability of TAO’%uire and one release.

Igtency is clearly desirable for applications that require pr “The CORBAplus connection and concurrency architectures
dictable end-to-end performance. are outlined briefly below.

In contrast to the other ORBs, TAO's high-priority client a

In general, the blackbox results described above dem e CORBAplus con_mectlon. architecture: The_ COR-
ﬁ%plus ORB connection architecture uses the active connec-

strate that improper choice of ORB Core concurrency a X . :) S
connection software architectures can play a significant r&f)en model described in Section 3.1.1 and depicted in Figure 8.

in exacerbating priority inversion and non-determinism. Thg]IS design multiplexes all requests to the same server through

fact that TAO achieves such low levels of latency and jitt8 € ac.tlve conngctlon thlread, Wh'Ch. simplifies QRB imple-
when run over the non-real-time Solaris I/0 subsystem furtﬁg?ntat'ons by using a uniform queueing mechanism.
demonstrates the feasibility of using standard OO middlewar® CORBAplus concurrency architecture: The COR-
like CORBA to support real-time applications. BAplus ORB concurrency architecture uses the thread pool

14

ORB
Getmsg Getmsg ORB

Mutexes Processing
7% 4% Processing 8% 12%
16%

Mutexes
ORB
21%
Processing ° Writes
3506 16%
Mutexes
28%

ORB
Processing
45%

1% Semaphores
35%

Semaphores
26%

Semaphores
24%

Writes eads Reads
Reads 6% Writes 23% 29%

) o e o Client-side Server-side
Client-side Server-side

Semaphores

Figure 18: Whitebox Results for CORBAplus Figure 19: Whitebox Results for miniCOOL

high. This overhead stems from the fact that miniCOOL uses

architecture described in Section 3.2.1 and depicted in Fj , . . . :
ure 8. This architecture uses a single 1/0 threaddoept ystem scoped” threads on Solaris, which require kernel in-

andread requests from socket endpoints. This thread insefggvention for all synchronization operations [44].

the request on a queue that is serviced by a pool of workefd € miniCOOL connection and concurrency architectures
threads. are outlined briefly below.

The CORBAplus connection architecture and the servers miniCOOL connection architecture: The mini-
concurrency architecture help reduce the number of simuE®OL ORB connection architecture uses a variant of the
neous open connections and simplify the ORB implementeader/followers model described in Section 3.1.1. This ar-
tion. However, concurrent requests to the shared connectibitecture allows the leader thread to blocksielect on
incur high overhead because each send operation incurs a tumshared socket. All following threads block on semaphores
text switch. In addition, on the client-side, threads of differemaiting for one of two conditions: (1) the leader thread will
priorities can share the same transport connection, which caad their reply message and signal their semaphore or (2)
cause priority inversion. For instance, a high-priority thredbe leader thread willead its own reply and signal another
may be blocked until a low-priority thread finishes sending iteread to enter and block select , thereby becoming the
request. Likewise, the priority of the thread that blocks arew leader.
the semaphore to receive a reply from a two-way connection o .
may not reflect the priority of theequesthat arrives from the ~ ® MINICOOL concurrency architecture: The Sun
server, thereby causing additional priority inversion. miniCOOL ORB concurrency architecture uses the

o) _)) leader/followers thread pool architecture described in
miniCOOL whitebox results: Our whitebox analysis of ection 3.2.2. This architecture waits for connections in a

miniCOOL reveals that synchronization overhead from My gie thread. Whenever a request arrives and validation
tex and semaphore operations consume a large percentagg gfe request is complete, the leader thread (1) signals a

the total miniCOOL ORB processing time. As with CORyq|iower thread in the pool to wait for incoming requests and
BAplus, synchronization overhead in miniCOOL arises from) services the request.

locking operations that implement its connection and concur-
rency architecture. Locking overhead accountedf580% on The miniCOOL connection architecture and the server con-
the client-side and more than 40% on the server-side, as showmency architecture help reduce the number of simultaneous
in Figure 19). open connections and the amount of context switching when
For each CORBA request/response, miniCOOL's clierdplies arrive in FIFO order. As with CORBAplus, however,
ORB performs 94 lock operations at the user-level, wherdhs design yields high levels of priority inversion. For in-
the server performs 231 lock operations, as shown in Figance, threads of different priorities can share the same trans-
ure 22. As with CORBAplus, this locking overhead stenmrt connection on the client-side. Therefore, a high-priority
largely from excessive dynamic memory allocation. Each dywead may block until a low-priority thread finishes sending
namic allocation causes two user-level lock operatidms, its request. In addition, the priority of the thread that blocks on
one acquire and one release. the semaphore to access a connection may not reflect the pri-
The number of calls per-request to kernel-level lockimgyity of theresponsehat arrives from the server, which yields
mechanisms at the server (shown in Figure 23) are unusuallylitional priority inversion.

15

MT-Orbix whitebox results: Figure 20 shows the whitebox The MT-Orbix filter mechanism also causes an increase in

results for the client-side and server-side of MT-Orbix. synchronization overhead. Because there is just one filter
o chain, concurrent requests must acquire and release locks to
Progessing ore be processed by the filter. The MT-Orbix client-side performs

Writes Processing

135 175 user-level lock operations per-request, while the server-
wiies side performs 599 user-level lock operations per-request, as

2%

Mutexes
36%

Mutores Reads shown in Figure 22. Moreover, MT-Orbix displays a high
Fs number of kernel-level locks per-request, as shown in Fig-
ure 23.
TAO whitebox results: As shown in Figure 21, TAO ex-
e “me " hibits negligible synchronization overhead. TAO performs no
Client-side Server-side
Reads
Figure 20: Whitebox Results for MT-Orbix Reads Provesaing

42%

ORB
Process
49%

e MT-Orbix connection architecture: Like miniCOQC
MT-Orbix uses the leader/follower multiplexed connecti
chitecture. Although this model minimizes context swi

overhead, it causes intensive priority inversions. Wikes s

e MT-Orbix concurrency architecture: In the MT- Client-side Server-side
Orbix implementation of our benchmarking testbed, multiple
servant threads were created, each with the appropriate pri- Figure 21: Whitebox Results for TAO

ority, i.e,, the high-priority servant had the highest priority

thread. A thread filter was then installed to look at each fgser-|evel lock operations on the client-side, nor on the server-
quest, determine the priority of the request (by examining t§ge_ This absence of synchronization results from the design
target object), and pass the request to the thread with the g@fra0's ORB Core, which allocates a separate connection for
rect priority. The thread filter mechanism is implemented by-3 -, priority, as shown in Figure 12. Therefore, TAO’'s ORB

high-priority real-time thread to minimize dispatch latency. core uses no user-level locking operations and no kernel-level
The thread pool instantiation of the MT-Orbix mechanisfgcks.

described in Section 3.2.3 is flexible and easy to use. However, . .
it suffers from high levels of priority inversion and synchro- ° ,TAO connectlop archltgcture: TAO. uses a ”0’?'
nization overhead. MT-Orbix provides ongnefilter chain. muItlpIe>_<ed connection archltectu_re, WhICh p_re-establlshes
Thus, all incoming requests must be processed sequentialfBjnections to servants, as described in Section 3.1.2. One
the filters before they are passed to the servant thread witfP@Anection is pre-established for each priority level, thereby
appropriate real-time priority. As a result, if a high-prioritgv0ding the non-deterministic delay involved in dynamic con-
request arrives after a low-priority request, it must wait unfiection setup. In addition, different priority levels have their
the low-priority request has been dispatched before the QRN connection. This design avoids request-level priority in-
processes it. ver5|on,_wh|ch would _othe_rW|se occur from FIFO queueing
In addition, a filter can only be called after (1) GIOP prdicrossclient threads with different priorities.
cessing has completed and (2) the Object Adapter has detes- TAO concurrency architecture: TAO supports sev-
mined the target object for this request. This processingeial concurrency architectures, as described in [22]. The
serialized since the MT-Orbix ORB Core is unaware of the rReactor -per-thread-priority architecture described in Sec-
guest priority. Thus, a higher priority request that arrived aftéon 3.2.4 was used for the benchmarks in this paper. In this
a low-priority request must wait until the lower priority requestoncurrency architecture, a separate thread is created for each
has been processed by MT-Orbix. priority level, i.e,, each rate group. Thus, the low-priority
MT-Orbix’s concurrency architecture is chiefly responsibldient issues CORBA requests at a lower rate than the high-
for its substantial priority inversion shown in Figure 16. Thigriority client (10 Hz vs. 20 Hz, respectively).
figure shows how the latency observed by the high-priorityOn the server-side, client requests sent to the high-priority
clientincreases rapidly, growing from2 msecs te~14 msecs servant are processed by a high-priority real-time thread. Like-
as the number of low-priority clients increase from 1 to 50. wise, client requests sent to the low-priority servant are han-

16

dled by the low-priority real-time thread. Locking overhead is
minimized since these two servant threads share minimal ORB

resourcesi.e., they have separafeactor s, Acceptor s,
Object Adapters, etc. In addition, the two threads service sep- y
arate client connections, thereby eliminating the priority inver- 4 -
sion that would otherwise arises from connection multiplex- %
ing, as exhibited by the other ORBs we tested. g 12
g Hclient
% 101 W server
Locking overhead: Our whitebox tests measured user-level §
locking overhead (shown in Figure 22) and kernel-level lock- g .
8 8
g .
©
700 g
j 4 4
g 4
599 E
600 4
g “
g
@ 500 - . o o 0
g’_ D Cllent TAO miniCOOL CORBAplus MT ORBIX
@ W server ORBs Tested
© 400
s Figure 23: Kernel-level Locking Overhead in ORBs
5
% 300
3 v that are pre-allocated off the run-time stack. Each buffer is
S 199 g subdivided to accommodate the various fields of the request.
—1 200
:.nj 175
> N 4.3 Performance Results on Chorus ClassiX
100
The performance results in Section 4.2 were obtained on
ol o o Solaris 2.5.1, which provides real-time scheduling but not
TAO miniCOoL CORBApluS MT ORBIX real-time 1/O [42]. Therefore, Solaris cannot guarantee the
ORBs Tested availability of resources like 1/0 buffers and network band-

width [22]. Moreover, the scheduling performed by the Solaris

Figure 22: User-level Locking Overhead in ORBs . : : .
I/O subsystem is not integrated with the rest of its resource

ing overhead (shown in Figure 23) in the CORBAplus, pfhanagement stratggles. . . .
Orbix, miniCOOL, and TAO ORBs. User-level locks are typ- So-ca!led rea"‘”T‘e. operating systems typically provide
ically used to protect shared resources within a process.m chanisms for. pnpnty-controlled access to OS. resources.
common example is dynamic memory allocation using globdl'S allows applications to ensure that QoS requirements are

C++ operatorsiew anddelete . These operators allocatd"et QoS mechanisms provided by real-time operating sys-
memory from a globally managed heap in each process. tems typically include real-time scheduling classes that en-

Kernel-level locks are more expensive since they typica ce QoS usage policies, as well as real-time 1/O to specify

require mode switches between user-level and the kernel. cr:assggcrlequ!;(ements alnq ope(r)asnorr]] periods. le d
semaphore and mutex operations depicted in the whitebox re='10fUS L1assIA IS a rea “time that can scale down to

sults for the ORBs evaluated above arise from kernel-le\%'l1a|| embedded confilguratlons, as well as sce}le up t'o dis-
lock operations. tributed POSIX-compliant platforms [45]. ClassiX provides

Figures 22 and 23 illustrate how unlike the other thr@ereal—time sghedu_ler_ that supports several spheduling .algo—
ORBs, TAO incurs no user-level or kernel-level locking. TA thms, including priority-based FIFO preemptive scheduling.

can be configured so that ORB resources are not shared faupports real-time applications and general-purpose appli-

tween its threads. For instance, it eliminates dynamic allo&&11ons-
tion, and the associated locking operations, by using buffer§chorus has been purchased by Sun Microsystems.

17

The IPC mechanism used on ClassiX, Chorus IPC, providesdifferent processor boards (remote) as shown in Figure 24.
an efficient, location-transparent message-based communica-
tion facility on a single board and between multiple in'[ercrm-40

nectEd boards In addltlon1 CIaSSIX haS a TCP/IP prOt‘ ~——©——miniCOOL-local High Priority = %< = miniCOOL-local Low Priority
StaCk, accessible Via the SOCket APL that enables inte = MiNiCOOL-remote High Priority === miniCOOL-remote Low Priority
working connectivity with other OS platforms. 35 1

To determine the impact of a real-time OS on ORB per
mance, this subsection presents blackbox results for TAQ
miniCOOL using ClassiX.

w
o
L

N
o

4.3.1 Hardware Configuration:

P

N
o

The following experiments were conducted using t
MVME177 VMEbus single-board computers. Ea
MVMEL77 contains a 60 MHz MC68060 processor &
64 Mbytes of RAM. The MVME177 boards are mounted
a MVME954A 6-slot, 32-bit, VME-compatible backplane.
addition, each MVME177 module has an 82596CA Ethe
transceiver interface.

5
4.3.2 Software Configuration: Q/E/

The experiments were run on version 3.1 of ClassiX. - 0 1 2 3 4 5

ORBs benchmarked were miniCOOL 4.3 and TAO 1.0. © Number of Low Priority Clients

client/server configurations run were (1) locallye, client Figure 24: Latency for miniCOOL with Chorus IPC on Clas-
and server on one board and (2) remotely, between two SIX

MVMEL177 boards on the same backplane.

The client/server benchmarking configuration implementedWhen the client and server are collocated, the behavior is
is the sam®as the one run on Solaris 2.5.1 that is describediPre stable on both the high and low-priority clieing,, they
Section 4.1.2. MiniCOOL was configured to send messagég essentially identical since their lines in Figure 24 over-
on one board or across boards using the Chorus IPC cé#f- The latencies start at2.5 msec of latency and reaches
munication facility, which is more efficient than the Chorus12.5 msecs. Both high- and low-priority clients incur ap-
TCP/IP protocol stack. In addition, we conducted benchmaf@ximately the same average latency.
of miniCOOL and TAO using the TCP protocol. In general, In all cases, the latency for the high-priority client is always

miniCOOL performs more predictably using Chorus IPC 4wer than the latency for the low-priority client. Thus, there is
its transport mechanism. no significant priority inversion, which is expected for a real-

time system. However, there is still variance in the latency
observed by the high-priority client, in both, the remote and
local configurations.

We computed the average two-way response time incurred b general, miniCOOL performs more predictably on Clas-
various clients. In addition, we Computed two-way Operati@ﬁ(than its version for Solaris. This is due to the use of TCP
jitter. High levels of latency and jitter are undesirable for reg Solaris versus Chorus IPC on ClassiX. The Solaris latency
time applications since they complicate the computation d jitter results were relatively erratic, as shown in the black-

worst-case execution time and reduce CPU utilization. ~ box results from Solaris described in Section 4.2.1.

Figure 25 shows that as the number of low-priority clients
miniCOOL using Chorus IPC: As the number of low- increases, the jitter increases progressively manner, for remote
priority clients increase, the latency observed by the reme§gn- and low-priority clients. In addition, Figure 25 illustrates
high- and low-priority client also increases. It reache34 that the jitter incurred by miniCOOL's remote clients is fairly
msec, increasing linearly, when the client and the server figh. The unpredictable behavior of high- and low-priority

4Note the number of low-priority clients used was 5 rather than 50 due tglallems is more evident when the C“em.and. the server run on
bug in ClassiX that causesblect to fail if used to wait for events on more SEPArate processor boards, as shown in Figure 24. Moreover,

than 16 sockets. Figure 24 illustrates the difference in latency between the local

Latency per Two-way Request in milliseconds
=
ol

=
o
L

4.3.3 Blackbox results:

18

\ 70
M TAO-local High Priority ~—+——TAO-local Low Priority
——6— miniCOOL-TCP-local High Priority = % = miniCOOL-TCP-local Low Priority
—— miniCOOL-IPC-local High Priority ™ /= miniCOOL-IPC-local Low Priority

| 60 -

50 A

40

Jitter in milliseconds
5
.

miniCOOL-remote Low Priority

30 1
miniCOOL-remote High Priority

miniCOOL-local Low Priority

miniCOOL-local High Priority
20 A

Number of Low Priority Clients

Latency per Two-way Request in milliseconds

Figure 25: Jitter for miniCOOL with Chorus IPC on Classi 10 » »

and remote configurations, which appears to stem from o ‘ ‘ ‘
latency incurred by the network 1/O driver. 0 1 2 8 4 5

Number of Low Priority Clients

miniCOOL using TCP: We also configured the miniCOOL

client/server benchmark to use the Chorus TCP/IP protoE@ure 26: Latency for miniCOOL-TCP, miniCOOL-IPC, and
stack. The TCP/IP implementation on ClassiX is not as gAO-TCP on ClassiX, local configuration

ficient as Chorus IPC. However, it provided a base for com-

parison between miniCOOL and TAO, which uses TCP as its

transport prOtOCOI. ° —&—— TAO-remote High Priority —¥— TAO-remote Low Priority

The results we obtained for miniCOOL over TCP show t o o = o o vy
as the number of low-priority clients increase, the latency
served by the remote high- and low-priority client also
creased linearly. The maximum latency waS9 msec, wher
the client and the server are on the same processor boar
cal) as shown in Figure 26.

The increase in latency for the local configuration is unu:
since one would expect the ORB to perform best when cl
and server are collocated on the same processor. How
when client and server reside in different processor bo:
illustrated in Figure 27, the average latency was more sti
This appears to be due to the implementation of the TC
protocol stack, which may not to be optimized for local IP(

When the client and server are on separate boards, th
havior is similar to the remote clients using Chorus IPC. 1
indicates that some bottlenecks reside in the Ethernet driv =~ 10

In all cases, the latency for the high-priority client is
ways lower than the latency for the low-priority client.,
there appears to be no significant priority inversion, whic
expected for a real-time system. However, there is still v Number of Low Priority Clients
ance in the latency observed by the high-priority client, .
both the remote and local configurations, as shown in Figgure 27: Latency for miniCOOL-TCP, miniCOOL-IPC, and
ure 28. The remote configurations incurred the highest vafrO-TCP on ClassiX, remote configuration
ance, with the exception of TAO’s remote high-priority clients,

60

50

40

30 A

20 A

Latency per Two-way Request in milliseconds

19

tional ORBs. In addition, the results show that priority
inversion and non-determinism are significant problems in
conventional ORBs. As a result, these ORBs are not cur-
rently suitable for applications with deterministic real-time
requirements. Based on our results, and our prior experi-
ence [14, 15, 16, 17] measuring the performance of CORBA
ORB endsystems, we suggest the following recommendations
to decrease non-determinism and limit priority inversion in
real-time ORB endsystems.

~mincooLpcremae Lowpioy - 1. Real-time ORBs should avoid dynamic connection es-

Jitter in milliseconds
5
L

°l neooinc o e tablishment: ORBs that establish connections dynamically
ol e o suffer' from high jitter.. Thgs, performance seen by indiyid-
2 oL T e o oy ual clients can vary significantly from the average. Neither
minICOOL-TCP-local High Prioriy CORBAplus, miniCOOL, nor MT-Orbix provide APIs for pre-
) oromm e oo establishing connections; TAO provides these APIs as exten-
’ TACHocalLow Priry sions to CORBA.

Number of Low Priority TAO-local High Priority

Clients

We recommend that ORBs be enhanced to allow pre-
Figure 28: Jitter for miniCOOL-TCP, miniCOOL-IPC andestablishment of connections in accordance to the “explicit
TAO-TCP on ClassiX binding” mechanism provided in the forthcoming OMG stan-
dard for real-time CORBA [46, 7].

whose jitter remained fairly stable. This stability stems frot&h Real-time ORBs should minimize dynamic mem-
TAO's Reactor -per-thread-priority concurrency architecturery management: Thread-safe implementations of dynamic
described in Section 3.2.4. memory allocators require user-level locking. For instance, the

i , C++new operator allocates memory from a global pool shared
TAO using TCP: Figure 26 reveals that as the number (g

| ority Cli . ¢ hel b gall threads in a process. Likewise, the Gdetete opera-
ow-priority clients increase from 0 fo 5, the latency observg n, which releases allocated memory, also requires user-level

by TAO's high-p.riority cIiept grows by-0.005 msecs for theIocking to update the global shared pool. This lock sharing
local configuration and Figure 27 showel.022 msecs for contributes to the overhead shown in Figure 22. In addition,

the remote one. Although the remote high-priority client p§qying also increases non-determinism due to contention and
forms as well as the local one, the difference between the Iqiyj—

eueing.

priority and highjpriority rgmote clients evolves from 0 mse We regommend that real-time ORBs avoid excessive shar-
to 6 msec. This increase is unusual and appears to stem tf f dynamic memory locks via the use of mechanisms such
factors egternal to the ORB, such as the ClassiX OS sche ‘thread-specific storage [30], which allocates memory from
ing algonthm and_network latency. In genera!, TAQ perfor parate heaps that are unique to each thread.
more predictably in other platforms tested with higher band-
width, e.g. 155 Mbps ATM networks. The local client/serveB. Real-time ORBs should avoid multiplexing requests
test, in contrast, perform very predictably and have little inf different priorities over a shared connection: Sharing
crease in latency. connections among multiple threads requires synchronization.

The TAO ORB produces very low jitter, less than 2 msed¥ot only does this increase locking overhead, but it also in-
for the low-priority requests and lower jitter (less than 1 mse@)eases opportunities for priority inversion. For instance, high-
for the high-priority requests. On this platform, the exceptigfiority requests can be blocked until low-priority threads re-
is the remote low-priority client, which may be attributed ttase the shared connection lock. Priority inversion can be
the starvation of the low-priority clients by the high-prioritjurther exacerbated if multiple threads with multiple levels of
one, and the latency incurred by the network. The stability iread priorities share common locks. For instance, medium
TAO's latency is clearly desirable for applications that requipgiority threads can preempt a low-priority thread that is hold-
predictable end-to-end performance. ing a lock required by a high-priority thread, which can lead
to unbounded priority inversion [13].
. . We recommend that real-time ORBs allow application de-
4.4 Evaluation and Recommendations velopers to determine whether requests with different pri-

The results of our benchmarks illustrate the non-determini<idies are multiplexed over shared connections. Currently,

performance incurred by applications running atop convélgither miniCOOL, CORBAplus, nor MT-Orbix support this
level of control, though TAO provides this model by default.

20

4. Real-time ORB concurrency architectures should be ORBs and different OS/hardware platforms. The real-time

flexible, efficient, and predictable: Many ORBs, such as ORB benchmarking test suite described in this section is avail-

miniCOOL and CORBAplus, create threads on behalf able atwww.cs.wustl.edu/ ~schmidt/TAO.html

server applications. This design is inflexible because it pre-

vents application developers from customizing ORB perfor-

mance via a different concurrency architecture. Converseédy, Related Work

other ORB concurrency architectures are flexible, but ineffi-

cient and unpredictable, as shown by Section 4.2.2’s explafa-increasing number of research efforts are focusing on in-

tion of the MT-Orbix performance results. Thus, a balancetgrating QoS into CORBA. The work presented in this paper

needed between flexibility and efficiency. is based on the TAO project [10]. This section compares TAO
We recommend that real-time ORBs provide APIs that atith related work.

low application developers to select concurrency architecKrupp, et al, at MITRE Corporation were among the first

tures that are flexible, efficienand predictable. For in- to elucidate the needs of real-time CORBA systems [51]. They

stance, TAO offers a range of concurrency architectures, sigtgntified key requirements and outlined mechanisms for sup-

asReactor -per-thread-priority, thread pool, and thread-peporting end-to-end timing constraints [52]. A system consist-

connection. Developers can configure TAO [47] to mining of a commercial off-the-shelf RTOS, a CORBA-compliant

mize unnecessary sharing of ORB resources by using thre@&B, and a real-time object-oriented database management

specific storage. system is under development [53]. Similar to the TAO ap-

. o . proach, the initial static scheduling approach is rate mono-

5. Real-time ORBs should avoid reimplementing OS mech- tonic, but a strategy for dynamic deadline monotonic schedul-

anisms: Conventional ORBs incur substantial performan(’fﬁ??upporthas been designed [52]. Other dynamic scheduling

overhead because they reimplement native OS mechani

for endpoint demultiplexing, queueing, and concurrency co Wolfe, et al, are developing a real-time CORBA system at
trol. For instance, much of the priority inversion and non, ' >

determinism miniCOOL, CORBAplus, and MT-Orbix ster e US Navy Research and Development Laboratories (NRaD)

. . . and the University of Rhode Island (URI) [54]. The sys-
fromthe complexn.y of their ORB Core meghamsms formultl[-em supports expression and enforcement of dynamic end-
plexing multiple client threads through a single connection

2 server. These mechanism reimplement the connection rTgc?l-,]e_nd timing constraints through timed distributed operation
ver. anis Imp i hectl 1V cations TDMils) [55]. A TDMI corresponds to TAO's
agement and demultiplexing features in the OS in a man

. . _Operation [22] and anRT_Environment structure
that (1) increases overhead and (2) does not consider the(pcﬂita?ns Q0S pa[ran]1eters similar to those in TAREInfo
ority of the threads that make the requests for two-way opeff@]

tions. . .
We recommend that real-time ORB developers attemptﬂt,|oOne difference between TAO and the URI approaches is

. . . at TDMIs [52] express required timing constraintsg,
use the native OS mechanisms as much as possilglede- deadlines relative to the current time. In contrast, TAO’s

signing the ORB Core to work in concert with the underlyin Operation s publish their resource requirementsg

mech.anisms rather than reimplementing themata highgr Ieflu time. The difference in approaches may reflect the differ-
A major reason that TAQ performs predictably and eff|C|enté/ ttlime scales, seconds versus milliseconds, respectively, and

is because the connection managementand concurrency molaﬁa . ; . . e,
. scheduling requirements, dynamic versus static, of the initial

used in its ORB Core is closely integrated with the underly'ré%plication targets. However, the approaches should be equiv-
OS features. . . .
alent with respect to system schedulability and analysis.

6. The design of real-time ORB endsystem architectures The QuO project at BBN [56] has defined a model for com-
should be guided by empirical performance benchmarks: municating changes in QoS characteristics between applica-
Our prior research on pinpointing performance bottlenedisns, middleware, and the underlying endsystems and net-
and optimizing middleware like Web servers [48, 49] andork. The QuO model uses the concept of a connection be-
CORBA ORBs [15, 14, 17, 16] demonstrates the efficacy wfeen a client and an object to define QoS characteristics, and
a measurement-driven research methodology. treats these characteristics as first-class objects. These objects

We recommend that ORB vendors and end-users work witin then be aggregated to enable the characteristics to be de-
the OMG to standardize real-time CORBA benchmarkirimed at various levels of granularity,g, for a single method
techniques and metrics [50]. These benchmarks will simplifywocation, for all method invocations on a group of objects,
communication between researchers and developers. Inadi similar combinations. The model also uses several QoS
dition, they will facilitate the comparison of performance radefinition languages (QDLS) that describe the QoS charac-
sults and real-time ORB behavior patterns between differégtistics of various objects, such as expected usage patterns,

oaches may be considered in the future.

21

structural details of objects, and resource availability. time applications that can perform well over (1) standard In-

The QuO architecture differs from our work on real-timgrnet protocols, (2) upper layer protocols such as IIOP that
QoS provision since QuO does not provide hard real-timee based on the Internet protocols, and (3) off-the-shelf hard-
guarantees of ORB endsystem CPU scheduling. Furthermarate/software.
the QuO programming model involves the use of several QDLTAO has been used to develop a number of real-time ap-
specifications, in addition to OMG IDL, based on the separaications, including a real-time audio/video streaming ser-
tion of concerns advocated by Aspect-Oriented Programmirige [60] and a real-time ORB endsystem for avionics mis-
(AOP) [57]. Though we believe the AOP paradigm is quitdon computing [37]. The avionics application manages sen-
powerful, the proliferation of definition languages may k&ors and operator displays, navigates the aircraft's course, and
overly complex for common application use-cases. Therefaotentrols weapon release. To meet the scheduling demands of
the TAO programming model focuses on R& Operation real-time applications, TAO supports predictable scheduling
andRT.Info QoS specifiers, which can be expressed in staamnd dispatching of periodic processing operations [10], as well
dard OMG IDL. as efficient event filtering and correlation mechanisms [37].

The Epiq project [58] defines an open real-time CORBAhe C++ source code for TAO and ACE is freely available at
scheme that provides QoS guarantees and runtime schedwiiwgy.cs.wustl.edu/ ~schmidt/TAO.html
flexibility. Epiq extends TAO’s off-line scheduling model to
provide on-line scheduling. In addition, Epiq allows clients t
be added and removed dynamically via an admission teSAﬁ:knOWIedgmentS
runtime. The Epiq project is work-in-progress and empiri
results are not yet available.

The ARMADA project [59] defines a set of communicatio
and middleware services that supports fault-tolerant and e
to-end guarantees for real-time distributed applications. A
MADA provides real-time communication services based on
the X-kernel and the Open Group’s MK microkernel. ThiReferences
infrastructure serves as a foundation for constructing higher-
level real-time middleware services. TAO differs from AR-[1] ';- hGgplf_ﬂak_rljf]h“an agdPG-t_Pafgzkar, ;Bfi':‘/lgilfzg Ffj?t’v"-(t:ime

H i H H cheaulin eory an ractice oser 1or Multimedia Com-
MADA in trjat most of the real-time features in TAO are built buting. ir? SIGM)IéTRICS Conferenpe(Philadelphia, PA)
using TAO's ORB Core. In _addltlon, TA_O_ implements the ACM, May 1996.
OMG's CORBA Standard' Whll.e also prOVIdm.g the hoo.ks tha] S. Landis and S. Maffeis, “Building Reliable Distributed Sys-
are necessary to integrate w!th an un.derlylng real-tlme /0" tems with CORBA,"Theory and Practice of Object Systems
subsystem. Thus, the real-time services provided by AR- ol 3, no. 1, pp. 31-43, 1997.
MADA's communication system can be utilized by TAO'S 3] R. johnson, “Frameworks = Patterns + Componer@sfhmu-
ORB Core to support a vertically integrated real-time system. nications of the ACMvol. 40, Oct. 1997.
[4] Z. Deng and J. W.-S. Liu, “Scheduling Real-Time Applications
. in an Open Environment,” ilProceedings of the 18th IEEE
6 COHC|Ud|ng Remarks Real-Time Systems SymposilEEE Computer Society Press,
Dec. 1997.
Conventional CORBA ORBs exhibit substantial priority inver-[5] Object Management Groufihe Common Object Request Bro-
sion and non-determinism. Consequently, they are not yet suit- ker: Architecture and Specificatip.2 ed., Feb. 1998.
able for distributed, real-time applications with deterministi¢6] M. Henning and S. VinoskiAdvanced CORBA Programming
QoS requirements. Meeting these demands requires that ORB With C++. Reading, Massachusetts: Addison-Wesley, 1999.
Core software architectures be designed to reduce priority if¥] Object Management GrougReal-time CORBA Joint Revised
version and increase end-to-end determinism. SubmissionOMG Document orbos/99-02-12 ed., March 1999.

The TAO ORB Core described in this paper reduces prioritif] Object Management Grougvlinimum CORBA - Request for
inversion and enhances determinism by using a priority-based " "oP°sa OMG Document orbos/97-06-14 ed., June 1997.
concurrency architecture and non-multiplexed connection d@l D- C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar,
chitecture that share a minimal amount of resources among A H'gh',!aerformance Endsystem Architecture for Real-time

o . o .Y CORBA,” IEEE Communications Magazineol. 14, February
threads within a process. The architectural principles used in 1997
TAO can be applied to other ORBs and other real-time s 0] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
ware systems. Furthermore, our results demonstrate the feasi- performance of Real-Time Object Request BrokeEgmputer
bility of using OO middleware like CORBA to develop real- Communicationsvol. 21, pp. 294-324, Apr. 1998.

C\?\Ile gratefully acknowledge Expersoft, IONA, and Sun for

roviding us with their ORB software for the benchmarking
ﬁe&_tbed. In addition, we would like to thank Frank Buschmann
ﬁ”_ld Bil Lewis for their comments on this paper.

22

[11] A. Campbell and K. NahrstedBuilding QoS into Distributed [25] W. R. Stevens and G. WrighT,CP/IP lllustrated, Volume .2

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

SystemsLondon: Chapman & Hall, 1997. Proceedings of the
IFIP TC6 WGS6.1 Fifth International Workshop on Quality 0&26]
Service (IWQOS '97), 21-23 May 1997, New York.

Z.D. Dittia, G. M. Parulkar, and J. R. Cox, Jr., “The APIC Ap-
proach to High Performance Network Interface Design: Pro-
tected DMA and Other Techniques,” Rroceedings of INFO- [27]
COM '97, (Kobe, Japan), pp. 179-187, IEEE, April 1997.

R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-Time Syn-
chronization Protocols for Multiprocessors,” Proceedings

of the Real-Time Systems Symposi@funtsville, Alabama),

pp. 259-269, December 1988. [28]

A. Gokhale and D. C. Schmidt, “Evaluating the Performance
of Demultiplexing Strategies for Real-time CORBA,” Pro-
ceedings of GLOBECOM '97Phoenix, AZ), IEEE, November
1997.

A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM ’9§Stanford, CA), pp. 306-317,

ACM, August 1996. [30]

A. Gokhale and D. C. Schmidt, “The Performance of the
CORBA Dynamic Invocation Interface and Dynamic Skele-
ton Interface over High-Speed ATM Networks,” iroceed-

ings of GLOBECOM '96(London, England), pp. 50-56, IEEE [31]
November 1996.

A. Gokhale and D. C. Schmidt, “Measuring and Optimizing
CORBA Latency and Scalability Over High-speed Networks,”
Transactions on Computingol. 47, no. 4, 1998.

Z. D. Dittia, J. R. Cox, Jr.,, and G. M. Parulkar, “Design 0f32]
the APIC: A High Performance ATM Host-Network Interface
Chip,” in IEEE INFOCOM '95 (Boston, USA), pp. 179-187,
IEEE Computer Society Press, April 1995.

N. C. Hutchinson and L. L. Peterson, “Tixekernel: An Ar-
chitecture for Implementing Network Protocol$2EE Trans-
actions on Software Engineeringol. 17, pp. 64—76, January
1991.

Object Management Grouggontrol and Management of A/V
Streams Request For Proposa8MG Document telecom/96-
08-01 ed., August 1996. [35]

A. Gokhale and D. C. Schmidt, “Optimizing a CORBA I1IOP
Protocol Engine for Minimal Footprint Multimedia Systems,”
Journal on Selected Areas in Communications special issue, gg]
Service Enabling Platforms for Networked Multimedia Systean
vol. 17, Sept. 1999.

F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and
Performance of a Real-time I/0O Subsystem,”Hroceedings

of the5*" IEEE Real-Time Technology and Applications Sym-
posium (Vancouver, British Columbia, Canada), pp. 154-16 ,7]
IEEE, June 1999.

J. C. Mogul and A. Borg, “The Effects of Context Switches on
Cache Performance,” iRroceedings of the!" International
Conference on Architectural Support for Programming Lad38]
guages and Operating Systems (ASPL@Snta Clara, CA),
ACM, Apr. 1991.

D. L. Levine, S. Flores-Gaitan, C. D. Gill, and D. C. Schmidt,
“Measuring OS Support for Real-time CORBA ORBs,Hro- [39]
ceedings of thé*" Workshop on Object-oriented Real-time De-
pendable SysteméSanta Barbara, CA), IEEE, Jan. 1999.

[29]

[33]

[34]

23

Reading, Massachusetts: Addison-Wesley, 1993.

D. C. Schmidt, “Evaluating Architectures for Multi-threaded
CORBA Object Request BrokersZommunications of the ACM
special issue on CORB#&ol. 41, Oct. 1998.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Alleviating Priority Inversion and Non-determinism in Real-
time CORBA ORB Core Architectures,” iRroceedings of the
4" |EEE Real-Time Technology and Applications Symposium
(Denver, CO), IEEE, June 1998.

D. L. Tennenhouse, “Layered Multiplexing Considered Harm-
ful,”in Proceedings of th&** International Workshop on High-
Speed Network$/ay 1989.

F. Kuhns, D. C. Schmidt, C. O’Ryan, and D. Levine, “Support-
ing High-performance 1/0 in QoS-enabled ORB Middleware,”
Cluster Computing: the Journal on Networks, Software, and
Applications vol. 3, no. 3, 2000.

D. C. Schmidt, T. Harrison, and N. Pryce, “Thread-Specific
Storage — An Object Behavioral Pattern for Accessing per-
Thread State Efficiently,”C++ Report vol. 9, Novem-
ber/December 1997.

I. Pyarali, C. O'Ryan, D. C. Schmidt, N. Wang, V. Kachroo,
and A. Gokhale, “Applying Optimization Patterns to the Design
of Real-time ORBs,” inProceedings of th&‘® Conference on
Object-Oriented Technologies and Syste(@an Diego, CA),
USENIX, May 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissi@Esign Pat-
terns: Elements of Reusable Object-Oriented Softw&ead-
ing, Massachusetts: Addison-Wesley, 1995.

D. Schmidt and S. Vinoski, “Comparing Alternative Program-
ming Techniques for Multi-threaded CORBA Servers: Thread-
per-Request,C++ Report, vol. 8, February 1996.

D. Schmidt and S. Vinoski, “Comparing Alternative Program-
ming Techniques for Multi-threaded CORBA Servers: Thread-
per-Object,"C++ Report vol. 8, July 1996.

D. Schmidt and S. Vinoski, “Comparing Alternative Program-
ming Techniques for Multi-threaded CORBA Servers: Thread
Pool,” C++ Report, vol. 8, April 1996.

D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Desidd. O.
Coplien and D. C. Schmidt, eds.), pp. 529-545, Reading, Mas-
sachusetts: Addison-Wesley, 1995.

T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The De-
sigh and Performance of a Real-time CORBA Event Service,”
in Proceedings of OOPSLA '97Atlanta, GA), pp. 184-199,
ACM, October 1997.

D. C. Schmidt, “Acceptor and Connector: Design Patterns for
Initializing Communication Services,” iRattern Languages of
Program Design(R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, Massachusetts: Addison-Wesley, 1997.

C. Liu and J. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time EnvironmeniACM, vol. 20,
pp. 46-61, January 1973.

[40] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Har[55] V. Fay-Wolfe, J. K. Black, B. Thuraisingham, and P. Krupp,

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

bour, A Practitioner's Handbook for Real-Time Analysis: Guide
to Rate Monotonic Analysis for Real-Time SysterNsrwell,
Massachusetts: Kluwer Academic Publishers, 1993.

D. Ritchie, “A Stream Input—Output SystenAT&T Bell Labs [56]
Technical Journalvol. 63, pp. 311-324, Oct. 1984.

Khanna, S..et al, “Realtime Scheduling in SunOS 5.0,” in
Proceedings of the USENIX Winter Conferenpp. 375390, [57]
USENIX Association, 1992.

P. S. Inc.,Quantify User's Guide PureAtria Software Inc.,
1996.
[58]

J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah,
M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams, “Be-
yond Multiprocessing... Multithreading the SunOS Kernel,” in
Proceedings of the Summer USENIX Confere(an Antonio, [59]
Texas), June 1992.

M. Guillemont, “CHORUS/ClassiX r3 Technical Overview
(technical report #CS/TR-96-119.13),” tech. rep., Chorus Sys-
tems, May 1997.

Object Management Groupjinimum CORBA - Joint Revised[60]
SubmissionOMG Document orbos/98-08-04 ed., August 1998.

D. C. Schmidt and C. Cleeland, “Applying Patterns to Develdf1]
Extensible ORB Middleware,JEEE Communications Maga-
zing vol. 37, April 1999. [62]

J. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the Impact
of Event Dispatching and Concurrency Models on Web Serjég]
Performance Over High-speed Networks,Proceedings of the

2" Global Internet ConferengéEEE, November 1997.

J. Hu, S. Mungee, and D. C. Schmidt, “Principles for Develop-
ing and Measuring High-performance Web Servers over ATM,”
in Proceedings of INFOCOM ’98Viarch/April 1998.

S. Nimmagadda, C. Liyanaarchchi, D. Niehaus, A. Gopinatfj
and A. Kaushal, “Performance Patterns: Automated Scenario
Based ORB Performance Evaluation, Froceedings of tha'"
Conference on Object-Oriented Technologies and Sys{&as
Diego, CA), USENIX, May 1999.

“Real-time Method Invocations in Distributed Environments,”
Tech. Rep. 95-244, University of Rhode Island, Department of
Computer Science and Statistics, 1995.

J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Sup-
port for Quality of Service for CORBA ObjectsTheory and
Practice of Object Systemeol. 3, no. 1, pp. 1-20, 1997.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-Oriented Programming,”
in Proceedings of the 11th European Conference on Object-
Oriented ProgrammingJune 1997.

W. Feng, U. Syyid, and J.-S. Liu, “Providing for an Open, Real-
Time CORBA,” in Proceedings of the Workshop on Middle-
ware for Real-Time Systems and Servi¢8an Francisco, CA),
|IEEE, December 1997.

T. Abdelzaher, S. Dawson, W.-C.Feng, F.Jahanian, S. Johnson,
A. Mehra, T. Mitton, A. Shaikh, K. Shin, Z. Wang, and H. Zou,
“ARMADA Middleware Suite,” inProceedings of the Workshop

on Middleware for Real-Time Systems and Seryi(®sn Fran-
cisco, CA), IEEE, December 1997.

Object Management Groug;ontrol and Management of Au-
dio/Video Streams: OMG RFP Submissi@r? ed., Mar. 1997.

Object Management Grouphe Common Object Request Bro-
ker: Architecture and Specificatip.6 ed., Dec. 2001.

Object Management Groupphe Common Object Request Bro-
ker: Architecture and Specificatip2.4 ed., Oct. 2000.

E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick:
A Flexible, Optimizing IDL Compiler,” inProceedings of ACM
SIGPLAN '97 Conference on Programming Language Design
and Implementation (PLDJ)(Las Vegas, NV), ACM, June
1997.

Overview of the CORBA ORB Ref-
erence Model

CORBA Object Request Brokers (ORBs) allow clients to in-

B. Thuraisingham, P. Krupp, A. Schafer, and V. Wolfe, “Oifoke operations on distributed objects without concern for ob-
Real-Time Extensions to the Common Object Request Brokect location, programming language, OS platform, commu-
Architecture,” inProceedings of the Object Oriented Programnication protocols and interconnects, and hardware [6]. Fig-

ming, Systems, Languages, and Applications (OOPSLA)
shop on Experiences with CORBACM, Oct. 1994,

WAl 29 illustrates the key components in the CORBA reference
model [61] that collaborate to provide this degree of portabil-

G. Cooper, L. C. DiPippo, L. Esibov, R. Ginis, R. Johnstom, interoperability, and transpareng¥ach componentin the
P. Kortman, P. Krupp, J. Mauer, M. Squadrito, B. Thuralsmq._-:ORBA reference model is outlined below:

ham, S. Wohlever, and V. F. Wolfe, “Real-Time CORBA Devel-

opment at MITRE, NRaD, Tri-Pacific and URI,” Proceedings Client:

of the Workshop on Middleware for Real-Time Systems and
vices (San Francisco, CA), IEEE, December 1997.

A client is arole that obtains references to objects

S§fd invokes operations on them to perform application tasks.
A client has no knowledge of the implementation of the ob-

“Statement of Work for the Extend Sentry Program, CPREct but does know its logical structure according to its inter-

Project, ECSP Replacement Phase II,” Feb. 1997. Submit;sge_

to OMG in response to RFI ORBOS/96-09-02.

It also doesn’t know of the object’s location - objects

can be remote or collocated relative to the client. Ideally, a

V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlevergjient can access a remote object just like a local objext,

I. Zykh, and R. Johnston, “Real-Time CORBA,"Rroceedings

of the Third IEEE Real-Time Technology and Applications Sym-5This overview only focuses on the CORBA components relevant to this

posium (Montréal, Canada), June 1997.

24

paper. For a complete synopsis of CORBA's components see [62].

in args

8 IDL Compiler: An IDL compiler transforms OMG IDL
operation()

definitions into stubs and skeletons that are generated automat-
out args + return value
ically in an application programming language, such as C++
or Java. In addition to providing programming language trans-
parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated

- IDL IDL A
IDL [] COMPILER [~ T 7| SKELETON ORI
STUBS
] compiler optimizations [63].

ADAPTER
[%} Object Adapter: An Object Adapter is a composite compo-

() STANDARD INTERFACE () stannarp Lancuace mareinG NNt that associates servants with objects, creates object refer-
ences, demultiplexes incoming requests to servants, and col-
laborates with the IDL skeleton to dispatch the appropriate
Figure 29: Key components in the CORBA 2.x referen@peration upcall on a servant. Object Adapters enable ORBs
model to support various types of servants that possess similar re-

guirements. This design results in a smaller and simpler ORB

that can support a wide range of object granularities, lifetimes,
object —operation(args) . Figure 29 shows how thepolicies, implementation styles, and other properties. Even
underlying ORB components described below transmit remefigugh different types of Object Adapters may be used by an
operation requests transparently from client to object. ORB, the only Object Adapter defined in the CORBA specifi-
éation is the Portable Object Adapter (POA).

OBJECT

CLIENT (SERVANT)

Q ORB-SPECIFIC INTERFACE QSTANDARD PROTOCOL

Object: In CORBA, an object is an instance of an OM
Interface Definition Language (IDL) interface. Each object
is identified by anobject referencewhich associates one or
more paths through which a client can access an object on a
server. Anobject ID associates an object with its implemen-
tation, called a servant, and is unique within the scope of an
Object Adapter. Over its lifetime, an object has one or more
servants associated with it that implement its interface.

Servant: This component implements the operations de-
fined by an OMG IDL interface. In object-oriented (OO) lan-
guages, such as C++ and Java, servants are implemented us-
ing one or more class instances. In non-OO languages, such
as C, servants are typically implemented using functions and
struct s. A client never interacts with servants directly, but
always through objects identified by object references.

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request
to the object and returning a response, if any, to the client.
An ORB Core is implemented as a run-time library linked
into client and server applications. For objects executing re-
motely, a CORBA-compliant ORB Core communicates via a
version of the General Inter-ORB Protocol (GIOP), such as
the Internet Inter-ORB Protocol (IIOP) that runs atop the TCP
transport protocol. In addition, custom Environment-Specific
Inter-ORB protocols (ESIOPs) can also be defined.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs implement tReoxypattern [32] and mar-

shal application parameters into a common message-level rep-
resentation. Conversely, skeletons implementttapterpat-

tern [32] and demarshal the message-level representation back
into typed parameters that are meaningful to an application.

25

